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Aurélien Benoit-Lévy,1, ∗ Kendrick M. Smith,2 and Wayne Hu3

1UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, 75014, Paris, France
2Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001, USA

3Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL, 60637

Gravitational lensing of the Cosmic Microwave Background (CMB) encodes cosmological infor-
mation in the observed anisotropies of temperature and polarization. Accurate extraction of this
additional information requires precise modeling of the covariance matrix of the power spectra of
observed CMB fields. We introduce a new analytical model to describe the non-Gaussian structure
of this covariance matrix and display the importance of second-order terms that were previously
neglected. When compared with direct numerical simulations our model captures parameter errors
to better than a few percent for cases where the non-Gaussianity causes an order unity degradation
in errors. We also provide a detailed comparison between the information content of lensed CMB
power spectra and ideal reconstruction of the lensing potential. We illustrate the impact of the
non-Gaussian terms in the power spectrum covariance by providing Fisher errors on the sum of the
masses of the neutrinos, the dark energy equation of state, and the curvature of the Universe.

PACS numbers: 98.62.Sb, 98.70.Vc, 95.36.+x

I. INTRODUCTION

Gravitational potentials of large-scale structure gen-
erate a deflection of the trajectories of the Cosmic Mi-
crowave Background (CMB) photons, an effect known as
CMB lensing [1–3] (see [4] for a review). After its initial
detection in cross-correlation with large-scale structure
[5, 6], CMB lensing has now been detected with high sig-
nificance in high-resolution observations from ACT [7, 8]
and SPT [9].

CMB lensing generates a characteristic statistical sig-
nature that makes the CMB sensitive to cosmological pa-
rameters which directly influence the growth of cosmic
structure. This breaks the angular diameter degeneracy
in the unlensed CMB and improves constraints on param-
eters such as neutrino masses, the dark energy equation
of state, and the curvature of the Universe [10–14].

Mathematically, CMB lensing is described as follows.
We introduce a vector field d(n̂) (the deflection field)
such that the lensed temperature T (n̂) and unlensed tem-

perature T̃ (n̂) are related by

T (n̂) = T̃ (n̂ + d(n̂)) (1)

and analogously for the Stokes parameters Q(n̂), U(n̂)
which describe linear CMB polarization. To lowest order
in perturbation theory, the deflection field d(n̂) is the
gradient of a scalar lensing potential (i.e. d(n̂) = ∇φ(n̂))
which can be written as a line-of-sight integral:

φ(n̂) = −2

∫
dη
χ(η − ηrec)

χ(ηrec)χ(η)
Ψ(χn̂, η), (2)

where Ψ is the Newtonian potential, η is conformal time,
ηrec is the epoch of last scattering, and χ is the angular
diameter distance in comoving coordinates.
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CMB lensing modifies the Gaussian statistics of the
unlensed CMB by generating a correlation between the
primary field and its gradient [15]. It also modifies the
shape of the temperature and E-mode polarization power
spectra, and generates a nonzero B-mode power spec-
trum. This leads to two different statistical techniques
for extracting cosmological information from CMB lens-
ing. First, we can simply make precise measurements of
CMB power spectra (especially the B-mode power spec-
trum), which will include lensing contributions. Second,
we can reconstruct the lensing potential φ using correla-
tions between the primary and its gradient, providing a
new cosmological observable [16–20].

Accurate analysis of CMB anisotropies requires correct
modeling of the covariance matrix of the lensed power
spectra. The lensed CMB is not a Gaussian field, and so
its power spectrum covariance is nontrivial; in particular
the off-diagonal correlations are important. Calculations
of the non-Gaussian covariance of the lensed power spec-
tra have been performed in both flat sky [21, 22] and
full sky [23] cases, but these calculations make the ap-
proximation that some high-order terms in the lensing
potential are negligible.

In the advent of low-noise and high-resolution CMB ex-
periments that will be able to probe polarization of the
CMB at the arcminute scale (SPTPol, ACTPol [24], PO-
LARBEAR [25]), it becomes necessary to assess the va-
lidity of the current approximations for the non-Gaussian
power spectrum covariance, and study the impact on cos-
mological parameter estimation. The purpose of this
paper is therefore to investigate in detail the impact
of the non-Gaussianities induced by CMB lensing and
quantify the information contained in the power spectra.
We introduce a new semi-analytical approach to compute
the power spectrum covariance matrix and validate our
model by Monte Carlo simulations.

In Sec. II, we describe the simulations we performed
to estimate the power spectrum covariance matrix and
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present our semi-analytical model. In Sec. III, we in-
troduce a model independent way of characterizing the
relative information content of lensed power spectra and
idealized direct reconstruction. Finally, in Sec. IV, we
apply this characterization to specific cosmological model
parameters.

Throughout the paper, we use a fiducial flat ΛCDM
model with the following parameters:

{Ωch2,Ωbh
2, h, τ, ns, 109As,

∑
mν} (3)

= {0.1096, 0.0226, 0.693, 0.089, 0.964, 2.419, 0.58 eV}.

We chose a large fiducial value of mν so as to be testable
with CMB lensing in the near future.

II. NON-GAUSSIAN POWER SPECTRUM
COVARIANCE

To characterize the information content in CMB power
spectra we first require an accurate characterization of
the covariance matrix between the band power estimates
of the temperature and polarization fields. Previous ana-
lytic characterizations have been based on a perturbative
expansion of the effect of lensing [21, 23] which breaks
down in the damping tail. In this section, we first con-
duct a suite of simulations to characterize the covariance
and then develop analytic tools which characterize its
main features.

A. Simulations

We simulate the lensed CMB on the full sky using
the following procedure. We first make a realization
of the unlensed CMB fields T̃ , Ẽ and lensing poten-
tial φ in harmonic space, treating these fields as Gaus-
sian and computing power spectra using CAMB [26] to
`max = 5000. Using a fast spherical harmonic transform,
we compute the unlensed temperature and polarization
in pixel space, using an equicylindrical pixelization with
(Nθ, Nφ) = (16384, 32768) equally spaced points in (θ, φ).
We then evaluate the lensed temperature and polariza-
tion fields

X(n̂) = X̃(n̂ + d(n̂)), (4)

where X ∈ {T,Q,U} and tildes distinguish unlensed
from lensed fields throughout, at each point of an Nside =
4096 Healpix pixelization [27], using cubic interpolation
on the equicylindrical map to evaluate the right-hand
side, and parallel translation of the spin-2 field Q ± iU
to transport polarization at the point (n̂ + d(n̂)) to the
point n̂. (We use an equicylindrical pixelization for the
unlensed fields, rather than an irregular pixelization such
as Healpix, so that interpolation is straightforward to im-
plement.) Taking another spherical transform to obtain
lensed T, E, and B maps in harmonic space, we compute
lensed power spectra ĈXY` forXY ∈ {TT, TE,EE,BB}.

As a memory optimization, we avoid storing full-sky
maps by “striping” the sky into 16 latitude bands, and
calculate the contribution to aT`m, aE`m, aB`m from each
band before moving onto the next. This allows each sim-
ulation to fit onto a single core with ∼2 GB memory. The
above procedure is similar algorithmically to the publicly
available code LensPix [28], although the two codes differ
in minor details of implementation.

We first compare the mean over the N = 32768 real-
izations

C̄XY` =
1

N

N∑
α=1

ĈXY`,α , (5)

where XY ∈ TT, TE,EE,BB to the predicted lensed
power spectra computed by CAMB. With the resolution
parameters given above, the lensed CMB power spec-
tra of the simulations agree with CAMB’s calculation of
the lensed CXY` ’s to better than 0.1% for all spectra at
`max = 3000.

We then estimate the covariance matrix between two
different power spectra XY and ZW as

CovXY,ZW`1`2
=

1

N

N∑
α=1

ĈXY`1,αĈ
ZW
`2,α − C̄

XY
`1 C̄ZW`2 . (6)

Even in these noise-free simulations, the Gaussian ran-
dom variance from the unlensed CMB makes the estimate
of the covariance between individual multipoles noisy.
We therefore further bin the power spectrum estimators
into band powers

DXY
i =

∑
`

B`iC
XY
` , (7)

where B`i is a top hat function

B`i =

{ 1
`i+1−`i , `i ≤ ` < `i+1

0 , otherwise.
(8)

The band width is chosen to be sufficiently small so as
to resolve the acoustic features in the spectrum. In prac-
tice we take every multipole to ` = 25 followed by uni-
form bands of `i+1−`i = 15. We choose not to bin the 25
first multipoles as the derivatives of the power spectrum
with respect to cosmological parameters exhibit strong
variation at low multipoles, and averaging these varia-
tions to one single bin at low-` would give erroneous fi-
nal results. The covariance matrix between these band
estimators then becomes

CovXY,ZWij =
∑
`1,`2

B`1i CovXY,ZW`1`2
B`2j . (9)

The Monte Carlo bandpower covariance is shown in
Fig. 1. For visualization purposes, it is convenient to
scale out the diagonal contributions by defining the cor-
relation matrix

RXY,ZWij =
CovXY,ZWij√

CovXY,XYii CovZW,ZWjj

. (10)
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For display purposes, we also use a flat binning scheme
by dividing the range of multipoles [2-3000] in 100 bins in
Figs. 1–5. As expected from previous studies, the covari-
ance of the B-modes is highly non-Gaussian [21, 23, 29].
Interestingly, the EE,BB and EE,EE correlations in
Fig. 1 are substantially larger than expected from the
lowest-order analytic calculations in [21, 23], and all but
TT, TT show clear evidence for correlated structure on
the acoustic scale that is again not expected. Although
Ref. [21] also conducted simulation tests, their bands
were much wider than the acoustic scale such that these
structures were hidden.

B. Analytic Approximation

In order to develop a new analytic approximation to
the covariance matrix, it is useful to first examine the
BB,BB correlation for which the existing models work
well. The dominant terms in the analytic BB,BB cor-
relation expression can be compactly written as (cf. [29]
Eq. 17)

CovBB,BB`1`2
=

2

2`1 + 1

(
CBB`1

)2
δ`1,`2

+
∑
`

(
∂CBB`1

∂CẼẼ`
CovẼẼ,ẼẼ``

∂CBB`2

∂CẼẼ`

)

+
∑
`

(
∂CBB`1
∂Cφφ`

Covφφ,φφ``

∂CBB`2
∂Cφφ`

)
, (11)

where unlensed CMB power spectra are denoted with

tildes and Cφφ` is the lensing potential power spectrum.
Assuming that these fields are Gaussian, we can use the
general prescription for Gaussian random fields G

CovGaGb,GcGd``′ =
δ`,`′

2`+ 1
[CGaGc` CGbGd` + CGaGd` CGbGc` ]

(12)
for the unlensed CMB and φ fields.

To calculate power spectrum derivatives such as the
ones appearing in Eq. (11), we take finite differences
between lensed CMB power spectra computed using
CAMB, rather than using a perturbative expansion in
deflection angles. Since CAMB’s algorithm for comput-
ing lensed CMB power spectra includes terms of high or-
der in deflection angles [30], this approach to computing
derivatives also includes high order terms, and in partic-
ular does not break down at high `. Some implementa-
tional details of the derivative calculation are presented
in Appendix A. The model of Eq. (11) for the correlation
matrix is shown in Fig. 2.

Let us try to interpret the terms in Eq. (11). The first
term is the usual unconnected piece of the covariance
that is the only term for a Gaussian random field. We
will loosely refer to this term as the “Gaussian piece”.
The second and third terms involve the fact that the B
field is constructed out of an unlensed Ẽ field and the

lens potential field φ. In the second term, two BB band
powers are connected by the covariance of the unlensed
Ẽ fields they share. In the third term, they are connected
by the shared φ fields. Contributions to the correlation
matrix for the second and third terms are shown sepa-
rately in Fig. 3.

The second term can therefore be interpreted as the
covariance in BB band powers generated by cosmic vari-
ance of the unlensed ẼẼ power spectrum. The covari-
ance it generates is positive definite in that enhanced
power in ẼẼ leads to enhanced BB across the spectrum
thus correlating modes (see Fig. 3, right panel).

The third term is the cosmic variance of the lens power.
Here the correlation reflects the acoustic structure of the
unlensed ẼẼ power spectrum. More power in the lenses
allows more power from the acoustic peaks to transfer
into B-modes than the acoustic troughs (see Fig. 3, left
panel).

Finally, we note that Eq. (11) omits a fully connected

term where the Ẽ and φ fields are cross connected in-
volving 4 unique multipoles rather than three. These
contributions tend to sum incoherently and are subdom-
inant in the covariance [23]. We omit this term in our
analytic model.

We can use these results to model the other co-
variance terms. First consider BB,XY where XY ∈
TT,EE, TE. In this case, there are no Gaussian or un-
connected terms and

CovBB,XY`1`2
=
∑
`

(
∂CBB`1

∂CẼẼ`
CovẼẼ,X̃Ỹ``

∂CXY`2

∂CX̃Ỹ`

)

+
∑
`

(
∂CBB`1
∂Cφφ`

Covφφ,φφ``

∂CXY`2
∂Cφφ`

)
. (13)

In the perturbative limit for the deflection angles, this
expression exactly models all terms in the covariance.
However, again our expression has extended validity since
the derivatives are evaluated nonlinearly with CAMB.

The case of XY = EE is illustrative as there is a sub-
stantial correlation. The cosmic variance of the unlensed
ẼẼ power spectrum produces contributions along the di-
agonal but biased to a lower BB multipole `1 < `2. This
is due to the fact that most of the power in the low mul-
tipoles of BB actually comes from where the unlensed
ẼẼ spectrum peaks (`1 ∼ 1000). In previous analytic
approaches, the term that was kept was for `2 = `, which

is linear in Cφφ` .
Previous approaches have dropped the term associated

with the cosmic variance of the lens power spectrum (the
second term in Eq. (13)) under the justification that it

is second order in Cφφ` . In fact it is the dominant con-
tribution to the covariance at `1, `2 & 103. This term
causes a band structure in the EE dependence of the co-
variance. Increasing the power in the lenses causes more
power from acoustic peaks in ẼẼ to be transformed into
BB power while also filling in power in EE at the acous-
tic troughs. Thus peaks in EE are anticorrelated with
BB and troughs are correlated.
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FIG. 1. Monte Carlo covariance of the lensed CMB bandpowers computed from 32768 lensed CMB simulations in bands of
∆` = 30. From left to right and top to bottom: TT , TE, EE, and BB. For visualization purposes we plot the correlation
coefficient R defined in Eq. (10). The diagonal (of order unity) has been subtracted to enhance contrast.

Finally, there are the cases for which XY,WZ ∈
TT, TE,EE. These cases are in principle more compli-
cated in that even at the perturbative level, there are
many terms that are not associated with the cosmic vari-
ance of unlensed and lens potential power spectra. These
are terms that connect the various unlensed, lensed and
lens potential multipoles in the 4 point function. As in
the case of BB,BB we can again use the perturbative
approximation as a guide. Here, there is a cancellation
between the power spectrum covariance terms and the
other terms associated with the unlensed fields for slowly
varying unlensed power spectra. These other terms re-
flect the fact that at high CMB multipole moment, the
unlensed fields are all lensed by the same large scale lens
realization. For a fixed lens, neighboring bands are anti-
correlated by the exchange of power between them. This
effect does not occur for the covariances with BB since

there is no unlensed B field from which power can be
taken.

Given this close cancellation between terms associ-
ated with the unlensed fields, we model only the cosmic
variance of the lens power spectra in these cases. For
XY,WZ ∈ TT, TE,EE

CovXY,WZ
`1`2

=
1

2`1 + 1
[CXW`1 CY Z`1 + CXZ`1 CYW`1 ]δ`1,`2

+
∑
`

[
∂CXY`1
∂Cφφ`

Covφφ,φφ``

∂CWZ
`2

∂Cφφ`

]
. (14)

In these cases the covariance takes a checkerboard pat-
tern. For TT, TT or EE,EE enhanced lensing power
makes modes near acoustic peaks smaller and larger near
troughs. Thus peaks are correlated with peaks, troughs
with troughs, and peaks are anticorrelated with troughs.
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FIG. 2. Covariance of the lensed CMB bandpowers in bands of ∆` = 30, computed using the analytic model from §II B. From
left to right and top to bottom: TT , TE, EE, and BB. For visualization purposes we plot the correlation coefficient R defined
in Eq. (10). Detailed comparison with the Monte Carlo covariance from Fig. 1 shows that the agreement is excellent.

Combining Eqs. (11), (13), (14), we have now devel-
oped an analytic model for the lensed CMB bandpower
covariance in all cases. Comparison with the Monte Carlo
covariance from §II A shows that the difference is typi-
cally ∼< 10%, leading to discrepancies in parameter un-
certainties on the order of 5% or less. We will explore
this in more detail in §IV C.

III. MODEL INDEPENDENT LENSING
INFORMATION

As mentioned in the introduction, cosmological infor-
mation from CMB lensing can be obtained either from
precise measurements of lensed CMB power spectra, or
by applying lens reconstruction techniques. In this sec-
tion, we will quantify the relative amount of cosmolog-

ical information which can be obtained using these two
methods, in a model-independent way which uses Fisher
information matrix techniques.

In §III A, we review the Fisher matrix formalism as ap-
plied to the lensing potential power spectrum. In §III B
we construct the Karhunen-Loève (KL) basis to consider
the relative information content. In §III C, we illustrate
the necessity to take into account the non-Gaussian terms
computed in §II. Finally in §III D, we apply our formal-
ism to realistic CMB experiments.

A. Fisher Information

The Fisher information matrix quantifies the informa-
tion in a given data set whose covariance matrix is known
on a set of parameters pα of interest. In order to quantify
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FIG. 3. Contributions of the individual terms in Eq. (11) to
the correlation matrix between BB bandpowers. Left: cosmic
variance of the lens power (third term in Eq. (11)); right:

cosmic variance of the unlensed ẼẼ spectrum (second term).
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FIG. 4. Rows of the correlation matrix R, defined in Eq. (10),
between EE-EE bandpowers (top), and EE-BB (bottom),
computed using either Monte Carlo simulations (solid lines)
or our analytic model (dashed lines). Binning scheme follows
Fig. 1 and the autocorrelation is omitted.

the lensing information in a model independent manner,
instead of taking cosmological parameters we take the

power spectrum Cφφ` itself as the parameters of interest.
The effect of any cosmological parameter of present or fu-
ture interest can be thought of as a specific sum of these
parameters. Rather than taking every ` as a parameter,
we follow [21] and implicitly assume that the power spec-
trum is smooth in ` so that we can approximate it with
binned perturbations around the fiducial model. For each

bin α in Cφφ` , we define a parameter pα by

lnCφφ` = lnCφφ` |fid +

Nφ∑
α=1

pαB
φ,`
α , 0 ≤ ` ≤ `φmax,

(15)
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FIG. 5. Rows of the correlation matrix R, as in Fig. 4,
between BB-BB bandpowers computed using either Monte
Carlo simulations (solid lines) or our analytic model (dashed
lines). Binning scheme follows Fig. 1 and the autocorrelation
is omitted.

where Bφ,`α describes the banding and is defined as

Bφ,`α =

{
1 , `α < ` < `α+1 ≤ `φmax

0 , otherwise.
(16)

In practice, we choose φ bands with width ∆` = 20
(i.e. Nφ = 40 for `φmax = 2000 and Nφ = 60 for

`φmax = 3000). We define bands in lnCφφ` so that the
power spectrum remains positive definite for large devi-
ations.

Note that any cosmological parameter variation that
predicts a sufficiently smooth deviation from the fiducial

model of δ lnCφφ` can be represented in these parameters
as

pα =
1

(∆`)α

∑
`

δ lnCφφ` Bφ,`α (17)

where (∆`)α is the width of bin α.
In general, given some data vector DI which depends

on parameters pα, the Fisher matrix is given by

Fαβ =
∑
IJ

(
∂DI

∂pα

)
(CovD,DIJ )−1

(
∂DJ

∂pβ

)
. (18)

We define a Fisher matrix FPαβ by specializing to the case
where the parameters pα are the φ bandpowers defined
in Eq. (17) and the data vector DI is the set of lensed
CMB bandpowersDXY

i (whereXY ∈ TT , TE, EE, BB)
defined in Eq. (7). The derivatives (∂DI/∂pα) appear-
ing in the Fisher matrix are computed nonlinearly using
CAMB, as described in the previous section.

Unless otherwise stated, our model for the covari-

ance matrix CovD,DIJ will be based on the semi-analytical
model from §II B. (We show below that using the Monte
Carlo covariance matrix from §II A gives essentially iden-
tical parameter uncertainties.) We modify this all sky,
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cosmic variance limited covariance in two ways. First
we include the possibility that the measurements contain
Gaussian noise terms by replacing the Gaussian diagonal
elements with

CovXY,X
′Y ′

`` =
1

2`+ 1

[
(CXX

′

` +NXX′

` )(CY Y
′

` +NY Y ′

` )

+(CXY
′

` +NXY ′

` )(CY X
′

` +NY X′

` )
]
, (19)

whereNXX′

` is the noise (cross) power spectrum. Second,
we rescale the whole resulting matrix by 1/fsky where
fsky is the fraction of sky covered by the data set under
the usual assumption that the survey is sufficiently large
that correlations across ∆` ∼ 2π/θsurvey induced by the
fundamental mode of the survey or sky cuts are irrele-
vant across the acoustic separation. Also we are mainly
interested in the effects of the non-Gaussian terms in the
CMB covariance matrix at high `. An accurate forecast
of parameter constraints or an analysis on data would re-
quire a more detailed modeling of the shape of the survey
(e.g. by introducing a minimum multipole `min).

The Fisher matrix FPαβ defined in this way quantifies

the lensing information (in the form of constraints on
the φ bandpowers pα) which can be obtained from noisy
measurements of the lensed CMB power spectrum.

We seek to compare this Fisher matrix to

FRαβ =
∑
``′

(
∂Cφφ`
∂pα

)
(CovR``′)

−1

(
∂Cφφ`′

∂pβ

)
, (20)

the Fisher matrix of a direct reconstruction of Cφφ` .
We will make the approximation that the covariance

matrix CovR``′ of the reconstructed φ bandpowers is given
by the Gaussian expression

CovR``′ =
2

fsky(2`+ 1)
(Cφφ` +Nφφ

` )2δ``′ , (21)

where Nφφ
` is the noise power spectrum of the reconstruc-

tion. We use as a baseline two cases: a hypothetical cos-

mic variance limited lens measurement where Nφφ
` = 0,

and the idealized reconstruction noise coming from the
lens reconstruction from quadratic combinations of CMB
fields. For details on how this reconstruction noise is cal-
culated, see [31].

The Gaussian approximation (21) makes several ap-
proximations which we state explicitly. The power spec-
trum of the lens reconstruction contains an off-diagonal
contribution from φ bandpowers [32] (this is the “N1”
bias found by [33]) which should be folded into the co-

variance CovR``′ . It is also possible that there are contri-
butions from higher-order terms in φ [34] (this is the “N2”
bias found by [35]); such contributions have been found to
be small for temperature-based lens reconstruction, but
this has not been checked for polarization. Finally, since
the quadratic lens reconstruction is not a Gaussian field,
its bandpower covariance may differ from the Gaussian

expression (21). For temperature-based lens reconstruc-
tion, this issue has been studied in [35] and the Gaussian
expression has been found to be a good approximation
(after slightly modifying the estimator along the lines of
[36], see also [34] for alternate schemes), but the polar-
ization case has not been studied. A complete treatment
of these issues would be very interesting but is outside
the scope of this paper; we will use the Gaussian approx-
imation (21) as a first-order approximation to the exact
Fisher matrix for lens reconstruction.

Note that the inverse of the Fisher matrix is an ap-
proximation for the covariance matrix of pα

Covαβ = (F−1)αβ (22)

for both the band power (P ) and reconstruction (R)
Fisher matrices.

B. Karhunen-Loève Modes

While the pα basis of lens power spectrum perturba-
tions is complete, it is not ideally suited for assessing the
information content or analysis of data. Measurements
of the many individual parameters would be highly noisy
(and correlated, in the case where the lensed CMB band-
powers DXY

i are being used as the observable). In this
section, we construct a more suitable basis whose eigen-
modes are rank ordered in the relative information be-
tween CMB bandpowers and lens reconstruction. More-
over in the Fisher approximation, this basis provides a
small set of relevant parameters whose errors are uncor-
related for both bandpower and direct measurements. As
a complete basis, it can be used to study any cosmological
parameter which affects the lensing potential.

To construct the eigenmodes, consider the Karhunen-
Loève (KL) transform:

CovPαβv
(k)
β = λ(k)CovRαβv

(k)
β , (23)

where v
(i)
β and λ(i) are the KL eigenvectors and eigenval-

ues. We define the KL parameters mk as linear combi-
nations of the band perturbations or cosmological power
spectrum deviations:

mk =
∑
α

v(k)
α pα

=
∑
α

v(k)
α

1

(∆`)α

∑
`

δ lnCφφ` Bφ,`α . (24)

These KL modes have the property that their covari-
ance, either measured from the lensed power spectra or
from the reconstruction are diagonal and related by the
KL eigenvalues. The eigenvectors are normalized such
that all modes have unit variance for the direct recon-
struction

CovRkk′ = δkk′ (25)
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and the KL construction then says that the eigenvalues
are the relative variance from the CMB bandpowers

CovPkk′ = λ(k)δkk′ . (26)

The KL eigenvalues are therefore the ratio of the two
covariances, and give a simple quantitative to way deter-
mining which provides more information. If λ(k) < 1, the
corresponding KL mode mk is better constrained by the
power spectra than by the direct reconstruction.

C. CMB and Lens Cosmic Variance

The KL construction allows a powerful test of physical
self consistency of the bandpower covariance. If we con-
sider an idealized measurement in which both the lensed
CMB and the lensing potential are cosmic variance lim-

ited (i.e. NXY
` = Nφφ

` = 0) then all KL eigenvalues must
be ≥ 1, since there cannot be more information in the
lensed CMB bandpowers than the reconstruction. We
also consider in this section that the full sky is observed,
i.e. fsky = 1.

If we treat the lensed B-mode as a Gaussian field
(i.e. keep only the first term in the BB covariance (11))
then there are KL eigenvalues that strongly violate this
physicality bound. For example, if we suppose that the
BB power spectrum is measured to `max = 2000, then
we find λmin = 0.1. This problem disappears when we in-
clude the full bandpower covariance: we find λmin = 1.4,
showing that our covariance model passes this consis-
tency test. These results are in agreement with [12, 29].

At `max = 3000, we find that all the polarization-
related non-Gaussian covariances must be included in
order to satisfy the physicality bound λmin ≥ 1. For
example, let us suppose that only EE and BB power
spectra are measured (including TT and TE would only
strengthen the example). If we make the Gaussian ap-
proximation for CovEE,EE , but use non-Gaussian values
for CovEE,BB and CovBB,BB , then we find λmin = 0.9
and fail the consistency test. Analogously, if we make
the Gaussian approximation for CovEE,BB , but use non-
Gaussian CovEE,EE and CovBB,BB , then we find λmin =
0.8 and fail. When we include the full non-Gaussian co-
variance model from §II, then we do not find any viola-
tion of physicality, even when all bandpowers TT , TE,
EE, BB are included. In that case, considering all the
covariance as Gaussian leads to λmin = 0.07. When
the full non-Gaussian covariance from §II is used, we
have λmin = 1.09 for the analytic covariance results, and
λmin = 1.11 when we use the covariance matrices com-
puted from the simulations. We thus expect cosmologi-
cal parameter errors to be modeled to better than a few
percent for `max ≤ 3000. We quantify this expectation
for parameter examples in §IV C. Our model captures
the essential of the non-Gaussian structure of the lensed
power spectra covariance. Most terms in this covariance
model have been neglected in previous studies.

TABLE I. Instrumental specifications used in this paper. Sen-
sitivities are given in µK-arcmin.

Name Frequency ∆T ∆P θFWHM fsky `max

Planck
100 GHz 81 115 9.5′ 0.8 2000
143 GHz 47 79 7.1′ 0.8 2000
217 GHz 71 122 4.7′ 0.8 2000

Ground based 1.0 1.41 1′ 0.016 3000
CMBPol 1.0 1.41 1′ 0.8 3000

D. Finite Noise

While with a perfect reconstruction of the lensing po-
tential power spectrum we cannot expect more informa-
tion from the power spectra, considering a realistic re-
construction with a finite noise could in principle lead to
some modes which are better constrained by the power
spectra than by reconstruction.

In Table I, we show some instrumental specifications
that will be used throughout this paper. For Planck, we
use the lowest three HFI frequencies with measured noise
levels from [37], with maximum multiple `max = 2000 and
fsky = 0.8.

We also consider a futuristic CMB polarization satel-
lite (denoted by “CMBpol”) with a low noise level
(∆T = 1µK-arcmin) and a resolution similar to the SPT-
pol experiment [38]. Finally, we consider a ground exper-
iment with instrumental characteristics from CMBpol as-
suming a 650 deg2 survey and Planck sensitivity on the
remainder of the Planck region (i.e. fsky = 0.784). We
call this combination of Planck + ground-based experi-
ment “Planck+G.”

The instrumental noise power spectrum for a single
channel is [39]:

NXX
` =

(
∆XX

T0

)2

e`(`+1)θ2FWHM/8 ln 2, (27)

where XX = TT,EE,BB. For a multi-channel exper-
iment, the noise power spectrum is N` = (

∑
iN
−1
`(i))

−1,

where N`(i) is the noise power spectrum of the i-th chan-
nel.

Note that even though CMBpol approaches the cosmic
variance limit of the CMB, it does not reach the cosmic
variance limit of lens reconstruction. The cosmic variance
of the CMB fields themselves place an irreducible noise
floor on even idealized reconstruction from quadratic es-
timators.

The KL eigenvalues are almost always larger than one,
indicating that all the KL modes are better constrained
by reconstruction than with the power spectra. The only
exception is for CMBPol with a low cut-off at `max =
2000. In that case λmin = 0.89, indicating that one KL
mode is slightly better constrained by lensed CMB power
spectra than by lens reconstruction. This number merely
reflects the fact that given the low noise and beam of the
CMBPol experiment, applying a cut-off at `max = 2000
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FIG. 6. KL eigenvalues for Planck (solid/red) and CMBPol
(dashed/green). Top: `max = 2000, bottom: `max = 3000.

degrades the ability of the lensing quadratic estimator to
reconstruct the lensing potential.

All the other KL eigenvalues are greater than one and
they rapidly become much larger after the third mode
(see Fig. 6), indicating that only one or two KL modes
actually contribute to the lensed CMB power spectra,
which is in agreement with Ref. [21].

IV. CONSTRAINTS ON COSMOLOGICAL
PARAMETERS

Although the KL construction reveals extra informa-
tion in lens reconstruction not available to lensed power
spectra, accessing this information does not necessar-
ily improve constraints on realistic cosmological parame-
ters. Its impact depends on both how strongly and how
uniquely cosmological parameter variations change the
KL mode amplitudes corresponding to the new informa-
tion.

Our purpose is not to give exhaustive forecasts on cos-
mological parameters for various experimental configu-
rations. Rather, we wish to provide examples for when
the extra KL information in reconstruction can and can-
not make an impact. In § IV A, we define and test a
means of comparing the two in the presence of parame-
ters that change the acoustic peaks of the unlensed CMB.
In § IV B, we compare the errors from the power spec-
tra to the reconstruction and we assess the impact of the
non-Gaussian covariance in § IV C.

A. Additive Lensing Approach

The KL mode decomposition is complete and hence
the errors on the mode amplitudes mk can be used to

construct the Fisher matrices FKL,P
cc′ , FKL,R

cc′ correspond-
ing to lensed power spectra and lens reconstruction, for

any set of cosmological parameters c:

FKL,P
cc′ =

∑
k

1

λ(k)

∂mk

∂c

∂mk

∂c′
,

FKL,R
cc′ =

∑
k

∂mk

∂c

∂mk

∂c′
. (28)

In other words, lensed CMB power spectrum constraints
are downgraded (relative to lens reconstruction) by the
KL eigenvalues. In practice, there are only a few eigen-
values which are not � 1, and so lensed CMB power
spectra are only sensitive to the first few eigenmodes.

The derivatives (∂mk/∂c) appearing above can be
computed from Eq. (24):

∂mk

∂c
=
∑
α

v(k)
α

1

(∆`)α

∑
`

∂ lnCφφ`
∂c

Bφ,`α . (29)

Some values of these derivatives with respect to neutrino
mass, dark energy equation of state, and curvature are
presented in Fig. 7. They show a general decreasing trend
but are not monotonically decreasing. For example, the
neutrino mass derivative with `max = 2000 shows a sec-
ond peak at the sixth KL mode (Fig. 7, left top panel).

The KL Fisher matrices are designed to only account
for the information carried by CMB lensing and should
be added to any other source of information. Indeed
these matrices are highly degenerate if the parameters
that control the unlensed CMB acoustic peaks are al-
lowed to vary. Two options are conceivable depending
on the objective. If one wants to compare the ultimate
amount of information on the lensing parameters carried
by CMB lensing through the bandpower measurements
or through a lens reconstruction, then fixing the high red-
shift parameters in the KL matrices is a possibility. In
this case, we expect the KL treatment to be fully accu-
rate within the Fisher approximation, but the resultant
error estimates are not meaningful unless other sources
of information fix those parameters.

The second approach is to add other sources of infor-
mation to the Fisher matrix. The current leading source
of information on these parameters is of course the acous-
tic peaks themselves. The bulk of this information comes
from the unlensed CMB spectra. To the extent that the
lensing simply adds to the information in the unlensed
CMB we can approximate the total Fisher matrix as the
sum

FKL,PU = FKL,P + FU ,

FKL,RU = FKL,R + FU , (30)

where FU is the Fisher matrix constructed out of the un-
lensed CMB fields with a Gaussian covariance. We call
this the “additive lensing” approximation. For lensing
parameters where lensing can actually destroy informa-
tion in the power spectrum, such as ΩK [21] and mν

at sufficiently large values that the neutrinos are non-
relativistic at recombination, this treatment is approxi-
mate. On the other hand it is an approximation that
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FIG. 7. Derivatives of the KL modes mk with respect to Ωνh
2 (top), w (middle), and ΩK (bottom) with lmax = 2000 (left

column) and lmax = 3000 (right column), for Planck (solid/red) and CMBpol (dashed/green).

affects the lensing reconstruction and power spectrum
information alike.

For the power spectrum information, there is a direct
check of this approximation since we can construct the
Fisher matrix from the lensed power spectra and the
power spectrum covariance

F dir,P
cc′ =

∑
IJ

(
∂DI

∂c

)
(CovD,DIJ )−1

(
∂DJ

∂c′

)
. (31)

For the reconstruction, a direct check of the additive
lensing approximation would require understanding the
covariance between reconstruction and power spectrum
statistics, as well as more subtle effects such as the N1

bias mentioned previously [40].
As an aside, note that for numerical stability when

computing the power spectrum Fisher matrices it is im-
portant to pick a parameter set c where the angular di-
ameter distance degeneracy is manifest. Hence in prac-
tice derivatives with respect to cosmological parameters
are computed by adjusting the Hubble parameter h so
that the acoustic scale is fixed when varying the values
of other parameters. Our parameter basis is then com-
posed of three lensing parameters (

∑
mν , w, and ΩK)

and six high-redshift parameters which control the un-
lensed CMB: {Ωch2,Ωbh

2, ns, τ, Ase
−2τ , θS}, where θS is

the angle subtended by the sound horizon at recombina-

tion. These six high-redshift parameters are marginalized
in all parameter constraints presented in this paper.

We begin by testing the accuracy of the additive lens-
ing approximation in the power spectrum case, where we
can simply compare the Fisher matrix FKL,PU obtained
in the additive lensing approximation (Eq. (30)) to the
exact Fisher matrix F dir,P (Eq. (31)). As can be seen in
Fig. 8, which presents the ratio of the errors computed by
the two different techniques for a single additional lens
parameter, the two approaches are not strictly equiva-
lent. As expected, this is especially true for ΩK where
the errors from the direct lensed Fisher matrix are typi-
cally 5% larger than those predicted by our KL formalism
and can approach 20% at high noise. For w, the differ-
ence in the errors is constant at about 3% over the range
of noise level considered. Finally, for

∑
mν and the high

fiducial value of 0.58eV, the agreement depends on the
noise level. For very high levels of noise, most of the in-
formation comes from the first few peaks of the unlensed
CMB and that information can be reduced by lensing.
For very low levels of noise, the lensing information sat-
urates to its sample variance level, while the unlensed
CMB would have in principle retained information far
out into the exponentially damped tail. In the interme-
diate noise regime of interest to future CMB polarization
experiments, the additive lensing approximation is ac-
curate. Furthermore, we have explicitly verified that as
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the fiducial value for
∑
mν is lowered, the discrepancy

rapidly goes away.

The same general trends apply to cases of multiple
lensing parameters. As an example, we show in Fig. 9
(top panel), the constraints in the (

∑
mν)−w plane (ΩK

being fixed) for the Planck+G and CMBpol experiments.
The ellipses from the two approaches are in very good
agreement, thus validating the additive approach in the
case where curvature is fixed.

In the case where curvature is allowed to vary (bot-
tom panel), parameters become highly degenerate in the
lensed power spectrum effects and so the impact of un-
lensed information becomes larger. For the CMBPol case
the errors in σ(mν) with w and curvature marginalized
are larger by a factor of 1.26 and for the Planck+G exper-
iment they are larger by 1.20 when comparing the exact
to the additive approach. When making comparisons be-
tween reconstruction and power spectrum information in
such degenerate cases with curvature, one must bear in
mind these curvature induced problems [41].

0 2 4 6 8 10
∆T    (µK.arcmin)

0.90

0.95

1.00

1.05

1.10

1.15

1.20 ∑
mν

w

ΩK

FIG. 8. Ratio of statistical errors computed using the addi-
tive lensing approximation (i.e. FKL,PU ) and the exact Fisher
matrix (i.e. F dir,P ) for individual lensing parameters, as a
function of noise level for a θFWHM = 1′, `max = 3000 ex-
periment. The error on each lensing parameter is computed
with the other two lensing parameters fixed and high-redshift
parameters marginalized.

In summary, for the interesting cases where lensing
provides most of the information on the lensing param-
eters, the additive lensing approximation is accurate in
the power spectrum case (i.e. the Fisher matrices FKL,PU

and F dir,P agree). The additive lensing approximation is
very convenient for comparing the cosmological informa-
tion from lensed CMB power spectra and lens reconstruc-
tion. Since the Fisher matrix is separated into a sum of
unlensed and lensed contributions, we can simply com-
pare the Fisher matrices FKL,PU and FKL,RU defined in
Eq. (30). This provides a metric for relative comparison
of power spectrum and reconstruction lensing informa-
tion.
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FIG. 9. 68% CL ellipses in the (
∑
mν) − w plane for the

Planck+G (outer ellipses) and CMBpol (inner ellipses) ex-
periments. Errors using the additive lensing approximation
(FKL,PU ) are shown in dashed/black, and errors using the ex-
act Fisher matrix (F dir,P ) are shown in solid/red. Top: ΩK
is fixed. Bottom: ΩK is marginalized.

B. Power Spectra vs. Reconstruction

Given the results in the last section, we can compare
cosmological parameter constraints from lens reconstruc-
tion and lensed CMB power spectra. Moreover, using the
KL eigenmode formalism, we can explicitly verify how
many KL modes actually carry the cosmological infor-
mation.

As a general statement, we find that reconstruction
always carries more information than the lensed power
spectra, regardless of the parameter considered. As the
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FIG. 10. Statistical errors on
∑
mν (left), ΩK(middle), and w (right) from lens reconstruction (solid/red) and lensed CMB

power spectra (dashed/blue), using the first k KL eigenmodes (where 1 ≤ k ≤ 10), for CMBpol specs with `max = 3000. As
expected, KL eigenmodes with k ≥ 3 do not contribute to the power spectrum constraints, but can contribute slightly in the
lens reconstruction case. Statistical errors were computed using the “additive lensing” approximation and the Fisher matrices
FKL,PU and FKL,RU , as described in §IV A. Top row: only one lensing parameter is varied and the other two are fixed; bottom
row: all three are varied with the two not shown marginalized.

KL modes are rank-ordered in terms of highest relative
information content in the power spectra, we can choose
to truncate the summation defining the KL Fisher matri-
ces (Eq. (28)) to only use the information from the first
few KL modes. Those cumulative errors are presented
in Fig. 10 (upper) for cases where there is only a single
additional lensing parameter. This case is the easiest to
understand since the power spectrum information will be
dominated by the first eigenmode.

For CMBPol, the first KL eigenvalue is close to 1 and so
the errors for any individual lensing parameter are com-
parable. The power spectrum information saturates at 2-
3 eigenmodes as expected. These are modes for which the
extra information in the reconstruction becomes mani-
fest, but for the three chosen lensing parameters the to-
tal impact is small for ΩK and w, given the dominance
of the first mode in the derivatives in Fig. 7. For the
neutrinos there is a somewhat larger effect correspond-
ing to large derivatives in both of the first two modes.
Note also that for reconstruction, the eigenmodes are not
rank-ordered so some of the higher modes can contribute
more information than the lower modes. For neutrinos,
the cumulative reduction of errors from the reconstruc-
tion (relative to the power spectrum constraint) reaches
0.7-0.8.

When more than one lensing parameter is included,
resulting degeneracies can make the information in re-
construction more important. However the small deriva-
tives in Fig. 7 still limits the practical relevance of this
information, in that other sources like the unlensed CMB
and more importantly other cosmological probes quickly
dominate the net information.

In Fig. 11, we show a 2-dimensional example: com-
parison of power spectrum and lens reconstruction con-
straints in the (

∑
mν)-w plane with ΩK fixed, for Planck

and CMBpol. Let us interpret this figure in light of our
KL eigenmode construction. For Planck (upper panel),
there is one (roughly vertical) direction which is con-
strained by CMB lensing, and the lens reconstruction
constraint is stronger than the lensed power spectrum
constraint. There is another (roughly horizontal) direc-
tion which is constrained by lens reconstruction, but very
weakly constrained by lensing information in the power
spectrum (it is constrained by the unlensed power spec-
trum). This is consistent with the KL eigenvalues for
Planck shown in Fig. 6: there is one KL eigenvalue which
is a little larger than 1, and the second KL eigenvalue
is � 1. For CMBpol (bottom panel of Fig. 11), there is
one direction where the lensed power spectrum and lens
reconstruction constraints are nearly exactly equal, and
another direction where lens reconstruction is somewhat
better. This is consistent with the KL eigenvalues in
Fig. 6: the lowest KL eigenvalue is almost exactly equal
to 1, and the second KL eigenvalue is ∼2.

Similarly, although the KL analysis would imply that
with 3 lensing parameters, there should be substantially
better lensing reconstruction constraints, for the chosen
parameters and their fiducial values the unlensed CMB
information rapidly dominates. In Fig. 10 (lower), we
show the impact on the parameter errors of marginalizing
the other two lensing parameters. In this case, all three
types of lensing parameters show 10% or greater cumu-
lative improvements from the reconstruction due to the
higher modes breaking degeneracies, but they are still of
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FIG. 11. Comparison of 68% CL ellipses in the (
∑
mν)–

w plane obtained from lens reconstruction (black/dashed)
and lensed CMB power spectra (red/solid). Statistical er-
rors are computed using the additive lensing approximation
(i.e. Fisher matrices FKL,RU and FKL,PU ) and fixed ΩK , for
Planck (top panel) and CMBpol (bottom panel, `max = 3000).
The outer ellipse in the top panel is unlensed CMB constraint
(not shown in the bottom panel since the unlensed constraint
is much weaker than the lensed constraint).

the same order of magnitude as those of the power spec-
tra. Further relative improvements here are limited by
the unlensed CMB information which also weakly breaks
these degeneracies in the additive approach. Note that
we are somewhat underestimating the impact of the ex-
tra reconstruction information when considering CMB-
only sources of information, since this ability to break
degeneracies in the unlensed CMB is degraded by lens-
ing. Nonetheless the main point that in practice the ex-
tra information accessible to lensing reconstruction with
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FIG. 12. 68% CL ellipses in the (
∑
mν)–w plane, computed

using the exact Fisher matrix F dir,P with fixed ΩK , for the
Planck+G (top) and CMBPol (bottom, `max = 3000) experi-
ments. Dot-dashed magenta lines are computed with the full
Gaussian covariance matrix, solid red lines with the full non-
Gaussian covariance from the semi-analytical model. Dashed
black lines are computed using an intermediate covariance
matrix which includes the non-Gaussian BB–BB covariance,
but Gaussian covariance for all combinations of T and E.

CMBPol is mainly orthogonal to realistic cosmological
parameters remains.

C. Impact of non-Gaussian covariance

We conclude our analysis by investigating the impact
of the non-Gaussian covariance of the lensed power spec-
tra on the final errors on parameters. Since this does not
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involve reconstruction information, we work here with
the direct lensed power spectra Fisher matrix F dir,P,
rather than using the “additive lensing” approximation
from §IV A.

First note that if one considers the amplitude of the

fiducial lensing spectrum Cφφ` = AlensC
φφ
` |fid as the in-

dependent lensing parameter as often done in the cur-
rent literature [8, 9], then non-Gaussian modeling is re-
quired for any experiment that gains information from
polarization. This follows from our KL treatment where
the information on the amplitude comes almost exclu-
sively from the first mode. For example for CMBPol and
`max = 3000, σ(Alens) = 0.0011 for Gaussian covariance
and σ(Alens) = 0.002395 for the non-Gaussian covariance
from the simulations. Our analytic model captures this
degradation to 2.8% yielding σ(Alens) = 0.002329.

If on the other hand one takes the lensing parameters
as fundamental cosmological parameters, the impact of
non-Gaussianity is hidden by marginalizing their impact

on Cφφ` . In the previous studies where only the domi-
nant BB-BB covariance was considered [21] the impact
of non-Gaussianity on lensing parameters was small once
the power spectra amplitude As and the dark matter
density Ωch

2 were marginalized for `max < 2000. This
simplification has been employed in the subsequent lit-
erature to study parameter forecasts in a wider range of
scenarios [42].

The analytic model allows us to separate out the im-
pact of the new EE and TE covariance terms. In Fig. 12,
we show the net impact on the w −

∑
mν errors of in-

cluding the non-Gaussian terms on the Planck+G (top)
and CMBpol (bottom) experiments, with all the high
redshift parameters marginalized but ΩK fixed. For the
Planck+G experiment the overall impact is small as one
would expect from just adding BB lensing information
to Planck. For the CMBpol experiment, there is a more
substantial effect. Interestingly this degradation is al-
most entirely due to the new EE and TE terms and can
be attributed to the use of lensing information in these
spectra to break degeneracies between lensing parameters
and high redshift parameters.

These new terms can have an impact even if there is
only one additional lensing parameter. For the CMBpol
experiment if

∑
mν and ΩK are fixed, the error on w

with the full non-Gaussian covariance is σ(w) = 0.118.
However, if only the non-Gaussian BB −BB covariance
is used, we have σ(w) = 0.095, a 24% difference. We
conclude that if in the future lensing information out to
`max = 3000 from the polarization fields becomes avail-
able and dominates parameter errors, then all of the co-
variance terms that involve polarization should be mod-
eled for full accuracy.

V. CONCLUSIONS

We have constructed a semi-analytic model of the co-
variance matrix of the lensed power spectra of CMB tem-

perature and polarization anisotropies. This model is
able to reproduce the structure found in simulations of
CMB lensing for the non-Gaussian terms in this covari-
ance. More specifically, we have shown the existence and
importance of second-order terms in the lensing poten-
tial that were unaccounted for in previous studies [21–
23]. Our model captures these effects and enables an effi-
cient quantification of cosmological parameter errors that
match simulations to better than ∼ 3% for `max ≤ 3000
even in cases where the non-Gaussianity causes an order
unity degradation in the errors.

Using an parameter independent approach based on
the decomposition of the information carried by CMB
lensing in terms of Karhunen-Loève eigenmodes, we have
exhibited some cases where neglecting some of these sec-
ond order terms lead to physical inconsistencies. These
inconsistencies are removed once the covariance from our
model is used.

We then applied the KL eigenmode technique to com-
pare the cosmological information that can be extracted
either from measurements of the lensed power spectra or
by reconstruction of the lensing potential using quadratic
estimators. Although the non-Gaussian covariance of the
lensed spectra has no significant impact on parameter
errors for Planck, we found that it is non-negligible for
forthcoming CMB experiments which will probe polar-
ization at the arcminute scale.

If the full non-Gaussian covariance is used then there is
always more information, in principle, in the reconstruc-
tion than in the lensed power spectra. In practice, the
removal of various biases in the reconstruction and higher
order terms in the reconstruction covariance matrix may
degrade the final errors on parameters. Furthermore, this
extra information is mainly in the detailed shape of the
power spectrum of the lenses. Typical cosmological pa-
rameters do not access this information as they mainly
change the amplitude of the spectrum.

The work presented here is one element in a joint and
optimal likelihood analysis of CMB lensing. Our covari-
ance model provides a computationally efficient means of
calculating the covariance matrix of lensed CMB power
spectra as a function of underlying cosmological or lens
parameters. In the future, a full joint analysis will require
more accurate techniques for a similar characterization
of the reconstruction covariance as well as the covariance
between power spectra and reconstruction observables.
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Appendix A: Derivative approximation for
non-Gaussian covariance

The covariance of BB with EE, TT or TE (see Eq. 13)
involves computing derivatives of lensed CMB power
spectra with respect to unlensed spectra

∑
`

(
∂CBB`1

∂CẼẼ`
CovẼẼ,X̃Ỹ``

∂CXY`2

∂CX̃Ỹ`

)
. (A1)

First note that ∂CBB`1 /∂CẼẼ` is a slowly varying function
of both `1 and ` given the broad kernel that transfers
power between the ẼẼ and BB. Thus the derivative
can be well approximated by the average response to an
unlensed band perturbation of width ∆Lα = 10 for ` ∈

band

∂CBB`1

∂CẼẼ`
≈
∂CBB`1
∂pẼẼα

1

∆Lα

1

CẼẼ`
. (A2)

On the other hand ∂CXY`2 /∂CX̃Ỹ` cannot in general be
approximated by a band response as it will have both
a smooth piece from lensing and a δ`2,` term from the
unlensed CMB. However, to calculate the covariance it
suffices to note that both the BB derivative and the Cov
term are slowly varying on the ∆Lα scale. Thus the sum
over ` ∈ Bα means that we can replace the true derivative
with the band average response again〈

∂CXY`2

∂CX̃Ỹ`

〉
∆Lα

=
∂CXY`2
∂pX̃Ỹα

1

∆Lα

1

CX̃Ỹ`
. (A3)

With this replacement

∑
`

(
∂CBB`1

∂CẼẼ`
CovẼẼ,X̃Ỹ``

∂CXY`2

∂CX̃Ỹ`

)

≈
∑
α

[
∂CBB`1
∂pẼẼα

∂CXY`2
∂pX̃Ỹα

1

(∆Lα)2

∑
`∈Bα

CovẼẼ,X̃Ỹ``

CẼẼ` CX̃Ỹ`

]
,(A4)

Note that while not necessary here, the derivatives can
alternately be calculated more exactly by perturbing sin-
gle `’s on a sparse grid in the unlensed `. As a function
of the unlensed ` the derivatives can be separated as

∂CXY`1

∂CX̃Ỹ`
= A`δ``1 +B``1 (A5)

into two slowly varying pieces A` and B``1 .
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