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ABSTRACT

We present a Chern-Simons action for N=2 Super-Yang-Mills theory (SYM)

in ‘full’ N=2 superspace (hyperspace) augmented by coordinates of the internal

SU(2) group and show that this action can be reduced to the usual SYM action
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well-known Projective (Π̌) hyperspace is possible.

∗djain@insti.physics.sunysb.edu
†siegel@insti.physics.sunysb.edu

http://insti.physics.sunysb.edu/∼siegel/plan.html

mailto:djain@insti.physics.sunysb.edu
mailto:siegel@insti.physics.sunysb.edu
http://insti.physics.sunysb.edu/~siegel/plan.html


1 Introduction

The harmonic hyperspace (�) formalism was developed by GIKOS in [1], which allowed

writing down the actions for various N=2 supermultiplets. Specifically, the action for non-

Abelian super-Yang-Mills (SYM) multiplet was written as an infinite series expansion in terms

of the prepotential. This action also turns out to be non-local in the internal R-coordinates.

Even though the origin of the Abelian action could be understood via the action written

in chiral hyperspace, the non-Abelian action did not have such a direct origin. Its origin

was explained by Zupnik in [2] where the ‘series’ action was summed to a logarithm of a

pseudo-differential operator.

In this paper, we present a different origin for the non-Abelian SYM action. We show that a

Chern-Simons (CS) action for SYM can be written in ‘full’ hyperspace (d4x d8θ) supplemented

by the internal SU(2) space (d3y). However, as the CS action doesn’t know about the

geometry of the space, we can choose a ‘different’ internal space as long as integration over

this space can be consistently defined. Thus, choosing a space with a boundary (amounts to

a suitable Wick-rotation of SU(2)) is desirable as this (local) CS action can then be ‘reduced’

to the (non-local) SYM action of � on this boundary. This also means that the sphere is not

the only possibility for the harmonic internal space and other spaces can be chosen as we’ll

see in section 4, which facilitate further reduction to projective hyperspace (Π̌).

We have shown in [3] that the � can be reduced to Π̌ (developed by Lindström and

Roček[4]) after Wick rotating the internal 2-sphere and restricting the dynamics of hyperfields

to one of the resultant boundaries. Here, we modify the arguments slightly to make the

reduction more concrete and we will see that we get to the same Π̌.

2 Review of SYM in Harmonic Hyperspace

We use the notations of [5] to denote the coordinates and derivatives. The eight Fermionic

coordinates (apart from the spacetime coordinates x), making up the ‘full’ superspace, are

labelled as {θα, θ̄α̇} & {ϑα, ϑ̄α̇}. The internal symmetry group SU(2) is parameterized by

three Bosonic coordinates denoted by ‘flat’ indices {+,−, 0}. The constraints dϑΦ = d̄ϑΦ = 0

define a harmonic (analytic) hyperfield ‘Φ’.

The following constraints then define the SYM in �:

{Dϑ,Dϑ} = {Dϑ, D̄ϑ} = {D̄ϑ, D̄ϑ} = 0 (2.1)

[D+,Dϑ
(
D̄ϑ
)
] = Dθ

(
D̄θ
)

(2.2)

[D+,Dθ
(
D̄θ
)
] = 0 (2.3)

[D−,Dϑ
(
D̄ϑ
)
] = 0 (2.4)

[D−,Dθ
(
D̄θ
)
] = Dϑ

(
D̄ϑ
)

(2.5)

[D0,Dϑ
(
D̄ϑ
)
] = −Dϑ

(
D̄ϑ
)

(2.6)

[D0,Dθ
(
D̄θ
)
] = Dθ

(
D̄θ
)

(2.7)
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[D−,D+] = 2D0 (2.8)

[D0,D±] = ±D± (2.9)

where D’s are gauge covariant derivatives: D = d+ A. In �, the coordinate denoted by ‘0’

corresponds to U(1) in the coset SU(2)/U(1) due to which the corresponding derivative is

not covariantized, i.e. A0 = 0. The above constraints are then solved in the following way to

get the SYM action:

1. Choose the gauge (λ-frame): Aϑ = Āϑ = 0.

2. A− becomes a harmonic hyperfield due to equation 2.4. It is also the ‘prepotential’.

3. Eq. 2.2 just gives Aθ = −dϑA+.

4. A+ is solved as a series in terms of A− from equation 2.8:

A+ =
∞∑
n=1

(
n∏
i=1

∫
d2yi

)
A1− ... An−

(y − y1)y12...(yn − y)
. (2.10)

where d2y is the volume element of S2, Ai− ≡ A−(x, θ, ϑ, yi) and y12 = (y1 − y2) with a

relevant ε−prescription defined later.

5. The Abelian action is written as A−A+ (derived from the chiral version) which is

generalized in the non-Abelian case to a series with an extra factor of 1
n
:

S� = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−ι̇)n

n

(
n∏
i=1

∫
d2yi

)
A1−A2− ... An−
y12 y23 ... yn1

. (2.11)

3 Chern-Simons Action for N=2 SYM

We now work with ‘curved’ SU(2) derivatives, ∂m(m = 1 , 2 , 3) instead of the ‘flat’ ones,

da(a = + ,− , 0) used above:

da = ea
m∂m

[da, db] = fab
cdc → [∂m, ∂n] = 0 (3.1)

where fab
c’s are the SU(2) structure constants (can be read from equations 2.8 & 2.9) and

we require that ea
m is a dreibein satisfying

e−
1 = e−

3 = 0. (3.2)

Introducing gauge covariant derivatives ∂m → ∇m = ∂m + Am in equation 3.1, we get:

[∇m,∇n] = Fmn = 0 (3.3)
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Let us now check how the spinorial covariant derivatives act on the ‘curved’ SU(2) connections

(conjugate derivatives give similar results):

[Da,Dϑ] = faϑ
ηDη → [∇m,Dϑ] = em

afaϑ
ηDη (3.4)

⇒ dϑA2 = 0 (3.5)

where the non-zero constants are: f0θ
θ = −f0ϑ

ϑ = f+ϑ
θ = f−θ

ϑ = 1 (read from eqs. 2.4−2.7),

which imply A2 is a harmonic hyperfield. This result is valid in general due to the condition

in equation 3.2.

Finally, the constraints in equation 3.3 can be derived as equations of motion from a CS

action:

S3 =
tr

2g2

∫
dx d8θ d3y εmnp

[
1

2
Am∂nAp +

1

3
AmAnAp

]
. (3.6)

This action is reminiscent of the N=3 SYM action in �[6]. An important difference is that

while in the case of N=3 all the A’s are ‘harmonic’, only one of them is in N=2 SYM and the

above action has ‘full’ hyperspace measure with 8 Fermionic coordinates whereas the N=3

SYM action has only harmonic superspace measure also with 8 θ’s instead of all the twelve.

Also, the y−integration in 3.6 is over three real coordinates corresponding to SU(2)=S3

(or its Wick-rotated versions) whereas for N=3 SYM, the integration is over three complex

coordinates corresponding to the coset SU(3)/U(1)2.

4 Reduction from Full Hyperspace to Harmonic

As mentioned in the introduction, we are not restricted to use the compact SU(2) manifold

as the internal 3-manifold for the CS action since the geometry does not affect it. Hence, we

can choose the internal 3-manifold for the CS action to have a boundary at y3 = 0, which

basically amounts to a ‘Wick-rotation’ of SU(2) to SU(1,1). We do not put any boundary

conditions on A at this boundary due to which the variation of action 3.6 reads:

δS3 =
tr

4g2

∫
dx d8θ d3y εmnp [2δAmFnp − ∂m (AnδAp)] . (4.1)

The first term gives the usual equations of motion and the second (boundary) term breaks

gauge invariance in general1. Ignoring this subtlety, we can rewrite the action 3.6 as:

S3 =
tr

4g2

∫
dx d8θ d3y εij [2FijA3 − Ai∂3Aj − ∂i (AjA3)] , (4.2)

where i = 1, 2. The total derivative term vanishes as there are no boundaries along yi.

Here, A3 acts as a Lagrange multiplier and being an unconstrained hyperfield imposes the

1The action can be made gauge invariant by imposing suitable boundary conditions on A or by adding

additional boundary degrees of freedom as shown in [7, 8]. The gauge invariance can also be retained if we

allow the gauge parameter to vanish at the boundary, but we do not do that.
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constraint F12 = 0, whose solution can be substituted back to get a simplified action2. In

other words, we substitute the solution of the equation of motion of A3 so that the action

has only harmonic hyperfields:

F12 = ∂1A2 − ∂2A1 + [A1, A2] = 0 & A1 =
∑
n

A
(n)
1 (4.3)

⇒A
(1)
1 (y) = ∂1

∫
d2y′

A′2(y′)

y1 − y1′ + ε
y2′−y2

= −
∫
d2y′

A′2(y′)(
y1 − y1′

)2 ,

A
(2)
1 (y) = −

∫
d2y′d2y′′

A′2(y′)A′′2(y′′)(
y1 − y1′′

) (
y1′′ − y1′

) (
y1′ − y1

) , and so on...

⇒ A1 =
∞∑
n=1

(−1)n+1

∫
d2y′... d2y(n)′ A′2 ... A

(n)′

2

(y1 − y1′) ...
(
y1(n)′ − y1

) (4.4)

where d2y ≡ dy1dy2 and the ε−term is present in all denominator factors. The following

identity is used to prove that the solution in 4.4 indeed makes the curvature vanish (equation

4.3):

∂2

(
1

y1′ − y1 + ε
y2′−y2

)
∼ δ2(y′ − y). (4.5)

Plugging this solution back in action 4.2, we get:

S3 = − tr

4g2

∫
dx d8θ d2y dy3 (A1∂3A2 − A2∂3A1) (4.6)

= − tr

2g2

∫
dx d8θ

∫ ∞
0

dy3

∞∑
n=2

(−1)n∂3

n

(∫
d2y d2y′... d2y(n−1)′ ×

× A2A
′
2 ... A

(n−1)′

2

(y1 − y1′) ...
(
y1(n−1)′ − y1

)
 (4.7)

The equation 4.7 can be written with the factor 1
n

because all A2’s depend on same y3 (i.e.

no primes). Assuming A2 is well-behaved at y3 = ∞, we can integrate over y3 and write a

‘2D’ action on the boundary at y3 = 0:

S2 = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

∫
d2y d2y′... d2y(n−1)′ A2A

′
2 ... A

(n−1)′

2

(y1 − y1′) ...
(
y1(n−1)′ − y1

) (4.8)

where A2’s are evaluated at the boundary, effectively removing the y3−dependence. Fur-

thermore, equation 4.6 implies that A1,2 do not depend on y3 on-shell. This is the same as

imposing F23 = F31 = 0 and A3 = 0 everywhere. We can even substitute these ‘remain-

ing’ equations of motion above in action 4.8, which completely removes the y3−dependence

2Usually, the connections Ai are chosen to be flat at this point and written as Ai = (∂iU)U−1, which

gives the well-know Wess-Zumino action.
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of A2’s. We also note that though the CS action as we started with is not gauge invari-

ant, the resulting � action on the boundary space is gauge invariant under a familiar gauge

transformation: δA2 = D2λ.

Finally, to connect the above construction with the usual harmonic action, we use a specific

dreibein (ea
m) parameterizing the Wick-rotated coset SU(2)/U(1) constructed in [3]:

g =

(
t y
t−1
y

1

)(
eι̇

ϕ
2 0

0 e−ι̇
ϕ
2

)
(4.9)

⇒

d0 = −2ι̇∂ϕ

d+ = eι̇ϕ
[
∂y +

1

y
(t− 1) (t ∂t + 2ι̇∂ϕ)

]
d− = e−ι̇ϕy ∂t

(4.10)

where ȳ → t = 1
1+yȳ

and the subgroup U(1) acts on the right. We can now rewrite the above

action in terms of ‘flat’ connections and recover the well-known � SYM action:

S� = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−ι̇)n

n

(
n∏
k=1

∫
dyk dtk
yk

)
A1−A2− ... An−
y12 y23 ... yn1

. (4.11)

where y12 =
(
y1 − y2 + ε

ȳ1−ȳ2

)
and the volume element is explicitly written in terms of

‘modified’ stereographic coordinates for the coset described above.

Furthermore, we could also use a different coset construction for the internal space that

has a different generator as a subgroup and is a ‘contraction’ of the earlier coset:

g =

(
1 y

0 1

)(
e

ϕ
2 0

0 e−
ϕ
2

)(
1 0

ȳ 1

)
(4.12)

⇒
d0 = 2∂ϕ + 2ȳ∂ȳ

d+ = eϕ∂y − ȳ2∂ȳ − 2ȳ∂ϕ

d− = ∂ȳ .

(4.13)

We have to exchange y2 ↔ y3 to see that the dreibein does satisfy the conditions of 3.2 at

the boundary y2 = 0 now. This gives us a ‘different’ harmonic hyperspace in which the SYM

action reads almost the same as above (4.11) except that the connection A− gets replaced

with A0 and the internal space has a different volume element. This internal 2-manifold has a

degenerate metric (just dϕ2) but the volume element is properly defined from the 3-manifold’s

volume element as ȳ → 0 and is simply: e−ϕdy dϕ.

5 Reduction from Harmonic Hyperspace to Projective

We basically have to reduce the Wick-rotated 2D y−space of � to 1D y−space of Π̌. This

was done in [3] by Wick rotating the sphere
(

introduction of t = 1
1+yȳ

)
and going to one of
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the two boundaries (t = 0 & 1) of the resulting hyperbolic space parameterized by a single

coordinate y. The integration over y was defined as the usual contour integration and the

derivation of Π̌ hypermultiplets from � ones was shown by integrating out the t−dependence.

Though, it was not clear that the integration contour itself was invariant under finite SU(2)

transformations, which can shift the singularities across it.

In this section, we revise the arguments and show that the choice of contour is invariant

and the integration can be consistently defined. For that purpose, we choose the Wick-rotated

coset SU(1,1)/U(1) (∼ SO(2,1)/SO(2) ∼ RP2) as defining the 2D internal space of � for the

rest of this section.

5.1 Internal Space

In stereographic coordinates, the projective plane RP2 has a circular boundary that is

given by yȳ = 1. It can be shown that it is invariant under the symmetry group SU(1,1) as

follows: Given that

(
a b

c d

)
∈ SU(1,1) and the group ‘metric’ is

(
1 0

0 −1

)
, the matrix entries

of the group element get related: c = b̄ & d = ā. Then, if y → ay+b
cy+d

, it is easy to see that

yȳ = 1 is an invariant. Thus, the usual contour integration definition over this boundary

can be used for the y-coordinate in Π̌, where the ȳ−coordinate takes a fixed value and is

redundant: ∮
dy

2πι̇

1

yn+1
= δn,0 . (5.1)

Figure 1: Contours for Π̌ in y−plane.

The same procedure still works if we Wick-rotate the isotropy group SO(2) to SO(1,1),

which is optional at the level of harmonic hyperspace but required when reducing to the 1D

internal space (y) of Π̌ given by the coset SO(2,1)/SO(1,1)ISO(1). This can be achieved

by ‘Wick-rotating’ ȳ → 1
ȳ

such that the boundary yȳ = 1 becomes y = ȳ, which is the

‘real’ axis. This change basically corresponds to choosing an antisymmetric basis for the

6



unitary ‘metric’, i.e.

(
0 −ι̇
ι̇ 0

)
(which is usually chosen for SL(2,R) group) instead of the

usual diagonal one as chosen above such that the modified group element now has purely

real entries and reads (modulo the U(1)≡GL(1)-factor):

g =
1√

(1− yȳ)

(
1 ȳ

y 1

)
WR−−→ 1√(

1− y
ȳ

)
(

1 1
ȳ

y 1

)

CT−−→ 1√
−2ι̇ȳ

(
1− y

ȳ

)
(

1 1
ȳ

y 1

)(
1 ι̇

ȳ −ι̇ȳ

)

⇒ g =
1√
ι̇(y−ȳ)

2

(
1 0
y+ȳ

2
ι̇(y−ȳ)

2

)
. (5.2)

The full transformation involves both the Wick-rotation and a coordinate transformation

(CT). After this, the circular contour gets modified to a contour enclosing the ‘real’ axis (see

figure 1) and effectively, the earlier definition of the contour integral can still be used by an-

alytic continuation3. This change now leads to transformation of the metric in stereographic

coordinates to that in Poincaré coordinates and the corresponding volume elements read:

dy dȳ

(1− y ȳ)2

WR−−→ dy dȳ

(y − ȳ)2 . (5.3)

5.2 Action

We now redefine y ≡ y1 and yi = {y2, y3} ≡ {ȳ (t), ϕ} ∈ [0, 1] to set the notation for

projective hyperspace. We make a ‘special’ Abelian gauge transformation for Ay:

δAy = ∂y

(∫ yi

0

dyi
′
Ayi(y, y

i′)

)
≡ ∂yλ (5.4)

where we assume Ayi |yi=0 = 0. This relates the harmonic connection Ay to the projective

one as follows:

� : Ay = ∂y

∫
d2y′

y′ − y
A′yi ;

1

y′ − y
= P

(
1

y′ − y

)
+ ι̇πδ(y − y′)θ(yi − yi′) (5.5)

Π̌ : Ay = ∓ι̇ ∂y
∫

dy′

y′ − y
V ′ ; V ′ = ±ι̇

∫ 1

0

dyi
′
A′yi &

1

y′ − y
+

1

y − y′
= ι̇πδ (y′ − y) (5.6)

3If y is to be treated as a complex coordinate, then this Wick-rotation is not required.

7



Now, we can use this transformation to write down the action for Abelian SYM in projective

space characterized by a 1D y−space:

S(2)

Π̌
= − tr

4g2

∫
dx d8θdy1dy2

V1V2

y12 y21

(5.7)

where y12 is defined via equation 5.6 and the ε−prescription consistent with it reads y12 =

y1− y2 + ε (y1 + y2). This Abelian action is invariant under the following linear gauge trans-

formation after identifying λ|yi=1 = Λ and λ|yi=0 = Λ̄:

δV = ι̇
(
Λ− Λ̄

)
. (5.8)

The non-Abelian generalization of the definition of V in eq. 5.6 is via path-ordered expo-

nentiation that reads

eV = P
(
e
ι̇
∫ 1
0 dy

i′A′
yi

)
. (5.9)

This definition lifts the Abelian transformation of V to the non-Abelian case as follows:(
eV
)′

= eι̇ΛeV e−ι̇Λ̄ ⇒ δeV = ι̇
(
Λ eV − eV Λ̄

)
. (5.10)

The full non-Abelian SYM action that generalizes eq. 5.7 and is invariant under the non-

Abelian gauge transformation of eq. 5.10 then reads (in close analogy to � action):

SΠ̌ = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

(
n∏
k=1

∫
dyk

) (
eV1 − 1

)
...
(
eVn − 1

)
y12 y23 ... yn1

. (5.11)

6 Discussion & Conclusion

We have not been able to construct the projective covariant derivatives and field strengths,

which would be the fundamental ingredients in the background field formalism for Π̌. How-

ever, we have an ansatz for the connection Ay in terms of V that comes very close to being

the right one:

Ay =
∞∑
n=1

(−1)n+1

(
n∏
k=1

∫
dyk

)
eV
(
eV1 − 1

)
...
(
eVn − 1

)
(y − y1) y12 ... (yn − y)

(6.1)

because it produces the correct equation(s) of motion:

d4
ϑAy = 0⇒ d2

ϑW = d̄2
ϑW̄ = 0. (6.2)

However, Ay in 6.1 does not vary as a connection should, as can be checked with a straight-

forward calculation. We expect that ‘regularizing’ the divergent integrals by adding some

projective terms should fix Ay but we have not been able to find the correct pieces yet.

In conclusion, we have shown that a local CS action for N=2 SYM is equivalent to the

usual action written in harmonic hyperspace �. In fact, it seems that as long as consistent
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integration over the internal space of the harmonic formulation can be defined, the internal

space need not be restricted to S2 but can be spaces with boundaries like SO(2,1)/SO(2) or

even degenerate spaces like its contraction SO(2,1)/ISO(1). We then showed that the 2D

internal space(s) of the(se) harmonic hyperspace(s) when properly reduced to 1D reproduce

the same projective hyperspace Π̌ as one would expect.
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DJ thanks Yu-tin Huang and Martin Roček: Y-tH for pointing out reference [8] & helpful

discussions at the earlier stages of this work and MR for insightful discussions on Π̌ formalism.

References

[1] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, Class. Quant.

Grav. 1 (1984) 469;

A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, JETP Lett. 40 (1984) 912

[Pisma Zh. Eksp. Teor. Fiz. 40 (1984) 155];

E. Ivanov, A. Galperin, V. Ogievetsky and E. Sokatchev, Class. Quant. Grav. 2 (1985)

601; Class. Quant. Grav. 2 (1985) 617;

A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, and E.S. Sokatchev, Harmonic superspace

(Cambridge Univ. Press, 2001).

[2] B. M. Zupnik, Theor. Math. Phys. 69 (1986) 1101 [Teor. Mat. Fiz. 69 (1986) 207].

[3] D. Jain and W. Siegel, Phys. Rev. D 80 (2009) 045024 [arXiv:0903.3588 [hep-th]].
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