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Abstract

Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose

interacting many-body equations can be mapped to a non-linear minisuperspace equation by meth-

ods analogous to Bose–Einstein condensation. Complicated gravitational dynamics can therefore

be described by more-manageable equations for finitely many degrees of freedom, for which power-

ful solution procedures are available, including effective equations. The specific form of non-linear

and non-local equations suggests new questions for mathematical and computational investigations,

and general properties of non-linear wave equations lead to several new options for physical effects

and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological

methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny

local contributions adding up coherently in large regions.

PACS numbers: 04.60.Ds, 98.80.Qc, 05.45.-a
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I. INTRODUCTION

One of the main problems in deriving a reliable Planck-regime scenario in canonical quan-

tum cosmology is the question of how to include inhomogeneity. While homogeneous models

can easily be quantized, inhomogeneous degrees of freedom severely complicate mathematical

evaluations. Even the formulation of consistent evolution equations, subject to the anomaly

problem, remains incomplete: no consistent and covariant version of inhomogeneous modes

valid at high density and including all relevant quantum effects is available at present.

As possible solutions, two approaches have been developed so far, mainly with the meth-

ods of loop quantum cosmology [1, 2]. First, effective equations have been successful in

addressing the anomaly problem [3, 4] and in including all relevant quantum effects in suf-

ficiently general form. (For details, see [5].) Potentially observable phenomena have been

uncovered, showing physical consequences of discrete quantum geometry [4, 6–13] and mak-

ing the theory falsifiable [14, 15]. At high density, the implications of quantum space-time

can be dramatic: general properties of effective constrained systems show the presence of

signature change, turning Lorentzian space-time into a quantum version of 4-dimensional

Euclidean space [16–19]. Bounces as they had often been envisaged as non-singular ver-

sions of cosmology [20], and formulated in quite some detail [21] in homogeneous models of

loop quantum cosmology, are then replaced by acausal pieces of 4-dimensional space devoid

of deterministic evolution. Regarding specific field equations and details of the transition,

however, present calculations remain incomplete because not all quantum effects could yet

be implemented consistently at high density. Moreover, although state properties can be

derived by canonical effective equations, finding full quantum states is difficult in this setting.

One of the alternatives is so-called hybrid quantization [22], in which one combines a

loop-quantized homogeneous background model with Fock quantized inhomogeneous modes.

Wave functions can then be solved for and evolved, at least numerically and with certain

truncations [23]. However, using a Fock quantization for inhomogeneous modes, one does

not directly deal with the discreteness of space-time. Moreover, the hybrid method does

not address the anomaly problem; like related apporaches [24–27], it rather avoids dealing

with the problem by fixing the gauge or using deparameterization, choosing a time variable

before quantization. With these additional steps, it is unlikely that the correct space-time

picture is obtained in covariant form, and in fact the models evaluated so far have missed
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the signature change at high density.

In this article, we introduce a new way of incorporating effects of inhomogeneity in loop

quantum cosmology, dealing directly with wave functions. Adapting ideas of condensed-

matter physics used to describe Bose–Einstein condensates,[73] some effects of inhomogeneity

will not be described by individual degrees of freedom but rather by non-linearity of wave

equations for homogeneous models. The relationship between difference equations of loop

quantum cosmology [30, 31] and certain integrable non-linear Schrödinger equations has

been noted in [32], providing additional motivation. The aim of the present article is to lay

down the main ideas and to point out several new consequences for quantum cosmology. We

find that tiny quantum corrections from inhomogeneous contributions to a large universe can

add up coherently to produce sizeable effects on average, to be included in minisuperspace

models.[74]

II. PRODUCT STATES

We start with a common way of dealing with inhomogeneity, viewing quantum space

at a given time (a spatial slice used in canonical quantum gravity) as a collection of small

homogeneous parts. As one moves between spatial slices, the geometry evolves, resembling a

many-body system of “interacting” elementary building blocks. Each building block (called

a patch) has a quantum geometry described by a wave function of one of the well-known

homogeneous models of quantum cosmology, and they all interact dynamically according to

the quantized gravitational Hamiltonian.

A. Classical model

For simplicity, in this article we will assume isotropic patch geometries, determined clas-

sically by a volume degree of freedom Vi,j,k per patch, labelled by integers i, j, k to count

patches in each spatial direction. A given spatial slice Σ =
⋃N 1/3

i,j,k=1 Vi,j,k — a differentiable

manifold with a local atlas of coordinates — is then the union of N patches Vi,j,k, or N 1/3

in each spatial direction. (Had we used anisotropic but still homogeneous patches, we would

in general have three independent factors in N = N1N2N3.) For now, we will assume N to

be constant, which should be good for sufficiently brief evolution times. In more realistic
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models, the number N of patches should change in time, either by a fundamental process of

discrete geometries being refined [33, 34], or by an approximation procedure akin to adaptive

mesh refinement that maintains the decomposition into isotropic patches as a good model.

(A time-dependent number of degrees of freedom is a general problem, studied for instance

in [35–39].)

For simplicity, we choose coordinates in space such that each patch has the same coordi-

nate volume
∫
Vi,j,k

d3x = ℓ30, with ℓ
3
0 = V0/N in terms of the total coordinate volume V0 of

Σ (or of a large compact subset). The geometrical volume of each patch is then determined

by the spatial metric which, if it is inhomogeneous, gives rise to different patch volumes

Vi,j,k. We assume that the metric is close to the one of a spatially flat, isotropic model with

a longitudinal scalar mode, hab = a(t)2δab + 2L(t, x, y, z)δab. (We will use a lapse function

corresponding to proper time, N = 1− 2L/a2.) The patch volumes then take the values

Vi,j,k =

∫

Vi,j,k

d3x
√
det h = a3

∫

Vi,j,k

d3x(1 + 2L/a2)3/2

≈ a3ℓ30 + 3a

∫

Vi,j,k

d3xL ≈ V

N + 3aL(xi,j,k)ℓ
3
0 (1)

with the total volume V = a3V0 = a3ℓ30N . In the two approximations in the second line

of this equation, we have first expanded the root and then replaced the patch-integrated L

by its value at a point xi,j,k ∈ Vi,j,k, such as the center. Since we assume the patches to

be nearly isotropic and smaller than the variation scale of the perturbative inhomogeneity,

L, both approximations are well justified. Solving (1) for L, we can therefore replace the

continuum function L by deviations of the discrete variables Vi,j,k from the total volume

V = Na3ℓ30:

L(xi,j,k) =
Vi,j,k − V/N

3aℓ30
. (2)

The dynamics of the Vi,j,k as functions of time is governed by a discretized version of the

Hamiltonian constraint

Hgrav +Hmatter = 0 (3)

of general relativity, with contributions from the gravitational field and from matter. At this

point, one will eventually have to face the problem of time and the anomaly problem.[75]

In this article, however, we focus on laying out the details of the new model, and therefore

circumvent these difficult problems by formulating the dynamics in a specific gauge. With
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this choice, we may be blind to the complete quantum space-time structure, but new quali-

tative effects should still become visible. To proceed and to be specific, we assume matter

to be dust, with Hamiltonian Hmatter = pt/a
3, where pt is a momentum variable conjugate

to a matter degree of freedom t that will play the role of time. The role of time is made

clear if we rewrite the Hamiltonian constraint equation as

pt = −a3Hgrav = −V
ℓ30
Hgrav . (4)

The variable pt then appears formally as an energy, or a canonical Hamiltonian that generates

evolution with respect to t. (More generally, we could assume matter to contribute to the

Hamiltonian constraint by Hmatter = pt′/a
3(1+w) if there is a perfect fluid with equation-of-

state parameter w. A time variable t′ different from t then parameterizes evolution.)

To derive the dynamics in detail, we start with the classical Hamiltonian constraint

of general relativity and write it in discrete canonical variables Vi,j,k together with their

momenta Πi,j,k, related to V̇i,j,k. In the ADM formulation of canonical gravity, the spatial

metric hab is canonically conjugate to

πab =

√
det h

16πG
(Kab −Kc

ch
ab) . (5)

(See [40] for an introduction to canonical gravity.) We compute the canonical variables in

our perturbed situation by writing hab = h̄δab + δhab and π
ab = (π̄/V0)δ

ab + δπab, split into

background variables h̄ = a2 and π̄ (spatial constants) and inhomogeneity δhab and δπ
ab. We

divide π̄ by V0 in π
ab to ensure that the symplectic term

∫
Σ
d3xḣabπ

ab = ˙̄hπ̄+ · · · assumes the

canonical form in its background term. For scalar modes in longitudinal gauge, δhab = 2Lδab

and δπab = δπδab.

To avoid overcounting of degrees of freedom, we require the inhomogeneity δf of any

field f = f̄ + δf to satisfy
∫
Σ
d3xδf = 0 when integrated over all of space. (We turn

inhomogeneities of tensor fields such as δhab into scalars using the background metric δab.)

As a consequence, f̄ =
∫
Σ
d3xf is indeed the spatial average. At this stage we do not assume

that δf is of first or any specific order in perturbation theory; we have simply rearranged

our degrees of freedom by splitting them into background variables and inhomogeneity.

The symplectic structure, our current interest, only refers to degrees of freedom but not to

orders of perturbation theory: higher perturbative orders do not introduce new degrees of

freedom. We will introduce the perturbative expansion when we prepare our Hamiltonian

for a derivation and analysis of equations of motion.
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Any terms linear in δhab or δπ
ab in the Hamiltonian or symplectic term

∫
Σ
d3xḣabπ

ab there-

fore vanish. Inserting the inhomogeneous metric hab = (a2 + 2L)δab in (5) (with vanishing

shift and longitudinal lapse in Kab) results in the inhomogeneous momentum

πab = − 1

8πG

(
ȧ + a

(
L

a2

)•)
δab (6)

from which we read off the momentum of h̄ = a2 as π̄ = −ȧV0/8πG with the total coordinate

volume V0, and the momentum of δhab = 2Lδab as δπab = −(a(L/a2)•/8πG)δab. By a

canonical transformation we can switch to volume variables as defined in our patch model:

we have momenta

ΠV = − 1

12πG

V̇

V
and Πi,j,k = − 1

12πG

(NVi,j,k
V

)•

(7)

of V and Vi,j,k.

For small inhomogeneity, it is sufficient to expand the Hamiltonian constraint to second

order in δhab (or L) and its time and space derivatives. Starting from

Hgrav =
1

16πG

∫

Σ

d3xN
(
KabKab −K2 − 3R

)√
det h

=

∫

Σ

d3xHgrav ,

(with the lapse function N which we set equal to one in our gauge) we obtain

Hgrav ≈ − 3

8πG

(
aȧ2 +

L̇2 − 4(ȧ/a)L̇L+ 4(ȧ/a)2L2

a
+ a−3

3∑

b=1

((
∂L

∂xb

)2

− 4

3
L

(
∂2L

∂xb2

)))
.

In the Hamiltonian Hgrav =
∫
Σ
d3xHgrav we can integrate by parts in spatial derivatives,

replacing second-order derivatives by first-order ones. (Boundary terms will play no role in

what follows.) Moreover, it turns out that the time derivatives of L can be written more

compactly if we use L/a2, a combination of variables that is also more convenient when

expressed by patch volumes: L̇2 − 4(ȧ/a)L̇L + 4(ȧ/a)2L2 = ((L/a2)•)2. The Hamiltonian

density we use will therefore be

Hgrav =
3a3

8πG

((
ȧ

a

)2

+

((
L

a2

)•)2

+
7

3

1

a2

3∑

b=1

(
∂(L/a2)

∂xb

)2
)
. (8)

We then introduce our background momentum ȧ/a = −4πGΠV and the patch momenta

(L/a2)• → −4πGΠi,j,k after replacing the integral by a sum over patches,
∫
Σ
d3xHgrav ≈
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∑
i,j,kHi,j,k. Our discretized Hamiltonian then is

Hdisc
grav = −6πGV

(
Π2
V +

1

N
∑

i,j,k

Π2
i,j,k + · · ·

)
(9)

where the dots indicate the derivative terms after discretization.

We have quadratic single-patch Hamiltonians in the first two terms, analogous to har-

monic 1-particle Hamiltonians of our many-body problem. Spatial derivatives of L must be

discretized before they can be expressed in terms of the Vi,j,k. The discretization procedure

is a matter of choice and, to some degree, convenience; we will make use of

∂

∂xb
L(xi,j,k)

a2
−→

V(i,j,k)+b̃ − V(i,j,k)−b̃
6ℓ0(V/N )

, (10)

indicating by b̃ the unit vector in the b-direction.[76]

Quadratic expressions of spatial derivatives in (8) then provide interaction terms that

can be written as depending on either the patch geometries in product form, such as

V(i,j,k)+b̃V(i,j,k)−b̃, or more conveniently, the difference (V(i,j,k)+b̃ − V(i,j,k)−b̃) in discrete min-

isuperspace. The latter version is closer to interactions of many-body systems depending on

the distance between particles.

In addition to interactions between neighboring patches, each patch volume interacts with

the average volume V because it appears in some factors in the Hamiltonian. These variables

are not independent but satisfy
∑

i,j,k Vi,j,k = V . In order to focus on the self-interaction

of inhomogeneity, we will treat V as an external parameter for the dynamics of the Vi,j,k,

corresponding to the common approximation in cosmology that ignores back-reaction of

inhomogeneity on the background.

B. Quantization

Each patch of volume Vi,j,k and expansion rate related to Πi,j,k is isotropic and may be

quantized as a single minisuperspace model, corresponding to the 1-particle Hilbert space of

a many-body system. One may follow either Wheeler–DeWitt quantization or loop quanti-

zation, both with volume representations in which Vi,j,k becomes a multiplication operator.

In the former case, one deals with wave functions ψ(Vi,j,k) in L2(R+, dVi,j,k) and the mo-

menta act by Π̂i,j,k = −i~d/dVi,j,k; in the latter, ψVi,j,k is an element of the non-separable
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sequence space ℓ2(R) and exponentials of momenta, rather than momenta themselves, are

quantized:

̂exp(iδi,j,kΠi,j,k/~)ψVi,j,k = ψVi,j,k+δi,j,k (11)

for real numbers δi,j,k (whose values are to be fixed as part of quantization choices).[77] The

action of ̂exp(iδi,j,kΠi,j,k/~) on the sequence space is not continuous in δi,j,k, and a derivative

by δi,j,k, which would otherwise result in an operator for Πi,j,k, does not exist. (A second

difference between the quantizations is that Vi,j,k in Wheeler–DeWitt models is usually taken

as the (positive) volume, while loop quantum cosmology is based on triad variables in which

Vi,j,k is the oriented volume, which can turn negative if the orientation is reversed. We

therefore use the full real line R in the sequence space, rather than R+. Note that this

resolves self-adjointness issues of derivative operators on L2(R+, dVi,j,k).)

Both representations are well-defined but not unitarily related to each other; they lead

to different physics. Especially at high curvature, where Πi,j,k is large, effects of the loop

quantization can differ significantly from those of the Wheeler–DeWitt quantization. The

discreteness inherent in shift operators (11) relating derivatives is then important, in addition

to the discreteness implemented by our treatment of inhomogeneity.

If inhomogeneity is small, the patches evolve nearly independently of one another with-

out strong correlations, and the evolved state remains a product state Ψ(V1, V2, . . .) =

ψ1(V1)ψ2(V2) · · · of the individual patch wave functions ψi if the initial state is of such a

form. Each single-patch wave function evolves according to a differential (Wheeler–DeWitt

[41]) or difference (loop quantum cosmology [30, 31]) equation if inhomogeneity can be

ignored. With inhomogeneity included, interaction terms between the individual wave func-

tions occur on superspace, complicating the dynamics. If inhomogeneity is sufficiently small,

however, the interactions can be treated by approximation, such as perturbation theory.

Small inhomogeneity at the level of quantum geometry also implies that the individual

wave functions are very similar to one another, so that the full state can approximately be

written as Ψ(V1, V2, . . .) = ψ(V1)ψ(V2) · · · with a single wave function ψ to be solved for.

This form of product states allows one to map many-body dynamics to 1-particle dynamics

in a specific potential, described by a wave equation that turns out to be non-linear. At

this stage, standard techniques to describe matter condensates, in which individual wave

functions of different particles are exactly equal to one another, can be applied.
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C. Condensate

By our preceding considerations in cosmology, we have realized a mathematical formu-

lation with all the ingredients used in the description of Bose–Einstein condensation. We

interrupt our discussion of cosmology to recall salient features of this important system in

condensed-matter physics. In this example, Ψ is a many-body state, and ψ the 1-particle

wave function common to all constituents of the condensate. Taking the same ψ is not an

assumption because condensed particles have exactly the same wave function.

Assuming pointlike interactions between the particles, described by a delta-function po-

tential of strength α, we have the many-body Hamiltonian

Ĥ =
n∑

i=1

(
1

2m
p̂2i + V (x̂i)

)
+

1

2
α
∑

i 6=j

δ(x̂i − x̂j) (12)

for n particles of massm in individual potentials V (xi). With a product state Ψ(x1, x2, . . .) =

ψ(x1)ψ(x2) · · · for the condensate, we compute the expectation value of the Hamiltonian as

〈Ĥ〉Ψ = n〈p̂2/2m+ V (x̂)〉ψ +
1

2
n(n− 1)α

∫
d3x|ψ(x)|4 . (13)

The first term just adds up the 1-particle expectation values computed for the wave function

ψ. The second term is not equal to a 1-particle expectation value. However, we can formally

interpret it as the expectation value of a “potential” |ψ(x)|2 depending on the wave func-

tion. Accordingly, the 1-particle dynamics and energy spectra are governed by a non-linear

Schrödinger equation, the Gross–Pitaevski equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ +

1

2
(n− 1)α|ψ(x)|2ψ . (14)

For a full and rigorous derivation, see [42, 43].

Interacting many-body dynamics of the condensate wave function can therefore be

mapped to non-linear 1-particle dynamics.

III. NON-LINEAR DYNAMICS IN QUANTUM COSMOLOGY

With the preparations presented in the preceding section, we propose a new method

to deal with small cosmological inhomogeneity, making use of the same ideas and initial

constructions employed to describe matter condensates. Well-established methods then

provide a tractable approximate description by non-linear dynamics of a homogeneous model.
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A. Equation of motion

Except for the differences in the conceptual nature, regarding for instance the approx-

imations and assumptions used, our model for inhomogeneous quantum cosmology so far

resembles those of matter condensates rather closely. The main mathematical difference

lies in the interaction potential. For particles in a condensate, a delta function of the dis-

tance between particles is a good approximation for nearly pointlike interactions, which

can be smeared out to more-complicated functions for realistic systems. The interaction

potential we obtain in cosmology, expanding and discretizing the gravitational Hamiltonian

constraint, is a quadratic polynomial in the distances in minisuperspace. Although the

single-patch wave equation we obtain is still non-linear, as in the presence of any kind of

interactions, it is more complicated than in the Gross-Pitaevski equation.

Another difference between the models is the discreteness of the quantum representation

used in a loop quantization, in addition to the discretization of space by patches Vi,j,k. Not
only space but also superspace is then discrete. As a consequence, wave equations in loop

quantum cosmology are difference equations, and with our method to include inhomogeneity

we will be dealing with some version of a discrete non-linear Schrödinger equation, one

example given by

i~
∂ψn
∂t

=
1

2
(ψn+1 − 2|ψn|2ψn + ψn−1) . (15)

However, since we are not dealing with pointlike interactions in superspace, modeled by

delta functions, but rather with polynomials, the non-linearity will be different. In fact,

our equation will not only be non-linear but also non-local but nevertheless, as it turns out,

well-suited to canonical effective methods.

Using the same starting point as in Bose–Einstein condensation, the key step is to evaluate

the expectation value of the interaction Hamiltonian in a product state. To illustrate the

main consequence, we consider just two variables V1 and V2 interacting with each other via

a potential Wint(V1, V2) = α(V1 − V2)
2/V 2 as in a discretized (8). We divide by the total

volume squared, treated as an external but time-dependent parameter, in order to have

the correct scaling behavior of the Hamiltonian under a change of the spatial region. The

expectation value of the quantized Wint then produces a term

〈Ŵint〉Ψ =
α

V 2

∫
dV1dV2|ψ(V1)|2|ψ(V2)|2(V1 − V2)

2 (16)
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=
α

V 2

∫
dV1|ψ(V1)|2

∫
dδV |ψ(V1 + δV )|2(δV )2

where we introduce δV := V2 − V1.

We can perform the second integration independently of the first over V1. It depends on

the wave function, but if we assume that ψ is sharply peaked around the expectation value

〈V1〉, the dominant contribution to 〈Ŵint〉Ψ comes from values of V1 for which the second

integration ∫
dδV |ψ(〈V 〉+ δV )|2(δV )2 = (∆V )2 (17)

equals the quantum fluctuation of V in the state ψ(V ). Instead of a non-linearity potential

depending on ψ(V ) or ψn as in (15), we have a non-linearity potential that depends on the

wave function via moments such as ∆V . For instance, following the preceding arguments

and noting that the minisuperspace V is quantized to a discrete parameter n, we need to

consider an equation of the form

i~
∂ψn
∂t

= ψn+1 − 2

(
1− 1

2
α
(∆n)2ψ
n2

)
ψn + ψn−1 . (18)

We note that equation (18) is not only non-linear but also non-local: the coefficient

(∆n)2ψ =
∑

n(n − 〈n〉ψ)2|ψn|2 depends on all values of ψn. Moreover, the equation as

written is meaningful only for n 6= 0. At n = 0, the volume vanishes and we encounter a

cosmological singularity. By inverse-triad corrections [44], loop quantum cosmology resolves

this singularity in such a way that 1/n is replaced by a bounded function. For simplicity,

we will not discuss these terms here and instead focus on evolution at large n.

We must ensure that our assumption of a sharply peaked state remains true for the

approximation to be valid. If the state is not sharply peaked or if the approximation is to

be driven to higher orders, we can use a derivative expansion of ψ. Writing

|ψ(V1 + δV )|2 = |ψ(〈V 〉+ δV + (V1 − 〈V 〉))|2

and expanding by V1 − 〈V 〉, we obtain

〈Ŵint〉Ψ =

∫
dV1|ψ(V1)|2Wnonlin(V1)

with the non-linearity potential

Wnonlin(V ) =
∞∑

j=0

1

j!
(∆V )2ρ(j)(V − 〈V 〉)j (19)
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where the moment (∆V )2
ρ(j)

is the V -fluctuation computed with the “distribution” ρ(j), de-

fined as the j-th derivative of ρ(V ) = |ψ(V )|2. Note that these derivatives need not be

normalized or positive, so that we do not have probability distributions and fluctuations in

the statistical sense. Nevertheless, the resulting numbers are well-defined as parameteriza-

tions of the non-linearity potential.

We continue with a discussion of the leading-order equation (18).

B. Solution procedures

An inverse scattering transform is the method of choice to solve non-linear discrete or

differential Schrödinger equations [45]. However, the equation we obtain here, (18), is not

only non-linear but also non-local. Standard techniques are therefore not readily available.

Non-local equations can sometimes be treated by replacing the non-local coefficient by

new auxiliary degrees of freedom, as in [46] in the context of the non-linear Schrödinger

equation. If the new degree of freedom is subject to a differential or difference equation

with a source term given by the original wave function ψ, its general solution is a non-local

expression in ψ (integrating its product with the Green’s function of the auxiliary equation).

If the right equation is chosen, the general solution for the auxiliary variable may provide

the non-local coefficient, (∆n)2 in our case. Here, however, such a treatment is not obvious.

Instead, canonical effective methods [47] based on the dynamics of moments of a state

provide solution techniques well-suited for equations such as (18). The non-local coefficient

is a second-order moment of the wave function; using equations for the moments instead of

ψn itself then provides a reformulation of the problem in variables in which the non-locality

disappears. Morally, this procedure is a version of introducing new degrees of freedom related

to the wave function non-locally, for moments[78] such as ∆(na) :=
∑

n(n− 〈n〉)a|ψn|2 with
the expectation value 〈n〉 =

∑
n n|ψn|2 are non-local in ψn. However, in quantum physics

the moments are not auxiliary variables but rather variables of prime physical interest. For

a = 2, we have quantum fluctuations, and higher moments with a > 2 provide additional

statistical information about the state.

For linear discrete or differential Schrödinger equations, canonical effective techniques

[47] amount to a systematic expansion of Ehrenfest’s equations, used not just to derive the

semiclassical limit in rigorous terms [48] but also to compute quantum corrections to any
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desired order in ~. For our purposes, we need to generalize these methods to non-linear

equations as encountered here.

In quantum mechanics, a set of N basic operators Ĵi with closed linear commutators

[Ĵi, Ĵj] =
∑

k

Cij
kJk (20)

(perhaps including the identity operator if some commutators are constants) provides a

closed algebra for expectation values under Poisson brackets

{〈Ĵi〉, 〈Ĵj〉} =
〈[Ĵi, Ĵj]〉

i~
. (21)

If the operators are complete, any observable can be expressed as a function of the expec-

tation values 〈Ĵi〉 and moments

∆

(∏

i

Jaii

)
:=

〈∏

i

(Ĵi − 〈Ĵi〉)ai
〉

symm

(22)

with operator products in totally symmetric ordering. Using linearity and the Leibniz rule for

Poisson brackets, these expectation values and moments form a Poisson manifold. Their dy-

namics is determined by the Hamiltonian flow generated by the expectation value HQ := 〈Ĥ〉
of the Hamiltonian constraint, another observable interpreted as a function of expectation

values and moments. Hamiltonian equations of motion usually couple infinitely many mo-

ments to the expectation values, but a semiclassical expansion to some finite order in ~

results in finitely coupled equations which can be solved at least numerically. Computer-

algebra codes exist to automate the generation of equations to rather high orders [49] (so

far restricted to canonical commutators).

Writing Ĵi = 〈Ĵi〉+(Ĵi−〈Ĵi〉) in the quantum Hamiltonian HQ = 〈H(Ĵi)〉 and performing

a formal expansion in (Ĵi − 〈Ĵi〉), the Hamiltonian flow is generated by

HQ = H(〈Ĵi〉) +
∑

ai

1

a1!
· · · 1

aN !

∂a1+···aNH(〈Ĵj〉)
∂〈Ĵ1〉a1 · · ·∂〈ĴN 〉aN

∆

(∏

i

Jaii

)
. (23)

The first term is the classical Hamiltonian evaluated in expectation values, and the series

includes quantum corrections of progressing order
∑

i ai. Equations of motion follow from

Poisson brackets.

These constructions rely on commutators of linear operators and cannot be used directly

for non-linear Schrödinger-type equations. Nevertheless, a closely related procedure can
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be followed for equations such as (18) in which the non-linearity comes from non-local

coefficients depending on the moments. As one can readily confirm by computing time

derivatives of expectation values directly using (18) for wave-function factors, the evolution

of moments is now governed by a quantum Hamiltonian (23) in which one initially treats

the moments that appear in the non-local coefficients as external functions; because they do

not come from a linear operator, they do not appear in commutators or in Poisson brackets

of the moments when equations of motion are derived. In the equations of motion, once

derived, these variables are to be equated to the moments they signify, providing additional

coupling terms between moments compared with a linear Hamiltonian.

In our case, the Ĵi are given by three basic operators, a multiplication operator by n

(the volume operator) and two shift operators ĥ and ĥ† that change n by ±1, implementing

(11) with δ = 1. In terms of canonical variables (n, P ), we can write shift operators as

quantizations of h = exp(iP ). The commutators

[n̂, ĥ] = −~ĥ , [n̂, ĥ†] = ~ĥ† , [ĥ, ĥ†] = 0 (24)

then define the basic algebra (20) of our loop-quantized theory, and correspondingly the

Poisson brackets of expectation values and moments of n and h. Moreover, since we intro-

duced complex variables, the reality condition ĥĥ† = 1 as well as analogs for the moments

(such as ∆(hh∗) = 1− hh∗) must be satisfied.

We can realize the linear part of (18) as the Schrödinger equation with Hamiltonian

operator ĥ + ĥ† − 2, resulting in the quantum Hamiltonian H lin
Q = h + h∗ − 2 depending

only on expectation values but not on moments. Adding the non-linearity, we have an extra

term −1
2
αA〈n̂−2〉 with A treated as a constant to be set equal to A = (∆n)2 in equations of

motion, and 〈n̂−2〉 to be expanded by moments as in (23). For the difference equation (18),

we then have the quantum Hamiltonian

HQ = h+ h∗ − (2− αA〈n̂−2〉) (25)

= h+ h∗ − 2 + αA(3n−4(∆n)2 − 20n−5∆(n3) + · · ·)

with the non-local coefficient A treated for now as an external parameter. (Instead of the

inverse of n, which is ill-defined at n = 0, modifications due to inverse-triad corrections in

loop quantum cosmology should be used at small n [44].)
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We obtain the equations of motion from Poisson brackets, in which we then set A = (∆n)2:

ṅ = i(h− h∗) (26)

ḣ = 12iα
h

n

(
∆n

n

)4

− 6iα
(∆n)2∆(nh)

n4
+ · · ·

d(∆n)2

dt
= 2i(∆(nh)−∆(nh∗)) (27)

and so on for further moments. Instead of n̈ = 0 as in the linear case, we can combine the

first two equations to obtain

n̈ = i(ḣ− ḣ∗) (28)

= −24α
(∆n)2

n4

(
Reh

n
(∆n)2 − 1

2
Re(∆(nh))

)
+ · · · .

Non-zero moments imply acceleration of the volume expansion (which is negative unless

correlations nRe∆(nh)/((∆n)2Reh) are large).

C. Interpretation

Irrespective of the precise form of non-linearity, its presence has several general conse-

quences of potential importance for quantum cosmology. An obvious and seemingly prob-

lematic implication is a loss of unitarity: wave functions evolved by the non-linear equation

do not have preserved scalar products with other evolved states. There is no linear operator

that could serve as a Hamiltonian whose adjointness properties one could analyze by stan-

dard techniques. Still, a straightforward direct calculation shows that the norms 〈ψ|ψ〉 of

states (but not scalar products 〈φ|ψ〉 of different states) are preserved. However, the origi-

nal many-body system is clearly unitary, and therefore non-unitarity is a consequence of the

reductions and approximations used. In order to interpret the non-linearity correctly, we

should therefore look back on the constructions used to descend from many-body dynamics

to a 1-particle equation.

For a matter condensate, we obtain the non-linear wave equation (14) in a rather indirect

way: We do not reduce the many-body wave equation for Ψ directly, but rather compute the

expectation value of the Hamiltonian (13), rewrite it in terms of the 1-particle wave function

ψ, and recognize the extra term as a formal analog of a potential depending on the wave

function. This potential, inserted in the standard Schrödinger equation, then provides (14),
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a step which is again only formal. Experience shows that the resulting non-linear equation

nevertheless captures crucial properties of the many-body problem, and rigorous proofs have

been provided [42, 43].

One can avoid the last formal step by forgoing wave equations and instead using the

expectation value (13) to compute the spectrum of the many-body Hamiltonian, for instance

by variational methods applied to the 1-particle wave function ψ on the right-hand side

of (13). If the spectrum of the Hamiltonian is known, evolution properties then follow

without directly using the non-linear equation (14). Similarly, effective canonical equations

in quantum mechanics refer to expectation values of the Hamiltonian, such as (13) rather

than wave equations, and are therefore less sensitive to the apparent loss of unitarity.

The physics of the system therefore does not suffer from a lack of unitarity. Moreover,

since the norm is still preserved, the probability interpretation of a single state remains

meaningful. Instead of using (14) as a fundamental wave equation for some function ψ in a

Hilbert space, the equation models other dynamical effects, such as the evolution of particle

distributions or the approach and possible interaction of superposed states. Properties such

as the overlap of superposed states or the distance between different distributions can be

determined from moments of a single wave function for the superposition and are indepen-

dent of scalar products of the wave function with other states; they can be analyzed with a

formal equation lacking unitarity. These are also the properties that effective equations are

sensitive to. In quantum cosmology, such questions are usually of most interest because the

exact state or wave function of quantum space is not accessible by observations available

now or in the foreseeable future. Our model and with analog (18) of the Gross-Pitaevski

equation (14) is therefore reasonable.

IV. DISCUSSION

We have introduced a new model for inhomogeneous quantum cosmology, aiming to cap-

ture essential features of the interacting dynamics of different parts of quantum space. The

processes we describe therefore provide the dynamics of structure formation at a fundamen-

tal level. Using several approximations, justified when inhomogeneity is sufficiently small,

and importing ideas of condensed-matter physics, we have been able to map the complicated

many-body dynamics to a non-linear minisuperspace equation.[79]
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In addition to the approximate nature, several differences with the condensate model

occur:

• In the cosmological model, “interactions” between different patches are realized in

superspace, not in actual space. Patches do not interact depending on their spatial

distance, but depending on what their geometries are: The gravitational Hamiltonian

depends on inhomogeneous modes, or on deviations of patch geometries from the

spatial average.

• There is no delta-function potential (for pointlike interactions) but rather a polyno-

mial potential, obtained by expanding the gravitational Hamiltonian as a function of

patch geometries. As a consequence, the non-linearity is realized non-locally in the

configuration space of wave functions.

• While the many-body Hamiltonian of a condensate is well known but difficult to deal

with, a consistent version of an inhomogeneous gravitational Hamiltonian in quantum

gravity is still lacking. In particular, covariance conditions and the related problem

of anomalies have not been evaluated in sufficient detail [50–54]. (But see [55–59] for

recent progress.)

In this situation, having an approximate description of incompletely known dynamics,

we cannot expect to derive detailed quantitative cosmological scenarios. (This statement

does not only apply to our new method, but to all derivations possible in quantum cosmol-

ogy so far.) Effective techniques, as used in our solution procedure for non-linear non-local

equations, provide means to parameterize ambiguities and ignorance, and to discuss anoma-

lies, but no details are available yet. We therefore focus our discussion on new qualitative

features suggested by the non-linearity of the homogeneous model.

Non-linear wave equations provide new forms of minisuperspace effects that capture cru-

cial properties of averaged inhomogeneity. These terms need not require high, near-Planckian

densities to be significant because they could potentially be large when many patch contri-

butions are added up, even if each of them is tiny. All leading contributions have the same

sign because they come from volume fluctuations, required to be positive. No cancellations

happen when one sums over all patches, potentially giving large effects. For certain behav-

iors of quantum fluctuations as functions of time or the volume, our non-linearity can be
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interpreted as a cosmological-constant term, which turns out to be negative. (Again, the

sign is determined because quantum fluctuations are always positive.) It remains to be seen

whether more-refined models, including those with anisotropic patches, or higher orders in

the moments in (19), not all of which are restricted by positivity, as well as perturbed Hamil-

tonians beyond second order can turn the sign to provide an overall positive cosmological

constant.

An interesting feature of non-linear wave equations is the existence of a particular type of

solutions: solitons. These are sharply peaked wave packets which evolve without changing

shape. Moreover, if solitons occur in superposition, moving in different directions, they

may occasionally overlap but do not influence each other. After they have moved through

the same spot, they retain their old shapes. Such states are a promising candidate for new

dynamical coherent states in quantum cosmology. In contrast to kinematical coherent states

(or Gaussians) commonly used in such cases, solitons are adapted to the dynamics and, in the

indirect way that employs non-linear wave equations, capture properties of inhomogeneity;

in fact, their existence as solutions relies on deviations from exact homogeneity.

The existence of solitons and the integrability of equations, together with the associ-

ated possibility of chaos, depends sensitively on the form of discrete equation [60]. The

discreteness, in turn, is related to quantization and regularization ambiguities in canonical

quantum gravity. The strong sensitivity of some physical features may allow one to find

tight restrictions on ambiguities.

We end by mentioning another, more speculative consequence. In quantum cosmology,

solitons in superposition would correspond to different universes superposed in the same

state. Solitons may overlap but do not affect each other’s motion; they always form separate

contributions to the total state. Solitons and the non-linear wave equations they solve could

therefore play a role in the description and analysis of multiverse models.
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