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Primordial magnetic fields (PMF) can create polarization B-modes in the cosmic microwave back-
ground (CMB) through Faraday rotation (FR), leading to non-trivial 2-point and 4-point correlators
of the CMB temperature and polarization. We discuss the detectability of primordial magnetic fields
using different correlators and evaluate their relative merits. We have fully accounted for the con-
tamination by weak lensing, which contributes to the variance, but whose contribution to the 4-point
correlations is orthogonal to that of FR. We show that a Planck-like experiment can detect scale-
invariant PMF of nG strength using the FR diagnostic at 90GHz, while realistic future experiments
at the same frequency can detect 10−11 G. Utilizing multiple frequencies will improve on these
prospects, making FR of CMB a powerful probe of scale-invariant PMF.

I. INTRODUCTION

Magnetic fields are prevalent in the cosmic structures around us, in galaxies B ∼ 1µG with coherence length
λ ∼ 1 kpc, in galaxy clusters B ∼ 1− 10µG with coherence length λ ∼ 10− 100 kpc, and in objects at high redshifts
z ∼ 2 with magnetic field B ∼ 10µG [1]. Recently there have also been a claim of a lower bound on the inter-
galactic magnetic field, B > 10−15G [2–5], and perhaps a measurement ∼ 10−15G [6], based on the absence of GeV
γ-ray emission in the cascade initiated by TeV γ-rays. The claim is under debate as it has been argued that plasma
instabilities could also explain the non-observation of GeV photons [7], though a counter-argument that supports the
initial claim has been presented in [8]. It is possible that these magnetic fields have a common origin from a “seed”
magnetic field imprinted in the early universe (see [9] for a review). Magnetic fields may be generated at cosmic phase
transitions [10–17] and through specially engineered inflationary mechanisms [18, 19].
Detection of primordial magnetic fields (PMF) can lead to important insights into fundamental physics and the early

universe. Currently, there are upper limits on the strength of PMF from big-bang nucleosynthesis (BBN) [20–24] and
the Cosmic Microwave Background (CMB) temperature anisotropies [25–28], including their non-Gaussian statistics,
such as bispectrum and trispectrum [29, 30]. Metric fluctuations induced by PMF are intrinsically non-Gaussian
because the stress-energy is quadratic in the magnetic field strength B and thus non-Gaussian distributed even if B
itself is Gaussian. In this paper we study the detectability of PMF through a different observational window, namely,
the Faraday Rotation (FR) signal they induce in the CMB polarization [31]. The polarization of the CMB field can be
studied in terms of the parity even E and parity odd B-modes [32–34]. FR converts some of the primordial E-modes
into B-modes, thus providing a contribution to the B-mode power spectrum along with the weak gravitational lensing
and primordial sources, like the actively sought inflationary gravity waves [32, 33, 35] or cosmic strings [36].
Importantly, spatially dependent FR also couples off-diagonal CMB modes, effectively producing additional non-

Gaussian signatures in the CMB polarization. The FR induced parity odd correlations 〈TB〉 and 〈EB〉 must vanish
in a statistically isotropic universe1, where the ensemble average is over many realizations of the stochastic magnetic
field. However, a particular realization of the FR distortion field that generates a B-mode from the primordial E-mode
will correlate the respective Legendre coefficients Elm and Bl′m′ . In fact, as shown in [39], it is possible to reconstruct
the distortion α(n̂) at a given point n̂ on the sky from specially constructed linear combinations of products ElmBl′m′ .
The additional correlations induced by FR also manifest themselves as connected 4-point functions of the CMB, which,
in turn, provide a measurement of the distortion spectrum Cαα

L [40, 41].
In this paper we discuss the detectability of primordial magnetic fields through estimators based on 4-point correla-

tions 〈EBEB〉 and 〈TBTB〉, as well as the 2-point function 〈BB〉. In particular, we determine which of the estimators
has the highest signal to noise for several types of magnetic field spectra and for a range of experimental sensitivities.

1 This statement is specific to the FR induced parity-odd two-point correlations, which are quadratic in the magnetic field strength B.
Metric fluctuations sourced by magnetic stress-energy can produce non-zero 〈TB〉 and 〈EB〉, which are quartic in B, if the net helicity
in the magnetic field is non-zero [37, 38].
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We demonstrate that FR will be a very promising diagnostic of primordial magnetic fields. In particular, future
generation of sub-orbital or space-based CMB polarization experiments will be able to detect scale-invariant magnetic
fields as weak as 10−11G based on the measurement at 90 GHz frequency. Measurements at multiple frequencies can
further significantly improve on these prospects.

II. FARADAY ROTATION FROM MAGNETIC FIELDS

Magnetic fields at CMB decoupling will rotate the polarization vector by an angle

α(n̂) =
3

16π2e
λ2
0

∫

τ̇ B · dl , (1)

where τ̇ ≡ neσT a is the differential optical depth, ne is the free electron density along the line of sight (n̂), σT is
the Thomson scattering cross-section, a is the scale factor, λ0 is the observed wavelength of the radiation, B is the
“comoving” magnetic field, and dl is the comoving length element along the photon trajectory. We are using Gaussian
natural units with h̄ = c = 1, and the integration limits are from the initial to the final position of the photon.
Statistically homogeneous and isotropic primordial seed magnetic fields can be generated in the early universe

during phase transitions [10–17], and are described in terms of a two-point correlation function in Fourier space

〈bi(k)bj(k′)〉 = (2π)3δ(3)(k+ k
′)[(δij − k̂ik̂j)S(k) + iεijlk̂lA(k)] , (2)

where S(k) and A(k), the symmetric and anti-symmetric magnetic power spectra, are real functions of k = |k|. The
function A(k) quantifies the amount of magnetic helicity which plays a crucial role in determining the coherence scale
and the magnitude of magnetic fields as they evolve from an earlier epoch until decoupling. However, only S(k)
appears in the two-point correlation function of the FR angle, which determines the CMB observables evaluated in
this paper. As in [42], we introduce the dimensionless “FR power spectrum” defined as

∆2
M (k) ≡ k3S(k)

(

3λ2
0

16π2e

)2

=



















∆2
0

(

k
kI

)2n

0 < k < kI

∆2
0

(
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kI

)2n′

kI < k < kdiss

0 k > kdiss

, (3)

where

∆2
0 ≡ 9n

16πe2κ
ργλ

4
0 ΩBγ ≈ 1.1× 104

ΩBγ

κ
×
(

2n

5

)(

90 GHz

ν0

)4

.

This form of the symmetric magnetic spectrum is based on the numerical simulations of causal magnetic field evolution
in [43]. In the above, ργ is the comoving photon energy density, ΩBγ is the magnetic energy density relative to the
photon energy density, kdiss is a dissipation scale above which magnetic fields dissipate, kI is an intermediate inertial
scale, and

κ = 1 +
n

n′

{

(

kdiss
kI

)2n′

− 1

}

. (4)

All variables, unless explicitly stated, are in comoving coordinates. The exponents n = 5/2 and n′ = 3/2 correspond to
causal magnetic fields [43], and n ≈ n′ ≈ 0 are expected for magnetic fields generated in an inflationary scenario [18,
19]. The dissipation scale, kdiss is not an independent parameter and should, in principle, be dependent on the
amplitude and the shape of the magnetic fields spectrum. As in [42], we assume that kdiss is determined by damping
into Alfven waves [44, 45] and can be related to Beff as

kdiss

1Mpc−1 ≈ 1.4 h1/2

(

10−7Gauss

Beff

)

, (5)

where Beff is defined as the effective homogeneous field strength that would have the same total magnetic energy
density. It is related to ΩBγ via [42]

Beff = 3.25× 10−6
√

ΩBγ Gauss . (6)
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Subsequently, the dissipation scale can be expressed in terms of ΩBγ as

kdiss ≈ 0.43

√

10−2h

ΩBγ
Mpc−1 . (7)

One should be aware of the very approximate nature of the relations (5) and (7). They are based on the analysis in
Ref. [44] where small perturbations on top of a homogeneous magnetic field were treated. To extend this analysis to a
stochastic magnetic field with little power on long wavelengths, Ref. [45] introduced a smoothing procedure and split
the spectrum into a “homogeneous” part and a “perturbations” part. It is not clear to us if this procedure is valid
for an arbitrary spectrum, S(k). Instead, we will use Eq. (5) as an approximate expression for the dissipation scale.
We note that this relation also imposes an upper bound on kI , since kI cannot be greater than kdiss.
In practice, both scales (kI and kdiss) that appear in the definition of the magnetic spectrum (3) are likely to be

smaller than the resolution scale of a realistic CMB experiment. This means that only the large scale tail of the
spectrum, i.e. the 0 < k < kI range, will be relevant for calculating the shapes of the CMB correlation functions
on the observable scales. The existence of the intermediate range kI < k < kdiss and the exponent n′ will affect
the inferred constraints on ΩBγ only through an overall rescaling. For this reason, in the calculation of the CMB
correlations, we will set kI = kdiss, with kdiss given by (7), and work with a single power law spectrum

∆̃2
M (k) =







∆̃2
0

(

k
kdiss

)2n

0 < k < kdiss

0 k > kdiss
, (8)

where

∆̃2
0 = 1.1× 104 Ω̃Bγ ×

(

2n

5

)(

90 GHz

ν0

)4

(9)

The bound we obtain on Ω̃Bγ can then be easily converted to the bound on ΩBγ via

ΩBγ = Ω̃Bγκ

(

kI
kdiss

)2n

. (10)

We calculate the FR power spectrum as [42]

Cαα
L =

2

π

∫

dk

k
∆̃2

M (k)

[

L

2L+ 1
(TL−1(k))

2 +
L+ 1

2L+ 1
(TL+1(k))

2 − (T (1)
L (k))2

]

, (11)

where TL(k) are transfer functions that are independent of the magnetic field:

TL(k) ≡
∫ η0

η∗

dη τ̇ (η)jL(k(η0 − η))

T (1)
L (k) ≡

∫ η0

η∗

dη τ̇ (η)j′L(k(η0 − η)) . (12)

Here η∗ is the epoch at which the visibility function is maximum, jL are the spherical Bessel functions, and τ̇ can be
easily obtained numerically using public codes such as CMBFAST [46] or CAMB [47].

III. THE MODE COUPLING ESTIMATOR AND THE B-MODE SPECTRUM

FR will rotate the CMB polarization fields generated at last scattering. This introduces coupling between different
CMB modes which can, in fact, be used to reconstruct the rotation angle map from the observed CMB polarization
maps [39, 41, 48, 49]. Let T̃ (n̂), Q̃(n̂) and Ũ(n̂) be the un-rotated CMB temperature field and the two linear polar-
ization Stokes parameters at angular position n̂. The temperature is not affected by FR, except for the depolarization
effect [50] which would appear as a next order correction and can be ignored in our analysis. Under a rotation of the
polarization by an angle α(n̂), the two Stokes parameters transform like a spin two field. Thus, the observed fields
are

(Q(n̂)± iU(n̂)) = (Q̃(n̂)± Ũ(n̂)) exp(±2iα(n̂)) . (13)
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The observed Stokes parameters can be further combined to form parity-even (E-mode) and parity-odd (B-mode)
combinations which, in the flat sky approximation2 [32–34] are defined by

[E ± iB] (l) =

∫

dn̂ [Q(n̂)± iU(n̂)]e∓2iϕle−îl·n̂ , (14)

where ϕl = cos−1(n̂ · l̂). The relevant3 ensemble averages of the un-rotated CMB fields can be encapsulated in

〈x̃(l)〉 = 0, 〈x̃⋆(l)x̃′(l′)〉 = (2π)2δ(l − l
′)C̃xx′

l
, (15)

where x̃, x̃′ run over the T,E, or B fields, and C̃xx′

l
are the un-rotated CMB power spectra.

We would like to isolate the effect of FR on the various correlators that describe the CMB. In particular, gravitational
lensing causes CMB distortions that can interfere with the computation of the FR effect4. The change due to FR
is the difference between lensed rotated fields and lensed un-rotated fields T̃ , Ẽ, B̃. The change in the CMB fields
δx(l) = x(l)− x̃(l) due to FR is

δT (l) = 0 , (16)

δB(l) = 2

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

α(L),

δE(l) = −2

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

α(L),

where L = l−l
′, ϕll′ = ϕl−ϕl′ . Thus, due to FR, a mode of wavevector Lmixes the polarization modes of wavevectors

l and l
′ = l − L. In Eq. (16) α(L) is the 2D Fourier transform of α(n̂) of Eq. (1). From the WMAP-7-year data,

α(L) has been constrained to be less than a few degrees for L < 512 [48]. In Fig. (1) we show the expected power
spectrum of α(L) from primordial magnetic field.
Let us take the ensemble average over multiple realizations of the unrotated CMB fields, while assuming a fixed α

field. Then, for the rotated variables x 6= x′, one can write

〈x⋆(l)x′(l′)〉CMB = fxx′(l, l′)α(L) , (17)

where fTB = 2C̃TE
l cos 2ϕll′ , and fEB = 2[C̃EE

l − C̃BB
l′ ] cos 2ϕll′ . Namely, a single realization of a random rotation

field α will induce parity-odd correlations of types TB and EB that are linearly proportional to the FR angle. If
we also average over an ensemble of magnetic fields, the above two point functions will vanish for x 6= x′, since the
expectation value of the magnetic field is zero.
The mode-coupling rotation (17) imprinted in the CMB by FR implies that one can build estimators for recon-

structing the FR field from the observed CMB. Following Ref. [39–41, 49, 51], we can define an unbiased estimator
α̂xx′(L) for α(L), where x 6= x′, by taking quadratic combinations of different polarization modes weighted by a factor
Fxx′(l1, l2):

α̂xx′(L) = Nxx′

L

∫

d2l1
(2π)2

x(l1)x
′(L− l1)Fxx′(l1,L− l1) , (18)

where L = l2 − l1, and the normalization

Nxx′

L =

[

∫

d2l1
(2π)2

fxx′(l1,L− l1)Fxx′(l1,L− l1)

]−1

, (19)

is chosen to make the estimator unbiased, i.e. 〈α̂(L)〉CMB = α(L). The fields x(l) can be obtained from the map of an
experiment, while the CMB power spectrum of un-rotated but lensed fields can be computed from publicly available

2 Flat sky is an excellent approximation. In Fig. 5 of reference [41] it has been shown that the difference between the the full sky formalism
and the flat sky formalism is less than 1% of for ℓ > 10. The difference between the full sky and flat sky decreases for higher L, with
maximum difference at ℓ = 2 of ∼ 4%.

3 We assume that the unrotated CMB temperature and polarization fluctuations are Gaussian distributed.
4 In this paper we do not utilize the frequency dependence of the FR as a tool to differentiate it from other effects.
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Boltzmann codes like CMBfast [46] and CAMB [47]. The weights Fxx′ are determined by minimizing the variance
subject to the normalization constraint. For xx′ = TB and EB the minimization yields

Fxx′(l1, l2) =
fxx′(l1, l2)

Cxx
l1

Cx′x′

l2

, (20)

where Cxx
l2

and Cx′x′

l2
are the observed power spectra including the effects of both the signal and the instrument

Cxx
l = C̃xx

l +∆2
xe

l2θ2

FWHM
/(8 ln 2) (21)

where ∆x is the detector noise and θFWHM is the full-width half-maximum (FWHM) resolution of the Gaussian beam
[52].
The variance of the estimator can be calculated as

Var(α̂xx′(L)) = 〈α̂xx′(L)α̂⋆
xx′(L′)〉

= Nxx′

L Nxx′

L′

∫

d2l1
(2π)2

∫

d2l2
(2π)2

〈x(l1)x′(L− l1)x(l2)x
′(L′ − l2)〉Fxx′(l1,L− l1)Fxx′(l2,L

′ − l2)

= (2π)2δ(L− L
′){Cαα

L +Nxx′

L } . (22)

In the last line, the first term is the desired FR power spectrum and the second term is the noise – also referred to as
the Gaussian noise – in the reconstruction of FR. Note that the noise turns out to coincide with the normalization of
the minimum variance estimator as given by Eq. (19) [39, 41, 48, 49], and is independent of FR. In principle, there
are higher order noise terms (referred to as non-Gaussian noise terms) which depend on FR, however, these terms
are sub-dominant in comparison to the Gaussian noise. The signal-to-noise for detecting a spatially varying FR angle
α(n̂) using the estimator (18) is given by [39, 40]

(

S

N

)2

xx′

=

lmax
∑

l=2

fsky
2

(2l+ 1)

(

Cαα
l

Nxx′

l

)2

, (23)

where Cαα
l is the rotation angle power spectrum, and we ignore the contribution of Cαα

l to the variance (22) as it is

negligible compared to Nxx′

l .
We also consider the case when x = x′ = B, and the the resultant BB correlation is quadratic in the rotation field.

Averaging over the ensemble of magnetic fields gives the FR induced CMB B-mode power spectrum:

CBB
L = 4

∫

d2l′

(2π)2
Cαα

l′ CEE
l′′ cos2[2ϕl′′L]

∣

∣

∣

∣

l′′=L−l′

(24)

The signal-to-noise in this case (accounting for the B-modes from weak lensing but assuming no contribution from
inflationary gravity waves) is given by

(

S

N

)2

BB

=

lmax
∑

l=2

fsky
2

(2l+ 1)

(

CBB
l

NBB
l

)2

, (25)

where NBB
l = CBB,lensing

l + CBB,noise
l and the noise power spectrum is CBB,noise

l = ∆2
P exp(l2Θ2

FWHM/8 ln 2), where
∆P is the instrument noise for polarization.
One might wonder if gravitational lensing, which also generates off-diagonal correlations in the CMB with a leading

order contribution to the trispectrum, might bias the mode coupling FR estimator (18). However, it has been shown
that the effects of gravitational lensing and rotation are orthogonal and hence lensing does not bias estimates of
rotation [40, 41]. Lensing does, however, increase the variance of the estimator, i.e. the Gaussian noise given by
Eq. (19) is enhanced. For example, the noise of the EB estimator, NEB

ℓ , depends on the observed CMB E and B
mode power spectra, and is an integration over (CEE

ℓ +NEE
ℓ )(CBB

ℓ +NBB
ℓ ). Further, the B-modes due to lensing scale

as white noise up to l ∼ 1000, and correspond to a noise level of 5µK-arcmin. Therefore, the increase in the variance
is sub-dominant for experiments with ∆P > 5µK-arcmin. However, for small instrumental noise, ∆P ≤ 5µK-arcmin,
lensing B-modes become important, saturating the variance to ∼ 10−6 deg2 even for an ideal experiment.
In the next section, we compare detectability of the FR signal in upcoming and future CMB maps with the mode-

coupling estimators (18) vs. using the B-mode spectrum (24). Interestingly, we find that one method can out-perform
the other depending on the value of the magnetic spectral index.
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FIG. 1: The noise L(L + 1)Nxx′

L /2π as given by Eq. (19) for the EB (upper panel) and TB (lower panel) estimators as a
function of multipole L for three experimental setups (E1, E2, E3). Also plotted is the FR power spectrum L(L+ 1)Cαα

L /2π
for the causal magnetic spectrum with 2n = 5 and for a nearly scale invariant spectrum with 2n = 0.1. The amplitude of the
FR spectrum is set by the observed frequency of ν0 = 90 GHz and Ω̃Bγ = 10−3 for the causal case (2n = 5), and Ω̃Bλ = 10−4

for the nearly scale invariant case (2n = 0.1).

IV. DETECTABILITY OF PRIMORDIAL MAGNETIC FIELDS

To forecast the detectability of FR we consider three experimental setups: a Planck-like satellite [53] (E1), a ground-
or balloon-based experiment realistically achievable in the next decade (E2), and a future dedicated CMB polarization
satellite (E3). We will adopt the following parameters for the three experiments:

• E1: a Planck-like satellite [53] with noise level ∆P = 60µK-arcmin and ΘFWHM = 7′

• E2: a next decade sub-orbital experiment with ∆P = 3.0µK-arcmin and ΘFWHM = 1′

• E3: a CMBPol-like instrument with ∆P =
√
2µK-arcmin and ΘFWHM = 4′, typical of the proposed future

space-based CMB experiments [54, 55]

The forecasts directly depend on the fraction of the sky covered by the experiment, fsky, which is close to unity for
E1 and E3, and will be smaller for E2. We quote our bounds subject to specifying fsky which only appears under a
quartic root in the bounds on Beff .
In Fig. 1 we plot L(L+ 1)Nxx′

L /2π vs multipole L with the noise for the EB and TB estimators given by Eq. (19)
for experiments E1, E2 and E3, along with the FR spectrum L(L+1)Cαα

L /2π for two choices of the magnetic spectral

index 2n. The amplitudes of the rotation spectra are normalized to Ω̃Bγ = 10−3 for the causal case (2n = 5) and

Ω̃Bγ = 10−4 for the nearly scale invariant case (2n = 0.1), with Ω̃Bγ related to ΩBγ via Eq. (10). For all the estimates
in this paper we adopted an observational frequency of ν0 = 90 GHz, but one can easily scale the signal to other
frequencies using Eq. (9). For all three experiments under consideration, the EB estimator is more sensitive than the

TB, with the noise Nxx′

L staying roughly constant up to L ∼ 1000. Although we do not show L = 0 in the plot, these
estimators can also be used to estimate the detectability of uniform rotation.
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FIG. 2: The B-mode polarization pixel noise, L(L+1)CBB,noise

L /2π, for experiments E1, E2, and E3 as a function of multipole
L. Also shown is the B-mode spectrum induced by FR for a causal magnetic spectrum with 2n = 5 and for a nearly scale
invariant spectrum with 2n = 0.1. The observed frequency is set to ν0 = 90 GHz, Ω̃Bγ = 10−3 for the causal case, and
Ω̃Bγ = 10−4 for the scale invariant case.

In Fig. 2 we plot the noise contribution to the variance of the B-mode spectrum, along with the FR induced
B-mode spectrum for Ω̃Bγ = 10−3 for 2n = 5, and Ω̃Bγ = 10−4 for 2n = 0.1. In the latter case, the shape of
the B-mode spectrum is a close copy of the underlying E-mode, except that the FR induced spectrum falls off as
L(L+ 1)CBB

L ∝ L2n−1 at high L [42, 56] compared to the exponential fall off of the primordial E-mode. The L2n−1

tail implies a sharply rising spectrum for the causal case with (2n = 5), with most of the power concentrated near the
dissipation scale Ldiss ∼ 104Mpc × kdiss.
To forecast the minimum detectable magnetic field energy fraction, we define it as Ω̃Bγ for which S/N in Eqs. (23)

and (25) is unity. Note that Ω̃Bγ determines the dissipation scale kdiss via Eq. (7). We perform this forecast for
each estimator, for different experiments, and for several choices of 2n. We restrict the maximum multipole to
Lmax = 10000. Fig. 3 shows the minimum detectable Ω̃Bγ as a function of the instrument noise ∆P for a fixed beam
ΘFWHM = 8′ for two choices of 2n. As one can see, at high noise levels (∆P

>∼ 100µK-arcmin), the B-mode power
spectrum tends to either give comparable or better constraints than the EB estimator. In particular, it is always the
better probe of the causal primordial magnetic fields. However, for upcoming polarization sensitive experiments with
lower levels of noise, the EB estimator will become almost comparable to the B-mode power spectrum for causal
fields, and outperform it when probing scale-invariant FR fields.
In Fig. 4 we plot the minimum Ω̃Bγ that will be detectable by the E1, E2 and E3 experiments depending on the

value of the magnetic spectral index 2n. We see that for all experiments, the EB estimator begins to outperform the
B-mode spectrum when 2n <∼ 1, while the TB estimator is always the third best.
The relative strengths of the three estimators, demonstrated in Figs. 3 and 4, can be understood as follows.

Generally, the EB and TB estimators have a larger number of independent modes contributing to the signal than the
B-mode spectrum. Thus, in principle, it is not surprising if they result in a higher signal to noise. However, whether
that is the case depends on the experimental noise level, and the distribution of power in the given combination of
CMB fields and in the magnetic field. For a scale-invariant PMF spectrum, the B-mode is essentially a copy of the
E-mode, with most of the B-mode power being on scales where the E-modes are also most prominent. This results
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FIG. 3: Comparison of the three estimators, BB (solid red), EB (dashed green) and TB (dotted blue). Plotted is the minimum

detectable magnetic field amplitude Ω̃Bγ as a function of the experimental noise, with ΘFWHM = 8′. The upper panel is for
the nearly scale invariant case with 2n = 0.1, while the lower panel is for the causal case with 2n = 5.

in a strong correlation between E and B for scale-invariant fields. In the case of the TB correlation, the underlying
T and E (B is obtained by a scale-invariant rotation of E) fields peak on rather different scales. Namely, T peaks at
ℓ ∼ 200 while E peaks at ℓ ∼ 1000. In other words, the intrinsic correlation between T and E is already suboptimal,
translating into a lesser correlation between T and B. Thus, for experiments with a sufficiently low noise ∆P , such
as E1, E2 and E3 considered in this paper, the EB estimator performs better than TB for scale-invariant fields. This
would not necessarily remain true if polarization measurements had a significantly higher experimental noise.
For the blue causal spectra, the FR power is concentrated on very small scales, far away from the scales at which

any of the unrotated CMB fields have significant power. This means that the B-modes in the observable range are
obtained either by the rotation of E-modes far away from their peak power scale, or by a rotation of peak E-mode
by a negligible angle. This means that E and B fields peak at very different scales, with their correlation being close
to zero over the observable scales. In this case, we see that the B-mode spectrum, i.e. the BB correlation, has the
highest signal to noise.
When interpreting the forecasted bounds on the magnetic field energy fraction or the effective magnetic field strength

in Figs. 3 and 4, several points must be kept in mind:

1. The constraints are on Ω̃Bγ , obtained after setting kI = kdiss, with the dissipation scale determined from Eq. (7).

For scale-invariant fields there is no difference between Ω̃Bγ and ΩBγ , since the factor relating them in Eq. (10)
goes to unity when 2n → 0. Also, for scale-invariant fields, the effective field Beff defined via Eq. (6) is the same
as the commonly used Bλ, which is the field smoothed on a given scale λ. Thus, our forecasts of the minimum
detectable Beff for scale-invariant fields can be directly compared to most other bounds in the literature.

2. For causal fields, the bound on Ω̃Bγ will generally overestimate the magnetic energy fraction, since it assumes
that the spectrum will keep rising at the same steep rate (2n = 5) all the way to the dissipation scale, which is
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FIG. 4: The minimum detectable magnetic field amplitude Ω̃Bγ as a function of the magnetic spectral index 2n for the three
estimators, BB (solid red), EB (dashed green) and TB (dotted blue). The top panel is for E1, the middle panel is for E2 and
the lower panel is for E3.

much smaller than the smallest scale directly probed by CMB experiments. Simulations [43] suggest that the
spectrum must become less steep, with 2n′ = 3 in the range kI < k < kdiss, implying a smaller net magnetic
energy fraction ΩBγ . Since the value of kI is not well-known at this point, we chose to quote our bounds in

terms of Ω̃Bγ , while keeping in mind that bounds on ΩBγ for causal fields will generally be tighter.

3. Strictly speaking, our bounds are on the fraction in magnetic fields at the time when the initial conditions for the
transfer functions (12) were set, which is a time close to last scattering. While it is expected that the magnetic
fields are effectively frozen-in between the BBN and last scattering, with a relatively slow time evolution of the
dissipation scale, this is still an approximation.

4. The bounds are based on using a single frequency band. Using several bands will improve the constraints.

Generally, CMB is not very sensitive to magnetic fields with blue spectra because most of the anisotropies are
concentrated on very small scales. This is what Figs. 3 and 4 are showing too. However, looking for the FR signatures
at many frequencies can potentially improve the existing CMB bounds on causal fields by a large factor. We leave
this question as a topic for future exploration.
In the case of scale-invariant fields, current bounds on the magnetic field strength from WMAP are at a level of a

few nG [25, 26, 28–30]. These bounds are based on the anisotropies induced by the metric fluctuations sourced by
magnetic fields, and ignore the FR effect. In Refs. [27, 42] the WMAP bound using FR was obtained at the 10−7G
level. As one can see from Fig. 4, Planck (E1) can almost match today’s bounds for scale invariant (n = 0) fields
using the EB estimator at only one frequency, while future probes, such as E2 and E3, can improve the bounds by
two orders of magnitude! This suggests that the mode coupling estimators of FR will be a very powerful, if not the
most powerful, direct probe of scale-invariant magnetic fields at the time of last scattering.
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V. SUMMARY

A primordial magnetic field present at and just after last scattering will Faraday-rotate the plane of polarization of
the CMB photons. The FR will create B-mode polarization even in the absence of primordial sources, such as gravity
waves. In addition to a B-mode autocorrelation, FR also couples different modes of the CMB fields, generating specific
off-diagonal correlators. Estimators of the polarization rotation angle, such as (18), can utilize these non-Gaussian
features to reconstruct the FR map. One can construct four such estimators containing products of two CMB fields,
one of which contains polarization: TE,EE, TB, and EB. Of these four, the first two receive a large contribution to
their variance from the usual scalar adiabatic Gaussian perturbations which makes it harder to find the FR signal.
In this paper, we have considered the last two and found that the EB estimator has the highest signal-to-noise.
For causal magnetic fields, which tend to have very blue power spectra, the B-mode power spectrum has a higher

signal-to-noise due to reasons explained in the previous section. However, the EB estimator performs better for
scale-invariant fields. In addition, there are certain advantages in using mode-coupling based estimators, such as EB,
over the traditional B-modes power spectrum. For instance, there are other sources that can generate B-modes,
such as weak lensing, patchy reionization, inflationary tensor perturbations or cosmic strings, and, in fact, metric
perturbations induced by the magnetic fields. Hence, one has to separate the FR induced B-modes either by using
the frequency dependence of FR or features in the B-mode spectrum. Interestingly, while patchy reionization and
lensing also generate off-diagonal correlations in CMB, their contributions are “orthogonal” to the features imprinted
by FR [49]. Hence, mode-coupling estimators do not suffer from contamination from other contributions. This means
that a larger part of the information in the frequency dependence can be used for systematic checks and to separate
from other foreground contamination. In addition, mode-coupling estimators can be used to reconstruct the map
of FR. This FR map can be used to cross-correlate with other tracers of magnetic fields, including CMB maps and
surveys of large scale structure. Such correlations studies are useful for systematic checks and for increasing the
signal-to-noise.
We have found that a Planck-like experiment at 90GHz can detect scale-invariant PMF of a few nG strength, which

is comparable to the ∼nG sensitivity forecasted for Planck based on information in the CMB temperature anisotropies
[28]. Future CMB experiments will be able detect scale-invariant fields as weak as 10−11 G at 90GHz. Thus, FR
should become a leading diagnostic of PMF when analyzing future CMB polarization data.
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