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Abstract: We find ourselves in an extended era of entropy production. Unlike most

other observations, the arrow of time is usually regarded as a constraint on initial

conditions. I argue, however, that it primarily constrains the vacuum structure of the

theory. I exhibit simple scalar field potentials in which low-entropy initial conditions

are not necessary, or not sufficient, for an arrow of time to arise. In particular, in

some models an arrow of time obtains even if the initial vacuum has arbitrarily large

entropy. In such examples, the dynamical resolution of the arrow of time problem

arises from properties of the vacuum structure similar to those that allow the string

landscape to solve the cosmological constant problem without producing an empty

universe, particularly its high dimensionality and the large difference in vacuum energy

between neighboring vacua.



1 Introduction

The entropy S of a closed macroscopic system either (a) increases or (b) is constant

under unitary evolution. This is easily understood on statistical grounds: under rea-

sonable assumptions, (a) is the most probable evolution of a system that has not yet

reached its maximum entropy, Smax = ln dimH, where H is the Hilbert space of the

system; while (b) is the most probable evolution of a system with S = Smax.

In theory, this statement is invariant under time reversal: Given a state at time t,

the entropy will probably increase or stay constant, no matter whether we evolve in the

past or future direction. In practice, however, we observe that the entropy of matter

systems increases only towards the future, never towards the past. This asymmetry is

called the (thermodynamic) arrow of time. It can be explained by noting that the early

universe was in a special state of relatively low entropy. But why was this the case?

This question is usually referred to the arrow-of-time “problem”, but the arrow of

time is an observation like any other: it can become a problem only in the context of a

particular cosmological theory. A theory is ruled out if its predictions conflict with the

observed arrow of time. And a theory is incomplete if it is compatible with but does

not predict the observed arrow of time.

The purpose of this paper is twofold. First, I will show that the conditions required

for an arrow of time depend on the theoretical framework and cannot be equated with

low initial entropy. I will exhibit simple models that demonstrate that a low-entropy

initial state is neither necessary nor sufficient for explaining the observed arrow of time.

Secondly, I will argue that the landscape of string theory furnishes a powerful

example in which the observed arrow of time can arise from arbitrarily high-entropy

initial conditions. This property rests on some of the same key features that allow the

string landscape to solve the cosmological constant problem without fine-tuning. It

constitutes a second, independent success of the framework.

Outline and Summary In Sec. 2, I characterize the observed arrow of time and

distinguish it from other observations. The arrow of time is defined as the entropy

produced in our causal past since the time of big bang nucleosynthesis, ∆S ∼ 10103.

In Sec. 3, I consider cosmological models with a unique vacuum. If the cosmological

constant, Λ, is negative (Sec. 3.1), one finds that the requirement of large maximum

entropy leads to multiple challenges, in addition to the smallness of the initial entropy.

Most importantly, the magnitude of the cosmological constant must be small. This

requirement is shared by all other models considered later: because of the covariant

entropy bound, the observed arrow-of-time alone requires the existence of a vacuum

with unnaturally small cosmological constant. In this sense, the cosmological constant

– 2 –



problem is part of the arrow of time problem. Of course, even if we set −Λ � 1,

this class of models is ruled out by the observed positive sign of the cosmological

constant [1, 2]. In the remainder of the paper, I consider only models that contain at

least one vacuum with positive vacuum energy.

In Sec. 3.2, I still consider models with only one vacuum, but now the sign of its

cosmological constant is taken to be positive. Generic initial conditions lead to eternal

inflation; and because of the absence of vacua with negative energy, all possible states

recur infinitely many times, even in a single causal patch. As was first pointed out

by Dyson, Kleban, and Susskind [3], this implies that the overwhelming majority of

observers arise from the smallest possible fluctuations relative to the maximum entropy

state, empty de Sitter space. Such observers are known as Boltzmann brains. They

observe no arrow of time other than the small arrow associated with their own existence.

This conclusion obtains independently of initial conditions, so these models conflict

violently with the observed arrow of time. They, too, are ruled out.

In Sec. 4, I consider small landscapes that contain both de Sitter (Λ > 0) and

terminal (Λ < 0) vacua, with initial conditions in one of the de Sitter vacua. This

leads to eternal inflation. In Sec. 4.1, I review the associated measure problem and

the causal patch measure. In Sec. 4.2, a model with only two vacua is analyzed. An

arrow of time arises only if two conditions hold: the initial state must have low entropy,

and the de Sitter vacuum decay must proceed faster than the production of Boltzmann

brains. In Sec. 4.3, a fast method for reproducing these results is developed, based on

the branching tree implementation of the causal patch measure.

This method is applied to two models, each with four vacua, in Sec. 5. The two

models differ only through the ordering of the vacua; the values of the cosmological

constant are the same. Yet, in the first model, low-entropy initial conditions are nec-

essary for an arrow of time; whereas in the second, an arrow of time is predicted even

with high-entropy initial conditions.

This constrast provides an instructive reference point for the analysis of the string

landscape. The key feature of the second model is that observers of any type—

Boltzmann or ordinary—can be produced only after passing through a vacuum with

large cosmological constant, and hence, very small entropy. This feature is shared by

the string landscape.

In Sec. 6, I claim that the string landscape predicts an arrow of time, independently

of the initial entropy, if and only if all de Sitter vacua decay faster than they produce

Boltzmann brains. Only four key properties of the string landscape, listed in Sec. 6.1,

are used in the proof of the claim, in Sec. 6.2. They are the high dimensionality of

the landscape, the large but not double-exponentially large number of vacua, the lack

of tuning, and the fact that neighboring vacua tend to have vastly different vacuum
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energy. It is interesting that some of these properties also underly the solution of the

cosmological constant problem.

Discussion The approach followed in this paper is based on semiclassical gravity.

The universe is assumed to have a beginning, and time is taken to end at spacelike

singularities such as the big crunch in a vacuum with negative cosmological constant.

Whether these features survive in a full quantum gravity theory remains a major open

question. They are crucial here because they allow some of the models considered to

evade ergodicity. This is necessary for a large arrow of time to arise from arbitrarily

high-entropy initial conditions.

All models considered except for the single vacuum in Sec. 3.1 exhibit the dynamics

known as eternal inflation, and thus require a regulator or “measure”. Here the causal

patch measure [4, 5] is used. With a specific choice of initial conditions, corresponding

to the dominant eigenvector of the global rate equation, the causal patch cutoff is equiv-

alent to the light-cone time cutoff [6–8]. (Results would be similar with closely related

proposals such as the fat geodesic [9, 10], scale factor [11], and CAH+ cutoffs [12].)

However, my results apply strictly only to the causal patch cutoff (or similar local cut-

offs), with the stated initial conditions. The methods of this paper cannot be applied

to its global dual, because the dominant eigenvector corresponds to a distribution of

the initial probability over several vacua. It will be shown elsewhere [17] that this does

not change the conclusions in a realistic landscape.

In this paper, I will only consider initial conditions that have support in a single

vacuum. This is a restrictive condition, and there is no reason to expect that the

correct theory of initial conditions will have this property. My purpose, however, is to

demonstrate a point of principle: high-entropy initial conditions can lead to an arrow

of time.

In some of the literature on the arrow of time problem, it is taken for granted

that the initial conditions of the universe should somehow be selected at random,

from a Hilbert space that is imagined to be large enough to describe the presently

visible universe. To some [13] (including myself, until recently), this seemed like a

rather implausible assumption, since it was unclear how the observed arrow of time

could arise dynamically from high entropy initial conditions. In this paper, however, I

demonstrate explicitly how this can happen. Therefore, high entropy initial conditions

are not automatically in conflict with observation.1 Whether they are depends on the

vacuum structure of the theory.

1This does not mean, of course, that high initial entropy should be taken for granted. Since we

have no clue as to the correct theory of initial conditions (if there is one), we have no right to exclude

the possibility that the universe simply began small and/or with low entropy. See, e.g., Refs. [14, 15].
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For example, the Hartle-Hawking no boundary proposal [16] exponentially favors

initial conditions corresponding to empty de Sitter space with the smallest positive

vacuum energy available in the theory. In a theory with a single vacuum, this rules out

the proposal. But in certain potential landscapes such as the second model in Sec. 5,

the Hartle-Hawking proposal is not excluded as a theory of initial conditions. (In the

landscape of string theory, the Hartle-Hawking proposal is not viable [17].2)

Related work This paper builds on several results of earlier work, particularly on

the seminal insights of Dyson, Kleban, and Susskind about recurrences in de Sitter

vacua [3] (Sec. 3.2), and on an analysis of the abundance of Boltzmann brains in the

multiverse [9, 18]. Some of the assumptions and the proof in Sec. 6.2 differ slightly from

those given in Ref. [9]; in the context of the present paper, assumptions were desirable

that distill out the key properties of the string landscape that lead to a dynamical

explanation of the arrow of time.

The main points of the present paper are (i) the arrow-of-time problem is ill-defined

outside a specific theoretical context; (ii) the vacuum structure of a theory is central to

the question of whether and how an arrow of time arises; and (iii) the vacuum structure

of the string landscape does lead to the prediction of an arrow of time, if a plausible

condition on the lifetime of de Sitter vacua is satisfied.

For a clear and concise introduction to the arrow of time problem, see Ref. [13].3

Interesting recent papers that relate to the arrow of time problem in eternal inflation

or the string multiverse include Refs. [19–28].

The present analysis is not directly related to the Entropic Principle [4, 29]. Ar-

guably, observation requires free energy. Although this is not sufficient, matter entropy

production turns out to be a successful proxy for observers in many settings [4, 29–34],

and it has the advantage that allows for conditioning on observers without making

specific anthropic assumptions such as the existence of galaxies, or stable nuclei, etc.

Employing the Entropic Principle for this purpose in no way prejudices the question

of the arrow of time, since both Boltzmann brains and ordinary observers operate by

increasing the entropy. The question addressed here is why the entropy produced in

2I would like to thank D. Page for discussions of this point.
3The present paper provides counterexamples to two propositions discussed in Ref. [13]: the claim

that the arrow of time cannot arise dynamically but must come from initial conditions (it arises

dynamically from high-entropy initial conditions in some models I exhibit, including the string land-

scape); and the claim that conditioning on the existence of observers cannot explain the arrow of time

because it would be equivalent to assuming the arrow of time (we will encounter models in which

such conditioning leads to the prediction of an empty universe except for a single Boltzmann brain, in

conflict with the observed arrow of time).
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the universe we see is much larger than necessary for our own operation: why is the

arrow of time so large?

2 The Observed Arrow of Time

There are a number of choices in how one might characterize the observation that we

call the “arrow of time”. It will be important to avoid conflating the arrow of time

with other observations. Imagine a fundamental theory that predicts a cosmology with

the same amount of entropy production as in the universe we observe, but, say, by

predicting the formation of black holes with half of the mass of a galaxy, in a small

fraction of galaxies. Or consider a theory that produced a lot of matter entropy, but

through processes that are negligible in our universe, such as the decay of protons.

Each of these theories conflicts with observation, but not because they fail to predict

an arrow of time.

Similarly, the fact that we live at a time 13.7 Gyr after the big bang is an important

observation—we would reject a theory that predicts that galaxy formation takes 100

billion years—but it is not among the observations that constitute the arrow of time.

To distinguish the arrow of time from other observations, I will define the observed

arrow of time simply as the difference ∆S between the entropy S(tf ) at the present

time, tf , and the entropy S(ti) at some earlier time, ti:

∆S = S(tf )− S(ti). (2.1)

The entropy S itself will be defined in the usual, coarse-grained way. For example,

the entropy density of radiation is of order T 3; the entropy of a dilute gas of particles

is of order the number of particles, and the entropy of a black hole is its one quarter of

its horizon area in Planck units.

The next question is how to define tf and ti. I will define tf to be the observer’s past

light-cone (Fig. 1). More precisely, S(tf ) is the entropy on a null hypersurface defined

as the intersection of the boundary of the observer’s causal past with the future of ti
(a spacelike hypersurface to be defined below). This choice has a number of properties

that will be useful in the analysis below.4 The boundary of the past is covariantly

defined, i.e., it does not depend on the choice of a time coordinate. It is operational,

4Two interesting alternatives are described in Ref. [35]; they would yield qualitatively similar

answers. One option is to consider the entropy of a fixed comoving volume. This relies on the special

symmetries of FRW universes and involves an extrapolation to regions outside of our past light-cone.

Another possibility is to consider the entropy in the causal patch, which involves extrapolation to the

future of the observer.
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Figure 1. The observed arrow of time is defined as the entropy produced in our past

light-cone (blue, tf ) since some early time that we can confidently extrapolate to, (red, ti):

∆S = S(tf )−S(ti). With ti equal to the era of big bang nucleosynthesis, one finds ∆S ∼ 10103.

in that it does not make reference to spacetime regions from which the observer could

not have received any signals.

Most importantly, the entropy S(tf ) can easily be bounded from above: the covari-

ant entropy bound [36–38] guarantees that the entropy on any past light-cone cannot

exceed its maximum area, in Planck units. This leads to a convenient method for ruling

out an arrow of time in large classes of models: we will encounter spacetime solutions

that contain no past light-cones of sufficient size to allow for the amount of entropy

production that we know to have taken place in our causal past.

We also have a choice about the “initial” time, ti, whose entropy we compare to

the present entropy. I will take S(ti) to be the entropy on the corresponding timeslice

(a timelike or null hypersurface), or more precisely, the portion of this slice that lies

within the observer’s causal past. The choice of ti will be informed by the confidence

we have about our understanding of ever more distant epochs. None of the results in

this paper are qualitatively sensitive to this choice.

One (rather conservative) choice would be to let ti be 15 minutes ago, in the inertial

frame of the Sun. In this case, the arrow of time is quantified by the amount of entropy

that was produced in your past light-cone roughly since you started reading this paper.

This is dominated by the photons emitted by the sun (during the first 7 minutes of

that time-interval, since the sun is 8 light-minutes away and is thus outside our past

light-cone at later times). The entropy produced is of order the number of photons,

∆S ∼ 2× 1050.

This choice of ti illustrates that the arrow of time is not associated only with

cosmological time scales: a decrease in entropy of the same magnitude has probability
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of order exp(−1050). The state of the universe 15 minutes ago was very special indeed

compared to the current state, which in turn is very special compared to the state in 15

minutes. Although Bekenstein-Hawking entropy dominates the entropy production on

sufficiently large scales, this choice of ti also shows that the existence of a huge arrow

of time does not require the presence of event horizons.

At the other extreme, one might choose as the initial time the Planck time, ti ∼ 1,

defined as a hypersurface on which some curvature invariant becomes unity, in units

of an appropriate power of the Planck length. This choice has the disadvantage that

the amount of entropy produced in our past light-cone since ti depends on physics in

the early universe that we cannot be completely sure about. For example, if today’s

CMB is the remnant of thermal radiation that was already present at a Planck-scale

big bang, then it does not contribute to the entropy increase ∆S. But if the CMB were

produced by reheating at the end of a era of slow-roll inflation, at some time treheat � 1,

then ∆S receives a large contribution from the CMB.

As a compromise between these extremes, I will take the initial time to be that of

nucleosynthesis,

ti = tBBN ∼ 3 min . (2.2)

We have a rather firm understanding of the history of the universe since that time.

With this choice, the entropy produced, ∆S, does not include the CMB, since the

CMB was already present at the time ti. However, ∆S does include the Bekenstein-

Hawking entropy of all black holes that formed after nucleosynthesis, which dominates

in any case. This includes both stellar-mass and supermassive black holes. The latter

dominate the entropy production:5

∆SSMBH ∼ 10103 . (2.3)

This dwarfs the production of ordinary matter entropy,

∆Smatter ∼ 1086 , (2.4)

which is dominated by the production of the Cosmic Infrared Background (CIB): the

down-scattering of optical stellar photons to the IR by galactic dust [29].

The results of this paper would be qualitatively unchanged, however, if black hole

horizon entropy was excluded and only matter entropy was used to define ∆S. They

5The numerical value is taken from Table 2, line 2, of Ref. [35]. Strictly, the value given there,

1.2+1.1
−0.7 × 10103 refers to the supermassive black holes produced in the interior of the anticipated

cosmological event horizon, which is slightly larger than our present causal past. The quantitative

difference is not significant in the context of this paper. Note that for reasons explained below, I am

not including the cosmological horizon entropy, which would dwarf this value.
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would also be unchanged if one added to ∆S the horizon entropy of the cosmological

horizon that will form around us in the future. However, the correct choice is to include

the Bekenstein-Hawking entropy of black holes, but to exclude the cosmological event

horizon [39], in the total entropy produced in our causal past since nucleosynthesis.

This distinction is based, once more, on what we are actually able to observe.

Our past light-cone (more precisely, the boundary of our past) contains discon-

nected components that coincide, up to superexponentially small corrections, with the

event horizons of black holes soon after those black holes form. The matter that formed

the black hole suffers exponential redshift with a characteristic timescale set by the ra-

dius of the black hole, which is much smaller than the age of the universe. After a few

times the light-crossing time of the black hole, a distant observer cannot receive signals

from this matter, since such signals would take more energy to emit than the mass of

the system and black hole combined [40]. By causality, moreover, the observer is no

longer able to travel to the matter and probe it directly. Therefore such matter is en-

tirely inaccessible and invisible to the observer, as is its entropy. For the (generalized)

second law of thermodynamics to hold, in this case, it is essential that we include the

horizon entropy of the black hole [41].

By contrast, the outermost component of the boundary of our past does not coincide

with the cosmological event horizon, since we have not yet approached the asymptotic

de Sitter regime, t � tΛ ∼ 16 Gyr. If we lived in that era, it would be important to

include the entropy of that horizon, S ∼ 3× 10122. But at the present era, signals that

propagate to us from this outer component of the boundary of our past do not suffer

exponential redshift; the matter is visible directly. Another way of saying this is that

the cosmological event horizon has not yet formed, the same way that we would look

at a cloud of collapsing dust and say that it will form a black hole but has not yet done

so. In principle, any object that is just outside our past light-cone could still change

direction and travel back to us (say, as a result of a collision), rather than crossing the

cosmological horizon.

In summary, I take the observed arrow of time to be the entropy increase

∆S ∼ 10103 , (2.5)

inferred from a combination of direct observation and theoretical modeling of the cos-

mological evolution since the time of nucleosynthesis.

All I will take away from this section is this one number (and mainly, just the

fact that it is very large). Below, any model in which most observers see at least this

amount of entropy production6 (by some physical process that may vary from observer

6The relevant ti may be defined as the latest time for which ∆S has a local maximum. I am grateful

to S. Leichenauer for suggesting this definition.
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to observer) will be referred to as predicting an arrow of time. And any model for

which the majority of observers see much less entropy production will be considered in

conflict with the observed arrow of time. Either way, the models considered may be in

conflict with other data, and this will occasionally be pointed out; but my focus will

be on this one particular datum.

3 The Arrow of Time in a Monovacuous Theory

In this section, I consider theories with a single, completely stable vacuum. If the

vacuum energy is negative, I find that low-entropy initial conditions are necessary

but not sufficient for an arrow of time to arise, and I identify some of the additional

necessary conditions. If the vacuum energy is positive, however, then no arrow of time

will be observed, independently of the initial entropy and any other conditions.

3.1 Negative Cosmological Constant

Consider a theory with a single vacuum with Λ < 0, with a low-energy effective La-

grangian otherwise similar to our own. Let us suppose that the theory sets not only the

dynamical laws but also the initial conditions, and that it dictates that the universe

comes into being as a flat, radiation dominated FRW universe, with Planckian density

ρ = 1 at the Planck time t = 1 (I will use Planck units throughout). I define

tΛ ∼

√
3

|Λ|
, (3.1)

the timescale associated with vacuum energy domination.

The Friedmann equations imply that the universe recollapses on a timescale of

order

tcrunch ∼ tΛ . (3.2)

As a result, the maximum area of any past light-cone in this universe is t2Λ ∼ |Λ|−1 [42].

Thus, the entropy on an observer’s past light-cone satisfies

S(tf ) . t2crunch ∼ |Λ|−1 . (3.3)

Since the ininial entropy is nonnegative, the entropy increase ∆S satisfies the same

inequality:

∆S . |Λ|−1 . (3.4)

Thus we see that low-entropy initial conditions are not sufficient for an arrow of time

to emerge. It is also necessary that the cosmological constant be small in magnitude:

|Λ| � 1 . (3.5)
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The same necessary condition will obtain in vacua with positive Λ and in theories with

multiple vacua. With the observed value ∆S ∼ 10103 from Sec. 2, one obtains

|Λ| . 10−102 . (3.6)

Any model with larger |Λ| necessarily conflicts with the observed ∆S, simply because

the maximum observable entropy is already smaller than ∆S, independently of initial

conditions.

This result is rather general—as general as the relation between Λ and the maxi-

mum area of past light-cones [43–47]. It holds independently of the particle and field

content of the theory and the details of initial conditions, including spatial curvature.

Of course, Eq. (3.6) is far from the most stringent bound on Λ one can obtain from

observation [48]. The point is that it comes from the observation of the arrow of time

alone, and it is already tight enough to pose a serious fine-tuning problem. We may

conclude that one cannot explain the observed arrow of time without explaining why

the vacuum has so little energy.

It should be stressed that low-entropy initial conditions and small vacuum energy,

while necessary, are still not sufficient for an arrow of time. We are accustomed to

consider the arrow of time from the backward-looking perspective of an observer at

late times. But from a theory standpoint, it is more natural to take the forward-

looking point of view. Whatever the initial entropy is, the dynamical laws must allow

for a large amount of entropy, ∆S � 1, to be produced later on.

This leads to other necessary conditions, such as the absence of large positive7

spatial curvature and the existence of massive particles. With large positive curvature,

tc � tΛ, the universe will recollapse on the timescale of curvature domination, tc. (By

delaying tc, slow-roll inflation can contribute to a successful prediction of an arrow

of time.8) And without massive particles, the radiation era would last forever. In

that case, the evolution would be adiabatic, with S(tf ) = S(ti) and thus ∆S = 0. A

matter dominated era is crucial, as the expansion of the universe effectively creates new

7The case of negative curvature is more subtle [49].
8Slow-roll inflation is occasionally criticized on the grounds that it “worsens” the arrow of time

problem, since the universe at the beginning of inflation has even lower entropy than after reheating.

But this argument could be advanced against any theory that explains our observations by dynam-

ical evolution from simple initial conditions (“simple” in the sense of low complexity, as opposed to

“generic”, large-entropy initial conditions). Examples include cold dark matter structure formation,

galaxy formation, or big bang nucleosynthesis. Indeed, by this standard, the theory that the universe

was created an instant ago, with my memories included, should be given preference over all of standard

cosmology with its enormous explanatory and predictive power. The point is that we need to explain

the arrow of time in any case, and there is no reason to believe that an explanation can be found for

the very low entropy at nucleosynthesis but not for the very low entropy at the beginning of inflation.
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phase space (the empty space between massive particles) and thus room for entropy

production.

By assuming an FRW universe that is initially radiation dominated, I imposed

(relatively) low entropy initial conditions by hand. This is fine for my present purpose,

which was to demonstrate that even if low entropy initial conditions are granted, an

arrow of time is not necessarily predicted.

However, it is clear that in this model, low-entropy initial conditions are indeed

necessary. Let us assume that all other necessary conditions are satisfied. In particular,

assume that the cosmological constant is of equal magnitude as the observed value

(but negative): Λ ∼ −10−123; and that the Lagrangian is otherwise the same as in our

universe. Now suppose that instead of a hot big bang, the initial conditions selected

for a matterless universe dominated by large black holes, or a universe filled exclusively

with thermal radiation of temperature 1000 K. In this theory, observers would be

extremely unlikely to arise. And those that do (through rare downward fluctuations

in the entropy) are overwhelmingly unlikely to observe a large arrow of time. A more

detailed argument would parallel the analysis of Boltzmann brains below.

Independently of the presence of an arrow of time, the class of models considered

in this subsection are in conflict with observation [1, 2], by virtue of having negative Λ.

Therefore, I will not consider such models further. In the remainder of this paper, the

fact that the observed sign of Λ is positive (though not necessarily its precise value)

will be used as a key constraint on the theoretical models considered. As we shall see,

the positive sign of Λ considerably alters and sharpens the challenge of explaining the

arrow of time.

3.2 Positive Cosmological Constant

I will now consider the same type of theory as before, except that the cosmological

constant is positive: Λ > 0. I still assume that initial conditions select for a hot,

spatially flat, radiation dominated big bang. At late times, t � tΛ ≡ (Λ/3)−1/2, the

universe asymptotes to de Sitter space.

In an asymptotically de Sitter big bang cosmology, the maximum area of any

past light-cone will not exceed the cosmological horizon area of empty de Sitter space,

12π/Λ [43, 45]. The covariant entropy bound thus implies S(tf ) . t2Λ. Thus, one finds

again that an arrow of time, ∆S � 1, can exist only if Λ � 1. The magnitude of the

cosmological constant must be small in order for the maximum observable entropy to

be large, which in turn is necessary for a large entropy difference ∆S.

However, the probability of the observed arrow of time is double-exponentially small

in this model, even if all necessary conditions are satisfied. This result is due to Dyson,

Kleban, and Susskind (DKS) [3]. It implies that our vacuum is only metastable. It
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will eventually decay, though this may happen at a time exponentially greater than

the present age of the universe. It is remarkable that this powerful conclusion can be

drawn from such sparse assumptions.

To understand this result, let us restrict attention to a causal patch: a single

de Sitter horizon volume, or more precisely, the interior of the cosmological event

horizon. This region has finite maximum entropy, given by the entropy of empty

de Sitter space,

SdS =
3π

Λ
. (3.7)

The total entropy is lower when matter is present, as the additional matter entropy is

always overcompensated by a decrease in the cosmological horizon area [45, 46]:

Sbulk + SCH < SdS . (3.8)

Thus, de Sitter space can be regarded as a quantum-mechanical system with finite

entropy. The equilibrium state is empty de Sitter space; states with matter or black

holes have lower entropy.

Assuming ergodicity and unitarity of the underlying quantum theory, these prop-

erties imply that a configuration with coarse-grained entropy Sbulk + SCH occurs, on

average, at a rate per unit time of order

Γ ∼ t−1
Λ

exp(Sbulk + SCH)

exp(SdS)
. (3.9)

Here Sbulk includes the entropy of all matter systems and black holes within the cosmo-

logical horizon, and SCH is one quarter of the cosmological horizon area in the presence

of this bulk configuration.

If the cosmological horizon area is nearly that of empty de Sitter space, 1 −
(SCH/SdS)� 1, then the bulk configuration can be assigned an approximate notion of

energy, E. (Intuitively, E is the integral over the stress tensor, plus the mass of small

black holes; see Ref. [46] for details.) In the same limit, an inertial particle detector

will see a nonzero temperature, whose minimum is attained in empty de Sitter space:

TdS =
1

2πtΛ
(3.10)

The relation between energy and cosmological horizon area implies [46] that Eq. (3.9)

reduces to the usual Boltzmann suppression factor,

Γ ∼ t−1
Λ exp(Sbulk − E/TdS) (3.11)

in this regime.

– 13 –



The DKS argument relies only on the fact that the rate in Eq. (3.9) is nonzero.

For the sake of argument, let us suppose not only that there is a beginning of time

(a big bang), but also that initial conditions and dynamical laws lead to a standard

cosmology compatible with our observations. “Ordinary observers” like ourselves, who

live in this initial period, will observe a large arrow of time. However, at times much

greater than tΛ, the universe becomes empty de Sitter space and the thermal description

becomes valid. The finite period of standard cosmology is followed by an infinite era

of fluctuations and recurrences.

For every ordinary observer produced 13.7 billion years after the big bang, there

will be infinitely many observers produced later by thermal fluctuations. Thus, the

transients following the big bang are irrelevant for the predictions of the theory, and

the relative probability of observations of type 1 and type 2 are determined entirely by

the relative frequency of these events. From Eq. (3.9), one finds

p1

p2

=
exp[Sbulk(1) + SCH(1)]

exp[Sbulk(2) + SCH(2)]
(3.12)

Now, let state 1 be the coarse-grained state we observe, with galaxies and dark matter

and dark energy. Let state 2 be some state with larger entropy but the same energy

(more precisely, the same cosmological horizon area). For example, state 2 might be

a state with a CMB temperature of 4 K instead of 2.7 K, and a very slightly smaller

number of protons. State 2 has larger entropy due to the hotter CMB; the correction

due to the the missing protons is negligible. Since SCH is the same for both states, their

relative probability will be given by p1/p2 ∼ exp[Sbulk(1) − Sbulk(2)] ∼ 1088 [34, 35].

Thus, our observations have double-exponentially small probability, and the theory is

ruled out at an extremely high level of confidence.

State 2 would not arise by semiclassical evolution from simple initial conditions.9

But it dominates over state 1 in the thermal ensemble, and this counts in the long

run. Moreover, state 2 is itself highly unlikely compared to state 3, in which the CMB

temperature is 6 K. Still vastly more likely would be state 4, which is empty de Sitter

space except for a single solar system containing the observer. Ultimately, the most

probable observations result from the smallest fluctuations above empty de Sitter space

that barely suffice to produce observers. The most probable observers do not see a large

arrow of time.

One can only speculate [23] about the minimum requirements for such “Boltzmann

brains”. But the point is that they come at the end of a long list of coarse-grained

states, all of which contain observers that see a universe totally different from ours,

9This is the reason why the arrow of time, ∆S, is small, even though S(tf ) is larger than in our

universe.
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and all of which are overwhelmingly more probable than a state compatible with a long

semi-classical history, such as the state we observe.

Therefore, theories with a single vacuum are ruled out by combining two simple

observations: the arrow of time and of the positive sign of the cosmological constant.

More generally, the same argument rules out any theory that contains only de Sitter

vacua but no terminal vacua (i.e., no vacua with Λ ≤ 0).10

4 The Arrow of Time in a Small Landscape

4.1 Eternal Inflation and the Causal Patch Measure

Eternal inflation arises in any theory with at least one long-lived metastable de Sitter

vacuum and with initial conditions that assign nonzero probability to a state that can

evolve to such a vacuum. The de Sitter vacuum may decay,11 but globally its volume

continues to grow indefinitely [51]. The expected number 〈NI〉 of occurences of any

type I of observation or experimental outcome, no matter how unlikely, is infinite unless

it is completely forbidden. This means that relative probabilities cannot be defined by

pI
pJ

=
〈NI〉
〈NJ〉

. (4.1)

The measure problem is the question of how to regulate this divergence and obtain

well-defined probabilities. Current proposals have focussed on geometric cutoffs, i.e.,

simple prescriptions for selecting a finite subset of the eternally inflating spacetime.

Then 〈NI〉 and 〈NJ〉 can be computed in a finite region and relative probabilities can

be defined by Eq. (4.1).

Two leading proposals are the causal patch cutoff [4] and the fat geodesic cutoff [9,

10]. For definiteness, the causal patch cutoff will be used here. However, because of

the double-exponential nature of the relative probability for an arrow of time vs. no

arrow of time (i.e., the ratio of ordinary observers to Boltzmann brains), both cutoffs

agree [9] on all issues explored in this paper.

The causal patch cutoff is defined as a single causally connected region of spacetime.

More precisely, it is the causal past of an inextendible geodesic in the eternally inflating

spacetime. This prescription is quite general and does not assume that de Sitter vacua

are extremely long-lived, or that vacua must be sharply distinguishable. In all models

10If thermally produced black holes in de Sitter space act as terminal vacua, then there are no such

theories [50].
11The measure problem also arises in a theory that contains at least one stable de Sitter vacuum.

In its most general form, the causal patch cutoff can be applied to this problem, by terminating the

evolution at the first recurrence [4]. This measure was implicit in the previous section and in Ref. [3].
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considered in this paper, however, both of these conditions hold. In this case, the

problem of evaluating 〈NI〉 in the causal patch can be broken up into two separate

calculations: (1) the expected number of times ei that the geodesic will enter vacuum

i; and (2) the expected number NIi of events of type I that will happen in vacuum i

after the geodesic enters it:

〈NI〉 =
∑
i

NIiei (4.2)

The expected number of times the geodesic enters vacuum i, ei, can be computed

in terms of branching ratios. If the geodesic is some vacuum j, what matters is which

vacuum k will nucleate next (as a bubble within the causal patch). The total decay

rate of vacuum j, Γj ≡
∑

k Γkj, is irrelevant. The branching ratio from vacuum j to k

is defined as

βkj ≡
Γkj

Γj

. (4.3)

The expected number of times that a geodesic starting in some initial vacuum ∗ will

enter vacuum i is given by a sum over all possible decay paths from ∗ to i, of the

product of branching ratios along the decay chain:

ei =
∑
∗→...→i

βi... . . . β...∗ (4.4)

Graphically, the set of all decay paths can be represented by a branching tree with an

initial node at ∗ [4].

In de Sitter vacua which are long-lived, the boundary of the causal patch agrees

(up to double-exponentially small corrections) with the cosmological event horizon that

would obtain if the vacuum were completely stable. This will be the case for all de Sitter

vacua considered in this paper. Then the causal patch cutoff simplifies to the statement

that for each de Sitter vacuum that is encountered by the geodesic, NIi is given by the

expected number of events of type I that are counted are those taking place within the

de Sitter event horizon surrounding the geodesic.

4.2 A Landscape with Two Vacua

Consider a theory with two vacua, A and T . If both are de Sitter, then the analysis is

the same as for a theory with a single de Sitter vacuum (Sec. 3.2). There will be no

arrow of time, independently of initial conditions. If both have Λ < 0, or one of them

has Λ < 0 and initial conditions select this vacuum, then the analysis is the same as

for a theory with a single Λ < 0 vacuum (Sec. 3.1), and there will be an arrow of time

subject to the necessary conditions of Eq. (3.5). In any case, I am taking the observed

positive sign of the cosmological constant as a constraint and consider only theories
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Figure 2. A landscape with one metastable de Sitter vacuum A and a terminal vacuum T .

The vertical axis indicates both the effective potential and, schematically, the free energy:

ordinary observers, who see a long arrow of time, are drawn higher up than Boltzmann brains.

The dominant histories are indicated by chains of arrows. (a) With ΓA > ΓBB,A and initial

conditions (IC) similar to our own universe, most observers are ordinary observers (OO) who

perceive an arrow of time. (b) If initial conditions are high-entropy, then the most likely

observers are Boltzmann brains. (c) If vacuum A decays too slowly, (ΓA < ΓBB,A), then

many more Boltzmann brains than ordinary observers are produced.

that have vacua with Λ > 0. Hence, I will consider the case where ΛA > 0, ΛT < 0,

and initial conditions are in the basin of attraction of the de Sitter vacuum.

The condition

ΛA � 1 (4.5)

is necessary for an arrow of time, ∆S � 1, since the maximum entropy in a de Sitter

vacuum is given by

SA =
3π

Λ
(4.6)

But even if this condition is satisfied, the overwhelming fraction of observers will be

Boltzmann brains (i.e., will not observe an arrow of time), unless the production rate

of Boltzmann brains is smaller than the decay rate of vacuum A [22]:

ΓBB,A < ΓA . (4.7)
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If the above condition is not satisfied, then the probability of our observations (a

universe rich with matter and radiation, and consistent with evolution from a low-

entropy initial state) will be virtually nil, and the theory will be ruled out.

To understand this result, it will be necessary to review the arithmetic of non-

finetuned exponentials and double-exponentials. A number of the form exp(x) (or

exp(−x)), with x � 1, is called exponentially large (or small). Numbers of the form

exp[exp(x)] (or exp[− exp(x)]), x� 1, are called double-exponentially large (or small).

Two exponentially large numbers e1 > e2 satisfy e1 ± e2 ≈ e1, unless their exponents

are finetuned, i.e., as long as | ln e1 − ln e2| � 1. Therefore, if E1 and E2 are both

double-exponentially large and E1 > E2, then in the absence of finetuning (i.e., if

| ln lnE1 − ln lnE2| � 1), we have

E1E2 ≈
E1

E2

≈ E1 . (4.8)

For a double-exponentially small number E3, E4 = 1/E3 will be double-exponentially

large and the above rule can be applied to it. I will occasionally use the notation

x≪ y to emphasize that y/x is double-exponentially large (note that only one of the

two numbers needs to be double-exponentially large or small for this property to hold).

However, I will not necessarily use this notation when the fact that y/x is double-

exponentially large is obvious. For example, if y and x are both double-exponentially

large and mutually unrelated by fine-tuning, and y > x, then it follows trivially that

y ≫ x.

The expected number of ordinary observers, NOO, will depend on the theory and on

initial conditions. In any case, however, it will be bounded by the number of particles

that can fit within the causal patch, which is of order Λ−1
A [42]. I will assume that ΛA is

at most exponentially small (such as the observed value), but not double-exponentially

small. Therefore, NOO will not be double-exponentially large. I will assume that NOO is

not double-exponentially small, though the analysis below could easily be augmented to

include this case. However, NOO could be exactly zero. For example, initial conditions

or the dynamics of the theory may not give rise to ordinary observers even if Boltzmann

brains are possible.

The expected number of Boltzmann brains in the causal patch is given by the

lifetime of the de Sitter vacuum times the rate at which Boltzmann brains are produced:

NBB = ΓBB/ΓA. I assume that ΓBB is double-exponentially small but nonzero; otherwise

there would be no observers of any kind, and the theory would be trivially ruled out.

ΓA is nonzero, since the de Sitter vacuum is not completely stable by assumption. ΓA

may or may not be double-exponentially small.
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By the laws of double-exponential arithmetic,

pOO

pBB

=
NOO

NBB

=
NOOΓA

ΓBB

≈


0 if NOO = 0

ΓA if ΓBB > ΓA , NOO > 0

Γ−1
BB if ΓBB < ΓA , NOO > 0

. (4.9)

In the first and second case, the theory is ruled out because it conflicts with the observed

arrow of time. Boltzmann brains “win”, and the probability of our own observations is

double-exponentially small. (It is not exactly zero even in the first case, since a small

fraction of Boltzmann brains do see a large arrow of time.) Only in the final case do

ordinary observers win, in the sense that all but a double-exponentially small fraction

of observations are made by them.

Note that initial conditions are still relevant in this model. Not only do we need to

start out in the de Sitter vacuum, but also at relatively low entropy, for example with

a hot big bang. Suppose that, by contrast, the universe started out as empty de Sitter

space with cosmological constant ΛA. This is the state of maximum entropy in the

vacuum A, given by the horizon entropy, 3π/ΛA. The production of any observers re-

quires rare fluctuations that decrease the entropy. In that case, the number of ordinary

observers vanishes, NOO = 0, and there are only Boltzmann brains.

Also, the model is rather fine-tuned if it satisfies the other necessary conditions for

an arrow of time, such as the smallness of the cosmological constant, ΛA.

4.3 Dominant History Method

Before moving on to models with more vacua, it will be useful to develop a fast method

for reproducing the above analysis. This method is a straightforward generalization of

the branching-tree implementation of the causal patch cutoff [4, 52] reviewed in Sec. 4.1.

Recall that the branching tree was based on a somewhat arbitrary division of events

into nucleation events (when the geodesic enters a new vacuum j) and all other events

(things that happen in the causal patch in vacuum j). This choice of division is useful

for computing the probability distributions over observable parameters such as the

cosmological constant or the amount of spatial curvature [29, 33, 34, 53, 54]. In these

cases the ei are determined entirely by the distribution of vacua in the landscape, and

the nontrivial ingredient is the geometry of the causal patch). The division is also useful

when computing the effective size of the landscape after dynamical selection effects [52]

(in which case only the ei are relevant).

There is a deeper reason for the usefulness of this division. Once the geodesic

enters a given vacuum i, it can usually be assumed that a fixed sequence of events

will be set in motion, independently of how this vacuum was entered. This turns

out to be a reasonable approximation in a landscape that does give rise to an arrow of
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time, but not in the more general setting considered here. For example, a vacuum might

produce ordinary observers if it is entered from a neighboring vacuum with much larger

cosmological constant, but the same vacuum would produce only Boltzmann brains if

entered from a vacuum with lower energy. In the string landscape, the second case is

extremely unlikely—this is one of the reasons why it is successful at predicting an arrow

of time—but we will encounter it in some of the small landscapes considered below.

One can remedy this shortcoming, while preserving the simplicity of the branching

tree formalism, by including the production of ordinary observers and/or Boltzmann

brains in the branching tree. That is, I will treat such events in the same way as the

production of a new vacuum. The production of a Boltzmann brain in vacuum i can

be described by a “decay rate” ΓBB,i and associated branching ratio βBB,i. The decay

of de Sitter vacuum j to de Sitter vacuum k, if it leads to the production of ordinary

observers in vacuum k, will be described as a decay sequence, j → OO→ k. Similarly,

it will be useful to refine the notion of initial vacuum, ∗, to distinguish between initial

conditions that select empty de Sitter space, and other initial conditions, such as a hot

big bang.

In keeping with convention, however, the quantity Γa will still be defined as the sum

of the decay rates to other vacua (i.e., not including ΓBB,a). Therefore, the definition

of branching ratios in Eq. (4.3) must be augmented as follows:

βba ≡
Γba

Γa + ΓBB,a

, (4.10)

where the index b runs over other vacua as well as Boltzmann brains (b = BB) in

vacuum a. This modification is important in the case where ΓBB,a > Γa; in this case

1 − βBB,a = Γa ≪ 1 by double-exponential arithmetic, and of order Γ−1
a Boltzmann

brains are produced before the vacuum decays. In the opposite case, ΓBB,a < Γa, one

finds βBB,a = ΓBB,a ≪ 1 from Eq. (4.8).

To compute the probability of observing an arrow of time, one must compare

the expected numbers of ordinary observers (who will observe such an arrow) and of

Boltzmann brains (who almost certainly will not). Therefore, we need only consider

histories that include some kind of observer, even if all of those histories are quite

suppressed. The analysis is simplified in many cases where there will be a dominant

history or class of histories for each type of observers.

Let us begin by applying this method to the case (a) in the previous subsection

(Fig. 2a): ΓBB,A < ΓA and initial conditions are low-entropy, so that ordinary observers

form. On a timescale of order tΛ log tΛ, all matter is diluted by the exponential de Sitter

expansion, and the causal patch becomes empty de Sitter space. After a time of order

Γ−1
A , vacuum A decays to the terminal vacuum T , and the causal patch quickly ends in
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a crunch. Thus, the dominant path is

bang
1′−→ OO [

1′−→ A
1′−→ T

1−→ crunch] , (4.11)

where A denotes the empty de Sitter phase of vacuum A. Branching ratios are denoted

above the arrows; the notation 1′ means a branching ratio that is unity up to a negligible

correction. (For example, there is a small probability for decay to the terminal vacuum

between the big bang and the production of the ordinary observers are produced.)

The relevant portion of this path ends with the production of ordinary observers. (In

order to present a complete causal patch, the most likely history beyond this point is

included in square brackets.) The product of branching ratios is given by the single

ratio appearing between “big bang” and “OO”, and is almost unity.

This result must be compared to the dominant path that leads to the production

of Boltzmann brains from the same initial condition:

bang
1′−→ OO

1′−→ A
ΓBB,A−−−→ BB [

1′−→ A
1′−→ T

1−→ crunch] , (4.12)

This and similar alternate paths all contain at least one double-exponentially small

branching ratio, ΓBB,A. The product of branching ratios will be at least this small.

Comparison with Eq. (4.11) implies that Boltzmann brains are vastly outnumbered by

ordinary observers. Therefore, most observers are ordinary and see an arrow of time.

Next, consider the case shown in Fig. 2b: the decay of A is still fast (ΓA > ΓBB,A),

but the causal patch starts as empty de Sitter space, A, with large entropy. The

dominant history overall is a decay from A to T followed by a crunch, A → T →
crunch. But this history has no observers of any type, so it can be ignored. The most

probable history with observers is the production of a Boltzmann brain in otherwise

empty de Sitter space, followed by the decay of the A-vacuum and a crunch:

A
ΓBB,A−−−→ BB [

1′−→ A
1′−→ T

1−→ crunch] . (4.13)

Ordinary observers can only be thermally produced, via the path

A
Γbang,A−−−−→ bang

1′−→ OO [
1′−→ A

1′−→ T
1−→ crunch] . (4.14)

Here, “bang” refers to whatever early state in standard cosmology we picked when

defining the observed arrow of time. Since the entropy of this state is exponentially

smaller than that of a Boltzmann brain in empty de Sitter space, this path is double-

exponentially suppressed compared to (4.13):

Γbang,A ≪ ΓBB,A . (4.15)
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Therefore, most observers are Boltzmann brains and do not see an arrow of time.

Finally, consider the case of Fig. 2c: the decay of A is slow, ΓA < ΓBB,A. Even

though the universe begins with a low-entropy big bang leading to ordinary observers,

the most likely history produces of order Γ−1
A Boltzmann brains before the vacuum A

finally decays:

bang
1′−→ OO

1′−→ A
1′−→ BB

1′−→ A
1′−→ BB

1′−→ A
1′−→ . . .

1′−→ BB [
1′−→ A

ΓA−→ T
1−→ crunch] ,

(4.16)

where . . . stands for O(Γ−1
A ) repetitions of→ BB→ A. The history is coarse-grained in

that the exact number of Boltzmann brain creation events is irrelevant and is summed

over.

The above path is both the dominant path to the production of ordinary observers,

and of Boltzmann brains. But the expected number of Boltzmann brain production

events outnumbers that for ordinary observers, by the double-exponential factor Γ−1
A .12

The number of ordinary observers produced per event is not double-exponential. There-

fore, typical observers are Boltzmann brains, and the observation of an arrow of time

has essentially zero probability.

5 Two Landscapes with Four Vacua

As a preparation for our analysis of the string landscape in Sec. 6, it will be instructive

to contrast two slightly larger landscapes. In both, I will consider initial conditions

that have higher entropy than any state with observers. In the first landscape, this will

lead to Boltzmann brain domination. In the second, perhaps surprisingly, an arrow of

time is predicted, capturing a key feature of the string landscape.

Consider the one-dimensional landscape shown in Fig. 3(a), with vacua (in descend-

ing order of Λ) A, B, C, and the terminal vacuum T . The microphysics is assumed such

that ordinary observers are produced when A decays to B. Neither ordinary observers

nor Boltzmann brains can exist in any vacuum other than B. The decay of B is faster

than the production of Boltzmann brains in B: ΓB > ΓBB,B.

12Here and in Eq. (4.16) I have implicitly assumed that Γ−1
A < Γ−1

OO,A. More generally, Boltzmann

brains outnumber ordinary observers by the factor min{Γ−1
A ,Γ−1

OO,A}, where Γ−1
OO,A < Γ−1

BB,A is the

is the rate of production of the particularly rare Boltzmann brains that have an ordinary observer’s

environment (or at least his memory). Such Boltzmann brains see a long arrow of time. The latter

case applies if Γ−1
A > Γ−1

OO,A, i.e., the vacuum A is so long lived that such events occur. Then the “. . .”

in Eq. (4.16) contains some elements of the form “→ OO→ A”, but with BB still vastly outnumbering

OO.
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Figure 3. Two landscapes with four vacua each. In both models, the universe starts out in

vacuum C, and the cosmological constant and low-energy physics are the same in identically

labelled vacua. In model (a), the most likely way to produce observers is by a rare fluctuation

to a Boltzmann brain state of vacuum B; no arrow of time is predicted. In model (b), the

only way to produce observers is by first fluctuating up to vacuum A; a large arrow of time is

predicted even though initial conditions have arbitrarily large entropy. The string landscape

shares crucial features of this second model.

The above assumptions imply that ΛB and ΛC are both very small: ΛC < ΛB <

exp(−SBB). In Sec. 6, I will argue that this property is rare among neighboring vacua

in the string landscape.

With low-entropy initial conditions in the A vacuum, the dominant history would

be A
1′−→ OO [

1′−→ B
1′−→ C

1′−→ T
1−→ crunch], and most observers would be ordinary

and would see an arrow of time. However, I will instead assume high-entropy initial

conditions, in the C vacuum. Then the dominant history leading to Boltzmann brains

is

C
ΓBC−−→ B

ΓBB,B−−−→ BB [
1′−→ B

1′−→ C
1′−→ T

1−→ crunch] . (5.1)

The dominant history leading to ordinary observers is

C
ΓBC−−→ B

ΓOO,B−−−→ OO [
1′−→ B

1′−→ C
1′−→ T

1−→ crunch] . (5.2)

Since ΓOO,B ≪ ΓBB,B, most observers are Boltzmann brains:

eBB ≫ eOO . (5.3)

In this landscape, the existence of an arrow of time depends essentially on the same

conditions as in the two-vacuum landscape of Sec. 4.2. In particular, there is no arrow

of time if initial conditions select a state of entropy higher than that of a state with

ordinary observers, such as C.
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Next, consider the one-dimensional landscape shown in Fig. 3(b). The cosmological

constant each of the vacua A, B, C, and T takes the same values as in the previous

model. As before, ordinary observers are produced by the decay from A to B; B is the

only vacuum with any type of observers; and initial conditions will be in the vacuum

C.

There is only one difference to the previous model: the vacua have been ordered

differently, so that B cannot be reached from C except by first jumping up to A. This

means that with initial conditions in C, the dominant path to ordinary observers will

be

C
1′−→ A

ΓBA−−→ OO [
1′−→ B

1′−→ T
1−→ crunch] . (5.4)

With the same initial conditions, the dominant path to Boltzmann brains is suppressed

by an extra factor of ΓBB,B:

C
1′−→ A

ΓBA−−→ OO
1′−→ B

ΓBB,B−−−→ BB [
1′−→ B

1′−→ T
1−→ crunch] . (5.5)

Therefore, most observers are ordinary:

eOO ≫ eBB . (5.6)

This should be compared to Eq. (5.3). In both models, the initial conditions select

very large entropy. But in the latter model, the theory nevertheless predicts an arrow

of time.

This is a very simple example of a situation where the arrow of time arises dy-

namically despite high-entropy initial conditions. The key feature that underlies this

surprising property is the fact that there is no way to evolve from the high-entropy

initial state to a state with any observers (Boltzmann or ordinary), except via the

low-entropy state A. In the following section, I will argue that the string landscape

shares this property and thus predicts an arrow of time, no matter how large the initial

entropy is.

6 String Theory Landscape

Now, let us ask whether an arrow of time is predicted in the string landscape.

6.1 Key Properties

Only the following properties of the string landscape will be used, and the conclusion

below applies to any landscape that shares these properties:
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(i) No tuning. Only a tiny fraction of vacua contain observers of any type, including

Boltzmann brains. Fine-tuned conditions that are necessary for observers, such as

the smallness of the cosmological constant (|Λ| < S−1
BB), or nontrivial low-energy

physics, arise accidentally in some vacua, because the total number of vacua is

very large.

(ii) Large step size. Vacuum transitions generically change the cosmological constant

by an amount |∆Λ| � S−1
BB.

(iii) Not too large. The effective number of vacua is less than exp(SBB).

(iv) Not effectively one-dimensional. For any two de Sitter vacua a, b, with Λb < S−1
BB,

there exists a semiclassical decay path from a to b that does not pass through

any vacuum i with Λi < S−1
BB.

Here SBB is the minimum coarse-grained entropy of a Boltzmann brain. In general

this number need not be the same in all vacua that can produce Boltzmann brains;

however, its precise value is irrelevant as long as it is exponentially large. For definite-

ness, we could take SBB ∼ 1025 [23]. Because of entropy bounds in de Sitter space [46],

the production rate of Boltzmann brains in all vacua satisfies [9, 22]

ΓBB,a < exp(−SBB) . (6.1)

Another way of thinking about this restriction is that a Boltzmann brain requires a

minimum free energy (in the above guess, of order 1025), in order to observe and process

information. Its production will be correspondingly suppressed.

A key point is that the overwhelming majority of Boltzmann brains will at most

observe the conversion of their own free energy into entropy, since the spontaneous re-

duction of entropy by more than the minimum amount needed to produce a Boltzmann

brain is exponentially suppressed. They will not observe a large arrow of time, i.e., the

production of a large amount ∆S ∼ 10103 of entropy, as we do; see Eq. (2.5).

Of course, I will also assume that the landscape contains ordinary observers in some

de Sitter vacua; otherwise the theory is trivially ruled out. More precisely, I assume

that the expected number of ordinary observers that are produced by in some vacua

by the decay of some other vacua is not double-exponentially small. I will now discuss

each of the above landscape properties in turn.

The first property—no tuning—is desirable from an aesthetic viewpoint, since the

alternative would be to posit some form of intelligent design of the effective laws of

physics. However, this is not why it is listed here. Rather, as we shall see below, the

absence of tuning actually helps explain the observed arrow of time.—When combined
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with simple observations, the no-tuning property implies a lower bound on the number

of vacua in the landscape. The fraction of vacua that have cosmological constant

comparable to the observed magnitude is of order 10−123; and the fraction of those

vacua that contain observers will be some other number ε < 1. One expects that

ε is exponentially small, since the complexity observed in our own vacuum does not

appear to be robust against small variations of several parameters [55–57], such as

the strong and electroweak coupling strengths; the masses of the electron, proton, and

neutron; and the amplitude of primordial density perturbations. For the landscape to

be compatible with a vacuum like ours, without tuning, the total number must be at

least of order ε−110123. The string landscape appears to satisfy this condition [58–60].

The second property—large step size—could be considered a consequence of the

first, since a landscape with small step size [61–63] would seem to require a small input

parameter ∆Λ � 1. In any case, it is worth spelling this requirement out, because

of its crucial rule in the arguments below. Note that the string landscape is expected

to satisfy this property with much room to spare, ∆Λ . 1. A very similar condition,

|∆Λ| � GNρBBN ∼ 10−88, where ρBBN is the energy density at the time of big bang

nucleosynthesis, is necessary for solving the cosmological constant problem without

predicting an empty universe [51, 58, 64].

The third property, that the landscape contains fewer than exp(SBB) vacua, is

also expected to hold in the string landscape, whose number of vacua is controlled,

roughly, by the exponential of the number of topological cycles of a six-dimensional

compact manifold [58–60], N ∼ 10O(100−1000). Larger numbers may arise from F-theory

compactifications [65], but they are still much smaller than exp(SBB). By “effective”,

I mean the number of vacua that are sufficiently likely to be dynamically produced, in

the sense of Ref. [52]. This presumably excludes the (infinite) number of stable AdS

vacua of string theory, whose large fluxes will be difficult to produce cosmologically.

The fourth property states that there is more than one way to get from one vacuum

to another by a sequence of Coleman-de Luccia tunneling events. Imagine a large two-

dimensional landscape of vacua; generically, any pair of de Sitter vacua is connected by

many different decay chains. The potential landscape of string theory is believed to have

hundreds of dimensions [58] and is thus expected to satisfy this property. The fourth

property would not hold in a one-dimensional landscape such as the Abbott [61] or

Brown-Teitelboim [62, 63] models, or in a landscape that had a “bottleneck”—a vacuum

with small Λ that connects two otherwise disconnected portions of the landscape. (It

is not necessary to assume that the whole landscape is connected, i.e., that there exists

a decay path connecting any two vacua. This is automatic, since we take the effective

landscape to be the portion accessible from the given initial conditions, and we demand

that the above properties hold for this portion alone.)
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6.2 Arrow of Time

Using the above four properties,13 I will now argue that an arrow of time is predicted

if and only if all de Sitter vacua decay faster than they produce Boltzmann brains, i.e.,

if the condition

ΓBB,a < Γa (6.2)

holds for all de Sitter vacua a. The initial entropy is irrelevant.

Before presenting a proof, it is instructive to give an intuitive sketch of the argu-

ment, based on our experience with the models of Sec. 5. To predict an arrow of time,

the string landscape should be, in a sense, less like the first and more like the second

landscape studied there. This is indeed ensured by the four properties listed.

Eqs. (6.1) and (6.2) guarantee that Boltzmann brains are suppressed at least by a

branching ratio of order exp(−SBB). Vacua with small enough cosmological constant

to contain ordinary observers satisfy Λ < S−1
BB; otherwise, the maximum entropy is

too small even for a Boltzmann brain to fit. By the large-step-size condition (ii),

such vacua can only be reached by down-tunneling from a vacuum of much larger

cosmological constant. (Up-tunneling from vacua with negative Λ is semi-classically

forbidden.) This excludes the type of problem that arose in the first model of Sec. 5,

where the vacuum with ordinary observers could only be reached by up-tunneling from

a de Sitter vacuum with even smaller Λ, producing a state of maximum entropy from

which observers could only arise by Boltzmann-suppressed fluctuations. The third

and fourth property ensure that the paths that do lead to ordinary observers are less

suppressed than exp(−SBB), so that ordinary observers dominate.

An exception would occur if the initial conditions selected a high-entropy state in a

de Sitter vacuum that can produce Boltzmann brains, such as case (b) in Fig. 2. This is

(statistically) excluded by the first condition: vacua capable of producing Boltzmann

brains are exponentially rare, so whatever theory selects the initial condition would

have to be tuned to pick such a vacuum.

If, on the other hand, Eq. (6.2) did not hold in some vacuum, then by the same

analysis as in case (b) Sec. 4, a double-exponentially large number of Boltzmann brains

would be produced in that vacuum; see Eq. (4.16). Since at most an exponentially

large number of ordinary observers is produced in any vacuum by property (iii), an

arrow of time would not be predicted. Thus Eq. (6.2) is necessary for an arrow of time.

Proof of “if” Let us assume that ΓBB,a < Γa for all de Sitter vacua a whose mi-

crophysics allows, in principle, for Boltzmann brains. By Eq. (6.1), ΓBB,a is double-

13The assumptions, claim, and proof presented in this section all differ slightly, but not substantially,

from those presented in Ref. [9, 18].

– 27 –



exponentially small. The absence of tuning, property (i), and double-exponential arith-

metic, Eq. (4.8), imply that any path to Boltzmann brains is suppressed at least by

exp(−SBB), the branching ratio to Boltzmann brains in the vacuum a. There may be

many such paths with comparable weight, but not double-exponentially many, by con-

dition (iii). So this is the minimum suppression of Boltzmann brains, to the accuracy

demanded by double-exponential arithmetic:

eBB < exp(−SBB) . (6.3)

Boltzmann brains would nevertheless dominate over ordinary observers if the initial

conditions select an empty de Sitter vacuum, ∗, that is capable of producing Boltzmann

brains [9, 18]. (This is shown in the Appendix.) However, this possibility conflicts

with condition (i). Vacua containing Boltzmann brains are extremely rare. One could

imagine that the theory of initial conditions favors some of the more primitive necessary

conditions for Boltzmann brains, such as a small cosmological constant. However, many

additional conditions are necessary for the low energy physics to be compatible with

the level of complexity required for the operation of a Boltzmann brain. The theory

of initial conditions would have to be tuned to select for a vacuum with observers, in

violation of (i).14

Given that the initial vacuum does not support Boltzmann brains, it will now be

shown that the expected number of ordinary observers is greater than that of Boltzmann

brains. There are two cases, depending on the initial value of the cosmological constant.

If Λ∗ < S−1
BB, then the large-step-size property (ii) implies15 that any path—whether

it leads to ordinary observers or to Boltzmann brains—must begin with up-tunneling

from ∗ to some vacuum i1 with cosmological constant Λi1 � S−1
BB, so that

exp(Si1) ≪ exp(SBB) (6.4)

where Si1 = 3π/Λi1 is the de Sitter entropy of the vacuum i1. Detailed balance relates

the up-tunneling rate, Γi1∗, to the decay rate back down to the ∗ vacuum, Γ∗i1 :

Γi1∗ exp(S∗) = Γ∗i1 exp(Si1) . (6.5)

Moreover, the decay time of vacuum i1 cannot be larger than the recurrence time [3]

or faster than the Planck time:

1 > Γ∗i1 > exp(−Si1) . (6.6)

14In this paper, it is assumed that initial conditions have support in one vacuum only. The general

case is left to future work.
15Property (ii) is a statistical statement about the distribution of cosmological constant among

vacua. It implies that among all vacua that satisfy Λ < S−1
BB, a fraction no greater than S−1

BB/|∆Λ|
decay directly to vacua that satisfy the same property. Thus, the initial conditions would have to be

finetuned for this to be the case for the vacuum ∗, in violation of property (i).
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Substituting on the right hand side of Eq. (6.5), this implies the double inequality

exp(Si1) > Γi1∗ exp(S∗) > 1 . (6.7)

Eq. (6.4) now implies that to accuracy better than exp(SBB), this first uptunneling

suppresses the paths by the same amount, whether they lead to Boltzmann brains or

to ordinary observers:

exp(−SBB) ≪
βi1,OO∗

βi1,BB∗
=

Γi1,OO∗

Γi1,BB∗
≪ exp(SBB) . (6.8)

(The distinction between i1,BB and i1,OO is important since the dominant paths leading

to Boltzmann brains and those leading to ordinary observers may prefer different i1.)

This accuracy is sufficient, since it will be shown that ordinary observers are favored

over Boltzmann brains by a factor greater than exp(SBB). Thus, we can forget about

this first case altogether: effectively, the cost of first up-tunneling, which leads to a

“new initial vacuum” with much larger cosmological constant, cancels between paths to

ordinary observers and paths to Boltzmann brains. The rest of the argument proceeds

as in the second case, with the vacuum i1,OO playing the role of ∗ below.

The second case is that of “large” initial cosmological constant, in the sense that

Λ∗ > S−1
BB. By property (iv), there will exist a path to a vacuum with ordinary observers

consisting entirely of vacua i2, i3, . . . with Λin > S−1
BB for all n ≥ 2. The decay channels

of these vacua have rates that vary between 1 and exp(−Sin); hence, all branching

ratios appearing in the path are larger than exp(−SBB). By property (iii), the paths

are not double-exponentially long, so it follows that the overall weight of paths leading

to ordinary observers exceeds exp(−SBB).

Combining these results, one may bound the weights, or unnormalized probabilities,

as follows:

eOO > XOO exp(−SBB) , (6.9)

eBB < XBB exp(−SBB) , (6.10)

where XOO differs from XBB by less than a factor of exp(±SBB). Let us recall the

trivial assumption that there exist vacua in which decay of a parent vacuum produces

a number of ordinary observers that is not double-exponentially small. Using Eq. (4.8)

and (4.3), this implies that there are far more ordinary observers than Boltzmann

brains. Thus, an arrow of time is predicted.

Proof of “only if” Suppose that a vacuum A exists with ΓBB,A > ΓA. Then the

branching ratio to Boltzmann brains is nearly unity once this vacuum is reached. Of

– 29 –



order ΓBB,A/ΓA ≈ Γ−1
A Boltzmann brains will be produced in this path:

. . .
1′−→ A

1′−→ BB
1′−→ A

1′−→ BB
1′−→ A

1′−→ . . .
1′−→ BB [

1′−→ A
ΓA−→ T

1−→ crunch] , (6.11)

This number is double-exponentially large.

On the other hand, the expected number of ordinary observers is at most expo-

nentially large. This follows from properties (i) and (iii), which ensure that the small-

est positive Λ in the landscape is exponentially but not double-exponentially small.

The entropy bound in the corresponding de Sitter space is 3π/Λ, and the number

of observers cannot be larger than the entropy. Therefore, their number cannot be

double-exponentially large in any vacuum.

As before, the other branching ratios along any dominant path are large compared

to exp(−SBB), up to a possible suppression from up-tunneling out of the ∗ vacuum that

is common to both Boltzmann brains and ordinary observers. Thus, the condition

ΓBB,a < Γa , for all a , (6.12)

is necessary for an arrow of time.
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A Initial vacuum with observers

Here I will show that a large arrow of time is not predicted in the landscape of Sec. 6,

if the initial vacuum, ∗, has a nonzero rate

ΓBB,∗ > 0 (A.1)

for producing Boltzmann brains. In the proof of Sec. 6.2, it is argued that this case will

not arise in the absence of tuning. The purpose of this appendix is merely to explain

why this case did need to be excluded by some argument. (A closely related analysis

appears in Refs. [9, 18].)
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By Eq. (6.1), the above assumption would require, in particular, that the initial

vacuum has very small cosmological constant,

Λ∗ < exp(−SBB) , (A.2)

so all paths to other de Sitter vacua begin by an up-tunneling to a vacuum i1 with

larger cosmological constant.

By Eq. (6.2) and double-exponential arithmetic, the unnormalized probability for

Boltzmann brains is at least

eBB ≥ ΓBB,∗ , (A.3)

from the path

∗
ΓBB,∗−−−→ BB [

1′−→ T
1−→ crunch] . (A.4)

(eBB could be larger than ΓBB,∗, if ΓBB,∗ is so small that a path involving tunneling to

a different vacuum with Boltzmann brains dominates.)

The dominant path to ordinary observers is suppressed by

eOO = ΓOO,∗ ≪ eBB , (A.5)

from the dominant path

∗
ΓOO,∗−−−→ OO [

1′−→ T
1−→ crunch] , (A.6)

if such observers exist in the initial vacuum. If they do not, then the dominant path

to ordinary observers involves up-tunneling to some intermediate vacuum i1,OO. By

Eq. (6.4) and the second inequality of Eq. (6.7), one finds for this case that

eOO < Γi1,OO∗ ≪ eSBB/eS∗ ≈ exp(−S∗) ≪ ΓBB,∗ < eBB (A.7)

Since the number of ordinary observers produced NOO produced by this path is at most

exponentially large by property (iii), Boltzmann brains dominate and no arrow of time

is predicted.
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