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There has been a lot of recent interest in the experimental hints of CP violation in B
0

d,s mixing,
which would be a clear signal of beyond the standard model physics (with higher significance). We
derive a relation for the mixing parameters, which allows clearer interpretation of the data in models
in which new physics enters in M12 and/or Γ12. Our results imply that the central value of the
DØ measurement of the semileptonic CP asymmetry in B

0

d,s decay is not only in conflict with the
standard model, but in a stronger tension with data on ∆Γs than previously appreciated. This
result can be used to improve the constraint on ∆Γ or ASL, whichever is less precisely measured.

I. INTRODUCTION

Recently, CP violation in neutral meson mixing re-
ceived renewed attention due to the DØ hint of CP vio-
lation in B –B mixing, measured by the CP asymmetry
in decays of a bb̄ pair to two same-sign muons [1],

Ab
SL = −[7.87± 1.72 (stat)± 0.93 (syst)]× 10−3 . (1)

At the Tevatron both B0
d and B0

s are produced, and hence
Ab

SL is a linear combination of the two asymmetries [1]

Ab
SL = (0.594± 0.022)Ad

SL + (0.406± 0.022)As
SL . (2)

The central value in Eq. (1) would be a clear sign of
new physics (NP) [2, 3]. Measurements at the e+e− B
factories [4] and at DØ [5] yield

Ad
SL = −(0.5±5.6)×10−3 , As

SL = −(1.7±9.2)×10−3 .
(3)

In B0
s mixing, a nonzero lifetime difference, ∆Γs ≡

ΓL − ΓH , was established recently,

∆Γs = (0.116± 0.019) ps−1 , LHCb [6],

∆Γs = (0.068± 0.027) ps−1 , CDF [7],

∆Γs = (0.163+0.065
−0.064) ps

−1 , DØ [8]. (4)

In the absence of a world average, we use the most precise
measurement from LHCb. For ∆ms the average of the
CDF [9] and LHCb [10] measurements is

∆ms ≡ mH −mL = (17.719± 0.043) ps−1. (5)

One should naturally ask if there are any constraints
on the mixing parameters, beyond the obvious one: that
the mass and width eigenvalues of the heavy and light
mass eigenstates, mH,L and ΓH,L, must be positive. (We
use the notation customary in B physics, but the results
apply equally for K0 and D0 mixing as well.) The time
evolution of the flavor eigenstates is

i
d

dt

(

|B0(t)〉
|B0(t)〉

)

=

(

M −
i

2
Γ

)(

|B0(t)〉
|B0(t)〉

)

, (6)

where M and Γ are 2× 2 Hermitian matrices, and CPT
invariance implies M11 = M22 and Γ11 = Γ22. The phys-
ical states are the eigenvectors of the Hamiltonian,

|BH,L〉 = p |B0〉 ∓ q |B0〉 , (7)

where we chose |p|2 + |q|2 = 1. CP violation in mixing
occurs if the mass and CP eigenstates do not coincide,

δ ≡ 〈BH |BL〉 =
|p|2 − |q|2

|p|2 + |q|2
=

1− |q/p|2

1 + |q/p|2
6= 0 . (8)

The solution for the mixing parameters satisfies

q2

p2
=

2M∗

12 − iΓ∗

12

2M12 − iΓ12

, (9)

and from this and Eq. (8) it follows that (see, e.g., [11])

δ < min

(

|2M12|

|Γ12|
,

|Γ12|

|2M12|

)

. (10)

The measurable CP asymmetry in semileptonic (or any
“flavor-specific”) decay can be expressed as

ASL =
1− |q/p|4

1 + |q/p|4
=

2δ

1 + δ2
=

Im (Γ12/M12)

1 + |Γ12|2/(4 |M12|2)
.

(11)
Thus, in the small δ limit, ASL = 2δ +O(δ3).
In the |Γ12/M12| ≪ 1 limit, which applies model inde-

pendently for the B0
d,s systems,

∆m = 2 |M12|
[

1 +O(|Γ12/M12|
2)
]

,

∆Γ = 2 |Γ12| cos[arg(−Γ12/M12)]
[

1 +O(|Γ12/M12|
2)
]

,

ASL = Im (Γ12/M12)
[

1 +O(|Γ12/M12|
2)
]

. (12)

In this limit, Eq. (9) implies that q/p is a pure phase
to a good approximation, determined by M12, which has
good sensitivity to NP. However, if |Γ12/M12| = O(1),
relevant for K0 and D0 mesons, then q/p depends on
both Γ12 and M12 and the sensitivity to NP in M12 (and
in argM12) is diluted [12]. In that case Eq. (12) does not
hold, but ASL = 2δ is a good approximation even in the
D0 system, where the current bound is |δ| <∼ 0.2 [4].
An additional constraint, the unitarity bound [13, 14],

stems from the time-evolution of the normalization of any
linear combination of |B0〉 and |B0〉 being determined
entirely by the Γ matrix. As discussed below, this con-
strains the eigenvalues of Γ to be positive definite inde-
pendent of the physical eigenvalues, or equivalently

δ2 <
ΓHΓL

(mH −mL)2 + (ΓH + ΓL)2/4
=

1− y2

1 + x2
. (13)
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Here we define, using Γ = (ΓH + ΓL)/2,

x =
mH −mL

Γ
, y =

ΓL − ΓH

2Γ
, (14)

where x is positive by definition, while y ∈ (−1, +1).
One may ask if other constraints exist purely from

consistency considerations. As we show in a sepa-
rate paper [15], no additional limit on δ exists, either
physical or mathematical, without some knowledge of
the Hamiltonian. In particular, the invalidity of the
bounds claimed in [16, 17] can be made apparent by
introducing new short-distance physics, which reduces
∣

∣ cos[arg(Γ12/M12)]
∣

∣ while it leaves |M12| and Γ12 un-
changed.
However, depending on the theoretical status and the

experimental measurements of the mixing parameters,
further useful and exact relations may arise from these
inputs in combination. In this paper, we derive a relation
between the mixing parameters of a meson system and
only the magnitude |Γ12|, which is in tension with the
DØ measurement in Eq. (1).
It has been known that the data in Eqs. (1) – (3) is

not only in tension with the SM, but — assuming the
SM calculation of Γ12 — also with all models in which
NP enters only through M12 [18, 3]. This is because
Eqs. (10) and (12) imply δ < |Γ12|/∆m. Our result goes
beyond this, because it makes optimal use of data on ∆Γ
without theoretical assumptions, and indicates a larger
tension independent of the nature of typical new physics.

II. UNITARITY WITH THEORY INPUT

As mentioned above, Eq. (13) was first derived in
Refs. [13, 14]. We show that a stronger bound on δ can
be obtained using additional input from theoretical cal-
culations. An analogy to the derivation of Ref. [13] will
be particularly useful in deriving our results.
We define the complex quantities

ai =
√

2πρi 〈fi|H|B〉 , āi =
√

2πρi 〈fi|H|B〉 , (15)

with ρi denoting the phase space density for final state
fi. If we treat ai and āi as vectors in a complex N -
dimensional vector space, then taking the standard inner
product on complex vector spaces, and using the optical
theorem [13], amounts to the relations

a∗i ai = Γ11 , ā∗i āi = Γ22 , ā∗i ai = Γ12 , (16)

where CPT fixes Γ11 = Γ22 = Γ. Applying the Cauchy-
Schwarz inequality to the vectors ai and āi implies [13]

|Γ12| ≤ Γ11 . (17)

This is equivalent to the statement that the eigenvalues of
the Γ matrix must be positive (in addition to ΓH,L > 0).

To see that this is also equivalent to the unitarity
bound of Eq. (13), we use Eq. (7) to define new vectors
aHi and aLi analogously, such that

ai =
1

2p
(aHi + aLi) , āi =

1

2q
(aLi − aHi) . (18)

For these newly defined vectors we can derive, in a similar
manner as for Eq. (16), the relations

a∗Hi aHi = ΓH , a∗Li aLi = ΓL , (19)

a∗Hi aLi = −i(mH −mL + iΓ) δ .

Substituting Eq. (18) into Eq. (16), using Eq. (19) and
the |q/p|2 = (1 − δ)/(1 + δ) identity, we obtain Γ11 and
Γ12 in terms of MH,L, ΓH,L and δ. The unitarity bound
in Eq. (13) then arises from using the new expressions
for Γ11 and Γ12 in Eq. (17).
The preceding derivation made no assumptions on the

actual values of the matrix elements appearing in the
problem. For the kaon system, for which this bound was
originally derived, this was a necessity due to the dom-
inance of long-distance physics in the result. For Bd,s

mesons, the large mass scale mb ≫ ΛQCD allows Γ11 and
Γ12 to be calculated in an operator product expansion,
and at leading order |Γ12/Γ11| = O[(ΛQCD/mb)

3 (16π2)],
where 16π2 occurs due to a one-loop difference between
the two calculations. (In the Bd system there is an ad-
ditional CKM suppression.) Thus it makes sense to con-
sider some theory input, and we define

y12 = |Γ12|
/

Γ . (20)

Using this relation between these matrix elements and
proceeding with the same steps as above, we obtain, in-
stead of an inequality as in Eq. (17),

δ2 =
y212 − y2

y212 + x2
=

|Γ12|
2 − (∆Γ)2/4

|Γ12|2 + (∆m)2
. (21)

This equation follows from the solution of the eigenvalue
problem, and was previously derived in Ref. [11] with the
resulting bound on δ noted.1 (It also appears in related
forms in Refs. [19, 20] and follows from Eqs. (9) and (12)
in [21].) For fixed x and y, δ2 is monotonic in y12, so
an upper bound on y12 gives an upper bound on |δ|. For
y12 ≤ 1 the usual unitarity bound in Eq. (13) is recovered.
Equation (21) can also be obtained from a scaling ar-

gument: As δ only depends on mixing parameters, it is
independent of the value of Γ. One can then scale Γ by
y12, which cannot affect δ but changes x → x/y12 and
y → y/y12. Eq. (21) follows then from this argument
and Eq. (13). The derivations above make the physical
origin of this relation clear. Even if CPT is violated, the

1 We were unaware of this in v1 of this paper, and we thank Luis

Lavoura and Joao Silva for bringing this to our attention.
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scaling argument, and therefore Eq. (21) holds, although
Eq. (18) is modified. This applies for |δ|2, as CPT vio-
lation allows δ to be complex.
Even if a precise calculation of Γ12 is not possible or one

assigns a very conservative uncertainty to it, an upper
bound on y12 implies an upper bound on |δ|, which is
stronger than that in Eq. (13). For small values of y12,
as in the Bd system, this bound can be much stronger.

III. COMPARING DATA AND THEORY

We can compare the absolute value of Ab
SL measured

by DØ, with the result implied by the relation above. At
present Eq. (21) only provides an upper bound on |δ|, as
the uncertainties of Γ12 and ∆Γ allow the numerators for
both Bd and Bs to vanish. Denoting this upper bound
by δd,smax and using the weight factors from Eq. (2),

|Ab
SL| ≤ (1.188±0.044) δdmax+(0.812±0.044) δsmax. (22)

Since Eq. (21) only bounds |δ|, the bound on Ab
SL is

not sensitive to possible cancellations between Ad
SL and

As
SL (cf., the opposite signs of As,d

SL in the SM, although
|As

SL| ≪ |Ad
SL|). As ∆md,s are precisely known, we plot

the bound as a function of ∆Γd,s. If LHCb measures
As

SL −Ad
SL [22], then the above bound with modified co-

efficients apply for that measurement.
In Fig. 1 we set ∆Γd = 0, which gives the most con-

servative bound. The darker shaded region shows the

upper bound on Ab
SL using the 1σ ranges for |Γd,s

12 | in
the SM [23], 2|Γs

12| = (0.087 ± 0.021) ps−1 and 2|Γd
12| =

(2.74 ± 0.51) × 10−3 ps−1. The dashed [dotted] curve
shows the impact of using the 2σ region for Γd

12 [Γs
12],

and the lighter shaded region includes both 2σ regions.
The vertical boundaries of the shaded regions arise be-
cause |∆Γs| > 2 |Γs

12| is unphysical. A tension between
the Ab

SL measurement and the bound is visible, indepen-
dent of the discrepancy between the DØ result and the
global fit to the latest available experimental data [24].
We derived not an absolute bound in the fashion of

the unitarity bound but a relation between calculable
and measured quantities. It is thus worth clarifying the
relationship of our result to the stated 3.9 σ disagreement
of Ab

SL with the SM reported in [1].
The SM prediction of ASL uses the calculation of Γ12,

and |Γ12| also enters our bound; thus, the discrepan-
cies are correlated. Although the calculation of |Γ12|
and Im(Γ12) both rely on the same operator product ex-
pansion and perturbation theory, the existence of large
cancellations in Im(Γ12) may lead one to think that the
uncertainties could be larger in its SM calculation than
what is tractable in the behavior of its next-to-leading
order calculation [25, 26]. The sensitivity of Γ12 to new
physics is generally weaker than that of M12 (see [27, 28]
for other options). Thus, it is interesting to determine δ
from Eq. (21), besides its direct calculation.
Of course, independent of the DØ measurement ofAb

SL,
we can also compare the bound implied by our relation

0.00 0.05 0.10 0.15
0

2

4

6

8

10

12

DG s @ ps- 1
D

10
3
È
A

SLb
È

FIG. 1: Upper bounds on A
b
SL as a function of ∆Γs, setting

∆Γd = 0. The darker [lighter] shaded region is allowed using

the 1σ [2σ] range of the theory calculation of |Γd,s
12

|. The
pair of horizontal [vertical] lines show the 1σ range of the
measured |Ab

SL| from DØ [∆Γs from LHCb]. The other curves
are described in the text.

to the individual best bounds on the semileptonic asym-
metries in Eq. (3). To this end, in Fig. 2 we plot Ad

SL

vs. ∆Γd (and similarly for Bs) allowed by Eq. (21) and
the 1σ and 2σ ranges of the SM calculation of |Γ12| [23].
Here, there have been no discrepancies claimed between
the theory predictions and measurements, but our rela-
tion allows us to place a bound tighter than the current
experimental constraints which is more robust than the
purely theoretical SM calculation as outlined above.
Using ∆Γs from LHCb in Eq. (4), and neglecting ∆Γd,

we find the 2σ level bounds,

|Ad
SL| < 7.4× 10−3, |As

SL| < 4.2× 10−3. (23)

While this bound on As
SL may seem to disagree with

Fig. 2, note that in the plot the uncertainties of Γs
12 and

∆Γs are not combined. Propagating the uncertainties,
|Γs

12|
2 − (∆Γs)

2/4 is negative at the 1σ level, an unphys-
ical result, hence the 2σ bounds in Eq. (23). This bound
on As

SL is better than the current best bound in Eq. (3)
by more than a factor of 3, while that for Ad

SL is compa-
rable. (However, in the case of Bd this is driven primarily
by the uncertainty in the lifetime difference. If a non-zero
value of ∆Γd were observed, a better bound could be de-
rived.) It is worth emphasizing that this implication goes
in both directions, given that an observation of Ad

SL 6= 0
may happen before that of ∆Γd 6= 0. Due to Eq. (21),
as soon as one of the two is measured to be nonzero, the
other is constrained to be significantly smaller at worst
and given a definite prediction at best.

IV. CONCLUSIONS

We provided a physical derivation of Eq. (21) for neu-
tral meson oscillation parameters, especially relevant for
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FIG. 2: Left plot: the region allowed by Eq. (21) in the A
d
SL − ∆Γd plane. The SM calculation of |Γd,s

12
| at 1σ [2σ] gives the

darker [lighter] shaded region. Right plot: same for As
SL−∆Γs; the straight lines show the 1σ range of the LHCb result for ∆Γs.

the B0
d,s systems, which allows incorporating theoreti-

cal input on |Γ12| without any approximation, and with
or without CPT conservation. This input is typically
insensitive to the nature of NP and avoids the largest
uncertainties of the direct theoretical calculation of CP
violation in mixing. The application to the two neutral
B systems, taking into account the recent LHCb mea-
surement [6], leads to bounds on the semileptonic CP
asymmetries of both system. These bounds are in ten-
sion with the DØ measurement of Ab

SL, while providing
a bound on the individual asymmetries at comparable or
better levels than the current experimental bounds. Ad-
ditionally, once an unambiguous determination of ASL

or ∆Γ is made, we can use it to constrain the other ob-

servable. Refinements of the Ad,s
SL measurements are an

important part of the future B physics program [29, 30]
to search for new physics at both LHCb and the e+e−

B factories. Future bounds will in particular be helpful

to constrain the individual measurements of ASL against
the SM as well as consistency checks.

Acknowledgments

We thank Cliff Cheung for not entirely useless discus-
sions, Aneesh Manohar for raising the issue of CPT con-
servation, and Yuval Grossman and Yossi Nir for help-
ful conversations when Ref. [17] appeared. We thank
Doug Tuttle and Lynn Brantley for organizing the first
BCTP summit at Glenbrook, NV, where some of these
results were obtained. (Special thanks for the golf carts,
for inspiration.) This work was supported in part by
the Director, Office of Science, Office of High Energy
Physics of the U.S. Department of Energy under con-
tract DE-AC02-05CH11231. ST is supported by a DFG
Forschungsstipendium under contract no. TU350/1-1.

[1] V. M. Abazov et al. [DØ Collaboration], Phys. Rev.D84,
052007 (2011). [arXiv:1106.6308 [hep-ex]].

[2] S. Laplace, Z. Ligeti, Y. Nir, G. Perez, Phys. Rev. D65,
094040 (2002). [hep-ph/0202010].

[3] Z. Ligeti, M. Papucci, G. Perez, J. Zupan, Phys. Rev.
Lett. 105, 131601 (2010). [arXiv:1006.0432 [hep-ph]].

[4] D. Asner et al. [Heavy Flavor Averaging Group],
arXiv:1010.1589 [hep-ex]; and updates at http://www.

slac.stanford.edu/xorg/hfag/

[5] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D
82, 012003 (2010) [Erratum-ibid. D 83, 119901 (2011)]
[arXiv:0904.3907 [hep-ex]].

[6] LHCb Collaboration, CERN-LHCb-CONF-2012-002,
https://cdsweb.cern.ch/record/1423592.

[7] M. Dorigo, CDF Collaboration, Talk at Moriond QCD
2012, http://moriond.in2p3.fr/QCD/2012/qcd.html.

[8] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 85

(2012) 032006 [arXiv:1109.3166 [hep-ex]].
[9] A. Abulencia et al. [ CDF Collaboration ], Phys. Rev.

Lett. 97, 242003 (2006). [hep-ex/0609040].

[10] The LHCb Collaboration, LHCb-CONF-2011-050;
LHCb-CONF-2011-005.

[11] G. C. Branco, L. Lavoura, J. P. Silva, Int. Ser. Monogr.
Phys. 103, 1-536 (1999). See in particular Ch. 6 and 30.

[12] S. Bergmann, Y. Grossman, Z. Ligeti, Y. Nir and
A. A. Petrov, Phys. Lett. B 486, 418 (2000) [hep-
ph/0005181].

[13] J.S. Bell, J. Steinberger, “Weak interactions of kaons”, in
R. G. Moorhouse et al., Eds., Proceedings of the Oxford
Int. Conf. on Elementary Particles, Rutherford Labora-
tory, Chilton, England, 1965, p. 195.

[14] T. D. Lee, L. Wolfenstein, Phys. Rev. 138, B1490-B1496
(1965).

[15] M. Freytsis, Z. Ligeti, S. Turczyk, to appear.
[16] C. Berger, L. Sehgal, Phys. Rev. D76, 036003 (2007).

[arXiv:0704.1232 [hep-ph]].
[17] C. Berger, L. M. Sehgal, Phys. Rev. D83, 037901 (2011).

[arXiv:1007.2996 [hep-ph]].
[18] B. A. Dobrescu, P. J. Fox and A. Martin, Phys. Rev.

Lett. 105, 041801 (2010) [arXiv:1005.4238 [hep-ph]].



5

[19] M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz,
M. Pierini, V. Porretti and L. Silvestrini, Phys. Lett. B
655, 162 (2007) [hep-ph/0703204].

[20] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D 80, 076008
(2009) [arXiv:0907.3917 [hep-ph]].

[21] Y. Grossman, Y. Nir and G. Perez, Phys. Rev. Lett. 103,
071602 (2009) [arXiv:0904.0305 [hep-ph]].

[22] See, e.g., M. Calvi, Talk at FPCP 2011 (p. 29), http:
//physics.tau.ac.il/fpcp2011.

[23] A. Lenz and U. Nierste, arXiv:1102.4274 [hep-ph].
[24] A. Lenz et al., arXiv:1203.0238 [hep-ph].
[25] M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and

C. Tarantino, JHEP 0308, 031 (2003) [hep-ph/0308029].
[26] M. Beneke, G. Buchalla, A. Lenz and U. Nierste, Phys.

Lett. B 576, 173 (2003) [hep-ph/0307344].
[27] Y. Bai and A. E. Nelson, Phys. Rev. D 82, 114027 (2010)

[arXiv:1007.0596 [hep-ph]].
[28] C. Bobeth and U. Haisch, arXiv:1109.1826 [hep-ph].
[29] Z. Ligeti, M. Papucci, G. Perez, Phys. Rev. Lett. 97,

101801 (2006). [hep-ph/0604112].
[30] Y. Grossman, Z. Ligeti, Y. Nir, Prog. Theor. Phys. 122,

125-143 (2009). [arXiv:0904.4262 [hep-ph]].


