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Abstract

We propose an attractor mechanism which generates the “more minimal” super-
symmetric standard model from a broad class of supersymmetry breaking boundary
conditions. The hierarchies in the fermion masses and mixings are produced by the
same dynamics and a natural weak scale results from gaugino mediation. These features
arise from augmenting the standard model with a new SU(3) gauge group under which
only the third generation quarks are charged. The theory flows to a strongly interacting
fixed point which induces a negative anomalous dimension for the third generation
quarks and a positive anomalous dimension for the Higgs. As a result, a split-family
natural spectrum and the flavor hierarchies are dynamically generated.



1 Introduction and Summary

The stability of the electroweak scale and the hierarchical structure of the fermion masses
and mixing angles are two of the central mysteries of the Standard Model (SM). It is possible
that these puzzles are explained by the same underlying mechanism. One approach is to
supersymmetrize the SM and augment it with a new strongly interacting gauge theory.
Supersymmetry tames the quadratically divergent contributions to the Higgs mass while
the strong dynamics can yield a parametric suppression of the first and second generation
Yukawa couplings. Various realizations of this possibility have been proposed so far, including
single sector models [1], models of superconformal flavor [2, 3], warped extra-dimensional
realizations [4], and theories based on deconstruction [5].1

For some of these constructions, the dynamics that gives rise to the flavor textures also
produces an inverted squark hierarchy, where the lightest SM fermions have the heaviest
sfermion partners. This provides a microscopic realization of the “more minimal” supersym-
metric SM of [7], which was motivated by considerations of naturalness and flavor constraints.
The phenomenology of these models has been studied thoroughly in e.g. [8]. Furthermore,
the recent LHC bounds on first and second generation squark masses [9] together with
attempts to minimize fine tuning have reinvigorated interest in the phenomenology and
collider signatures of such “natural supersymmetry” spectra [10, 11].

In this work we will present a new model to explain the flavor hierarchies which simul-
taneously yields the natural supersymmetry spectrum and radiative electroweak symmetry
breaking (REWSB). This will be accomplished by adding a new strongly coupled conformal
sector to the minimal supersymmetric standard model (MSSM). We will show that starting
from rather generic supersymmetry breaking boundary conditions (with some assumptions on
certain approximate global symmetries) the infrared theory after escaping from the conformal
regime is the more minimal supersymmetric SM.

The MSSM fields are weakly coupled both in the UV and in the IR. The conformal
dynamics will generate order one negative anomalous dimensions for the third generation
fields once the theory becomes strongly coupled.2 Negative anomalous dimensions are only
possible if the third generation is charged under this new gauge group — the unitarity bound
on dimensions only applies to gauge invariant operators. The third generation Yukawa
couplings are marginal operators in the conformal field theory (CFT). These marginal
Yukawa couplings will induce a large positive anomalous dimension for the Higgs field. Hence,
the remaining Yukawas become irrelevant deformations. It will be shown that this structure
can lead to viable flavor hierarchies. Additionally, the strong dynamics will suppress soft
masses for the third generation squarks and Higgs fields. Below the exit scale, these will be
regenerated by gaugino mediation [13]. The model acts as an attractor for the more minimal
supersymmetry spectrum and REWSB.

1For some other models which connect the supersymmetry breaking spectrum and flavor see [6].
2This differs from previously studied constructions, which relied on large positive anomalous dimensions

for the first two SM generations. This can result from compositeness or localization in the IR region of a
Randall-Sundrum throat.
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The goal of this work is to analyze the simplest realization of this mechanism and its
main dynamical consequences. The gauge group is SU(3)CFT × SU(3)X × SU(2)W × U(1)Y
where SU(3)CFT will flow to a strongly coupled fixed point, SU(3)X is weakly coupled, and
SU(2)W × U(1)Y are as in the MSSM. The third generation quark superfields transform
under SU(3)CFT. The first and second generations transform under SU(3)X . The SU(3)
groups are connected by bifundamental ‘link’ fields. With this matter content, SU(3)CFT is
in the conformal window [14]. The link fields eventually acquire a nonzero expectation value
causing an exit from the conformal regime; this also breaks SU(3)CFT×SU(3)X → SU(3)C ,
giving rise the visible color interactions.3 This structure is summarized in Fig. 1.

SU(3)X SU(3)CFT

⌃, ⌃

Q1, u1, d1 Q2, u2, d2 Q3, u3, d3

Figure 1: The model presented here is given by an SU(3)X × SU(3)CFT quiver gauge theory.
The node SU(3)CFT flows to an interacting fixed point and provides the necessary dynamics for
generating flavor and an attractor mechanism for natural supersymmetry. SU(3)X is IR free. The
bifundamental link fields Σ and Σ break the group to the diagonal visible SU(3)C , providing an
exit from the conformal regime.

The rest of this paper is organized as follows. §2 describes the basic mechanism and its
implications for the spectrum of soft masses and the flavor hierarchies. In §3 we discuss
the low energy phenomenology, including some general remarks about the spectrum and the
Higgs sector. We also provide some concrete example spectra. Our conclusions and future
directions are presented in §4.

2 The Model

We begin by describing the model of Fig. 1. For simplicity we will ignore the leptons, which
do not affect our discussion other than to ensure anomaly cancellation. The matter content
and charge assignments are given in Table 1. The third generation quarks are charged under
SU(3)CFT, while the first two generations are charged under SU(3)X . The bi-fundamental
link fields are denoted by Σ and Σ. The field A is an adjoint plus a singlet of SU(3)X . The

3The super top color model of [15] utilizes a similar group structure and matter content. However,
unlike models of top color (see [16] for a review), the mechanism studied in this work does not utilize top
condensation to break electroweak symmetry.
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SU(3)CFT SU(3)X SU(2)W U(1)Y

Q3 1 1/6

d3 1 1 1/3
u3 1 1 −2/3
Hu 1 1 1/2
Hd 1 1 −1/2
Σ 1 0
Σ 1 0
A 1 1 + adj 1 0
Q2,1 1 1/6

d2,1 1 1 1/3
u2,1 1 1 −2/3

Table 1: The particle content and charge assignments for the MSSM quark and CFT sectors. The
subscripts denote generation assignments and the leptons are charged as in the MSSM. The visible
color gauge group is a diagonal subgroup of SU(3)CFT × SU(3)X .

superpotential will be chosen so that the F -term for A forces 〈Σ〉 = 〈Σ〉 6= 0. This will cause
an escape from the conformal regime while also giving masses to the bi-fundamentals. The
superpotential contains the following relevant terms:

W ⊃ Q3Hu u3 +Q3Hd d3 + ΣAΣ +W
��U(1) . (1)

Contractions over gauge indices are implicit. W
��U(1) will be instrumental in breaking some

of the abelian symmetries which can spoil the desired low energy spectrum. We will discuss
this term in detail below.

With this matter content, SU(3)CFT has five flavors and flows to a strongly interacting
superconformal fixed point in the IR. The crossover scale below which this theory becomes
strong is denoted by ΛCFT. The remaining gauge groups are IR free and act as spectators to
this strong dynamics. A crucial property of the model is that the third generation Yukawa
couplings appear as relevant interactions in the CFT. The Higgs fields will then also be part
of the CFT — they will receive a positive anomalous dimension. These couplings, as well as
the rest of the interactions in Eq. (1), will naturally flow to order one values below ΛCFT. In
contrast, the remaining Yukawas will arise as irrelevant deformations, resulting in a flavor
hierarchy between the third and first two generations.

If we do not add extra fields, this matter content spoils gauge coupling unification.
However, there are no issues with Landau poles up to the GUT scale and one could imagine
UV completing the model using full SU(5) representations. We will come back to this point
briefly in §4, while here we continue to focus on this minimal realization.

The energy scales in our model are as follows, see Fig. 2. At the messenger scale M , soft
supersymmetry breaking operators are generated. The supersymmetry breaking mechanism
and mediation can be arbitrary, up to certain assumptions on global symmetries that we
describe below. The scale M could be above or below ΛCFT, but the physical soft masses
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should be smaller than ΛCFT so that the superconformal dynamics dominate. At a scale
v < ΛCFT we exit the CFT regime. This is done supersymmetrically by adding

W ⊃ −v2 TrA (2)

to Eq. (1). This new scale can be generated dynamically as explained in [17]. The link fields
acquire an expectation value 〈ΣΣ〉 = v2, which breaks SU(3)CFT×SU(3)X → SU(3)C . The
visible gauge coupling becomes

1

g2
C

=
1

g2
X

+
1

g2
CFT

, (3)

which is dominated by g2
X ' g2

C . We assume that the exit from the conformal regime happens
quickly, such that at energy scales E < v a perturbative description is valid. As we show
below, the weak scale mW < v is radiatively generated. We note that, in contrast with
composite models, here the MSSM fields are weakly coupled both in the UV (above ΛCFT)
and in the IR (below the exit scale).

should be smaller than ⇤CFT so that the superconformal dynamics dominate. At a scale
v < ⇤CFT we exit the CFT regime. This is done supersymmetrically by adding

W � �v2 TrA (2)

to Eq. (1). This new scale can be generated dynamically as explained in [17]. The link fields
acquire an expectation value h⌃⌃i = v2, which breaks SU(3)CFT ⇥SU(3)X ! SU(3)C . The
visible gauge coupling becomes

1

g2
C

=
1

g2
X

+
1

g2
CFT

, (3)

which is dominated by g2
X ' g2

C . We assume that the exit from the conformal regime happens
quickly, such that at energy scales E < v a perturbative description is valid. As we show
below, the weak scale mW < v is radiatively generated. We note that, in contrast with
composite models, here the MSSM fields are weakly coupled both in the UV (above ⇤CFT)
and in the IR (below the exit scale).

M (the messenger scale)

⇤CFT (cross-over to the conformal regime)

v (exit the conformal regime)

mW (the weak scale)

Figure 2: The relevant scales for our model.

2.1 An Attractor for Natural Supersymmetry

In this section we will analyze the conformal regime and how it a↵ects the soft masses. For
more details, see [18] and the references therein. We will first neglect the e↵ects from the
weakly interacting gauge groups and the first two generations. This corresponds to setting
gSM ! 0 and ignoring mixings from Yukawa couplings. We will then show that such e↵ects
amount to small finite corrections.

Our main dynamical assumption is that the fixed point is stable, which means that small
perturbations of the couplings away from their fixed point value are irrelevant. Equivalently,
the matrix @�i/@yj must be positive definite, where yi are the couplings of the theory and
�i are the corresponding beta functions. With this assumption, all the physical couplings
flow to their fixed point values and their higher ✓ components flow to zero. This can be
seen by promoting the couplings to background superfields. One implication is that all soft
supersymmetry breaking terms associated with relevant couplings are highly suppressed by
the conformal dynamics.4

4For a model which uses this mechanism to suppress the Higgs soft mass, see [19].
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2.1 An Attractor for Natural Supersymmetry

In this section we will analyze the conformal regime and how it affects the soft masses. For
more details, see [18] and the references therein. We will first neglect the effects from the
weakly interacting gauge groups and the first two generations. This corresponds to setting
gSM → 0 and ignoring mixings from Yukawa couplings. We will then show that such effects
amount to small finite corrections.

Our main dynamical assumption is that the fixed point is stable, which means that small
perturbations of the couplings away from their fixed point value are irrelevant. Equivalently,
the matrix ∂βi/∂yj must be positive definite, where yi are the couplings of the theory and
βi are the corresponding beta functions. With this assumption, all the physical couplings
flow to their fixed point values and their higher θ components flow to zero. This can be
seen by promoting the couplings to background superfields. One implication is that all soft
supersymmetry breaking terms associated with relevant couplings are highly suppressed by
the conformal dynamics.4

4For a model which uses this mechanism to suppress the Higgs soft mass, see [19].
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To understand the consequences for our model, consider a relevant superpotential inter-
action

W ⊃ λ
∏
i

Φni
i , (4)

for superfields Φi and positive integers ni. The physical coupling is

λphys = λ
∏
i

(
Zni

Φi

)−1/2
(5)

where the ZΦi are the wave function renormalizations for the superfields Φi and encode the
soft masses as their θ4 components. As λphys flows to its fixed point value, its θ4 component
flows to zero. Equivalently, this implies that the combination of soft masses∑

i

ni m̃
2
i (6)

flows to zero at the fixed point, where m̃i is the soft mass for Φi. Since the θ2 component
also flows to zero, the same conclusion holds for the a-terms.

Similarly, promoting the gauge coupling to a superfield implies that the CFT gaugino
mass and ∑

r

dim(r)Tr m̃
2
r (7)

are also suppressed by the CFT dynamics. Here the field Φr has index Tr under the gauge
group, e.g. T (�) = 1/2, and dim(r) is the dimension of Φr for a fixed gauge index.

As we mentioned above, we assume that the CFT is IR attractive, which means that the
eigenvalues λi of the matrix ∂βi/gj are positive and, generically at a strongly coupled fixed
point, order one. The previous soft parameters are then suppressed by a power-law ( µ

ΛCFT
)λi ,

where µ is the RG scale. This effect can be seen explicitly in weakly coupled examples such
as the Wilson-Fisher fixed point. Below we will take into account the small contributions
from the perturbative SM couplings.

On the other hand, due to the non-renormalization of conserved currents, combinations
of soft masses proportional to conserved U(1) symmetries,∑

i

dim(i) qi m̃
2
i (8)

are not renormalized by the strong dynamics. Here qi denotes the U(1) charge. This effect
will be an important constraint on the viability of obtaining the more minimal supersym-
metric SM.

Our goal is to use the conformal dynamics to suppress the soft masses for the third gen-
eration squarks and Higgs fields, which is essentially the idea of conformal sequestering [20].
We must explicitly break some of the non-anomalous global U(1) symmetries. Otherwise,
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Eq. (8) shows that they would lead to unsuppressed tachyonic soft masses. We accomplish
this with the term W

��U(1) in the superpotential of Eq. (1). As a concrete example, let us
investigate a specific choice:

W
��U(1) = (Q3 u3)(Q3 d3) . (9)

In this theory, the superconformal R-charges are uniquely determined in terms of symmetries
and anomaly cancellation. The anomaly-free abelian symmetries are given in Table 2.

U(1)1 U(1)2 U(1)3 U(1)R

Q3 1 0 0 1/2
u3 −1 −1 0 1/2

d3 −1 1 0 1/2
Hu 0 1 0 1
Hd 0 −1 0 1
Σ 0 0 1 1/3
Σ 0 0 −1 1/3
A 0 0 0 4/3

Table 2: The global anomaly free U(1) symmetries for the model given by Eq. (1) with the
U(1) breaking superpotential in Eq. (9). The charge assignments for the gauged symmetries
are given in Table 1.

One can verify self-consistently that all terms in the superpotential in Eq. (1) have R-
charge 2 at the fixed point. The remaining first and second generation fields decouple from
the strong dynamics; they are neutral under the non-R symmetries and are (approximately)
free fields.

It is useful to explain in more detail how the flow to this fixed point proceeds, starting
from the UV free theory. In the UV, the cubic terms in the superpotential are classically
marginal, but the quartic symmetry breaking term is classically irrelevant. In terms of the
canonical UV fields, W

��U(1) = 1
M∗

(Q3 u3)(Q3 d3), where M∗ is some large mass scale. First,
consider the limit M∗ →∞. The resulting theory is Supersymmetric QCD with extra singlets
and cubic superpotential deformations (SSQCD). Below the strong coupling scale for this
model ΛSSQCD, the theory flows to a superconformal fixed point. This CFT can be studied
using a-maximization [21]; we find that the superconformal R-charges of Q3 and (ū3, d̄3) are
2/3×

√
2/7. The cubic interactions are then relevant perturbations of the free fixed point,

driving the theory to the nontrivial SSQCD fixed point.

Next we can add the quartic superpotential, taking M∗/ΛSSQCD large but finite. The
theory first flows close to the SSQCD fixed point that we just described. According to the
previous R-charges, in this regime the quartic operator (Q3 u3)(Q3 d3) is relevant. So for any
nonzero value of M∗/ΛSSQCD it will drive the theory away from the SSQCD fixed point. The
crossover scale ΛCFT at which such effects become important is of order Λ3−4∆

CFT ∼ Λ4−4∆
SSQCD/M∗.

Below this scale the fixed point value of the quartic coupling is order one irrespective of the
initial M∗, and we recover the CFT with the R-charges given in Table 2. We note that for
larger M∗ it takes longer to flow to this fixed point; however, since the fixed point values are
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always order one, the U(1) symmetry breaking term will suppress the unwanted soft masses
as long as m̃ < ΛCFT.5

Having analyzed the RG evolution towards our fixed point, let us return to the behavior
of the soft parameters. The only combinations of soft masses that are not suppressed as the
fixed point is approached are

m̃2
Σ − m̃2

Σ

2 m̃2
Q3
− m̃2

u3
− m̃2

d3

m̃2
Hu − m̃2

Hd
+ m̃2

d3
− m̃2

u3
. (10)

This implies that for arbitrary UV boundary conditions the model does not fully sequester
soft masses. However, if the supersymmetry breaking mechanism preserves approximate
charge conjugation and custodial symmetries, then the contributions from Eq. (10) are
negligible at the messenger scale and are not generated by the strong dynamics. This is
the case in minimal gauge mediation [22], where at the messenger scale the first difference
in Eq. (10) vanishes identically, while the linear combinations in the second and third lines
are much smaller than each of their respective terms. These combinations can also be
suppressed by going beyond minimal gauge mediation or in gravity mediation by imposing
discrete symmetries.

As we noted before, this analysis neglects effects from the weakly interacting sector of
the theory. The first two generations and the SM gauginos continuously feed supersymmetry
breaking contributions to the CFT fields, giving rise to “driving terms” in the beta functions
for the CFT superfield couplings. However, these supersymmetry breaking effects are much
smaller than the soft masses of the first two generation sfermions and gauginos, since the CFT
couples to such fields only through irrelevant interactions. Specifically, they are suppressed
by loop factors and by SM gauge couplings or Yukawa interactions. These corrections will
be taken into account in §3.

Hence, under the assumption that the supersymmetry breaking mechanism (approxi-
mately) respects the above symmetries, the strong conformal dynamics fully suppresses the
soft masses of the third generation quarks and Higgs fields, up to small corrections from the
weakly coupled sector. It would be interesting to modify the model to accomplish a complete
sequestering without having to assume these symmetries, e.g. by adding new flavors and
turning on different deformations. Some of these possibilities will be discussed briefly in §4.

Finally, at the scale v we exit the conformal regime. This happens in an approximately
supersymmetric way and does not lead to appreciable finite corrections for the soft param-
eters. Therefore, the theory at energies below v is the weakly coupled MSSM with the soft
masses for the third generation fields and Higgses suppressed with respect to the first two
generations and the gauginos. The third generation squark masses are then regenerated by
gaugino mediation [13], which in turn can drive the up-type Higgs soft mass squared negative.
Starting from generic supersymmetry breaking mechanisms, the CFT acts an an attractor

5This analysis does not conflict with the results of [12] since (Q3 u3)(Q3 d3) is not a chiral primary operator
at the fixed point with superconformal R-charges given in Table 2. We thank Dan Green for discussions on
this point.
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for realizing the natural supersymmetry spectrum of the more minimal supersymmetric SM.
The resulting phenomenology will be studied in §3.

2.2 Generating the Flavor Hierarchies

Starting from the pioneering work of Nelson and Strassler [2], it has been understood how
CFT dynamics can generate the flavor hierarchies at low energies from arbitrary order one
Yukawas in the UV. We will explain how this works in the context of our construction. The
model presented here differs from previous models of compositeness/superconformal flavor
since the third generation superfields have negative anomalous dimensions.

Above the dynamical scale ΛCFT, the renormalizable Yukawa couplings are

W ⊃ Y u
ij QiHu uj + Y d

ij QiHd dj + Y u
33Q3Hu u3 + Y d

33Q3Hd d3 (11)

where i, j = 1, 2 and all the coefficients are taken to be order one. Renormalizable mixing
terms between the third generation and the first two are forbidden by gauge invariance.
They will be generated by irrelevant operators as we explain below.

The third generation Yukawas are relevant in the CFT regime. Below ΛCFT they flow
to order one fixed values. In contrast, the first two generation Yukawas become irrelevant
because the Higgs fields acquire positive anomalous dimension. For energies v < E < ΛCFT

we find6

Y u
ij (E) =

(
E

ΛCFT

) γQi
+γuj+γHu

2

Y u
ij (ΛCFT) , (12)

and a similar expression for Y d. Defining the ratio between the exit scale and dynamical
scale

ε ≡ v

ΛCFT

, (13)

the suppression in the first two generation Yukawas at the exit scale becomes

Yij(v) = ε
γH
2 Yij(ΛCFT)� Y33(v) . (14)

We have neglected the perturbative anomalous dimensions for the first two generations. This
dynamically generates a hierarchy between the first/second and the third generation Yukawa
couplings.

Next we consider the off-diagonal Yukawa interactions between the third and first/second
generations. The lowest dimension operators allowed by gauge invariance are of the form

W ⊃ 1

Λ∗
ΣQ3Hu u1,2 +

1

Λ∗
Q1,2Hu Σu3 + . . . , (15)

6The anomalous dimension is defined as ∆ = 1 + γ/2. For chiral primary operators it is related to the
superconformal R-charge by γ = 3R− 2.
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where Λ∗ is the scale at which these operators are generated. These lead to off-diagonal
Yukawas after setting 〈ΣΣ〉 = v2 at the exit scale. The RG evolution between ΛCFT and v
yields

Y u
i3(v) =

v

Λ∗
ε
γHu

+γQ3
+γ

Σ
2 , Y u

3i(v) =
v

Λ∗
ε
γHu

+γu3+γΣ
2 . (16)

Note that the theory near the UV free fixed point contains two types of classically
irrelevant operators: the U(1) symmetry breaking term Eq. (9) and the interactions Eq. (15).
However, their IR fate is very different. As we showed before, the interaction W

��U(1) becomes
relevant in the IR, driving the theory to a strongly coupled fixed point (where it becomes
order one), while Eq. (15) is irrelevant along the whole flow towards the fixed point. Such
irrelevant perturbations do not modify the RG flow or the suppression of soft parameters.
They become marginal only after the exit of the conformal regime.

Combining these results, we obtain the following the Yukawa textures at v:

Y u ∼

 ε
γHu

2 ε
γHu

2 ξQ ε
γHu

2

ε
γHu

2 ε
γHu

2 ξQ ε
γHu

2

ξu ε
γHu

2 ξu ε
γHu

2 1

 , (17)

with ε� 1 defined in Eq. (13) and

ξQ ≡
v

Λ∗
ε
γ
Σ

+γQ3
2 , ξu ≡

v

Λ∗
ε
γΣ+γū3

2 . (18)

A similar expression holds for Y d. Choosing Λ∗ below the dynamical scale of the CFT and
requiring negative γΣ + γQ3 and γΣ + γū3 (as is the case in our model) gives ξQ,u & 1.

For the model with the superpotential given in Eq. (9), the anomalous dimensions that
determine the Yukawa couplings are γHu = γHd = 1 and γQ3 + γΣ = γū3 + γΣ = −3/2. The
flavor hierarchies between the third and second generations can be generated when

v

ΛCFT

∼ 10−4 ,
Λ∗

ΛCFT

∼ 10−1 − 10−2 . (19)

This model does not explain why the first generation Yukawa is smaller than the second
generation one. However, this additional small Yukawa could arise by an accidental degen-
eracy of Eq. (17), or by approximate flavor symmetries as in [23]. We have checked that by
scanning over order one coefficients, we can reproduce the quark spectrum and the CKM
matrix to a good approximation.

This ends the general analysis of our mechanism. The rest of the work is devoted to a
study of its phenomenological consequences.

3 Low Energy Phenomenology

Having explained the main features of our mechanism, we will now analyze the properties of
the spectrum and Higgs sector, and the parameter ranges that lead to a realistic low energy
phenomenology.
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3.1 General Properties of the Spectrum

In this section we discuss the features of the low energy spectrum in models that use the
dynamics described in §2. Supersymmetry breaking is communicated to the MSSM at the
messenger scale M , where the operators

c2
f̃

∫
d4θ

X†X

M2
Φ†SMΦSM , cg̃

∫
d2θ

X

M
WαWα , . . . (20)

are generated, where X is a supersymmetry breaking spurion with 〈X〉 ⊃ θ2F , ΦSM is an
MSSM matter superfield,Wα is the field strength for an MSSM gauge group, and the factors
of c are model dependent coefficients. These terms give sfermion and gaugino masses which
are determined by the F -term of X. Supersymmetry breaking is external to the dynamics
described in §2, and we do not constrain the soft UV boundary values, up to the assumptions
on approximate symmetries required to suppress the differences given in Eq. (10).

Typically in concrete models of supersymmetry breaking, the sfermion masses at the
messenger scale are comparable for the three generations. On the other hand, sfermion and
gaugino masses need not arise at the same order in F/M . This happens in many known
cases. For instance, an approximate R-symmetry or gaugino screening (which occurs for a
wide class of gauge mediated models [24]) can lead to subleading gaugino masses. We will
assume that gauginos are around the TeV scale. In principle the sfermions can be much
heavier at the messenger scale, but we do require that

m̃f ∼ cf̃
F

M
� ΛCFT (21)

so that the conformal dynamics will be relatively unperturbed.

Generic sfermion masses will lead to flavor changing neutral currents (FCNCs). In our
setup, flavor problems can be somewhat alleviated by having heavy enough sfermions, while
also imposing some degree of degeneracy between the first two generations.7 In this case,
m̃f1,2 & O(10 TeV) avoids dangerous FCNCs. On the other hand, there is a limit on how
heavy the first two generations can be so that the third generation sfermion masses do
not become tachyonic [25]. To account for this constraint, we include the dominant 2-loop
contributions from the heavy states in the analysis of §3.3. It would also be interesting to
study models where the CFT dynamics alleviates such tachyonic contributions, allowing a
more complete decoupling of the first two generation sfermions.

Once we enter the conformal regime, the soft masses for the third generation sfermions
and Higgs fields are renormalized by the strong dynamics as described in §2, while the first
two generation sfermions and gauginos are not appreciably modified. When evaluating the
running of the soft parameters in the conformal regime we must consider that gauginos and
first/second generation fields are continuously feeding supersymmetry breaking contributions
into the third generation and Higgs fields [18]. For most of the viable parameter space, the
dominant contribution comes from the gauginos, leading to finite contributions

m̃2
CFT ∼

g2
X

16 π2
|M3|2 (22)

7This is satisfied automatically if the mediation mechanism is flavor-blind.
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where M3 is the MSSM gluino mass and gX is the gauge coupling of the weakly interacting
SU(3)X .

After escaping the conformal regime, we find a soft spectrum with m̃1,2 ∼ O(few TeV),
M3 ∼ O(1 TeV), and small masses for the third generation squarks and Higgs fields. The
masses for the light fields are then predominantly regenerated by gaugino mediation [13]
between v and the electroweak scale. The gauginos drive the stop mass to positive values.
For v & 50 TeV, this makes the up-type Higgs tachyonic and triggers electroweak symmetry
breaking. The RG evolution will be studied explicitly below.

3.2 Comments on the Higgs Sector

Next we discuss the interplay between the MSSM Higgs sector and our model. First we
consider the supersymmetric Higgs mass µ and the bi-linear supersymmetry breaking Higgs
mass bµ. Our model contains a solution to the µ problem via the irrelevant interaction

W ⊃ 1

Λµ

Σ ΣHuHd . (23)

(The tree level µ term W ⊃ HuHd can be forbidden by symmetries.) The operator in
Eq. (23) can be generated by the same mechanism that produces the off-diagonal Yukawas
in Eq. (15). This is another interesting connection between flavor textures and the Higgs
sector. Assuming this occurs, Λµ ∼ Λ∗ and no new scale is needed.8 Taking into account
the CFT suppression, the µ term at the exit scale becomes

µ =

(
v

Λ∗
εγH+γΣ

)
v . (24)

In this approach, bµ is zero at v and is generated radiatively as we run down to the weak
scale. In the leading log approximation,

bµ ' −
1

16π2
µ

(
6 g2

WM2 +
6

5
g2
YM1

)
log

(
v

mW

)
, (25)

where M1 is the bino mass and M2 is the wino mass. This solution to µ and bµ can lead to
REWSB.

For our model, γH + γΣ = 0. Requiring µ ∼ 100 GeV and using the approximate values
in Eq. (19),

v ∼ 100 TeV, Λ∗ ∼ 104 − 105 TeV, and ΛCFT ∼ 106 TeV. (26)

While this is an attractive solution to the µ problem, when coupling our mechanism to a
specific supersymmetry breaking model there could be additional dynamics that explains
µ/bµ. In this case, it is not necessary to introduce Eq. (23), and the scales Eq. (26) could be
different.

8One can also imagine a different discrete symmetry such that Σ3HuHd is the lowest dimension operator
which could generate an effective µ term.
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We now discuss the physical Higgs mass. Below the exit scale, the gluino mass will drive
the stop mass positive, which in turn contributes negatively to m̃2

Hu
. As long as the bino

and wino masses are not too large, this will trigger electroweak symmetry breaking. Models
with unified gauginos provide an example of successful REWSB. The down-type Higgs soft
mass will be generated though a combination of competing effects from the sbottom and the
heavy first/second generations (which drive it negative), and the bino and wino (which drive
it positive).

Since the mechanism described in this work yields light stops and negligible a-terms,
there is tension with a physical Higgs mass of order 125 GeV, as currently hinted at by the
LHC [26]. Thus, a realistic model must include an additional source to raise the physical
Higgs mass. In the simplest version of our construction, an NMSSM type extension does not
solve this problem because the CFT makes the interaction W ⊃ S HuHd (with S the extra
singlet in the NMSSM) irrelevant. This leads to a negligible increase in the physical Higgs
mass. One option beyond singlet extensions would be to add “non-decoupling D-terms” [27]
below the exit scale. While we do not attempt to embed this or other mechanisms into our
model, we see no fundamental obstruction. The validity of our conclusions require that this
additional module does not lead to appreciable shifts for any of the soft masses.

3.3 An Example Spectrum

In order to perform a concrete analysis, we will work in the context of a model with unified
gaugino masses. We will also assume that the mediation of supersymmetry breaking respects
custodial symmetry and a “charge conjugation” symmetry between Q and u, d, i.e., m̃2

Q3
=

m̃2
u3

= m̃2
d3

. For example, both of these assumptions are well approximated by models
of minimal gauge mediation. The following analysis demonstrates in a concrete setup the
viability of the mechanism for splitting the third generation from the first and second. The
techniques presented here can be applied to a wide class of supersymmetry breaking scenarios.

Given this framework, the spectrum is determined by choosing a gluino mass and solving
the RG equations with the boundary condition at the scale v that the third generation and
Higgs soft masses are given byEq. (22). While there is an incalculable order one coefficient,
we find that such effects are small in the regime of interest. If we also assume the solution
to the µ problem proposed in §3.2, the exit scale is fixed at v ∼ O(100) TeV. The model is
then very predictive: all we need to specify are the messenger scale, gaugino and first/second
generation masses.

As an example, we find the viable spectrum presented in Table 3, with first/second
generation sfermion masses chosen to be 5 TeV. We have assumed an additional contribution
to the Higgs quartic from a coupling gnew so that

m2
Z =

g2
Z

2

(
〈Hu〉2 + 〈Hd〉2

)
−→ Ξ2 ≡ g2

Z + g2
new

2

(
〈Hu〉2 + 〈Hd〉2

)
. (27)

in all tree-level MSSM expressions for electroweak symmetry breaking and the Higgs sector.
In our numerical analysis below, we will take Ξ ' 150 GeV. As discussed in §3.2, this could
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in principle arise from a non-decoupling D-term — we are agnostic about its source and find
that this leads to a small change for all the parameters except for the physical value of the
CP even Higgs masses. This yields a Higgs mass of 105 GeV at tree-level which (given the
stop masses in Table 3) will lead to a mass consistent with 125 GeV once loop corrections
are taken into account. This point is also consistent with the relevant experimental bounds
considered in §3.4 below. This demonstrates the viability of our mechanism.

v M3 M2 M1

350 TeV 2.5 TeV 1.0 TeV 530 GeV

m̃2
3 m̃2

1,2 m̃2
Hu

m̃2
Hd

(1.2 TeV)2 (5 TeV)2 −(220 GeV)2 (300 GeV)2

µ bµ MA tan β

220 GeV - 0.030 GeV2 135 GeV 4.2

Table 3: An example set of consistent parameters with the solution to the µ problem given in
Eq. (24). We have assumed gaugino mass unification and to good approximation m̃2

Qi
= m̃2

ui =

m̃2
di

= m̃2
i at low energies. We find that the tree-level value of the Higgs mass is ' 105 GeV which

is consistent with 125 GeV when loop corrections are taken into account.

3.4 Exploring the Parameter Space

In this subsection we will briefly explore the possible range of predictions for the soft mass
spectrum. In order to do this we will relax the relationship between the µ term and v given
in Eq. (24). Noting that in our concrete model the coupling W ⊃ HuHd is exactly marginal
at the fixed point, one can in principle generate µ and bµ using an unrelated mechanism at
scales above ΛCFT. We can thus take v and tan β as free parameters and explore the resultant
phenomenology. In Figure 3 we have plotted the low energy values of m̃2

Q3
' m̃2

u3
' m̃2

d3

[black, solid] , mA (with tan β = 2) [red, dashed], mA (with tan β = 10) [orange, dot-dashed]
for two choices of v as a function of the gluino mass. The mass of the A is the only parameter
with a strong dependence on tan β. As in §3.3, we assume that supersymmetry breaking
respects m̃2

Q3
= m̃2

u3
= m̃2

d3
to a good approximation.

In order to generate this plot, we use the RG equations for the MSSM to flow from v to
the weak scale including the leading 2-loop contributions from the first and second generation
sparticles which we fix at 5 TeV. It is this choice which causes the third generation squarks to
become tachyonic for small gluino masses. This is the excluded region plotted in opaque grey
in Figure 3. The opaque blue region is excluded due to a lack of REWSB (these conditions
are unchanged from the MSSM). The light translucent green region is excluded due to the
LEP bound on the A mass9 [28]. This constraint is cut-off by the kinematic reach of LEP

9This exclusion is highly dependent on tanβ. Furthermore, one could imagine a model where Hd is not
a part of the CFT. It would have a large mass and the model would generically be in the decoupling limit.
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Figure 3: Low energy spectrum for a model with unified gaugino masses, for v = 103 TeV (left) and
v = 106 TeV (right). The curves represent m̃Q3 ' m̃u3 ' m̃d3 [black, solid], mA (with tanβ = 2)
[red, dashed], mA (with tanβ = 10) [orange, dot-dashed]. (Only mA has a strong dependence on
tanβ.) The first/second generation squark masses are at 5 TeV. The opaque grey region is excluded
due to tachyonic third generation squarks. The opaque blue region is excluded by requiring radiative
electroweak symmetry breaking. The light translucent green region is excluded due to the LEP
bound on the A mass. Both of these regions are plotted for the tanβ = 2 case. We fix Ξ = 150 GeV
and for simplicity do not attempt the model dependent task of reproducing the Higgs mass for all
points in this plot.

for the process e+e− → hA. For mh = 125 GeV (115 GeV) this implies that mA & 90 GeV
(mA & 100 GeV). As a conservative estimate, we impose mA > 100 GeV in Fig. 3. We have
not included the bino, wino, and first/second generation soft masses in Fig. 3 since they are
unaffected by our mechanism up to small effects due to off-diagonal Yukawa couplings and
2-loop diagrams.

The bounds for the tan β = 10 case are M3 > 0.85 (0.92) TeV to avoid having tachyonic
squarks, M3 > 1.2 (1.1) TeV for REWSB and M3 > 2.1 (1.9) TeV for the A mass, given
v = 103 (106) TeV. Note that the LHC also places strong bounds on mA from searches for
di-tau resonances [29]. In fact, the LHC excludes the range 120 GeV . mA . 220 GeV for
tan β = 10 in the context of the MSSM (with Ξ = mZ). We do not show these constraints
in Fig. 3 since the excluded regions are for the tan β = 2 example.

Recall that achieving a Higgs mass of 125 GeV requires physics beyond the simple model
proposed here. Hence, we will only make a few comments about the mass of the Higgs. First,
we note that A is light in the region of parameter space with the lightest squarks and gluino,
which can have a non-trivial impact on the mass and couplings of the h. In the pure MSSM,
this manifests as a dependence on both tan β and the Higgs mixing angle α for the Higgs
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couplings (for a review, see [30]). More generally, the dependence of the Higgs couplings on
mA is model dependent. It would be interesting to develop a realistic model for the Higgs
sector based on our general mechanism, where this and related questions could be addressed
in detail.

In generating Fig. 3, we took Ξ = 150 GeV, see Eq. (27); we find only mild sensitivity
to the choice of Ξ. When mA < Ξ, mh ' mA cos(2 β), independent of Ξ. For the choice
tan β = 10, the one-loop corrections from the stops are approximately of the right size to
generate a Higgs mass of 125 GeV in the allowed window 100 GeV . mA . 120 GeV. For
larger values of mA, the tree-level contribution to the Higgs boson mass would be set by
Ξ, which could be carefully chosen to reproduce the desired result. Alternatively, one could
attempt to alter the Higgs quartic with a different mechanism than the one captured by our
parameter Ξ.

Since we have a splitting between the first/second and third generation squarks, we
must worry about FCNC effects induced by rotating the Yukawa matrices of Eq. (17) to the
physical basis. To leading order in ε, the relevant 1-3 and 2-3 mixing is given by δi3 ∼ εγH/2ξ,
where δij ≡ m̃2

ij/max(m̃2
ii, m̃

2
jj). Assuming some degree of degeneracy between the first and

second generations, negligible a-terms, and an absence of CP violating phases (as in minimal
gauge mediation), the strongest flavor bound is from

(
δd13

)
LL=RR

. 5× 10−3 [31]. There are
also potential constraints from b → s γ and Bs → µ+µ− which are sensitive to model
dependent choices, such as details of the chargino sector. Overall, we find no impediment to
accommodating these constraints in our model.

Finally, let us briefly discuss the contributions to fine tuning that result from our mech-
anism. The problem of naturalness is related to the question of curvature in the symmetry
breaking direction — it is a one-dimensional problem for a Higgs field H as in the standard
model with a potential

V = m2
H |H|2 + λ|H|4. (28)

When 〈H〉 6= 0, the physical Higgs mass squared m2
h = −2m2

H . One simple measure of fine
tuning, advocated in [32, 11], is then

∆−1 ≡ −2
δm2

H

m2
h

= −2
m̃2
Hu

m2
h

, (29)

where in the last equality we are interested in the contribution to the Higgs soft mass in our
model.

In Fig. 4 we have plotted contours of ∆−1 from our dynamics in the M3 versus v
plane. The most important assumption from the point of view of fine tuning is the gaugino
mass spectrum. We have also plotted the region which is excluded due to tachyonic third
generation squarks in solid grey, a lack of REWSB in solid blue, and the LEP bound on
the A mass for tan β = 2 in translucent green. We see that there is an allowed region
with ∆−1 ' O(10%) where v ' 102 TeV and M3 & 2.5 TeV. We note that in a complete
model which addresses the physical Higgs boson mass, there may be additional sources of
fine tuning.
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Figure 4: We plot contours of the “fine tuning” parameter ∆−1 in the M3 versus v plane. We
make the same assumptions as in Fig. 3 with first/second generation squark masses at 5 TeV and
tanβ = 2. The solid grey region is excluded due to tachyonic third generation squarks, the solid
blue region is excluded due to a lack of REWSB and the green translucent region is excluded due
to the LEP bound on the A mass.

4 Conclusions and Future Directions

In this work we have presented a mechanism that acts as an attractor for the more minimal
supersymmetric standard model and radiative electroweak symmetry breaking, while also
generating the hierarchical structure of the quark Yukawa matrix. We have presented the
simplest realization, which is accomplished by adding a new SU(3) gauge group under which
the third generation quarks are charged. The model flows to a strongly interacting fixed point
where these quarks acquire order one negative anomalous dimensions, while the Higgs gets a
positive anomalous dimension. The mechanism applies to generic supersymmetry breaking
scenarios, as long as appropriate symmetries ensure that the combinations of masses in
Eq. (10) are small. It also leads to a simple solution of the µ problem. For concreteness
we analyzed the low energy phenomenology starting from unified gaugino masses, finding a
natural supersymmetry spectrum with split families.

It would be interesting to build a fully realistic model based on this mechanism. The
main points that need to be addressed are unification (which has been explicitly broken here
by the extra matter charged under SU(3)) and the generation of a realistic physical Higgs
mass. This motivates extending our approach by having two copies of the full SM gauge
group, instead of just the SU(3) group. One of the nodes will then become strongly coupled,
leading to the properties analyzed here. In this context, the NMSSM can naturally become
part of the strong dynamics, and unification is in principle possible.
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The mechanism itself can also be improved in different directions. Here we had to assume
that certain approximate symmetries of the supersymmetry breaking sector were forbidding
the combinations of soft masses given in Eq. (10). In particular, combinations proportional
to U(1)Y can not be screened. This can be avoided if U(1)Y is embedded into a larger
gauge group for the duration of the conformal regime. One possibility would be to weakly
gauge the custodial SU(2). In this case, the only combinations which are not sequestered are
m̃2

Σ−m̃2
Σ

and m̃2
Q3
−m̃2

Q3
, where Q = (u, d) — both of these combinations can be suppressed

by imposing a discrete symmetry. This can lead to a stronger attractor mechanism.

For models which realize this stronger attractor, there is a novel possibility of decoupling
the first/second generation squarks beyond the bound of [25]. If m̃1,2 � v, at scales below
m̃1,2 there will be a quadratically divergent contribution to the stop masses at 2-loops and
the Higgs mass at 1-loop (which is proportional to small Yukawa couplings). If it is possible
to construct a CFT that would be strong enough to suppress these quadratic divergences,
the contribution to the mass from these effects will be schematically given by y2/(16π2) v2

for the Higgs soft mass squared and g4
C/(16π2)2 v2 for the stop soft mass squared. For

v ' 50 TeV, these contributions are small enough to not destabilize our mechanism. Hence,
the flavor problem could be completely decoupled in these models.

It may also be possible to find a microscopic realization where the CFT and the sector
that breaks supersymmetry are part of the same dynamics. In this setup, the exit scale v
would be related to the scale of supersymmetry breaking. This may be done at the level
of the superpotential, or by destabilizing some of the flat directions of the CFT. Exploring
a concrete supersymmetry breaking sector that minimizes the mass differences in Eq. (10)
would also be an interesting avenue for future work.

If nature cares about naturalness, it is plausible that the dynamics between the weak
scale and Planck scale could be highly non-trivial. We have demonstrated that coupling the
supersymmetric standard model to a new strongly coupled conformal sector can give rise to
the flavor hierarchies and the more minimal spectrum.
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