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Regularization dependence of the NJL model leaves the room for its improvement. To help choos-
ing a suitable regularization scheme we investigate the phase diagram on temperature-chemical
potential plane in the Nambu–Jona-Lasinio model with the dimensional regularization. While the
structure of the resulting diagram shows resemblance to the one in the frequently used cutoff reg-
ularization, some results of our study indicate striking difference between these regularizations.
Diagrams in the dimensional regularization always indicate the first order phase transition at high
chemical potential, while the first order transition does not occur in the cutoff method for some
parameter sets.
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I. INTRODUCTION

The phase diagram of the quark matter has been ac-
tively investigated for decades [1]. Quarks are confined
inside hadrons and can not be observed as free particles at
low energy. On the other hand at high energy, quarks be-
come free particles due to the asymptotic freedom of the
strong interaction. Therefore, it is expected that quarks
undergo the phase transition between confined and de-
confined states which is one of the most important issues
in the theoretical and experimental particle physics.

The fundamental theory to describe quark matter is
quantum chromodynamics (QCD), the theory of strong
interaction. It is, however, not practical to extract re-
liable predictions at low energy due to the necessity of
complicated nonperturbative calculations in this area.
For this reason some effective approaches are used such
as the Nambu–Jona-Lasinio (NJL) model [2] and its
Polyakov-loop incorporated version, the PNJL model [3],
the linear sigma model [4], the chiral perturbation the-
ory [5], the lattice QCD simulations [6].

In this letter, we will consider the NJL model known
as a low-energy effective theory of QCD (for reviews, see,
[7–10]). At low temperature, T , and chemical potential,
µ, constituent quarks are heavy due to the chiral symme-
try spontaneous breaking while they are expected to be
light at high T and/or µ where the chiral symmetry is get-
ting restored. Thus the quark system is closely related to
the phenomenon of the chiral phase transition. The NJL
model actually predicts the chiral symmetry breaking at
low energy and its restoration at high energy. Many in-
vestigations of the phase diagram are based on the NJL

and PNJL models (see, e.g., [11–20] and [21–25]).
Since the NJL model is not renormalizable, the model

predictions inevitably depend on a regularization proce-
dure applied. The most frequently used method is prob-
ably the three-momentum cutoff regularization which in-
troduces the cutoff scale Λ. The model in the cutoff
scheme may miss an important contribution when the
quark density becomes comparable to the cutoff scale.
There is an alternative method, the dimensional regu-
larization (DR) [19, 26–28], to avoid the issue [29]. In
the DR, divergences coming from fermion loop integrals
are regularized by lowering the dimension of the integra-
tion through an analytic continuation in the dimension
variable. The DR preserves gauge symmetry and chi-
ral symmetry, as well as Lorentz invariance. Thus the
DR method respects more symmetries than the cutoff
method.
Using various regularization ways is interesting, be-

cause we believe that the regularization scheme is a dy-
namical part of the NJL model, it is related to the effec-
tive size and shape of the quark interaction as discussed
in [31]. Thus the choice of regularization has direct effect
on the reliability of the NJL model. It was found that
the model with the DR nicely describes quark systems
at low energy, such characteristics as the phase struc-
ture and meson properties [29–32]. Note that if we take
some assumptions, the Schwinger-Dyson equation coin-
cides with the gap equation in the two-dimensional NJL
model at the leading order of 1/Nc expansion [33].
We shall study in this article the phase diagram in the

three flavor NJL model with the DR. It is interesting
because the recent work by the present authors [31] in-
dicates that the phase structure, especially the order of
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the transition, may differ drastically from the one in the
cutoff regularization.
The structure of this letter is following: In Sec. II, the

three flavor NJL model and its parameters are presented.
Section III is devoted to the explanation on the proce-
dure of drawing the phase diagram. We then display the
resulting phase diagram of the model in Sec. IV. We
also evaluate the Columbia plot for two regularization
methods in Sec. V. The concluding remarks are given in
Sec. VI.

II. THREE FLAVOR NJL MODEL

A. The model

The Lagrangian of the three flavor model is

LNJL=
∑

i,j

qi (i∂/− m̂)ij qj + L4 + L6, (1)

L4=G
8

∑

a=0

[

(

∑

i,j

qiλaqj

)2

+
(

∑

i,j

qi iγ5λaqj

)2
]

, (2)

L6=−K [det qi(1− γ5)qj +H.c. ] . (3)

where m̂ij represents the diagonal mass matrix
diag(mu,md,ms) with flavor indices i, j. G and K are
the four- and six-fermion couplings, λa are the Gell-Mann
matrices in flavor space with λ0 =

√

2/3 · 1. The de-
terminant in L6 runs over flavor space, so this leads to
the six-point interaction known as Kobayashi-Maskawa
’t Hooft (KMT) term [34, 35].
The vacuum of the model is determined by the mini-

mum of the thermodynamic potential Ω = − lnZ/(βV )
with the partition function Z, the inverse temperature
β = 1/T , and the volume of the system V . Applying the
mean-field approximation, we can calculate the potential
Ω in the imaginary time formalism,

Ω=Ωv +Ω0 +ΩT , (4)

Ωv=2G(φ2
u + φ2

d + φ2
s)− 4Kφuφdφs , (5)

Ω0=−
2D/2Nc

2

∫

dD−1p

(2π)D−1

[

Eu + Ed + Es

]

, (6)

ΩT=−
2D/2Nc

2
T

∫

dD−1p

(2π)D−1

∑

i,±

ln
[

1 + e−βE±

i

]

. (7)

Here Ωv corresponds to the vacuum contribution by the
chiral condensates, Ω0 and ΩT denote the temperature
independent and dependent contributions, φi(≡ 〈̄ii〉) is
the chiral condensate for each quark which is the order
parameter of the model, Nc(= 3) is the number of colors.
D denotes dimensions in the fermion loop integral, Ei =
(p2+m∗ 2

i )1/2 is the energy of the quasi-particle with the
constituent quark mass m∗

i , E
±

i = Ei ± µ with a quark
chemical potential µ (= µu = µd = µs).
The fermion loop integral in Eq. (6) diverges, there-

fore we will perform the analytic continuation in D to

regularize it by decreasing the dimension D as discussed
in [30, 31]. In the cutoff scheme, the divergent contribu-
tion is dropped by introducing the momentum cutoff Λ.
To be more precise, the regularization in the DR and cut-
off schemes are performed by the following replacements

∫

dD−1p

(2π)D−1
→
2 (4π)−(D−1)/2

Γ[(D − 1)/2]
M4−D

0

∫ ∞

0

dp pD−2, (8)

∫

dD−1p

(2π)D−1
→

1

2π2

∫ Λ

0

dp p2, (9)

where M0 is the renormalization scale which is needed to
render physical quantities correct mass dimensions.
As mentioned in the introduction, the constituent

quark mass

m∗

i = mi − 4Gφi + 2Kφjφk , (i 6= j 6= k 6= i) (10)

is closely related to the chiral symmetry breaking, namely
to the value of φi. The self-consistent gap equations (10)
are obtained as the condition for the thermodynamic
potential to be at the extremum, ∂Ω/∂φi = 0. Equa-
tions (10) explicitly show that the difference between
constituent and current quark masses is due to the un-
derlying chiral symmetry breaking.
It is worth mentioning that the anomalous UA(1)

transformation can be used to ensure that all quark
masses are positive. However, the UA(1) transformation
leads the positive chiral condensates which are not con-
sistent with the study of QCD sum rules [36]. The sign of
the mass should be studied when considering CP violat-
ing gauge couplings [37]. The detailed arguments on the
UA(1) transformation and the CP problem are discussed
in the Appendix A. The sign of constituent quark masses
do not change the phase diagram of the chiral transition
in the NJL model.
Note that the constituent quark masses can be posi-

tive if one performs the renormalization by introducing
counter terms which are necessary to eliminate the di-
vergences coming form loop integrals [38]. However, the
renormalized models in DR generate results similar to
those in the cutoff method, which is not of our interest
in this paper.

B. Model parameters

The NJL model with the DR has 7 free parameters:
current quark mass mu, md, ms, the four- and six-point
couplings G, K, the dimension D, and the renormaliza-
tion scale M0.
We consider, for simplicity, the isospin symmetric

case, md = mu, and set several values for mu(=
3, 4, 5, 5.5, 6MeV). We then fix the remaining param-
eters by choosing 5 physical quantities among listed be-
low:

mπ = 138MeV, fπ = 92MeV,
mK = 495MeV, mη′ = 958MeV,
mη = 548MeV, χ1/4 = 170MeV.

(11)
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Following [31], we name the parameter sets as Case χ
and mη depending on which quantities are selected. The
Case χ (mη) is fitted by {mπ, fπ,mK,mη′ , χ (mη)}. The
parameter setting was performed in [30], and we shall em-
ploy three parameter sets, Case mLD

η , mη and χ, which
are shown in Tables I, II and III. Note that the Case mη

TABLE I. Case mLD
η .

mu ms G K M0 D

3.0 84.9 −0.0195 9.02 × 10−7 118 2.29

TABLE II. Case mη.

mu ms G K M0 D

3.0 79.0 −0.0130 2.29× 10−7 107 2.37

4.0 106 −0.00748 8.26× 10−8 92.0 2.52

5.0 134 −0.00357 1.99× 10−8 73.2 2.69

5.5 147 −0.00231 8.40× 10−9 62.4 2.77

6.0 162 −0.00142 3.23× 10−9 50.9 2.87

TABLE III. Case χ.

mu ms G K M0 D

3.0 77.1 −0.0168 2.23 × 10−7 120 2.28

4.0 106 −0.0143 2.11 × 10−7 116 2.36

5.0 134 −0.0119 1.80 × 10−7 112 2.43

5.5 150 −0.0109 1.62 × 10−7 110 2.47

6.0 166 −0.00992 1.48 × 10−7 109 2.50

has two parameter sets for mu = 3MeV; to distinguish
between them we use the superscript LD (lower dimen-
sion).
For the sake of comparison we also align the pa-

rameters of the cutoff case in Table IV. In the cut-
off case, we fix 4 parameters, ms, G,K and Λ with
{mπ, fπ,mK,mη′}. Unfortunately, there is no solution
to simultaneously reproduce the above listed quantities
for mu & 5.87MeV.

TABLE IV. Case Cutoff.

mu ms GΛ2 KΛ5 Λ

3.0 89.5 1.55 8.34 960

4.0 110 1.60 8.38 797

5.0 128 1.71 8.77 682

5.5 136 1.81 9.17 630

5.87 139 2.09 10.1 580

III. CRITICAL BEHAVIOR

In this section we explain how to draw the phase di-
agram of the model through the analysis of the thermo-
dynamical potential and the gap equations.
A critical temperature Tc or chemical potential µc are

given by the maxima of

∂φu

∂t
, (t = T or µ). (12)

To be precise, in the case of t = T , the critical tem-
perature, Tc, is given by a value of T at which the two
variable function, ∂φu(µ, T )/∂T , reaches the maximum.
Thus the critical temperature, Tc = Tc(µ), is a function
of µ. Analogously is defined the critical chemical poten-
tial, µc(T ).
We apply t = T (µ) for low µ (T ) in crossover region.

The above quantity, ∂φu/∂T , becomes infinite at Tc (µc)
when the transition is of the first order. In this case we
determine the transition boundary by the point where the
discontinuous change of the chiral condensate φu occurs
by directly searching the minimum of the thermodynamic
potential. It is obvious that this procedure is consistent
with the criterion of Eq. (12), because a divergent point
coincides the maximum point.

A. Thermodynamic potential

To see the tendency of the phase transition, we show
the behavior of Ω(= Ω(φu, φs) − Ω(0, 0)) for the Case
mη and Cutoff with mu = 4MeV near the transition
boundary in Fig. 1. The curves are plotted along the
line φs = 0.36φu + 0.83φ0

u for T = 10, 75 and 85MeV
with µ = 480MeV in the upper panel, and along the
line φs = 0.103φu + 1.43φ0

u for T = 10, 20, 30MeV with
µ = 290MeV in the lower panel. These lines are chosen so
as to show the global minima for lower T = 75(10)MeV
and higher T = 85(30)MeV, which are indicated by the
circles, near the transition temperature Tc ≃ 80(20)MeV.
φ0
u denotes the chiral condensate φu at T, µ = 0 for each

case.
There exists a bump between two stable minima in the

DR case, which means that the transition is of the first
order between T = 75 and 85MeV for mu = 4MeV in
the Case mη. The shape of the potential with a bump
does not change drastically if one chooses different pa-
rameter sets. On the other hand, the cutoff case (lower
panel) produces rather monotonous curves with no bump
when we choose the parameter sets with small value of
mu, which leads to a smooth crossover. This different
tendency may stem from the fact that the ratio of the
thermal contribution (µ dependence) ΩT /(Ωv + Ω0) in
the DR case is larger than that in the cutoff case at low
T .

B. ∂φu/∂T

In the crossover region, it is technically easier to ana-
lyze Eq. (12) through solving the gap equations because
φu changes continuously with respect to T (µ). We show
the numerical results in Fig. 2. One sees that the max-
imum point moves toward lower T with increasing µ,
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FIG. 1. Upper panel: 0.1 ·Ω/M4
0 along the line φs = 0.36φu+

0.83φ0
u in the Case mη with mu = 4MeV for T = 10, 75,

85MeV and µ = 480MeV. Lower panel: 100 · Ω/Λ4 along the
line φs = 0.103φu + 1.43φ0

u in the Case Cutoff with mu =
4MeV for T = 10, 20, 30MeV and µ = 290MeV. Here Ω =
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u denotes the chiral condensate at
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and the peak becomes large at high µ. The peak ac-
tually diverges when T and µ coincide with the critical
point (TCP, µCP). Below TCP, the transition becomes of
the first order, and the analysis by Eq. (12) is no longer
practically useful for the determination of the transition
boundary as mentioned above.
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FIG. 3. Phase diagram in the Case mLD
η with mu = 3MeV.

The solid (dashed) line represents the first order (crossover)
transition. The circle indicates the critical point.

IV. PHASE DIAGRAM

We are now ready to discuss the phase structure of the
NJL model with the DR.

A. Transition on φu

Figure 3 displays the typical structure of the phase
diagram in the model with the DR in the Case mLD

η .
This is a reasonable picture of a system in the chiral
symmetry broken phase at low T and µ, and in the chi-
ral symmetry restored phase at high T and/or µ. The
solid (dashed) line represents the first order (crossover)
transition, and the circle indicates the critical point.
Note that the transition temperature, Tc = 184MeV
for µ = 0, is comparable with the lattice QCD pre-
diction, 150 − 200MeV. The critical point is located at
(TCP, µCP) = (99MeV, 239MeV), and it is interesting
to see that TCP is close to one obtained in the PNJL
model with the cutoff regularization, TCP = 102MeV,
for frequently used parameter set of [9], whereas TCP =
48MeV in the NJL model [24]. Note that the obtained
critical point is close to one obtained in a NJL type
model with the smooth form factor [20], (TCP, µCP) =
(101MeV, 211MeV), and in the linear sigma model [39],
(TCP, µCP) = (99MeV, 207MeV). Below we make more
detailed comparison between the DR and the cutoff
schemes.
Figure 4 shows the phase diagrams in the Cases mη

and χ for various mu. We note that in the Case mη, the
region of chiral symmetry broken phase becomes smaller
with choosing the smaller value ofmu. On the other hand
the Case χ produces similar curves for different mu. The
different behavior can be explained by the fact that the
constituent quark mass m∗

u gets smaller with decreasing
mu in the Casemη, while it almost does not change in the
Case χ as discussed in [30]. In the cutoff case (Fig. 5)
the region of the chiral symmetry broken state shrinks
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when mu is lowered as observed in the Case mη. It is
very interesting to note that the critical point disappears
below mu = 5MeV, where the transition is crossover for
all T and µ.
A striking difference between the two regularizations is

in that the critical point moves towards higher temper-
ature with decreasing mu in the DR, while it moves to
the opposite direction in the cutoff case. The difference
may be understood by observing the value of the six-
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FIG. 6. Chiral condensates φu and φs for T = 10MeV in the
Case mLD

η with mu = 3MeV.

point coupling K which becomes larger (smaller) with
decreasing mu in the DR (cutoff) procedure, since the
KMT term shown in Eq.(3) tends to drive the first order
phase transition [24].

B. Partial transition on φs

As discussed in [31] chiral condensates undergo two dis-
continuous changes at low T in the DR scheme. Figure 6
displays the typical behavior of φu and φs as functions
of µ at low T (= 10MeV), plotted in the Case mLD

η with
mu = 3MeV. One clearly observes two gaps: one is lo-

cated around µ
(u)
c ≃ 300MeV and the other is around

µ
(s)
c ≃ 365MeV. Here we call these discontinuities as first

and second gaps for lower and higher chemical potential,
respectively. The first gap comes from the effect of the
approximate SUL(2)⊗ SUR(2) restoration and the sec-
ond one comes from that of the partial SUL(3)⊗ SUR(3)
restoration. Two gaps are also observed in NJL model
with the cutoff regularization under the charge neutrality
condition [40]. Thus it may be interesting to study the
phase structure concerning the second transition as well.
To draw the phase diagram on the second transition,

we set the criterion of the transition by using the follow-
ing quantity

∂φs

∂t
, (t = T or µ). (13)

Then below µCP, namely in the crossover region, the
above quantity has only one maximum, which determines
the crossover transition on φs. While above µCP the
quantity ∂φs/∂µ shows non-trivial behavior; it becomes

infinite at µ
(u)
c , and has second maximum at µ

(s)
c . So

∂φs/∂µ has typical two maxima at µ
(u)
c and µ

(s)
c below

TCP as seen in Fig. 6. Here we call the transition point

corresponding to the second maximum, µ
(s)
c , “the second

phase boundary”. To distinguish between the two phase
transitions, we call the transition line on φu discussed in
the previous subsection “the first phase boundary”.
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In the phase diagram on the 1st and 2nd phase bound-
aries (Fig. 7) the dashed and dotted lines represent the
crossover transition on φu and φs, respectively. The solid
line for lower (higher) chemical potential indicates the
discontinuous change on the first (second) gap. We see
that the crossover line on φs is observed at a bit lower
temperature than that on φu for µ < µCP. It should
be noticed that the critical curves on φu and φs inter-
sect at the critical end point (TCP, µCP) on φu. Because
the value of φs is affected by φu, as is clearly seen from
Fig. 6, φs shows discontinuous change at the point where
φu has a gap. Then ∂φs/∂t blows up and approaches to
infinity near the critical point where ∂φu/∂t is divergent.
Below TCP, ∂φs/∂µ has two maxima appearing at the
first gap and higher chemical potential. The first max-
imum coincides with the red solid line and the second
one is plotted by the blue line in Fig. 7. The transition
on the second boundary also has the critical point whose
location is exhibited by the blue circle at higher chemical
potential.
We also studied the other Cases, mη and χ, with var-

ious mu, and found that the qualitative behavior does
not show remarkable difference; the critical point on φs

moves toward higher temperature with decreasing mu as
seen in the φu case. Therefore, we only displayed the
Case mLD

η here.

V. CRITICAL BOUNDARY

Having obtained the phase diagram for the NJL model
in the DR scheme, it may be interesting to discuss the chi-
ral critical boundary, so called Columbia plot [41]. The
critical boundary is drawn by searching the order of the
phase transition for variousmu and ms while the remain-
ing parameters discussed in Sec. II B are fixed. Thus the
current quark masses, mu and ms, are treated as free
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FIG. 8. The critical boundary for the Case mη and Cutoff.

parameters when one studies the critical boundary.
The figure 8 displays the critical boundary for the Case

mη (upper panel) and Cutoff (lower panel) for various
mu. We first note that the values of the critical mass in
the DR are considerably smaller than in the cutoff case
with mu = 5.0 and 5.5MeV. We also note that the region
of the first order phase transition in the Casemη does not
depend drastically on the choice of the parameter sets.
However the first order phase transition region shrinks
with decreasing mu and disappears at mu = 4MeV in
the Case Cutoff. This is a sharp contrast seen between
the cases with DR and Cutoff regularization.
We have also evaluated the critical boundary for the

Case mLD
η and χ, and found that the obtained curves

indicate similar pictures with the Case mη. Here we have
only shown the results for the Case mη.

VI. CONCLUDING REMARKS

We studied the phase diagram of the NJL model with
the DR and cutoff regularization. We found that the
phase diagram on the T − µ plane in the model with
the DR for various parameter sets shows qualitatively
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similar pictures. The typical transition temperatures are
around 170, 350, 250 and 170MeV in the Case mLD

η , mη,
χ and Cutoff, respectively. The critical points are located
around TCP = 100 − 150MeV in the DR, and TCP =
50−100MeV in the cutoff method. Interestingly enough,
the temperature of the critical point TCP increases with
decreasing mu in the DR case, while it rapidly becomes
small in the cutoff case as confirmed in Fig 5. This is a
sharp qualitative difference between the two cases.

In the Sec. V we drew the Columbia plot for the case of
DR and cutoff regularization to study the order of phase
transition in more detail. We saw that in the Columbia
plot (µ = 0), the cutoff way leads to a larger region of
the first order phase transition than that of the DR. How-
ever the first order transition region disappears when one
chooses the parameter sets with smaller mu in the cutoff
case. On the other hand, the first order transition region
remains in the DR, which is again the distinguishing dif-
ference between the two regularizations.

We have also studied the phase structure on the
change of φs in Sec. IVB, where we found that the ap-
proximate SUL(2)⊗ SUR(2) symmetry and the partial
SUL(3)⊗ SUR(3) symmetry restore at a similar temper-
ature for low chemical potential, µ < µCP. It may be
difficult to distinguish between the two lines experimen-
tally, because the transitions are smooth crossover at low
chemical potential.

From the obtained phase diagrams and the Columbia
plot, we conclude that the first order phase transition
persists for low mu in the model with the DR method.
The finding is consistent with the current symmetry anal-
ysis based consensus [42] stating that the chiral phase
transition is of the first order in the chiral limit, mu,d,s →
0. This tendency may be understood by the following
reasoning. The loop contribution from the lower inte-
gration momenta is enhanced by lowering dimension. It
introduces non-locality in the model with the DR. The
infrared behavior of the loop integral is important for
thermal corrections. It can rise the critical end point
temperature, TCP.

Finally, because the parameter difference crucially af-
fects the location of the critical point as confirmed in
this article, we think it is interesting to study the related

issues, such as the case with the chiral limit and the anal-
ysis in the next to the leading order approximation of the
1/Nc expansion.
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Appendix A: UA(1) and strong CP violation

We start from a primordial θ-term,

Lθ =
g2s

16π2
θǫµνρσF a

µνF
a
ρσ, (A1)

where F a
µν is the field strength for gluons, and gs is the

strong coupling constant. The anomalous UA(1) trans-
formation induces the following additional contribution,

L′

θ =
g2s

16π2
(θ + arg det m̂∗)ǫµνρσF a

µνF
a
ρσ

=
g2s

16π2
(θ + π)ǫµνρσF a

µνF
a
ρσ , (A2)

with m̂∗ = diag(m∗
u,m

∗
d,m

∗
s). In evaluating the second

line, we assumed that all the constituent quark masses
are negative. The term breaks CP symmetry and gener-
ates the neutron electric dipole moment. The coefficient
is experimentally constrained as [43],

θ + π . 10−9. (A3)

This is a fine tuning problem which is known as the strong
CP problem [44].
Then the CP symmetry is almost restored after the

chiral condensation. The primordial θ may be tested in
the phenomena at high T and µ where the chiral symme-
try is partially restored. One of these possibilities may
be found in the process for the baryongenesys, while it is
beyond the scope of the present study based on the NJL
model.
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