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We study the interplay between the stripe order and the superconducting order in a strongly
coupled striped superconductor using gauge/gravity duality. In particular, we study the effects of
inhomogeneity introduced by the stripe order on the superconducting transition temperature beyond
the mean field level by including the effects of backreaction onto the spacetime geometry in the dual
gravitational picture. We find that inhomogeneity enhances the critical temperature relative to its
value for the uniform system.
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I. INTRODUCTION

One of the differences between conventional supercon-
ductors and high temperature superconductors is that
the normal states of the conventional superconductors
are well described by Fermi liquid, whose only (weak
coupling) instability is to superconductivity. By con-
trast, the normal states of high temperature supercon-
ductors, such as cuprates and iron pnictides, are highly
correlated and thus, exhibit other low temperature orders
which interact strongly with superconductivity. One of
the prominent orders is the unidirectional charge density
wave “stripe” order [1–4].
It is therefore important to understand the nature of

the interplay between superconductivity and the stripe
order in the presence of strong correlation. In this article,
we study the effects of the stripe order on the supercon-
ducting transition temperature of the strongly correlated
superconductor using holography or gauge/gravity cor-
respondence. In gauge/gravity duality, the strongly cou-
pled systems are mapped to a weakly coupled Einstein-
Maxwell-scalar theory on black hole spacetimes with neg-
ative cosmological constant, or the so-called anti de-
Sitter (AdS) black holes. Just like the normal states of
high temperature superconductors, AdS black holes fea-
ture numerous types of instability that lead to the forma-
tion of scalar ’hair’ [5, 6] (which corresponds to supercon-
ductivity), striped phases [7–9] and nematic phases [10].
Ultimately, we would like to study the system where both
the superconducting order and the stripe order emerge
dynamically, however, since our focus in this article is
the effects of the stripe order on the critical temperature,
we will follow Refs. [11, 12] where the inhomogeneity
is introduced via a modulated chemical potential, with
wavenumber Q. These articles studied the holographic
striped superconductor by neglecting the backreaction
of the electromagnetic field on the spacetime geometry,
which in field theory language corresponds to the mean
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field treatment of the system. To improve upon their
results, we would like to consider the effects of fluctua-
tions on the strongly coupled striped superconductor by
studying the backreacted spacetimes.

We find that the critical temperature for the forma-
tion of the scalar hair is maximum in the case of an AdS
Schwarzschild black hole, which is the solution to the Ein-
stein equations when backreaction is neglected [11, 12].
This means that the superconducting transition tempera-
ture obtained by including fluctuations is lower than that
obtained in the case where fluctuations are neglected. On
the field theory side, this can also be understood using
a Ginzburg-Landau type argument: introducing fluctua-
tions costs us free energy, and thus lowering of the critical
temperature. Usually, the corrections due to fluctuations
are small enough that the qualitative behavior of Tc as a
function of other parameters remains the same. However,
when the system is inhomogeneous due to the presence
of stripe order, the effects of fluctuations in the regime
where the inverse fluctuation length scale is smaller than
the wavenumber Q are rather drastic. Starting at Q = 0,
as we increase Q, we see that Tc exhibits a steep jump
when we turn on the modulation, and after reaching a
maximum, it decreases monotonically, as Q increases,
asymptotically approaching a constant value as Q→ ∞.
As the critical temperature at finite Q is larger than the
values at both Q = 0 and Q → ∞, which correspond
to homogeneous limits, we find that the critical temper-
ature is enhanced by the presence of stripe order. This
result shares similar qualitative features with the result
of Ref. [13], in which the effects of local inhomogeneity
on the critical temperature within the framework of BCS
theory were studied.

II. SET-UP

We are interested in studying a strongly coupled
striped superconductor using the gauge/gravity duality.
To this end, consider a U(1) gauge potential Aa and a
scalar field ψ charged under this potential living in a
3 + 1-dimensional spacetime with negative cosmological
constant Λ = −3/L2. The scalar field is dual to the scalar
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order parameter of the superconductor, i.e., the conden-
sate, while the U(1) gauge field is dual to the four-current
in the strongly coupled system. For simplicity, we shall
adopt units in which L = 1, 16πG = 1.
To study the strong coupling regime of the supercon-

ductor, we only need to study the gravity theory at the
classical level. In particular, we are interested in find-
ing solutions to the classical equations of motion whose
boundary values are related to the parameters of the su-
perconductor.
The action for this system is

S =

∫

d4x
√−g

[

R+ 6− 1

4
F 2 − |Daψ|2 −m2|ψ|2

]

,

(1)
where, Da = ∂a − iqAa, Fab = ∂aAb − ∂bAa and a, b ∈
{t, r, x, y}. Here, m and q are the mass and charge of the
scalar field, respectively.
The field equations consist of the Einstein equations,

Rab −
1

2
gabR− 3gab =

1

2
Tab , (2)

where the stress-energy tensor is

Tab = FacF
c

b − 1

4
gabF

cdFcd

+ Daψ(Dbψ)
∗ + (a↔ b)− gab

[

|Daψ|2 +m2|ψ|2
]

,

(3)

the Maxwell equations,

1√−g∂b(
√−gF ab) = Ja , (4)

where the U(1) current is

Ja = −i[ψ∗Daψ − c.c.] , (5)

and the Klein-Gordon equation for the scalar field,

− 1√−gDa(
√−ggabDbψ) +m2ψ = 0 . (6)

III. ABOVE THE CRITICAL TEMPERATURE

Above the critical temperature Tc, the scalar field van-
ishes (ψ = 0) and thus, the Einstein-Maxwell equations
simplify to

Ra
b + 3δab =

1

2
T a

b , ∂b(
√−gF ab) = 0 , (7)

where

T a
b = F acFbc −

1

4
δabF

cdFcd . (8)

We are interested in finding a static black hole solution
of flat conformal boundary which is sourced by a mod-
ulated chemical potential µ(~x), where µ is a given spa-
tially dependent function. The presence of this modu-
lated chemical potential gives rise to inhomogeneities in

the system. However, it should be emphasized that this is
a phenomenological description of inhomogeneities. The
chemical potential is an effective potential resulting from
interactions within the system. Ultimately, one would
like to understand the dynamical emergence of the mod-
ulated potential and attendant inhomogeneities. How-
ever, here, we are only interested in the consequences of
the presence of the modulated potential, which we treat
as fixed.

Let (x, y) be the Cartesian spatial coordinates of the
two-dimensional conformal boundary. We concentrate on
the case in which µ only depends on one of the coordi-
nates, which is chosen to be x. For definiteness, we only
consider the case in which only a homogeneous term and
a single oscillating mode are present,

µ(x) = µ(1 − δ) + µδ cosQx . (9)

To find a solution to the Einstein-Maxwell equations (7),
consider the metric ansatz

ds2 = −r2e−αdt2 + eα
dr2

r2
+ r2e−β

[

e−γdx2 + eγdy2
]

,

(10)
where α, β, and γ are functions of (r, x). The boundary
is at r → ∞ and the horizon is at r = r+, where r+ is
an arbitrary parameter. For a flat conformal boundary,
we require α, β, γ → 0, as r → ∞, and in fact, we find
α ∼ O(r−3) while β and γ ∼ O(r−4).

For the U(1) potential, we fix the gauge so that Ar =
Ax = Ay = 0 and At = At(r, x) with At = 0 at the
horizon (for a finite norm, AaA

a < ∞), whereas at the
boundary,

At(r, x)
∣

∣

∣

r→∞
= µ(x) . (11)

We shall solve the Einstein-Maxwell equations (7) per-
turbatively by expanding around the Schwarzschild solu-
tion, which is obtained as µ → 0. This corresponds to
the probe limit in which the scalar charge q → ∞ so that
the product qµ remains finite. Near the critical temper-
ature, we have a radius of the horizon of the same order
as qµ (r+ ∼ qµ), so an expansion in µ is equivalent to an
expansion in 1/q. More precisely, the expansion is in the
dimensionless parameter

(

µ

r+

)2

∼ 1

q2
, (12)

which is the only parameter in the Einstein-Maxwell
system (since the vector potential enters quadratically).
This expansion is valid for large black holes (or small
chemical potential), or more precisely for

µ . r+ . (13)

Expanding in the small dimensionless parameter (12), we
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have

At = A
(0)
t +

(

µ

r+

)2

A
(1)
t + . . .

α = α(0) +

(

µ

r+

)2

α(1) + . . .

β = β(0) +

(

µ

r+

)2

β(1) + . . .

γ = γ(0) +

(

µ

r+

)2

γ(1) + . . . (14)

and consequently, the expansions of the metric, Ricci ten-
sor and U(1) field strength and stress-energy tensor, re-
spectively,

gab = g
(0)
ab +

(

µ

r+

)2

g
(1)
ab + . . .

Rab = R
(0)
ab +

(

µ

r+

)2

R
(1)
ab + . . .

Fab =

(

µ

r+

)2

F
(0)
ab + . . .

Tab =

(

µ

r+

)2

T (0)
ab + . . . (15)

At zeroth order, the Einstein-Maxwell equations read

R
(0) a

b + 3δab = 0 , ∂b

(

√

−g(0)F (0)ab
)

= 0 . (16)

The Einstein equations decouple and are solved by the
AdS Schwarzschild black hole1

e−α(0) ≡ h = 1−
(r+
r

)3

, β(0) = γ(0) = 0 . (17)

To solve the Maxwell equations, it is convenient to intro-
duce the coordinate

z =
r+
r
, (18)

so that the boundary is at z = 0 and the horizon at z = 1.
Writing the U(1) potential in terms of Fourier modes

A
(0)
t = µ(1− δ)A0(z) + µδA1(z) cosQx , (19)

we deduce the mode equations

A′′
n(z)−

n2Q2

r2+h(z)
An(z) = 0 (n = 0, 1) , (20)

to be solved together with the boundary conditions
An(0) = 1, An(1) = 0. Here, h(z) = 1 − z3 (Eq. (17))

1 There are also other inhomogeneous black hole spacetimes ob-
tained by perturbing Reissner-Nordström black hole [14].

and ′ denotes a derivative with respect to z. For n = 0,
we obtain

A0(z) = 1− z . (21)

For n = 1, a good analytic approximation to the solution
is given by [11, 12]

A1(z) ≈
sinh

[

Q
r+

(1− z)
]

sinh Q
r+

. (22)

The error vanishes at both ends (z = 0, 1) and attains
a maximum value at an intermediate z. As Q → 0, this
maximum value decreases like Q2, whereas as Q→ ∞, it
decays exponentially. Numerically, for Q/r+ ∼ 0.1, 1, 10,
we obtain a maximum error of 10−4, 0.01, 0.001, respec-
tively.
With the choice of boundary conditions (9), the lowest-

order stress-energy tensor T (0)
ab has modes with n ≤ 2 due

to the fact that it is quadratic in the U(1) potential. The
same should be true for the first-order corrections to the
metric.
Explicitly, the non-vanishing components of the

zeroth-order electromagnetic stress-energy tensor are

T (0) t
t = −T (0) y

y = −z
4

4

[E2
x

h
+ E2

z

]

,

T (0) z
z = −T (0)x

x =
z4

4

[E2
x

h
− E2

z

]

,

T (0)x
z =

1

h
T (0) z

x = − z4

2 h
ExEz , (23)

given in terms of the components of the electric field

Ex =
δQ

r+
A1 sinQx ,

Ez = (1− δ)A′
0(z) + δA′

1(z) cosQx . (24)

To solve the Einstein equations at first order,

R
(1) a

b = T (0) a
b , (25)

we set

α(1) = α
(1)
0 (z) + α

(1)
1 (z) cosQx+ α

(1)
2 (z) cos 2Qx ,

β(1) = β
(1)
0 (z) + β

(1)
1 (z) cosQx+ β

(1)
2 (z) cos 2Qx ,

γ(1) = γ
(1)
0 (z) + γ

(1)
1 (z) cosQx+ γ

(1)
2 (z) cos 2Qx .

(26)

We obtain five non-vanishing components for each set of

functions {α(1)
i , β

(1)
i , γ

(1)
i }, where i = 0, 1, 2. Of the five

equations, only three are independent and can be solved
analytically for the three corresponding metric functions.
After some algebra, we obtain the following system of
equations for the modes of the metric functions.
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For the Fourier zero modes, we obtain

α
(1)′
0 −

(

3

z
− h′

h

)

α
(1)
0 − z

2

(

4

z
− h′

h

)

γ
(1)′
0

−
z3

(

Q2

r2+
δ2 A2

1 − h
(

2(1− δ)2A′2
0 + δ2A′2

1

)

)

8h2
= 0 ,

β
(1)′′
0 −

(

2

z
− h′

h

)

β
(1)′
0 − Q2z2δ2A2

1

4r2+h
2

= 0 ,

γ
(1)′′
0 +

Q2z2δ2A2
1

4r2+h
2

= 0 .

(27)

We solve these equations by requiring that the functions
be regular at the horizon (z = 1) and vanish sufficiently
fast at the boundary (z = 0). We obtain

γ
(1)
0 (z) = −Q

2δ2

4 r2+

∫ z

0

dz′
∫ z′

0

dz′′
(z′′)2 A2

1

h2
, (28)

β
(1)
0 (z) = −Q

2δ2

4 r2+

∫ z

0

dz′
(z′)2

h

∫ 1

z′

dz′′
A2

1

h
, (29)

α
(1)
0 (z) =

z3

8h

∫ 1

z

α
(1)
0 (z′) dz′ , (30)

where

α
(1)
0 (z) = 2(1−δ)2A′

0
2
+δ2A′

1
2−Q

2

r2+
δ2

A2
1

h
−γ(1)′0

4h− zh′

z3
.

(31)
For the Fourier first modes, we obtain

α
(1)′
1 −





3

z
−

Q2

r2+
z + 2h′

2h



α
(1)
1

−z
2

(

4

z
− h′

h

)

γ
(1)′
1 +

Q2z(β
(1)
1 − γ

(1)
1 )

2r2+h

+
z3δ(1− δ)A′

0A′
1

2h
= 0 ,

β
(1)′′
1 −

(

2

z
− h′

h

)

β
(1)′
1 = 0 ,

γ
(1)′′
1 − Q2

r2+ h
α
(1)
1 = 0 . (32)

The second equation readily yields

β
(1)
1 (z) = 0 . (33)

By eliminating α
(1)
1 between the other two equations, we

obtain a third order differential equation for γ
(1)
1 . Then

the possible behavior of γ
(1)
1 at the horizon is found to

be a linear combination of 1 − z, (1 − z) ln(1 − z), and

(1 − z)1+Q2/6r2+ . We fix the three integration constants

by demanding γ
(1)
1 (0) = 0, γ

(1)′
1 (0) = 0, and γ

(1)′′
1 .

O(1/(1−z)) at the horizon (z = 1). The second boundary

condition, together with Eqs. (32), ensure α
(1)
1 ∼ z3 at

the boundary. The third boundary condition is necessary
for the existence of a well-defined temperature (surface

gravity), resulting in α
(1)
1 (1) = 0, on account of the third

equation in (32).
Finally, for the Fourier second modes, we obtain

α
(1)′
2 −





3

z
−

2Q2

r2+
z + h′

h



α
(1)
2

−z
2

(

4

z
− h′

h

)

γ
(1)′
2 +

2Q2z

r2+h
(β

(1)
2 − γ

(1)
2 )

+
δ2z3

(

Q2

r2+
A2

1 + hA′
1
2
)

8h2
= 0 ,

β
(1)′′
2 −

(

2

z
− h′

h

)

β
(1)′
2 +

δ2Q2z2A2
1

4r2+h
2

= 0 ,

γ
(1)′′
2 −

Q2
(

16 hα
(1)
2 + δ2z2A2

1

)

4r2+h
2

= 0 . (34)

The second equation yields

β
(1)
2 (z) =

Q2 δ2

4r2+

∫ z

0

dz′
(z′)2

h

∫ 1

z′

dz′′
A2

1

h
. (35)

We note that β
(1)
2 = −β(1)

0 .

Eliminating α
(1)
2 between the other two equations, we

obtain, as before, a third-order differential equation for

γ
(1)
2 , from which we deduce the possible near horizon be-

havior, 1− z, (1− z) ln(1− z), and (1− z)1+2Q2/3r2+ . As
before, we fix the three integration constants by demand-

ing γ
(1)
2 (0) = 0, γ

(1)′
2 (0) = 0, and γ

(1)′′
2 . O(1/(1 − z))

at the horizon (z = 1). The second boundary condition,

together with Eqs. (34), ensure α
(1)
2 ∼ z3 at the bound-

ary. The third boundary condition is necessary for the
existence of a well-defined temperature (surface gravity),

resulting in α
(1)
2 (1) = 0, on account of the third equation

in (34).
The equations for the various modes can be solved nu-

merically subject to the boundary conditions outlined

above. We have plotted α
(1)
n (n = 0, 1, 2) in Fig. 1 for

representative values of Q, whereas β
(1)
n (n = 0, 2; it van-

ishes for n = 1) is plotted in Fig. 2, and γ
(1)
n is plotted

in Figs. 3, 4, and 5, for n = 0, 1 and 2, respectively.

Note that, the β
(1)
n and γ

(1)
n components of metric per-

turbations are sourced by x-component of electric field
(24), which vanishes at both small and large Q. The

functions β
(1)
n s and γ

(1)
n s depend on Q via two terms:

a direct proportionality factor Q2 and area under the
functions A2

1/h or z2A2
1/h

2. The first factor vanishes
at Q → 0, while the integrals vanish at Q → ∞, due
to A1 ∼ Q

sinhQ (1 − z) near the horizon. Consequently,
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FIG. 1. α
(1)
0 (black), α

(1)
1 (red) and α

(1)
2 (blue) for δ = 0.5,

and Q/r+ = 0.1, 1, 3 and 5.

β
(1)
n and γ

(1)
n (n = 0, 1, 2) are very small in both limits

Q ≪ r+ and Q ≫ r+. These functions are more sig-
nificant in the intermediate range 2 < Q/r+ < 3 and
decay rapidly on both sides, but even when they reach
their maximum, they remain well below unity (see Figs.
2–5). Thus, their contribution to physical quantities is
negligible in the entire range of Q.

0.0 0.2 0.4 0.6 0.8
z

- 0.0015

- 0.0010

- 0.0005

Β 0
H 1L ,- Β 2

H 1L
∆=0.5

FIG. 2. β
(1)
0 = −β

(1)
2 for δ = 0.5, and QL2/r+ = 0.1 (red),

1.0 (green), 2.0 (blue) and 8.0 (orange).

Next, we discuss the behavior of α
(1)
n (n = 0, 1, 2)

which are physically important because they determine
the temperature. Indeed, the Hawking temperature at
first perturbative order is

T =
3r+
4π

[

1− µ2

r2+
α(1)(1)

]

. (36)

0.0 0.2 0.4 0.6 0.8
z

- 0.005
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- 0.003

- 0.002

- 0.001

Γ 0
H 1L

∆=0.5

FIG. 3. γ
(1)
0 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green),

2.0 (blue) and 8.0 (orange).
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0.008
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FIG. 4. γ
(1)
1 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green)

and 2.0 (blue).

Since α
(1)
n (1) = 0 for n ≥ 1, we have

α(1)(1) = α
(1)
0 (1) =

α0(1)

24

=
2(1− δ)2 + δ2A′

1
2 − 3γ

(1)′
0

24

∣

∣

∣

∣

∣

z=1

. (37)

We can calculate these functions analytically in the two
important limits: Q→ 0 and Q→ ∞.
In the limit Q→ 0, we obtain the analytic expressions

α
(1)
0 =

(

(1− δ)2 +
δ2

2

)

z3

4 (1 + z + z2)
+O

(

Q2

r2+

)

,

α
(1)
1 =

(1− δ) δ z3

2 (1 + z + z2)
(1− z)Q

2/6r2+ +O
(

Q2

r2+

)

,

α
(1)
2 =

δ2 z3

8 (1 + z + z2)
(1− z)2Q

2/3r2+ +O
(

Q2

r2+

)

. (38)

At Q = 0 (or equivalently, δ = 0), we recover the ex-
act Reissner-Nordström solution representing the homo-
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FIG. 5. γ
(1)
2 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green)

and 2.0 (blue).

geneous system

e−α = e−α(0)

(

1 +
µ2

r2+
α(1)

)

= 1−
(

1 +
µ2

4r2+

)

z3 +
µ2

4r2+
z4 , (39)

where we used α(1) = α
(1)
0 + α

(1)
1 + α

(1)
2 from Eq. (26)

with Q = 0.
We recover the Schwarzschild solution, which is the

solution in the probe limit, in the limit µ→ 0. As we in-
crease µ, we move further away from the probe limit and
the effects of back reaction to the metric become more
pronounced. We reach extremality at µ/r+ = 2

√
3, but

this lies outside the regime of validity of our approxima-
tion (Eq. (13)).
It should be noted that the convergence to the homoge-

neous system is not uniform. At the horizon, α
(1)
n (1) → 0

for n = 1, 2, and therefore α(1) does not converge to
its homogeneous counterpart. In other words, the limits
Q→ 0 and z → 1 do not commute. It follows that there
is a discontinuity in the temperature which depends on

the behavior of α
(1)
n at the horizon. From Eq. (36) in the

limit Q→ 0, we obtain

T ≈ 3r+
4π

[

1− µ2
(

(1− δ)2 + δ2/2
)

12r2+

]

, (40)

which is valid for smallQ. Comparing this result with the
homogeneous case, which is recovered by setting δ = 0,
we obtain an enhancement in temperature upon turning
on modulation

∆T

T
=

T

Tδ=0
− 1 ≈ µ2

12r2+
δ

(

2− 3δ

2

)

, (41)

with a maximum enhancement for δ = 2
3 . The change

in temperature is discontinuous, but this is an artifact of

keeping only the first order in perturbation theory. This
change in the temperature is expected to become smooth
(yet remain steep) as higher orders in the perturbative
expansion are included.
On the other hand, in the Q≫ r+ regime, the contri-

bution of A1 becomes exponentially small, and all func-

tions except α
(1)
0 become negligible. In this regime, we

have

α
(1)
0 ≈ (1− δ)2 z3

4 (1 + z + z2)
. (42)

So in the Q → ∞ limit, we recover another exact
Reissner-Nordström solution, albeit with less charge den-
sity,

e−α ≈ 1−
(

1 +
µ2(1− δ)2

4r2+

)

z3 +
µ2(1− δ)2

4r2+
z4 . (43)

This coincides with the homogeneous solution (39) if δ =
0, as expected.
We then deduce the temperature for large Q to be

given by

T ≈ 3r+
4π

[

1− µ2(1− δ)2

12r2+

]

. (44)

IV. THE CRITICAL TEMPERATURE

The Klein-Gordon equation for a static scalar field
ψ(z, x) of mass m and charge q reads

∑

i=z,x

1√−g ∂i
(√−ggii∂iψ

)

+
(

q2A2
t −m2

)

ψ = 0 . (45)

The mass is related to the conformal dimension ∆ of the
superconducting order parameter by

m2 = ∆ (∆− 3) . (46)

We have ψ ∼ z∆ as z → 0.
For a given set of parameters {∆, δ, q, Q, µ}, the wave

equation yields the critical value of the radius of the hori-
zon,

r+ = r+c . (47)

It is convenient to define the eigenvalue

λ =
qµ

r+c
. (48)

The critical temperature is then found from (36) by set-
ting r+ = r+c. We obtain

Tc
qµ

=
3

4π

[

1

λ
− λ

q2
α(1)(1) +O

(

1

q4

)]

. (49)

To simplify the wave equation, we note that the elec-
trostatic potential has Fourier modes with wavenumbers
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nQ, where n = 0, 1, whereas the metric consists of modes
with n = 0, 1, 2. It follows that ψ can be expanded in a
Fourier series,

ψ(z, x) = z∆F (z, x) , F (z, x) =
∑

Fn(z) cosnQx ,

(50)
where we factored out z∆, so that the modes
Fn(z) ∼ const., as z → 0. Using (50), the wave equa-
tion (45) can be written as an infinite system of coupled
ordinary differential equations.
In the large Q regime, the higher modes become neg-

ligible, and the wave equation can be well approximated
by the equation obeyed by the zero mode where all other
modes have been set to zero,

F ′′
0 +

[

2(∆− 1)

z
+
h′0
h0

]

F ′
0+

∆ [(∆− 3)(h0 − 1) + zh′0]

z2h0
F0

+ λ2(1− δ)2
(1− z)2

h20
F0 = 0 , (51)

where

h0 ≡ e
−α(0)− µ

2

r
2
+

α
(1)
0 ≈ h

[

1− µ2

r2+
α
(1)
0

]

. (52)

Expanding the scalar field, as we did with the other fields,

F = F (0) +

(

µ

r+

)2

F (1) + . . . , (53)

where F (0) is the scalar field in the probe limit, we obtain
for each Fourier mode,

Fn = F (0)
n +

(

µ

r+

)2

F (1)
n + . . . . (54)

We also need to expand the eigenvalue (48) similarly,

λ = λ0 +

(

µ

r+

)2

λ1 + . . . . (55)

We deduce for the probe limit zero mode,

F
(0)
0

′′
+

[

2(∆− 1)

z
+
h′

h

]

F
(0)
0

′

+
∆ [(∆− 3)(h− 1) + zh′]

z2h
F

(0)
0

+ λ20(1− δ)2
(1− z)2

h2
F

(0)
0 = 0 . (56)

which is the same as the equation for a homogeneous
system in the probe limit, but with µ reduced to µ(1−δ).
The correction to the zeroth-order eigenvalue can be

found using standard first-order perturbation theory. Af-
ter some algebra, we obtain

λ1 =

∫ 1

0
dz z2(∆−1)hF

(0)
0 HF (0)

0

2λ0(1− δ)2
∫ 1

0 dz z
2(∆−1) (1−z)2

h [F
(0)
0 ]2

, (57)

where

HF ≡ α
(1)
0

′
F ′ +

[

∆(∆− 3)

z2h
α
(1)
0 +

∆

z
α
(1)
0

′

−2λ20(1− δ)2
(1− z)2

h2
α
(1)
0

]

F . (58)

The above results are valid in the Q → ∞ limit. From
(49), we deduce the asymptotic value of the temperature
in this limit.
As we decrease Q, an increasing number of Fourier

modes become significant and one needs to solve a cou-
pled system of ordinary differential equations of increas-
ing complexity. This can be done numerically. The error
in the numerical analysis can be reduced to the desired
accuracy by including enough higher modes of the Fourier
expansion.
As Q→ 0, all modes become significant. In this limit,

numerical methods based on a Fourier expansion become
cumbersome. Fortunately, we can obtain analytic results
in the limit Q→ 0, because all functions are slowly vary-
ing functions of x, and therefore the x-dependence can
be ignored. We deduce the wave equation in the limit
Q→ 0,

F ′′ +

[

2(∆− 1)

z
+
h
′

h

]

F ′

+
∆

z2h

[

(∆− 3)(h− 1) + z h
′
]

F + λ2
(1− z)2

h
2 F = 0 ,

(59)

where

h ≡ h

[

1− µ2

r2+
α

]

, α = α
(1)
0 + α

(1)
1 + α

(1)
2 . (60)

At zeroth order, this reduces to the probe limit result of
the homogeneous case

F (0)′′ +

[

2(∆− 1)

z
+
h′

h

]

F (0)′

+
∆

z2h
[(∆− 3)(h− 1) + zh′]F (0)

+ λ20
(1 − z)2

h2
F (0) = 0 , (61)

to be compared with the Q→ ∞ result (56).
At first order, we obtain the correction to the eigen-

value in the limit Q→ 0,

λ1 =

∫ 1

0
dz z2(∆−1)hF

(0)
0 HF (0)

0

2λ0(1 − δ)2
∫ 1

0 dz z
2(∆−1) (1−z)2

h [F
(0)
0 ]2

, (62)

where

HF ≡ α′F ′ +

[

∆(∆− 3)

z2h
α+

∆

z
α′ − 2λ20

(1− z)2

h2
α

]

F .

(63)
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From (49), we deduce the value of the temperature in the
limit Q→ 0.
At small Q, we obtain from Eq. (41) the enhancement

in the critical temperature,

∆Tc
Tc

≈ λ2

12q2
δ

(

2− 3δ

2

)

+O
(

1

q2

)

, (64)

which vanishes at the probe limit (q → ∞) and becomes
significant away from it. However, we stress that the
above results are not accurate in the small q limit, as
they are only first-order O(1/q2) results.
The wave equation is solved numerically subject to the

boundary conditions F0 ∼ z∆ at the boundary and the
demand of regularity at the horizon (F0(1) < ∞). The
results are shown in Figs. 6 and 7, for ∆ = 2 and 3,
respectively. In each case, we have chosen the other pa-
rameters so that the curves asymptote to the same tem-
perature as Q → ∞. We note that all curves exhibit a
jump at Q = 0+, showing the enhancement of the critical
temperature once modulation is switched on, in agree-
ment with our analytic result (64). As Q increases, the
critical temperature decreases monotonically. The jump
vanishes in the probe limit which is obtained for µ = 0
(Schwarzschild black hole). For any given Q, the critical
temperature attains its maximum value at this limit. Put
differently, back reaction to the metric lowers the criti-
cal temperature. Correspondingly, in the dual boundary
system, quantum fluctuations result in a reduction in the
critical temperature for a given modulation vector Q.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Q

q Μ

0.045

0.050

0.055

0.060

Tc

q Μ

D=2

FIG. 6. From top to bottom: Tc vs. Q for ∆ = 2 and (δ, q2) =
(0.3,∞), (0.2, 7.92) and (0.1, 4.22). Parameters are chosen so
that curves asymptote to Tc/(qµ) = 0.041 as Q → ∞.

V. SUMMARY AND OUTLOOK

In this article, we have studied the effect of inhomo-
geneity on the superconducting transition temperature of
the strongly coupled striped superconductor beyond the

0.0 0.2 0.4 0.6 0.8

Q

q Μ

0.022

0.024

0.026

0.028

0.030

0.032

T c

q Μ

D=3

FIG. 7. From top to bottom: Tc vs. Q for ∆ = 3 and
(δ, q2) = (0.34,∞), (0.2, 20.65) and (0.1, 13.13). Parameters
are chosen so that curves asymptote to Tc/(qµ) = 0.020 as
Q → ∞.

mean field level, by including backreaction of the elec-
tromagnetic field on the geometry of spacetime in the
dual gravitational picture. We found that as we turn on
the modulation, the critical temperature exhibits a steep
jump. After that, as we increase Q, the critical tem-
perature decreases until it reaches the asymptotic value.
In other words, we found an enhancement of the critical
temperature due to inhomogeneity that comes from the
stripe order.
The discontinuous jump we see here is an artifact of

only keeping the zero mode of the scalar field in the cal-
culation and we expect that as we include the higher
modes, this jump will become smooth but yet steep. It
will be interesting to study whether the maximum of Tc
corresponds to the value of Q being the inverse of super-
conducting correlation length scale as is seen in the BCS
result.
Finally, we emphasize that the analysis was performed

under the assumption that the inhomogeneities in the
system were sourced by a fixed modulated chemical po-
tential. This is, of course, a phenomenological descrip-
tion of the origin of inhomogeneities. It would be of great
interest to understand the dynamical origin of the mod-
ulated chemical potential, which is due to interactions
within the system, and how Q can be determined from
the properties of the system (cf. with condensed matter
systems in which the value of Q is tuned by changing the
doping). Work in this direction is in progress.
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