
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Deformed Lorentz symmetry and relative locality in a
curved/expanding spacetime

Giovanni Amelino-Camelia, Antonino Marcianò, Marco Matassa, and Giacomo Rosati
Phys. Rev. D 86, 124035 — Published 18 December 2012

DOI: 10.1103/PhysRevD.86.124035

http://dx.doi.org/10.1103/PhysRevD.86.124035


Deformed Lorentz symmetry and relative locality in a curved/expanding spacetime

Giovanni AMELINO-CAMELIA,1, 2 Antonino MARCIANÒ,3, 4 Marco MATASSA,5 and Giacomo ROSATI1, 2
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The interest of part of the quantum-gravity community in the possibility of Planck-scale-deformed
Lorentz symmetry is also fueled by the opportunities for testing the relevant scenarios with analy-
ses, from a signal-propagation perspective, of observations of bursts of particles from cosmological
distances. In this respect the fact that so far the implications of deformed Lorentz symmetry have
been investigated only for flat (Minkowskian) spacetimes represents a very significant limitation,
since for propagation over cosmological distances the curvature/expansion of spacetime is evidently
tangible. We here provide a significant step toward filling this gap by exhibiting an explicit exam-
ple of Planck-scale-deformed relativistic symmetries of a spacetime with constant rate of expansion
(deSitterian). Technically we obtain the first ever example of a relativistic theory of worldlines of
particles with 3 nontrivial relativistic invariants: a large speed scale (“speed-of-light scale”), a large
distance scale (inverse of the “expansion-rate scale’), and a large momentum scale (“Planck scale”).
We address some of the challenges that had obstructed success for previous attempts by exploiting
the recent understanding of the connection between deformed Lorentz symmetry and relativity of
spacetime locality. We also offer a preliminary analysis of the differences between the scenario we
here propose and the most studied scenario for broken (rather than deformed) Lorentz symmetry
in expanding spacetimes.

I. INTRODUCTION

Technically the interest attracted over the last decade
by the possibility of Planck-scale-deformed relativistic
kinematics, as conceived within the proposal “DSR”
(doubly-special, or, for some authors, deformed-special
relativity) introduced in Refs. [1, 2], was mainly linked
to the following observations:

• it affords us the luxury of introducing as observer-
indepedent laws some of the properties for the
Planck scale that have been most popular in the
quantum-gravity literature, such as a role for the
Planck length (the inverse of the Planck scale) as
the minimum allowed value for wavelengths [1, 2];

• it reflects the content of results rigorously estab-
lished for 3D quantum gravity (see, e.g., Refs. [3–
5]);

• it reflects the content of results rigorously estab-
lished for some 4D noncommutative spacetimes
(see, e.g., Refs. [6, 7]);

• it fits the indications emerging from some com-
pelling semiheuristic arguments based on 4D Loop
Quantum Gravity [3, 8].

A comparable “motivational list” can be claimed by
other scenarios for the fate of relativistic symmetries at
the Planck scale, but in the case of these DSR scenarios a
crucial additional motivation comes from the opportuni-
ties in phenomenology. Some of the novel effects that can
be accommodated within a DSR-relativistic kinematics
can be tested through observations of bursts of particles

from cosmological distances [9, 10]. The key for these
analyses are the implications of DSR deformations for
the propagation of signals, and the sought Planck-scale
sensitivity is reached thanks to the huge amplification
afforded by the cosmological distances.

Our analysis takes off from the realization that this
most notable “selling point” for DSR research, based
on its phenomenological prospects, has not yet been
made truly accessible by the DSR literature developed
so far. DSR-deformed relativistic frameworks have been
investigated so far only for flat (Minkowskian) space-
times, and this is not the case relevant for the analy-
sis of signals received from sources at cosmological dis-
tances, for which the curvature/expansion of spacetime
is very tangible. We here provide a significant step to-
ward filling this gap by exhibiting an explicit example of
Planck-scale-deformed relativistic symmetries of a space-
time with constant rate of expansion (deSitterian). Evi-
dently this will lead us to introduce the first ever exam-
ple1 of a relativistic theory of worldlines of particles with
3 nontrivial relativistic invariants: a large speed scale
(“speed-of-light scale”), a large distance scale (inverse of
the “expansion-rate scale’), and a large momentum scale
(“Planck scale”).

There had been previous attempts of investigating
the interplay between DSR-type deformation scales and
spacetime expansion (see, e.g., Refs. [12, 13]), but with-
out ever producing a fully satisfactory picture of how the

1 Studies such as those in Refs. [11–13] did contemplate the possi-
bility of 3 invariants, but did not go as far as giving a consistent
relativistic picture of worldlines of particles.
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worldlines of particles should be formalized and inter-
preted. In retrospect we can now see that these previous
difficulties were due to the fact that the notion of relative
locality had not yet been understood, and without that
notion the interplay between DSR-deformation scale and
expansion-rate scale remains unintelligible.

Relative locality (on which we shall of course return in
more detail in later parts of this manuscript) is the space-
time counterpart of the DSR-deformation scale ` just in
the same sense that relative simultaneity is the space-
time counterpart of the special-relativistic scale c (scale
of deformation of Galilean Relativity into Special Rela-
tivity). This was understood only very recently, in stud-
ies such as the ones in Refs. [14–16]. Awareness of the
possibility of relative locality is already very important
in making sense of the implications of DSR-deformations
in a flat/non-expanding spacetime. And, as we shall here
show, it plays an even more crucial role in the consistency
of the spacetime picture emerging from the interplay be-
tween DSR-deformation scale and expansion-rate scale.

While our original (and still here primary) motivation
was to address these fascinating, but merely technical, is-
sues concerning the interplay between DSR-deformation
scale and expansion-rate scale, as shown in later parts of
this manuscript our results appear to carry rather strong
significance for the phenomenology. In particular, our
constructive analysis leads to a description of the depen-
dence of the novel effects on redshift that is not like any-
thing imagined in the previous DSR literature (relying
then only on heuristic arguments for the interplay be-
tween DSR-deformation scale and expansion-rate scale).

We work at leading order in the DSR-deformation scale
`, since (assuming it is of the order of the Planck length)
that is the only realistic target for DSR phenomenology
over the next few decades. And in order to keep things
simple, without renouncing to any of the most significant
conceptual hurdles, we opt to work in a 2D spacetime
(one time and one spatial dimension).

The choices of notation we adopt are relatively stan-
dard and self-explanatory with the exception of the fact
that occasionally we denote with X the set of spacetime
coordinates, i.e. X ≡ (t, x), and we denote with G the
set of symmetry generators, i.e. G ≡ (E, p,N ).

II. PRELIMINARIES ON DEFORMED
LORENTZ SYMMETRY WITHOUT EXPANSION

For our purposes the main starting point is provided
by the analysis in Ref. [14] which provided, assuming a
Minkowskian spacetime (no expansion), a framework for
DSR-deformed relativistic theories of worldlines of par-
ticles with two nontrivial relativistic invariants: a large
speed scale c (the “speed-of-light scale”, here mute be-
cause of the conventional choice of units c = 1) and a
large momentum scale `−1 (assumed to be roughly of the
order of the “Planck scale”). Ref. [14] however has a
limitation that for our purposes is significant: the anal-

ysis in Ref. [14] took off from an ansatz, with a single
parameter `, for the energy(/momentum) dependence of
travel times of massless particles from a given emitter
to a given detector, so it did not fully explore the pos-
sible issue of a dependence of such travel times on the
choice of DSR-deformation of the on-shell relation. Tak-
ing as starting point the special-relativistic on-shell rela-
tion, m2 = E2−p2, one could contemplate, in particular,
adding a term of form Ep2 and/or adding a term of form
E3. This issue was not much of interest in Ref. [14] since
it is easy to see that the difference between Ep2 defor-
mation and E3 deformation, if analyzed in a flat/non-
expanding spacetime, carries very little significance (it
should be inevitably insignificant at least for massless
particles). But in our analysis of a first case with space-
time expansion we shall find that there are some signifi-
cant difference between Ep2 deformations and E3 defor-
mations.

So in this section we find appropriate to offer a minor
generalization and reformulation of the results reported
in Ref. [14], particularly suitable for our generalization
to the case of an expanding spacetime, most notably for
what concerns the comparison between Ep2 deformation
and E3 deformation.

We start by assuming that, in a Minkowskian space-
time, the relativistic symmetries leave invariant the fol-
lowing combination of the energy E and momentum p of
particles:

Cα,β = E2 − p2 + `
(
αE3 + βEp2

)
, (1)

where α and β are two numerical parameters.
And we exhibit a corresponding DSR-deformed 1+1D

Poincaré algebra of charges compatible with the invari-
ance of Cα,β , describable in terms of the following Poisson
brackets:

{E, p} = 0 , {N , E} = p− ` (α+ β) pE ,

{N , p} = E +
1

2
`
(
αE2 + βp2

)
. (2)

A conveniently intuitive picture of the deformation we
are studying is obtained by giving a representation of
these symmetry generators in terms of time and space
coordinates t, x and variables Ω,Π canonically conjugate
to them:

{Ω, t} = 1 , {Ω, x} = 0 ,

{Π, t} = 0 , {Π, x} = −1 ,

{t, x} = {Ω,Π} = 0 , (3)

We find as representation the following:

E = Ω +
1

2
`
(
(1− β)Π2 − αΩ2

)
, (4)

p = Π , (5)

N = −tp+ xE + `

(
1

2
αxE2 + tpE +

1

2
βxp2

)
. (6)
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As done in Ref. [14], we shall derive the worldlines
adopting a covariant formulation of classical relativistic
mechanics, also introducing an auxiliary affine parameter
labeling points on the worldline of a particle of mass m.
As standard in the covariant formulation of classical rela-
tivistic mechanics, evolution is coded in a pure-constraint
Hamiltonian; specifically, the evolution in the auxiliary
parameter on the worldline is governed by a Hamilto-
nian constraint: Cα,β −m2 = 0. This straightforwardly
leads [14] to the following worldlines

xm,p = x0 +

(
p√

p2 +m2
− `p

)
(t− t0) , (7)

which in the particularly interesting case of massless par-
ticles, restricting our focus on p > 0, reduces to

xm=0,p>0 (t) = x0 + (t− t0) (1− `|p|) . (8)

And let us also stress that evidently the charges E, p,N
are conserved along the motion, in the sense that Ġ =
{Cα,β , G} = 0, and they generate respectively deformed
time translations, spatial translations, and boosts, by
Poisson brackets. By construction we have ensured that
these transformations all are relativistic symmetries of
the theory, as one can explicitly verify [14] by acting with
them on the worldlines (7), finding that the worldlines are
covariant.

At this stage of the analysis the physical content of
these worldlines is still hidden behind the relativity of
locality. A warning that this might be the case is seen in
the fact that we are analyzing a case where the on-shell
relation, in light of (1), is α and β dependent,2

m2 = E2 − p2 + `
(
αE3 + βEp2

)
,

whereas our worldlines are independent of α and β.
Most importantly the coordinate velocity one infers from
those wordlines is independent of α and β. But one of
the main known manifestations of relative locality is a
mismatch [14, 21, 24] between coordinate velocity3 and
physical velocity of particles.

2 Note that the quantity we denote with m (and we loosely refer
to as the mass) is not the rest energy when α 6= 0. The rest
energy evidently is µ such that m2 = µ2 + α`µ3. The inter-
ested readers can easily verify that none of our most significant
observations (most evidently since we mainly focus on massless
particles) depends on the difference between m2 and µ2.

3 Examples of velocity artifacts were of course known well before
the understanding of relative locality for theories with deformed
Lorentz symmetry: for example in de Sitter spacetime (and any
expanding spacetime) the coordinate velocity of a particle distant
from the observer can be described by the observer as a veloc-
ity greater than the speed of light, even though in classical de
Sitter spacetime the physical velocity measured by an observer
close to the particle is of course always no greater than the speed
of light. Since these previously known velocity artifacts are con-
nected with spacetime curvature, the recent realization that some
of our currently investigated theories formulating (one form or

For what concerns specifically the analysis so far re-
ported in this section, the main challenge resides in the
fact that we are used to read velocities off the formulas
for worldlines, but this implicitly assumes that transla-
tion transformations are trivial. Essentially we take the
worldline written by a certain observer Alice to describe
both the emission of a particle “at Alice” (in Alice’s ori-
gin) and the detection of the particle far away from Alice.
The observer/detector Bob that actually detects the par-
ticle, since he is distant from Alice, should be properly
described by acting with a corresponding translation on
Alice’s worldline. And the determination of the “arrival
time at Bob” (crucial for determining the physical ve-
locity [21]) should be based on Bob’s description of the
worldline, just as much as the “emission time at Alice”
should be based on Alice’s description of the worldline.
When translations are trivial (translation generators con-
jugate to the spacetime coordinates) we can go by with-
out worrying about this more careful level of discussion,
since the naive argument based solely on Alice’s worldline
gives the same result as the more careful analysis using
Alice’s worldline for the emission and Bob’s description
of that same worldline for the detection. But when trans-
lations are nontrivial, and one has associated features of
relativity of locality, this luxury is lost.

One way to have “relative locality” is indeed the case
here of interest, with the non-trivial translation genera-
tors of (4)-(5) acting on spacetime coordinates as follows:

{E, t} = 1− `αE , {E, x} = −`(1− β)p ,

{p, t} = 0, {p, x} = −1 . (9)

So, following Ref. [21], let us probe the difference be-
tween coordinate velocity and physical velocity through
the simple exercise of considering the simultaneous emis-
sion “at Alice” of two massless particles, one “soft” (with
momentum ps small enough that `-deformed terms in for-
mulas fall below the experimental sensitivity available)
and one “hard” (with momentum ph big enough that at
least the leading `-deformed terms in formulas fall within
the experimental sensitivity available).

We of course describe the relationship between the co-
ordinates of two distant observers in relative rest in terms
of the Poisson-bracket action of the translation genera-
tors E, p, i.e. 1 − at{E, ·} + ax{p, ·}, with at, ax the
translation parameters along t and x axes. In the specific
case in which Bob detects the soft massless particle in his
origin, which restricts us to the possibilities at = ax = L
(L being the spatial distance between Alice and Bob),

another of) “deformed Minkowski spacetime” are subject to rel-
ative locality, with some associated velocity artifacts [14, 21, 24],
was largely unexpected. Borrowing on terminology already used
is some previous works on de Sitter spacetime, we here label as
“coordinate velocity” the one obtained with the familiar dx/dt
formula, whereas we reserve the label of a “physical-velocity ef-
fect” to effects that determine the correlations between emission
times and detection times for the same particle.
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one finds that Bob’s coordinates are related to Alice’s as
follows:

tB0 = tA0 − L+ `LαE , (10)

xB0 = xA0 − L+ `L(1− β)p . (11)

The case we are considering, with a soft and a hard mass-
less particle simultaneously emitted toward Bob in Al-
ice’s origin, is such that the two particles are described
by Alice in terms of the worldlines

xAps(t
A) = tA ,

xAph(tA) = tA (1− `|ph|) .

And these worldlines, in light of (10)-(11), are described
by Bob as follows:

xBps(t
B) = tB ,

xBph(tB) = tB (1− `|ph|)− `L (α+ β) |ph| . (12)

This allows us to conclude that Bob, who is at the detec-
tor, measures the following difference of times of arrival
between the soft photon (detected at Bob at tB = 0) and
the hard photon

∆tB = `L|ph|(α+ β) . (13)

So we see that the nontriviality of the translation trans-
formations does affect the difference between coordinate
velocity and physical velocity. And the relativity of lo-
cality produced by the nontriviality of the translation
transformations, while at first appearing to be counter-
intuitive, actually ensures the internal logical consistency
of the relativistic framework4. Satisfactorily the physi-
cal velocity does depend on α and β just in the way one
should expect on the basis of the role of α and β in the
on-shell relation. But the dependence of the physical ve-
locity on α and β is not very significant, since it comes

4 As discussed in greater detail in Refs. [14, 16, 21], there is
an analogy between the role of relative locality in deformed-
Lorentz-invariant theories and the role of relative simultaneity in
deformed-Galilean invariant theories (ordinary Lorentz-invariant
theories are to be viewed, from this perspective, as deformations
of Galilean-invariant theories, which accommodate the invariant
scale c and the relativity of simultaneity, one being the counter-
part of the other). The introduction of the invariant momentum
scale `−1 requires a deformation of Lorentz invariance since ordi-
nary Lorentz transformations change the value of all momentum
scales. And for the logical balance of the relativistic theory one
finds that having one more thing invariant (the scale `) requires
rendering one more thing relative, which is the role played by
relative locality. One can see that the same logics applies to the
transition from Galilean Relativity to Einstein’s Special Relativ-
ity. Taking as starting point Galilean Relativity, the introduc-
tion of the invariant velocity scale c requires a deformation of
Galilean boosts, since ordinary Galilean boosts change the value
of all velocity scales. And for the logical balance of the relativis-
tic theory one finds that having one more thing invariant (the
scale c) requires rendering one more thing relative, which is the
role played by relative simultaneity.

tA

xA

∆t = ℓL|ph|

detectorL

β
tB

xB

∆t = ℓL|pBh |(α+ )

-Lsource

FIG. 1. We illustrate the results for travel times of mass-
less particles derived in this section by considering the case
of two distant observers, Alice and Bob, in relative rest. Two
massless particles, one soft (dashed red) and one hard (solid
blue), are emitted simultaneously at Alice and they reach Bob
at different times. Because of the nontriviality of translation
transformations, in Bob’s coordinatization (bottom panel) the
emission of the particles at Alice appears not to be simulta-
neous. And similarly, for the difference in times of arrival at
the distant detector (where Bob is located) Alice finds in her
coordinatization (top panel) a value which is not the same as
the difference in times of arrival that Bob determines (bottom
panel). The case in figure has α+ β = 4/3. For visibility we
assumed here unrealistic values for the scales involved. For
realistic values of the distance between observers and of the
energy of the hard particle, taking ` as the inverse of the
Planck scale, no effect would be visible in figure (the world-
lines would coincide).

only in the combination α + β. It is because of this fea-
ture that the difference between Ep2 deformation and E3

deformation, if analyzed in a flat/non-expanding space-
time, carries very little significance. One can get the
same physical velocity of massless particles by any mix-
ture of Ep2 deformation and E3 deformation (including
the cases where one of the two is absent) as long as α+β
keeps the same value. There is nothing extraordinary or
surprising about this: we are working at leading order
in `, so in terms which already have an ` factor we can
use E = |p| (for massless particles, and using the fact
that at zero-th order in ` the massless shell is E = |p|).
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Evidently within these approximations here of interest a
correction term of form `Ep2 is indistinguishable from a
correction term of form `E3. While this is not surprising
it was still worth devoting to it this section since one of
the main findings of the generalization proposed in the
next sections is that essentially in presence of spacetime
expansion correction terms of form `Ep2 are very signif-
icantly different from corrections term of form `E3.

Before moving on to those challenges, in closing this
section let us comment briefly on boost transformations.
For the purposes we had in this section the relative local-
ity produced by deformed boost transformations did not
come into play. Readers interested in those features of
relative locality can look in particular at Ref. [14]. The
point relevant for us is that, as inferred from Ref. [14], the
relative locality produced by boosts does not affect the
derivation of the physical velocity, but rather is the way
by which the relativistic theory renders the properties of
the physical velocity compatible with boost invariance.
This all comes down to the fact that `-deformed boosts do
not affect the timing of events at the observer: in the sim-
ple analysis reported above an observer purely boosted
with respect to Alice would also see as simultaneous the
emission of the two particles Alice sees as simultaneous;
and another observer, this one purely boosted with re-
spect to Bob, would describe the timing of the detections
of the two particles at Bob in a way that is completely
undeformed. Boosts do play a role in the analysis of co-
incidences of events distant from the observers5, but play
no role in the determination of the physical velocity.

III. DSR-DEFORMED
DE-SITTER-RELATIVISTIC SYMMETRIES AND

PHYSICAL VELOCITY

A. DSR-deformed de-Sitter-relativistic symmetries
and equations of motion

The preliminaries given in the previous section provide
a good starting point for the main challenge we intend
to face in this manuscript. Those preliminaries summa-
rize some known aspects of `-deformed Lorentz symme-
try for Minkowskian (non-expanding) spacetimes, includ-
ing the features of relativity of locality and the rather

5 This point emerges most simply and clearly by analyzing, as
done in Ref. [14], the illustrative example of an observer Alice
which describes two pairs of events, one pair coincident in her
origin and one pair coincident far away from her origin. For
an observer purely boosted (purely `-deformed boosted) with
respect to Alice one finds [14] that the pair of events close to the
origin are still coincident, but the pair of events distant from the
origin are not coincident. This is the boost counterpart of the
fact that, as a result of the properties of deformed translations,
and the associated implications for relative locality, the distant
pair of events will not be observed as coincident by observers
whose origin is close to that pair of events.

marginal relevance of the differences between Ep2 defor-
mations and E3 deformations. We now want to produce
the first example of theory of classical-particle world-
lines with `-deformed de-Sitter-relativistic symmetries.
It is interesting that de Sitter relativistic symmetries can
themselves be viewed as a deformation of the special-
relativistic symmetries of Minkowski spacetime such that
the expansion-rate parameter H is an invariant. And it is
known that the invariance of the expansion rate comes at
the cost of some velocity artifacts. With the points sum-
marized in the previous section we can easily contrast
the two deformations of the special-relativistic symme-
tries of Minkowski spacetime which provide the starting
points for our work. On one side we have `-deformed
Lorentz(/Poincaré) symmetries, a deformation by a large
momentum scale `−1 which produces velocity artifacts
connected with the novel feature of relative locality. And
on the other side we have de-Sitter-relativistic symme-
tries, a deformation by a large distance scale H−1 which
produces velocity artifacts connected with spacetime ex-
pansion. The theory we are seeking must be such that
both of these features can be accommodated, while pre-
serving the relativistic nature of the theory. So both `
and H shall be relativistic invariants (for a total of 3,
including the speed-of-light scale, here mute because of
our choice of units). And we shall have both expansion-
induced and relative-locality-induced velocity artifacts.

The strength of these demands appears to confront us
with an unsurmountable challenge. But we shall see that
the “preliminaries” offered in the previous section draw a
very clear path toward our objective. We start by speci-
fying that our `,H-deformed relativistic symmetries shall
leave invariant the following combination of the energy
E, momentum p and boost N charges of particles:

CH,α,β = E2 − p2 + 2HNp+ `
(
αE3 + βEp2

)
. (14)

Evidently for ` → 0 this reproduces the standard in-
variant of de Sitter symmetries. Something even more
general than our correction term `

(
αE3 + βEp2

)
could

here be envisaged, but we are not seeking results of max-
imum generality. On the contrary we want to make the
case as convincingly and simply as possible that there
are examples of the novel class of relativistic theories
we are here proposing. Moreover the correction term
`
(
αE3 + βEp2

)
does have enough structure for us to in-

vestigate the interplay of Ep2 deformations and E3 de-
formations with spacetime expansion, which is the one
among our side results that we perceive as most intrigu-
ing.

The path drawn in the previous section guides us to
observe that the following `-deformed (2D) de Sitter alge-
bra of charges is compatible with the invariance of CH,α,β

{E, p} = Hp− `αHEp ,
{N , E} = p+HN − `αE(p+HN )− `βEp ,

{N , p} = E +
1

2
`αE2 +

1

2
`βp2 . (15)
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One easily sees that for ` → 0 this reproduces the stan-
dard properties [25] of the classical de Sitter algebra of
charges while for H → 0 it reduces to (2).

We give a convenient representation of these symmetry
generators in terms of “conformal coordinates”, with con-
formal time η and spatial coordinate x, and variables Ω,Π
canonically conjugate to these conformal coordinates:

{Ω, η} = 1 , {Ω, x} = 0 ,

{Π, η} = 0 , {Π, x} = −1 ,

{η, x} = 0 . (16)

We find the following representation

E = Ω−HηΩ +HxΠ +
`

2
(1− β)Π2

+
`

2
HηΠ2 − `

2
α(Ω−HηΩ +HxΠ)2 ,

(17)

p = Π , (18)

N = x(1−Hη)Ω−
(
η − H

2
η2 − H

2
x2
)

Π

+ `

(
1 +Hη

2
xΠ + (1−Hη)ηΩ

)
Π .

(19)

Again we intend to derive the worldlines of particles
working within a “covariant formulation”; so we formally
introduce an auxiliary affine parameter on the worldline
and the formal evolution in the affine parameter is gov-
erned by the invariant CH,α,β .

Of course the fact that CH,α,β is an invariant of
the (deformed-)relativistic symmetries implies that the
charges that generate the symmetry transformations are
conserved over this evolution:

Ė={CH,α,β , E}=0 , ṗ={CH,α,β , p}=0 ,

Ṅ ={CH,α,β ,N}=0 .

Importantly by consistency with the chosen (deformed)
form of the invariant CH,α,β we have obtained translation
transformations which are significantly deformed, specif-
ically for the time direction. In fact, from (17) and (18)
one finds

{E, η} = 1−Hη−`α(1−Hη)(Ω−HηΩ+HxΠ) , (20)

{E, x} =−Hx− ` (1−β+Hη) Π

+`αHx(Ω−HηΩ+HxΠ)),
(21)

{p, η} = 0 , {p, x} = −1 . (22)

This prepares us to deal with relative-locality effects, of
the sort described in the previous section but intertwined
with the additional complexity of spacetime expansion.

But let us first note down the equations of motion that
are obtained in our framework. Following the standard
procedures for derivation of worldlines in the covariant
formulation of classical mechanics one easily arrives, for

a particle of mass m (i.e. CH,α,β = m2), at the following
result for the worldlines:

xm,p = x0 +

√
m2 + (1−Hη0)2p2

Hp

−
√
m2 + (1−Hη)2p2

Hp
− `(η − η0)p .

(23)

For the case of massless particles, specifying p > 0, this
reduces to

xm=0,p>0 (η) = x0 + (η − η0) (1− `|p|) . (24)

By construction these worldlines (23),(24) are covariant
under the (deformed-)relativistic transformations gener-
ated by the charges E, p,N , as one can also easily verify
explicitly.

B. Travel time of massless particles

As already established in previous studies of the case
without spacetime expansion (here summarized in Sec-
tion II), the DSR-deformed relativistic symmetries intro-
duce (as most significant among many other novel fea-
tures) a dependence on energy of the travel time of a
massless particle from a given source to a given detector.
In the analysis we provided so far of our novel proposal
of DSR-deformed relativistic symmetries of an expanding
spacetime (with constant expansion rate) an indication
of dependence on energy of the travel time of a mass-
less particle from a given source to a given detector is
found in Eq. (24): the equation governing the proper-
ties of the worldline of a massless particle in conformal
coordinates is `-corrected and the correction term intro-
duces a dependence on the energy(/momentum) of the
particle. However, as also expected on the basis of pre-
vious results on the case without spacetime expansion,
we are evidently working in a framework where locality
is relative (evidence of which has been provided so far
within our novel framework implicitly in Eqs. (20)-(21)).
So the analysis of the equations of motion written by one
observer is inconclusive for what concerns the notion of
“travel time”, i.e. the correlation between emission time
and detection time. As illustrated for the non-expanding
case in the previous section, we must guard against the
coordinate artifacts associated to relative locality by an-
alyzing the emission of the particle in terms of the de-
scription of an observer near that emission point and we
must then analyze the detection of the particle in terms
of the description of an observer near the detection point.

This is indeed our next task. We consider the case of
two distant observers: Alice at the emitter and Bob at
the detector. We keep the analysis in its simplest form,
without true loss of generality, by considering the case of
simultaneous emission at Alice of only two massless parti-
cles, one with “soft” momentum ps and one with “hard”
momentum ph. Evidently, on the basis of the analysis
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reported in the previous subsection, Alice describes the
two particles according to

xAps(η
A) = ηA , (25)

xAph(ηA) = ηA
(
1− `|pAh |

)
, (26)

where we specified xA0 = ηA0 = 0, so that the emission is

at (0, 0)
A

. Since translations are a relativistic symmetry
of our novel framework, we already know that the same
two worldlines will be described by the distant observer
Bob in the following way

xBps(η
B) = xB0;s + ηB − ηB0;s , (27)

xBph(ηB) = xB0;h +
(
ηB − ηB0;h

) (
1− `|pBh |

)
, (28)

i.e. the same type of worldlines but with a difference
of parameters here codified in xB0;s, η

B
0;s,x

B
0;h, ηB0;h. In-

deed, Alice’s worldlines (25)-(26) and Bob’s worldlines
(27)-(28) have exactly the same form, but for the ones
of Alice we had by construction (by having specified
simultaneous emission at Alice) that xA0;h = ηA0;h =

xA0;s = ηA0;s = 0 whereas Bob’s values of the parameters,

xB0;s, η
B
0;s,x

B
0;h, ηB0;h, should be determined by establishing

which (`-deformed) translation transformation connects
Alice to Bob.

This is the same task performed in some of the previ-
ous studies (such as Ref. [21]) involving relative locality
in DSR-deformed relativistic theories without spacetime
expansion. But also this aspect of the analysis turns
into a rather more challenging exercise for us, having to
deal with spacetime expansion. Let us then proceed de-
termining the translation transformation that connects
Alice to Bob providing enough details for the reader to
appreciate the interplay between the different structures
we must handle.

As usual we shall give the action on points η, x of a
worldline by a finite transformation TG;a generated by
the generic element G of the relativistic-symmetry alge-
bra in terms of its exponential representation as

TG;a . X = e−aG . X ≡
∞∑

n=0

(−a)
n

n!
{G,X}n , (29)

where a is the transformation parameter and {G,X}n is
the n-nested Poisson bracket defined by the relation

{G,X}n =
{
G, {G,X}n−1

}
, {G,X}0 = X . (30)

And before proceeding we must also implement some-
thing else that can be specified about observer Bob. The
worldline parameters xA0;h, η

A
0;h, x

A
0;s, η

A
0;s of observer Al-

ice are fully specified (xA0;h = ηA0;h = xA0;s = ηA0;s = 0) by
its being at the point of simultaneous emission of the two
particles. We have introduced observer Bob as one that
detects the particles (the particles worldines should cross
Bob spatial origin) but we have so far left completely un-
specified its worldline parameters xB0;s, η

B
0;s,x

B
0;h, ηB0;h. We

evidently can do better than that. And actually we can
also insist, without true loss of generality, that the soft
particle reaches Bob in his spacetime origin: so we are
free to enforce xB0;s = ηB0;s = 0.

This is particulary convenient because it involves the
“soft particle”, i.e. the one whose momentum ps has
been chosen to be small enough to render the `-deformed
effects inappreciable within the experimental sensitivities
available to Alice and Bob. The fact that both xA0;s =

ηA0;s = 0 and xB0;s = ηB0;s = 0 for a soft particle leads us to
focus on the case of the observer Bob connected to Alice
by the following transformation

XB =
(
eaxp . e−aηE . X

)A
, (31)

with

ax =
1− e−Haη

H
. (32)

Through this we are essentially exploiting the fact that
the deformation is ineffective on the soft particle as a
way for us to focus on a distant observer Bob whose rela-
tionship to Alice (translation parameters connecting Al-
ice to Bob) can be specified using only known results
on the undeformed/standard relativistic properties6. In-
deed in classical (relativistically undeformed) de Sitter
spacetime one easily finds that a massless particle emit-
ted in the origin of some observer Alice will cross the
origin of all observers connected to Alice by a spatial
translation of parameter ax combined with a conformal-
time translation of parameter aη, with the request that
ax = H−1[1− e−Haη ].

Using our translation generators (17)-(18) one easily
finds that for points on the worldline of the hard particle
the map from Alice to Bob is such that

ηBh =
1−eHaη
H

+eHaηηAh

+` α aηe
Haη (1−HηAh )

(
EAh −HaxpAh

)
,

xBh = eHaη (xAh − ax)− `β sinh (Haη)

H
pAh

−`αaηeHaηH(xAh − ax)
(
EAh −HaxpAh

)

+`

(
1− e−Haη

) (
1 + eHaηHηAh

)

H
pAh ,

pBh = e−Haη
(
pAh + `αHaηp

A
h

(
EAh −HaxpAh

))
.

Crucial for us is the fact that, in light of this result for the
laws of transformation from Alice’s ηAh , x

A
h , p

A
h to Bob’s

ηBh , x
B
h , p

B
h (which is of course applicable in particular to

the point η0;h, x0;h, ph on the hard particle worldline) we
can deduce that the worldline of the hard particle emitted
at Alice is described by Bob as follows

xBph(ηB)=ηB− `|pBh |
(
ηB+αaη+β

e2Haη−1

2H

)
, (33)

6 This also implicitly requires [21] that the clocks at Alice and Bob
are synchronized by exchanging soft massless particles.
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where we made use of all the specifications discussed

above, including ax = 1−e−Haη
H .

ηA

xA

∆η = ℓL|pAh |

detectorL

β
ηB

xB

∆η = ℓL|pBh |
(
α 1

H ln( 1
1−HL ) +

L−HL2

2

(1−HL)2

)

− L
1−HLsource

FIG. 2. We illustrate the results for travel times of massless
particles derived in this section, adopting conformal coordi-
nates. We consider the case of two distant observers, Alice
and Bob, connected by a pure translation, and two massless
particles, one soft (dashed red) and one hard (solid blue and
solid violet), emitted simultaneously at Alice. And we con-
sider two combinations of values of α and β producing the
same α+ β: the case α = 2/3, β = 2/3 (Bob’s hard worldline
in blue) and the case α = 1/3, β = 1 (Bob’s hard worldline in
violet). As in the case without expansion we have here that
in Bob’s coordinatization (bottom panel) the emission of the
particles at Alice appears not to be simultaneous. Similarly
for the difference in times of arrival at the distant detector
Bob Alice finds in her coordinatization (top panel) not the
same value as the difference in times of arrival that Bob de-
termines. Comparison of the blue and violet worldlines shows
that in the case with spacetime expansion the travel time does
depend individually on α and β (not just on α + β as in the
case without spacetime expansion). For visibility we assumed
here unrealistic values for the scales involved.

In turn this allows us to obtain the sought result for the
dependence on energy(/momentum) of the travel times
of massless particles: by construction of the worldlines
and of the Alice→Bob transformation the soft massless
particle emitted in Alice’s spacetime origin reaches Bob’s
spacetime origin, whereas from (33) we see that the hard
massless particle also emitted in Alice’s spacetime origin
reaches Bob at a nonzero conformal time. Specifically

the difference in conformal travel times derivable from
(33) is

∆ηB = ηB
∣∣∣
xBph

=0
= `|pB |

(
αaη + β

e2Haη − 1

2H

)
. (34)

We summarize the relativistic properties of this travel-
time analysis, inconformal coordinates, in Fig. 2. By
comparison with Fig. 1 one sees that in conformal coor-
dinates the qualitative picture of the energy dependence
of travel times is very similar to the one of the case with-
out spacetime expansion. But here, with spacetime ex-
pansion, there are tangible differences between Ep2 de-
formations and E3 deformations.

In Fig. 3 we characterize the results of our travel-time
analysis in comoving coordinates, which for most studies
of spacetime expansion are the most intuitive choice of
coordinates. [The differences between Fig. 2 and Fig. 3
all are a straightforward manifestation of the relationship
η = H−1(1 − e−Ht) between the conformal time η and
the comoving time t.]

tA

xA

∆t = ℓL|pAh |

detectorL

β
tB

xB

∆t = ℓL|pBh |
(
α 1

H ln( 1
1−HL ) +

L−HL2

2

(1−HL)2

)

− L
1−HLsource

FIG. 3. We here illustrate the results for travel times of mass-
less particles derived in this section, adopting comoving co-
ordinates. The situation here shown is the same situation
already shown (there in conformal coordinates) in Fig. 2.
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IV. ASIDE ON SPACETIME COORDINATES

Having completed the main conceptual tasks of our
analysis we find appropriate to pose for a few comments
on the role of spacetime coordinates. The notion of rela-
tivistic theories with relative locality started to be devel-
oped only very recently and it is likely that some of its
implications will start to be appreciated at later stages
of maturation. This motivates us to offer in this section
a few remarks concerning the robustness of our findings,
focusing on the setup of the coordinatization of space-
time. Particularly in relation to the steps that took us
from Eq. (15) to Eq. (23) our readers might welcome a
few additional comments on the role played by the setup
for the coordinatization.

Let us start by observing that the coordinatization
usually preferred by physicists, the one in which space-
time coordinates are conjugate to the physical energy
and momentum, was not available to us. And this is not
due to the DSR deformation we are studying. Already
the undeformed de Sitter algebra has structure such that
the energy and momentum charges, generators of time
and spatial translational symmetries, cannot be conju-
gate to spacetime coordinates. Physically this is due to
spacetime expansion: de Sitter spacetime is maximally
symmetric, including translational symmetries, but the
action of translations must take into account the expan-
sion and cannot be implemented [25] by charges conju-
gate to the coordinates.

Also our adoption of coordinates with undeformed
Poisson brackets may require further comments for some
readers. Indeed similar deformations of relativistic sym-
metries have often adopted (see, e.g., Ref. [17, 18]) space-
time coordinates with Poisson brackets {x̃, t̃} = `x̃. This
was done in relation to the fact that among the quantum-
spacetime pictures that can motivate such studies a no-
table case is “κ-Minkowski” [19, 20], a non-commutative
spacetime with [x̂, t̂] = i`x̂ (whose “classical limit” could
be described by {x̃, t̃} = `x̃). We opted for standard Pois-
son brackets on the basis of recent results [21, 22] showing
that the type of issues on which we here focused is in-
sensitive to the differences between adopting {x̃, t̃} = `x̃
and adopting {x̃, t̃} = 0.

In the remainder of this section we show explicitly the
applicability of those arguments given in Refs. [21, 22] to
our study of a case with constant rate of expansion. For
this two aspects of complexity of the framework we de-
veloped wlll end up playing a role. On one side we had to
face some challenges due to our interest in DSR deforma-
tions of de Sitter symmetries, since the correspondingly
complex description of the symmetries manifests itself es-
sentially in an extra layer of complexity connecting the
variables conjugate to the spacetime coordinates and the
translational-symmetry charges. On the other hand we
had to deal with relative locality which affects even the
interpretation of coordinates, by weakening their role.
To see this let us think of some observer Alice and her
coodinatization of spacetime points. The main implica-

tion of relative locality is that Alice’s coordinatization
is assumed to actually describe physical/observable fea-
tures only for points close to Alice, while for points dis-
tant from Alice one must rely on the description given
by some other observer, close to them. This is the main
message of previous studies of relative locality, and was
here highlighted for example in Fig. 2.

In contemplating these issues it is useful consider the
possibility of replacing our coordinates x, η with coordi-
nates x̃, η̃ obtained from them via the map

x̃ = x+ φx`ηΠ + ψx`xΩ

η̃ = η + φη`xΠ + ψη`ηΩ (35)

where we actually allowed for a 4-parameter family of
such coordinate redefinitions, labeled by the map param-
eters φx, ψx, φη, ψη.

Notice that for appropriate choices of the map param-
eters the Poisson bracket of the new coordinates may be
deformed.

{x̃, η̃} = `x̃ (ψx + φη) , (36)

so we are accommodating, as particular cases of our
more general parametrization of the map, just the class
of modified Poisson brackets that some intuitions about
the classical limit of a quantum-spacetime picture would
favour [17, 18]. But also notice that the maps we are con-
sidering have sizable consequences only for points distant
from the (origin of the reference frame of the) observer:
in particular for all choices of φx, ψx, φη, ψη the map takes
the point x = 0, η = 0 into the point x̃ = 0, η̃ = 0. This
may already suggest that our results should be indepen-
dent of the parameters φx, ψx, φη, ψη that characterize
the maps, on the basis of how relative locality affects
the analysis of correlations between emission times and
detection times (the class of observable correlations on
which we focused).

In the interest of clarity we opt for showing explicitly
that the observable correlations between emission times
and detection times on which we focused do not depend
on the choice of coordinates, within the family of pos-
sible coordinatizations we are considering (parametrized
by φx, ψx, φη, ψη, which include cases of the type (36)).

This verification can be performed by simply repeat-
ing, now adopting coordinates x̃, η̃, all the steps of the
derivations we reported in the previous section for coor-
dinates x, η. The main differences between working with
x, η coordinates and working with the x̃, η̃ are produced
by the fact that Eqs. (20)-(22) must be replaced, when
working with x̃, η̃ coordinates, by

{E, η̃} =1−Hη̃−`α(1−Hη̃)(Ω−Hη̃Ω+Hx̃Π)

+ `φηHx̃Π + `ψη (1 +Hη̃) Ω ,
(37)

{E, x̃} =−Hx̃−` (1−β+Hη̃) Π+`φx(1 +Hη)Π

+`αHx̃(Ω−Hη̃Ω+Hx̃Π))+`ψxHx̃Ω,
(38)

{p, η̃} = −`φηΠ , {p, x̃} = −1− `ψxΩ . (39)
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Crucial for the main result we here obtained is the
derivation of worldlines giving the description by an ob-
server Alice of two particles, one “hard” and one “soft”,
emitted simultaneously at Alice (in the origin of Alice’s
reference frame). Of course nothing changes for the soft
particle, but the description of the hard-particle world-
line obtained on the basis of the (37), by analyzing the
flow of the Hamiltonian/constraint (14), is now actually
different from the one we obtained in the previous section

x̃Aps(η̃
A) = η̃A ,

x̃Aph(η̃A) = η̃A
(
1− `|pAh |(1−φx−ψx+φη+ψη)

)
.

A distant observer Bob of the type discussed in the previ-
ous section (such that the soft particle crosses the origin
of his reference frame) describes the worldlines as follows:

x̃Bps(η̃
B) = η̃B , (40)

x̃Bph(η̃B)= x̃B0;h+
(
η̃B−η̃B0;h

)(
1−`|pBh |(1−φx−ψx+φη+ψη)

)
.

But, as one should have expected on the basis of the
observations we offered above, this change in the way
worldlines are described by observers is exactly compen-
sated by the fact that the dependence on φx, ψx, φη, ψη
found in (37) also affects the description of translation
transformations between a given observer Alice, located
at the emission point of the particles of interest, and a
distant observer Bob, located at the detector. Indeed
following the steps discussed in the previous section that
allow one to obtain the description of finite translations
on the basis of the action of symmetry charges on the
coordinates (here given by (37)) one finds the following
map between Alice’s coordinates and Bob’s:

η̃Bh =
1−eHaη
H

+eHaη η̃Ah +`φη
((

1−eHaη
)
x̃Ah −ax

)
pAh

+` α aηe
Haη (1−Hη̃Ah )

(
EAh −HaxpAh

)

−`ψη
(

1−eHaη
H

+
eHaη−e−Haη
H(1−Hη̃Ah )

)
(EAh −Hx̃Ah pAh ),

(41)

x̃Bh = eHaη (x̃Ah − ax)− `β sinh (Haη)

H
pAh

−`αaηeHaηH(x̃Ah − ax)
(
EAh −HaxpAh

)

+`

(
1− e−Haη

) (
1 + eHaηHη̃Ah

)

H
pAh

+ `φx

(
η̃Ah
(
1− eHaη

)
− 1− e−Haη

H

)
pAh

+ `ψx
((

1− eHaη
)
x̃Ah − ax

) EAh −Hx̃Ah pAh
1−Hη̃Ah

,

(42)

pBh = e−Haη
(
pAh + `αHaηp

A
h

(
EAh −HaxpAh

))
. (43)

Combining Eqs. (41)-(43) (particularly for the point
x̃B0;h, η̃

B
0;h which corresponds to x̃A0;h = 0, η̃A0;h = 0) with

Eqs. (40) one finds that the observable on which we fo-
cused, the difference in arrival times at Bob, is indeed
independent on the choice of coordinatization (i.e. there

is no dependence on φx, ψx, φη, ψη):

∆η̃B = η̃B
∣∣∣
x̃Bph

=0
= `|pBh |

(
αaη + β

e2Haη − 1

2H

)
, (44)

V. IMPLICATIONS FOR PHENOMENOLOGY

Our main motivation for this analysis was conceptual.
There is at this point rather robust evidence that theo-
ries in non-expanding spacetime with DSR-deformed rel-
ativistic symmetries do have a solid internal logical con-
sistency and are therefore viable candidates for quantum-
gravity researchers. Some of their properties, like the rel-
ativity of spacetime locality, are “extremely novel” and
this will understandably affect how each researcher sub-
jectively gauges the likelihood (or lack thereof) of DSR-
deformations of relativistic symmetries for the quantum-
gravity realm. But the objective fact is that, if we could
confine our considerations to Minkowskian spacetimes,
the DSR option is at this point clearly viable. However,
it is of course a well established experimental fact that we
are not in a Minkowskian spacetime. Even postponing,
as we did here, the much reacher collection of experi-
mental facts on gravitational phenomena and the Ein-
steinian description of spacetime, we felt DSR research
should at least start facing the fact that spacetime ex-
pansion is very tangible in our data. So we here sought
to make the first step away from the extremely confining
arena of Minkowskian spacetime, by showing that DSR-
deformations of relativistic symmetries are also viable in
deSitterian spacetime, expanding at a constant rate.

In facing successfully this challenge, of primarily “aca-
demic” interest, we stumbled upon results which are of
rather sizable significance for phenomenology, for reasons
that were hinted at in earlier parts of this manuscript and
we shall now discuss in greater detail.

Our first step toward the phenomenological issues of
interest in this section is to reformulate the results for
travel times of massless particles derived in the previous
section in a way that is in closer correspondence with the
type of facts that are established experimentally, when
our telescopes observe distant sources of gamma rays.
Many of the analyses performed at our telescopes amount
to timing the detection of photons emitted from a source
at a known redshift z. Postponing for a moment the fact
that the relevant contexts are not such that we could
assume a constant expansion rate, let us observe that
the results we derived in the previous section are eas-
ily reformulated as the following prediction for the dif-
ferences in detection times of photons of different ener-
gies(/momenta) emitted simultaneously by a source at
redshift z

∆t = `|p|
(
α

ln (1 + z)

H
+ β

z + z2

2

H

)
. (45)

Here again ∆t is the difference in detection times be-
tween a hard gamma-ray photon of momentum p and a
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reference ultrasoft photon emitted simultaneously to the
hard photon at the distant source. And notice that with
∆t we denote the comoving time but in the relevant tim-
ing sequences of detections at telescopes the difference
between comoving and conformal time is intangible: the
telescopes are operated for a range of times within the
t = 0 of their resident clock which is relatively small,
much smaller than the time scale H−1, so that confor-
mal time and comoving time essentially coincide (one has
η ≡ H−1(1 − e−Ht) ' t for t � H−1). For what con-
cerns redshift we simply relied on the standard formula
[23, 26] for the case of constant expansion rate which, in
our notation, gives z = eHaη − 1.

A first aspect of phenomenological relevance which
must be noticed in our result (45) is the dependence on
the parameters α and β, i.e. the difference between Ep2

deformations and E3 deformations. The fact that for the
non-expanding spacetime case this dependence only goes
with α+β is of course recovered in our result (45) in the
limit of small redshift z. This is expected since for small
redshift the expansion does not manage to have appre-
ciable consequences. What is noteworthy is that already
at next-to-leading order in redshift the dependence on α
and β is no longer fully of the form α + β, as seen by
expanding our result (45) to second order in z:

∆t
∣∣∣
z�1
' `|p|

H

[
(α+ β)z + (β − α)

z2

2

]
. (46)

In a non-expanding spacetime the difference between Ep2

deformations and E3 deformations would not have signif-
icant implications on travel-time determinations (since it
depends on α + β one gets the same result reducing the
amount of Ep2 deformation in favor of an equally sizable
increase of the amount of E3 deformation). The situ-
ation in expanding spacetimes is evidently qualitatively
different in this respect since Ep2 deformations and E3

deformations produce corrections to the travel times that
have different functional dependence on redshift. So we
are learning that for determinations of travel times from
distant astrophysical sources the difference between Ep2

deformations and E3 deformations is a phenomenologi-
cally viable (phenomenologically determinable) issue.

Related to this observation is also the other point we
want to make on the phenomenology side, which con-
cerns the comparison with analogous studies of scenar-
ios where relativistic symmetries are actually “broken”
(allowing for a preferred/“aether” frame), rather than
DSR-deformed as in the case which was of interest for
us in this manuscript. Broken-Lorentz-symmetry theo-
ries with a preferred frame are far simpler conceptually
than DSR-deformed relativistic theories, and indeed the
issue of the interplay between scale of Lorentz-symmetry
breakdown and spacetime expansion has been usefully in-
vestigated already for several years [27–29], even produc-
ing a rather universal consensus on the proper formaliza-
tion that should be adopted [29, 30, 33]. Again thanks to
the simplicity of broken-Lorentz-symmetry theories these
results apply to the general case of varying expansion

rate, and for the massless particles they take the form

∆t = λLIV |p|
∫ z

0

dz

a(z)H(z)
, (47)

where a is the scale factor, H is the expansion rate, and
λLIV (“LIV” standing for Lorentz Invariance Violation)
is the counterpart of our scale `: just like ` for us is
the inverse-momentum scale characteristic of the onset of
the DSR-deformation of relativistic symmetries, λLIV is
the inverse-momentum scale characteristic of the onset of
the LIV-breakdown of relativistic symmetries. Of course,
there is a crucial difference between the properties of `
and the properties of λLIV : `, as characteristic scale of a
deformed-symmetry picture, takes the same value for all
observers, while λLIV , as characteristic scale of a broken-
symmetry picture, takes a certain value in the preferred
frame and different values in frames boosted with respect
to the preferred frame.

Setting momentarily these differences aside we can
compare our results for DSR-deformed symmetries with
constant rate of expansion with the special case of the
broken-symmetry formula (47) obtained for constant rate
of expansion:

∆t = λLIV |p|
z + z2

2

H
. (48)

Comparing this to our result (45) we find that fixing
α = 0 in the deformed-symmetry case one gets a for-
mula (valid in all reference frames) which is the same as
the formula of the broken-symmetry case in the preferred
frame. So if α = 0 the differences between deformed-
symmetry and broken-symmetry cases would be tangible
only by comparing studies of travel times of massless par-
ticles between two telescopes with a relative boost: the
difference there would be indeed that ` takes the same
value for studies conducted by the two telescopes whereas
for λLIV the two telescopes should give different values.

We must stress however that within our deformed-
symmetry analysis we found no reason to focus specif-
ically on the choice α = 0. And if α 6= 0 in the deformed
symmetry case even studies conducted by a single tele-
scope could distinguish between the case of symmetry
deformation and the case of symmetry breakdown.

In Fig. 4 we compare the dependence on redshift of
our deformed-symmetry effect among two limiting cases
of balance between α and β, and we also compare these
results to bounds on travel-time anomalies [31–33] ob-
tained in studies of sources at redshift smaller than 1
(where the assumption of a constant rate of expansion is
not completely misleading).

In Fig. 5 we illustrate the “constraining power” of our
results and of foreseeable generalizations of our analysis
gaining access to cases with non-constant rate of expan-
sion. For better visibility and as a way to offer more in-
telligible visual messages we restrict our focus to the case
in which both α and β are positive. [There is no reason
for making this assumption, but on the other hand it is
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FIG. 4. Here we show the dependence on redshift of the ex-
pected time-of-arrival difference divided by the difference of
energy of the two massless particles. Two such functions are
shown, one for the case α = 0, β = 0.65 (violet) and one for
the case α = 1.3, β = 0 (blue). We also show the upper lim-
its that can be derived from data reported in Refs. [31–33],
setting momentarily aside the fact that our analysis adopted
the simplifying assumption of a constant rate of expansion
(whereas a rigorous analysis of the data reported in Refs. [31–
33] should take into account the non-constancy of the expan-
sion rate). The values α = 0, β = 0.65 and α = 1.3, β = 0
have been chosen so that we have consistency with the tight-
est upper bound, the one established in Ref. [33]. The main
message is coded in the fact that at small values of redshift
the blue and the violet lines are rather close, but at large val-
ues of redshift they are significantly different (this is a log-log
plot). In turn this implies that at high redshift the difference
between adding correction terms of form Ep2 and adding cor-
rection terms of form E3 can be very tangible.

easy to see how the constraints established within this as-
sumption can be adapted to the more general situation
with α and β allowed to also be negative.]

In the left panel of Fig. 5 we show how the bound ob-
tained from Ref. [32], at the relatively small redshift of
z = 0.116 (where we should really be able to apply our
results for constant rate of expansion as a reliable first
approximation), provides a constraint on the α, β param-
eter space. For these purposes we can of course fix the
value of ` to be exactly the Planck length (the inverse
of the Planck scale) since any rescaling of ` can be re-
absorbed into an overall rescaling of α and β. Within
this choice of conventions the target “Planck-scale sen-
sitivity” would manifest itself as the ability to constrain
values of α and β of order 1. As shown in the left panel
of Fig. 5, even restricting our focus on cases with redshift
much smaller than 1 (as needed because of the present
limitation of applicability of our approach to constant, or
approximately constant, rate of expansion) this Planck-
scale sensitivity is not far. In the right panel of Fig. 5 we
show the much tighter constraint on the α, β parameter
space which would be within reach if we could assume
our analysis to apply also to redshifts close to 1, as for
GRB090510 observed by the Fermi telescope [33]. Ana-

lyzing data from sources at redshift of ' 1 assuming a
picture with constant rate of expansion cannot produce
conservative experimental bounds, but the content of the
right panel of Fig. 5 serves the purpose of providing evi-
dence of the fact that full Planck-scale sensitivity will be
within reach of improved versions of our analysis, extend-
ing our results to the case of expansion at non-constant
rate.
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FIG. 5. Here in the left panel we show the constraint on the
α, β parameter space that can be obtained from Ref. [32], con-
cerning a source at the relatively small redshift of z = 0.116,
where we can confidently apply our results for constant rate
of expansion as a reliable first approximation. Through this
we show that even within the confines of our analysis Planck-
scale sensitivity (values of |α| and |β| smaller or comparable
to 1) is not far. In the right panel we show the much tighter
(indeed “Planckian”) constraint on the α, β parameter space
which would be within our reach if we could assume our anal-
ysis to apply also to redshifts close to 1, as for GRB090510
observed by the Fermi telescope [33]. By comparing the left
and the right panel one also finds additional evidence of how
the difference between adding correction terms of form Ep2

and adding correction terms of form E3 becomes more sig-
nificant at higher redshifts: in the left panel (data on source
at small redshift of z = 0.116) the bound on the α parame-
ter is nearly as strong as on the β parameter, whereas in the
right panel (data on source at redshift of z ' 0.9) the con-
straint on the alpha parameter is significantly weaker than
the constraint on the β parameter.

VI. SUMMARY AND OUTLOOK

We here addressed a long-standing issue for the study
of quantum-gravity-inspired deformations of relativistic
symmetries. It led us to propose the first ever exam-
ple of a relativistic theory of worldlines of particles with
3 nontrivial relativistic invariants: a large speed scale
(“speed-of-light scale”), a large distance scale (inverse of
the “expansion-rate scale’), and a large momentum scale
(“Planck scale”). And on the basis of the observations
reported in the previous section it is clear that this is not
merely an exercise providing a more rigorous derivation of
previous heuristic proposals: our constructive approach
produces results that reshape the targets of the relevant
phenomenology.
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In order to fully empower these phenomenological ap-
plications the next step would be to generalize our ap-
proach in such a way to render it applicable to cases
with varying expansion rate. For what concerns appli-
cations in astrophysics this will open the way to exploit-
ing data from the farthest sources, with the associated
benefit of even larger distances amplifying the minute
Planck-scale effects. And with the ability of handling
varying expansion rates this research programme could
also gain access to data in cosmology. The main oppor-
tunity from this perspective comes from the analyses of
cosmology data which were at first inspired by varying-
speed-of-light theories (see, e.g., Refs. [34–36] and refer-
ences therein). In our deformed-relativistic theories the
speed of light is not varying in the sense originally in-
tended: enforcing (however deformed) relativistic invari-
ance we did not find room for the speed-of-light scale
to have different values between now and earlier epochs
of the Universe, but we did find a scenario for having
that (with equal strength at all stages of the evolution of
the Universe) the speed of photons depends on their en-
ergy. This energy-dependence of the speed of photons we
found for scenarios with deformed relativistic symmetries
may affect cosmology in ways that are similar to (and yet
potentially interestingly different from [13]) the varying-

speed-of-light scenarios, simply because of the fact that
the Universe was hotter in its earlier stages of evolution,
so that the typical energy of particles was higher.

Of course, besides possibly leaping toward these oppor-
tunities available when generalizing our results to cases
with non-constant expansion rate, a lot more could be
done with the constant-expansion-rate case. We here
managed, and only at the cost of facing some significant
complexity, to obtain a consistent theory of classical-
particle worldlines, but of course much more is needed
before having established a consistent scheme of relativis-
tic deformation of our current theories. In this respect, a
top priority would be to formulate quantum field theories
with these deformed relativistic theories.
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