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I adapt a numerical method, previously applied to investigate the Yang-Mills vacuum wavefunctional, to the
problem of extracting the effective Polyakov line action from SU(N) lattice gauge theories, with or without
matter fields. The method can be used to find the variation of the effective Polyakov line action along any
trajectory in field configuration space; this information issufficient to determine the potential term in the action,
and strongly constrains the possible form of the kinetic term. The technique is illustrated for both pure and
gauge-Higgs SU(2) lattice gauge theory at finite temperature. A surprise, in the pure gauge theory, is that
the potential of the corresponding Polyakov line action contains a non-analytic (yet center-symmetric) term
proportional to|P|3, whereP is the trace of the Polyakov line at a given point, in additionto the expected
analytic terms proportional to even powers ofP.

PACS numbers: 11.15.Ha, 12.38.Aw
Keywords: Confinement,lattice gauge theories

∗ Permanent address: Physics and Astronomy Dept., San Francisco State University, San Francisco, CA 94132, USA



2

I. INTRODUCTION

Consider a lattice gauge theory with gauge group SU(N) on a periodic lattice of time extentNt , possibly containing matter
fields and a chemical potential. If we integrate out all degrees of freedom under the constraint that Polyakov line holonomies
are held fixed, then the resulting distribution depends onlyon those Polyakov line holonomies or, more precisely, on their
eigenvalues. The logarithm of this distribution is defined to be the effective Polyakov line actionSP.

The earliest three-dimensional effective theories at finite temperature, corresponding to the 3+1 dimensional lattice gauge
theories in the ultra-strong coupling limit, were derived by Polyakov [1] and Susskind [2], and a derivation of the Polyakov line
action in a systematic strong coupling expansion was carried out by Polonyi and Szlachanyi [3]. For a review of the early work
in this area, c.f. Svetitsky [4].

If the underlying lattice gauge theory inD = 4 dimensions has a sign problem due to a non-zero chemical potential, then the
effective Polyakov line actionSP probably also has a sign problem. However, there are indications that the sign problem may be
more tractable inSP than in the underlying theory. Using strong-coupling and hopping parameter expansions, it is possible to
actually carry out the integrations over gauge and matter fields mentioned above, to arrive at an action of the form1

SP = βP∑
xxx

3

∑
i=1

[TrU†
xxx TrUxxx+ı̂ +TrUxxxTrU†

xxx+ı̂]+κ ∑
xxx
[eµTrUxxx+e−µTrU†

xxx ] , (1)

whereβP,κ are calculable constants depending on the gauge coupling, quark masses, and temperatureT = 1/Nt in the underlying
theory. To minimize minus signs later on, the overall sign ofSP is defined such that the Boltzmann weight is proportional to
exp[SP], rather than exp[−SP]. The Polyakov line holonomiesUxxx ∈ SU(N) in (1) are also known as “effective spins.” A path
integral based on an effective spin action of the form (1), for a wide range ofβP,κ ,µ , can be treated by a number of different
methods, including the “flux representation” [6], reweighting [5], and stochastic quantization [7]. Even traditionalmean field
methods have had some degree of success in determining the phase diagram [8].

The problem, of course, is that strong lattice coupling and heavy quark masses lie outside the parameter range of phenomeno-
logical interest, and it is not obvious how to extractSP for parameters inside the range of interest, even atµ = 0. There have
been some efforts in this direction, notably the inverse Monte Carlo method of ref. [9], as well as early studies [10, 11] which
employed microcanonical and Migdal-Kadanoff methods, respectively. There is also a strategy for determining the phase struc-
ture of lattice gauge theory from an effective spin theory, whose form is suggested by high-order strong-coupling and hopping
parameter expansions [5]. Here, however, I will discuss a different approach to the problem, recently suggested in ref.[8], which
will be illustrated for SU(2) pure gauge and gauge-Higgs theories.

II. THE “RELATIVE WEIGHTS” APPROACH

Let SQCD be the lattice QCD action at temperatureT = 1/Nt in lattice units, with lattice gauge couplingβ , and a set of quark
masses denoted collectivelymq. We set chemical potentialµ = 0 for now. It is convenient to impose a temporal gauge condition
in which the timelike link variables are set to the unit matrix everywhere except on a single time slice, say att = 0. In that case,
U0(xxx,0) is the Polyakov line holonomy passing through the site(xxx, t = 0). The effective Polyakov line action is defined in terms
of the partition function

Z(β ,T,mq) =

∫
DU0(xxx,0)

∫
DUkDψDψ eSQCD

=

∫
DU0(xxx,0) eSP[U0] , (2)

or equivalently

exp
[
SP[Uxxx]

]
=

∫
DU0(xxx,0)DUkDψDψ

{
∏
xxx

δ [Uxxx−U0(xxx,0)]

}
eSQCD . (3)

Because temporal gauge has a residual symmetry under time-independent gauge transformations, it follows thatSP[Uxxx] is invari-
ant underUxxx → g(xxx)Uxxxg†(xxx), which means thatSP only depends on the eigenvalues of the Polyakov line holonomies.

Now consider a finite set ofM SU(N) “effective spin” configurations in the three-dimensionalcubic latticeV3 of volumeL3,
{
{U (i)

xxx ,all xxx∈V3}, i = 1,2, ...,M
}
. (4)

1 This is the action at leading order. For the effective actiondetermined at higher orders in the combined strong-coupling and hopping parameter expansions,
cf. [5].
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Each member of the set can be used to specify the timelike links on the timeslicet = 0. Define

Z =

∫
DU0(xxx,0)DUkDψDψ

M

∑
i=1

{
∏
xxx

δ [U (i)
xxx −U0(xxx,0)]

}
eSQCD , (5)

and consider the ratio

exp
[
SP[U ( j)]

]

exp
[
SP[U (k)]

] =
∫

DU0(xxx,0)DUkDψDψ
{

∏xxxδ [U ( j)
xxx −U0(xxx,0)]

}
eSQCD

∫
DU0(xxx,0)DUkDψDψ

{
∏xxx δ [U (k)

xxx −U0(xxx,0)]
}

eSQCD

=

1
Z

∫
DU0(xxx,0)DUkDψDψ

{
∏xxx δ [U ( j)

xxx −U0(xxx,0)]
}

eSQCD

1
Z

∫
DU0(xxx,0)DUkDψDψ

{
∏xxxδ [U (k)

xxx −U0(xxx,0)]
}

eSQCD
, (6)

where in the second line we have merely divided both the numerator and denominator by a common factor. However, by
inserting this factor, both the numerator and denominator acquire a meaning in statistical mechanics, because the factor Z can
be interpreted as the partition function of a system in whichthe configuration of timelike link variables att = 0 is restricted to
belong to the set{U (i), i = 1, ...,M}. This means that

Prob[U ( j)] =
1
Z

∫
DU0(xxx,0)DUkDψDψ

{
∏
xxx

δ [U ( j)
xxx −U0(xxx,0)]

}
eSQCD (7)

is simply the probability, in this statistical system, for the j-th configurationU0(xxx,0) =U ( j)(xxx) to be found on thet = 0 timeslice.
This probability can be determined from a slightly modified Monte Carlo simulation of the original lattice action. The simulation
proceeds by standard algorithms, for all degrees of freedomother than the timelike links att = 0, which are held fixed. Periodi-
cally, on thet = 0 timeslice, one member of the given set of timelike link configurations is selected by the Metropolis algorithm,
and all timelike links on that timeslice are updated simultaneously. LetNi be the number of times that thei-th configuration is
selected by the algorithm, andNtot = ∑i Ni . Then Prob[U ( j)] is given by

Prob[U ( j)] = lim
Ntot→∞

Nj

Ntot
, (8)

and this in turn gives us therelative weights

exp
[
SP[U ( j)]

]

exp
[
SP[U (k)]

] = lim
Ntot→∞

Nj

Nk
(9)

for all elements of the set. A computation of this kind allowsus to test any specific proposal forSP, which may be motivated
by some theoretical considerations. But it might also be possible, given data on the relative weights of a variety of different
sets, to guess the action that would lead to these results. Inthis article we will consider sets of spatially constant Polyakov line
configurations, and small plane wave perturbations around aconstant background. This is already sufficient to determine the
potential term inSP, and to suggest the form of the full action.

The method described above was proposed long ago [12] in connection with the Yang-Mills vacuum wavefunctional. Recently
there have been some sophisticated suggestions for the formof this wavefunctional in 2+1 dimensions, and the techniquewas
revived in order to test these ideas in ref. [13]. The main difference between the method as applied to vacuum wavefunctionals,
and as applied to determiningSP, is that in the former case the simulation chooses from a fixedset of spacelike link configurations
on thet = 0 timeslice, while in the latter the choice is made from a set of timelike link configurations.

A. Finite chemical potential

Let Sµ
QCD denote the QCD action with a chemical potential, which can beobtained fromSQCD by the following replacement

of timelike links att = 0:

Sµ
QCD = SQCD

[
U0(x,0)→ eNt µU0(x,0),U

†
0 (x,0)→ e−Nt µU†

0 (x,0)
]
. (10)

The corresponding Polyakov line actionSµ
P is in principle obtained from (3), withSµ

QCD as the underlying action. Of course the
integration indicated in (3) can so far only be carried out for strong couplings and large quark masses, but it is not hard to see that
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each contribution toSP in the strong-coupling + hopping parameter expansion atµ = 0 maps into a corresponding contribution
to Sµ

P by the replacement

Uxxx → eNt µUxxx , U†
xxx → e−Nt µU†

xxx . (11)

It is reasonable then to suppose that this mapping holds in general, i.e. if we have by some means obtainedSP[Uxxx,U
†
xxx ] beyond the

range of validity of the strong-coupling + hopping parameter expansion, then the correspondingSµ
P is obtained by making the

change of variables (11). There is, however, a possible source of ambiguity in this scheme (noted in [8]), coming from identities
such as

TrU†
xxx =

1
2

[
(TrUxxx)

2−TrU2
xxx

]
(12)

in SU(3). One way around this ambiguity is to enlarge the range ofU0(xxx,0), allowing these variables to take on values

U0(xxx,0) = eiθU(xxx) , (13)

whereU(xxx) is an element ofSU(N). In other words, we allow theU0(xxx,0) links to take on values in theU(N) group, although
it will be sufficient for our purposes to letθ bexxx-independent.2 Suppose we are able to determineSP for this enlarged domain
of Polyakov line variables. ThenSµ

P is obtained by analytic continuation,θ →−iNt µ .
The essential point here is that if one can determineSP by simulations ofSQCD at µ = 0, then this result can be used to

determineSµ
P at finite chemical potential. If the sign problem is in fact tractable forSµ

P, as recent results seem to suggest, then
this may be a useful way of attacking the sign problem in full QCD.

B. Relative weights, and path-derivatives of SP

LetC be the configuration space of effective spins{Uxxx} on anL3 lattice, and let the variableλ parametrize some path{Uxxx(λ )}
throughC . The method of relative weights is particularly useful in computing derivatives of the Polyakov line action

(
dSP

dλ

)

λ=λ0

(14)

along the path. To see this, we begin by taking the logarithm of both sides of eq. (9), and find

SP[U
( j)]−SP[U

(k)] = lim
Ntot→∞

{
logNj − logNk

}

= lim
Ntot→∞

{
log

Nj

Ntot
− log

Nk

Ntot

}
. (15)

(From this point on we will drop the limit.) Now imagine parametrizing the effective spins by a parameterλ ; each value of
λ gives us a different configurationUxxx(λ ). Let the configurationU ( j) correspond toλ = λ0 +∆λ , andU (k) correspond to
λ = λ0−∆λ . Then

(
dSP[Uxxx(λ )]

dλ

)

λ=λ0

≈ 1
2∆λ

{
log

Nj

Ntot
− log

Nk

Ntot

)
. (16)

However, rather than using only two configurations to compute the derivative, we can obtain a more accurate numerical estimate
if we let λ increase in increments of∆λ , e.g.

λn = λ0+

(
n− M+1

2

)
∆λ , n= 1,2, ...,M , (17)

and use all of theM values obtained forNn in the simulation. For∆λ small enough, the data for logNn/Ntot vs. λn will fit a
straight line, and then we obtain the estimate

(
dSP[Uxxx(λ )]

dλ

)

λ=λ0

≈ slope of log
Nn

Ntot
vs. λn . (18)

2 It is also sufficient to restrictθ to 0≤ θ < 2π/N. The full range[0,2π] is redundant, because of theZN center of SU(N).
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The procedure will be illustrated explicitly in the next section.

III. TESTING THE METHOD AT STRONG COUPLING

The first step is to computedSP/dλ for a case where we know the answer analytically. As mentioned previously,SP can be
readily computed in the strong-coupling + hopping parameter expansion. We will consider here the case of pure SU(2) Yang-
Mills theory at a strong couplingβ . If the lattice isNt lattice spacings in the time direction, then computing the diagrammatic
contributions toSP at leading and next-to-leading order in the strong-coupling/character expansion we find

SP =

[
1+4Nt

(
I2(β )
I1(β )

)4
](

I2(β )
I1(β )

)Nt

∑
xxx

3

∑
i=1

TrUxxxTrUxxx+ı̂

= βP∑
xxx

3

∑
i=1

PxxxPxxx+ı̂ , (19)

where

Pxxx ≡
1
2

TrUxxx

βP = 4

[
1+4Nt

(
I2(β )
I1(β )

)4
](

I2(β )
I1(β )

)Nt

. (20)

Let us first consider sets of spatially constant configurations with varying amplitudes in the neighborhood ofP= P0, i.e.

U (n)
xxx = (P0+an)1+ i

√
1− (P0+an)2σ3

an =
(

n− 1
2
(M+1)

)
∆a , n= 1,2, ...,M , (21)

so in this casea is theλ parameter of the previous section. If we divideSP into a kinetic and potential part, which in the case of
(19) is

SP = KP+VP

KP =
1
2

βP∑
xxx

3

∑
i=1

(PxxxPxxx+ı̂ −2P2
xxx +PxxxPxxx−ı̂)

VP = 3βP∑
xxx

P2
xxx , (22)

thendSP/da= dVP/dP0 is giving us the derivative of the potential piece, which canthen be reconstructed, up to an irrelevant
constant, by integration. So the procedure for determiningVP (assuming it were not already known from the strong-coupling
expansion) is to computedVP/dP0 numerically, fit the results to some appropriate polynomialin P0, and then integrate the fit.

Our sample simulation is carried out in pure SU(2) lattice gauge theory at couplingβ = 1.2 (well within the regime of strong
couplings) on a 123×4 lattice withM = 20 sets of spatially constant configurations. Figure 1 showsthe data for log(Nn/Ntot)
plotted vs.(P0+an)× spatial lattice volume (123), at P0 = 0.5. It is clear that the data falls quite accurately on a straight line,
and the slope gives an estimate for the derivative

1
L3

(
dSP(Uxxx(a))

da

)

a=0
=

1
L3

dVP(P0)

dP0
(23)

which can be compared to the value 6βPP0 obtained from the strong-coupling expansion. The derivative obtained from numerical
simulation vs.P0 is plotted in Fig. 2, and it obviously fits a straight line. Therefore the potentialVP is quadratic inPxxx, and we
find, atβ = 1.2

VP =





0.1721(8)∑xxx
1
2P2

xxx relative weights method

0.1710∑xxx
1
2P2

xxx strong-coupling expansion
, (24)

where we have dropped, in the upper line, an irrelevant constant of integration. The small numerical difference betweenthe
relative weights and strong-coupling results can probablybe attributed to neglected higher order terms in the strong-coupling
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FIG. 1. The slope of the straight-line fit to the data shown gives an estimate for the derivativeL−3dSP/da of SP with respect to the amplitude
of spatially constant effective spin configurations. In this case, the derivative is evaluated atP0 = 0.5, for an underlying pure Yang-Mills theory
at strong coupling value ofβ = 1.2, on a 123×4 lattice.
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FIG. 2. A plot of the values forL−3dSP/da vs.P0. Each data point is extracted from a plot similar to the previous figure. Also shown are the
corresponding strong-coupling values, and a best linear fitto the data points.

expansion.3

In order to investigate the kinetic term, we consider plane-wave deformations of spatially constant configurations. The path

3 Statistical errors are estimated from best fit slopes obtained from eight independent runs. Where errorbars are not shown explicitly, in the two-dimensional
plots shown below, they are smaller than the symbol size.
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FIG. 3. Derivative of the action w.r.t. path parametera2 vs. squared lattice momentum. Data is taken at strong gauge coupling β = 1.2 for
plane-wave deformations. Squares indicate the relative-weights values, while green dots are the values obtained fromthe strong-coupling
expansion.

through configuration spaceC is again parametrized bya, with

U (n)
xxx = P(n)

xxx 1+ i
√

1− (P(n)
xxx )2σ3

P(n)
xxx = P0+ancos(kkk ·xxx)

ki =
2π
L

mi , (25)

where the{mi, i = 1,2,3} are integers, not all of which are zero. For this class of configurations we have, for the action (19)

SP = βPL3

(
3P2

0 +
1
2

a2
n

3

∑
i=1

cos(ki)

)
. (26)

Since the deformation of the action is proportional toa2, it is natural to consider the derivative ofSP with respect toa2, i.e.

1
L3

dSP

d(a2)
=

1
2

βP∑
i

cos(ki) , (27)

and therefore we can choose to leta2
n, rather thanan, increase in equal increments, so thatan =

√
n∆a.

The numerical procedure is similar to the determination of the potential term: we compute the derivativeL−3dSP/d(a2), at
fixed P0 andkkk, from the slope of a plot of log(Nn/Ntot) vs. a2

nL3. Then these values for the derivative are plotted, at various
values ofP0, against squared lattice momentum

k2
L ≡ 4

3

∑
i=1

sin2(
1
2

ki) . (28)

The result, atP0 = 0.5, is shown in Fig. 3, and we find, for a trajectory (25) at fixedkkk,

1
L3

dSP

d(a2)
=−Ak2

L +B , (29)

where

A= 7.3(2)×10−3 , B= 4.30(3)×10−2 . (30)
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The simulation has also been carried out at other values ofP0, but the results are almost indistinguishable from Fig. 3, and so are
not displayed here. The important point, however, is that the path derivative (29) isP0 independent.

Integrating with respect toa2, we find that along any path parametrized bya with fixedP0

Sp[Uxxx(a)] = L3{−Aa2k2
L +Ba2+ f (P0)} , (31)

where f (P0) is a constant of integration, which can be determined from the data on the potential:

f (P0) =CP2
0 , C= 0.0861±0.0004. (32)

The next step is to expressSP along the path in terms ofUxxx (or Pxxx =
1
2TrUxxx). From the definitions (25), (28), one easily finds

that (31) can be expressed as

SP = 4A∑
xxx

3

∑
i=1

PxxxPxxx+ı̂ +
[
(B−6A)a2+(C−12A)P2

0

]
L3 . (33)

The constantsB−6A andC−12A are, within statistical error, consistent with zero. So we will just drop these terms. Then along
the trajectory the action has the form

SP = (.0292± .0008)∑
xxx

3

∑
i=1

PxxxPxxx+ı̂ (relative weights method), (34)

and of course the natural conjecture is that this is the action itself, at any point in configuration space. Further checkswould
be to calculate numerical derivativesdSP/dλ along other trajectories, to test the consistency of this conjecture. We don’t really
need to do that here, since the action at strong couplings is already known analytically, and is given in eq. (19) to leading and
next-to-leading order in the strong-coupling expansion. At β = 1.2 we have, from eq. (19), that

SP = .0285∑
xxx

3

∑
i=1

PxxxPxxx+ı̂ (strong-coupling expansion), (35)

which is a close match to what we have arrived at via the relative weights procedure.
This is, perhaps, a lot of effort to derive a known result. We have gone through this exercise in order to illustrate the method,

and to make sure, in a case where the answer is known, that the method actually works.

IV. POTENTIAL V P IN PURE-GAUGE THEORY, WEAKER COUPLINGS

We now reduce the lattice coupling of the underlying SU(2) pure-gauge theory, settingβ = 2.2 with inverse temperature
Nt = 4 in lattice units. At this coupling and temperature (which is still inside the confinement phase of the theory), the effective
Polyakov line actionSP is not known.

The easiest task is to determine the potential part of the action. For the purposes of this article, we define the kinetic part
of the action to be the piece which vanishes for spatially constant configurations, while the potential part is local. With these
definitions

VP = ∑
xxx

V (Ux) , (36)

and the functionV (Ux) is determined by evaluatingSP on configurationsUxxx =U which are constant in 3-space, i.e.

V (U) =
1
L3 SP(U) . (37)

Then by definition the kinetic part of the action is

KP ≡ SP[Uxxx]−VP[Uxxx] . (38)

In order to determineVP, we consider as before the path through configuration space (21) parametrized by the variablea,
and once again we can identifydSP/da with dVP(P0)/dP0 as in (23). The derivatives are determined by the relative weight
method described above, the dependence onP0 is fit to a polynomial, andVP is then determined, up to an irrelevant constant, by
integration overP0.

Because theZ2 center symmetry is unbroken atβ = 2.2 andNt = 4, andV (Uxxx) is a class function, it is natural to assume that
V (U) is well represented by a few group charactersχ j(U) of zero N-ality (j = integer for SU(2)), and the potential is analytic
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in Pxxx. Surprisingly, this isnotwhat is found.
Figure 4(a) shows the data for the derivative

D(P0)≡
1
L3

dVP

dP0

=
1
L3

dSP

da
(39)

at β = 2.2 on a 123×4 volume, which, as in the strong-coupling case, extrapolates linearly to zero atP0 = 0. Also shown is a
best fit ofD(P) to the polynomial

f (P) = c1P+ c2P2+ c3P3 (40)

with the best fit constants shown in Table I. What is initiallya little troubling about this fit is that upon integration, and up to an
irrelevant integration constant, we must have

V (Pxxx) =
1
2

c1P2
xxx +

1
3

c2P3
xxx +

1
4

c3P4
xxx , (41)

which appears to violate center symmetry, i.e.V (Pxxx) = V (−Pxxx) for SU(2) gauge theory. Because of center symmetry, the
character expansion ofV (Pxxx) contains only charactersχ j with j = integer. It is a property of the SU(2) group characters that
eachχ j can be expressed as a polynomial of order 2j in P, containing only even powers ofP for j = integer, and only odd powers
for j = half-integer. Then if the character expansion ofV (Pxxx) is truncated at somej = jmax, theP-derivative is a polynomial in
odd powers ofP up toP2 jmax−1.

One might expect thatV (Pxxx) can be accurately approximated by a handful of group characters. However, the attempt to fit
the data with only a few odd powers ofP is unsuccessful, in the sense that each of the three fitting functions

f (P) =





c1P+ c3P3

c1P+ c3P3+ c5P5

c1P+ c3P3+ c5P5+ c7P7
, (42)

corresponding to truncated character expansions withjmax= 2,3,4, respectively, gives an unacceptable fit, as seen in Fig. 4(b).
The reducedχ2 values in the three cases are 440,100,25, respectively. This is to be compared to the reducedχ2 = 3.2 for the
fitting function (40).

Potential fit
c1 c2 c3

4.61(2)−4.51(10) 1.77(8)

TABLE I. The constantsc1−3 derived from a best fit ofc1P+c2P2+c3P3 to the potential data.

All this seems to imply thatV (Pxxx) has a term violating center symmetry, but of course that cannot be the case. In order that
V (Pxxx) is an even function ofPxxx, it must be that the derivative is an odd function,D(P0) = −D(−P0), which in turn means that
the coefficient of the quadratic term in (40) must change signwhenP0 → −P0. This is easy to check; we simply repeat the
calculation withP0 < 0 in (21), with the result shown in 4(c). Here the squares are the data forD(P0) atP0 > 0, while the circles
are data for(−1)×D(P0) at P0 < 0. The fact that the corresponding data points at±P0 lie on top of each other means that the
derivative is an odd function, and the potential itself is aneven function ofPxxx, as it must be. The conclusion, which follows from
the best fit, is that over the full range−1≤ Pxxx ≤ 1 the potential, up to an irrelevant constant, is given by

V (Pxxx) =
1
2

c1P2
xxx +

1
3

c2|Pxxx|3+
1
4

c3P4
xxx . (43)

This function is non-analytic, because of the absolute value, but still center symmetric, with the constants given in Table I.
It should be emphasized again that this potential cannot be approximated very well by a simple sum ofj = 0,1,2,3,4 SU(2)
group characters. Of course, any class function (including|Pxxx|3) can be approximated by a sufficiently large number of group
characters, just as a step function can be approximated by a truncated Fourier series. But keeping only a relatively small number
of group characters introduces “wiggles” in the approximation to the potential (which are seen in Fig. 4(b)) much like the
truncated Fourier series does for the step function.

So far we have only looked at a pure gauge theory in the confinedphase, but it is also possible to computeV (Pxxx) in the
deconfined phase using the same methods. In comparing the potential in the confining and deconfining phases it is useful to
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FIG. 4. Derivatives of the potential. Subfigure (a) shows thebest fit to the data by a polynomialaP+bP2+cP3, while subfigure (b) shows a
best fit by polynomials with two, three, and four odd powers ofP, which are forms that might be expected from unbroken centersymmetry.
(c) is a test of whetherdVP/dP is an odd function ofP. Data for the derivative at values ofP0 < 0 are multiplied by -1, for comparison with
the data atP0 > 0. (d) same data (and fit) as in subfigure (a), plotted in a different way.
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0 ≥ 0.1.

display the data in a slightly different way, by plotting thederivativedVP/d(P2) vs.P2, i.e.

1
L3

dVP

d(P2
0 )

=
1
L3

1
2P0

dVP

dP0
, (44)

When the data is plotted in this way, a curious feature does show up. First, consider the confined phase. The data for the above
derivative in the confined phase, at the same couplingβ = 2.2 and lattice volume as before, is shown in Fig. 4(d). In this plot,
the best fit shown in Fig. 4(a) transforms to

g(P2) =
1
2
(c1+ c2

√
P2+ c3P2) , (45)

with the same constantsc1−3 shown in Table I, and this function is also plotted in Fig. 4(d). Note that if the potential didn’t have
a cubic term, then we would have to omit the term proportionalto

√
P2. But then the data should fit a straight line in Fig. 4(d),

which it quite clearly does not.

Now we display corresponding data in the deconfined phase. Figure 5 shows the result for the derivative (44) atβ = 2.4, again
on a 123×4 lattice, which is well past the deconfinement transition. Note the peculiar “dip” nearP0 = 0. Because of this dip,
the polynomial form (40) to the derivative, which translates to (45) fordVP/d(P2), cannot fit the data over the full range. Itis
consistent with the data away from the dip, i.e. atP2

0 > 0.1, and the resulting fit to data in the interval[0.1,1] is also shown in
Fig. 5. The relationship of the dip in the derivative nearP0 = 0 to the deconfinement phenomenon is not obvious to the author.

Finally, it is important to ask whether the potential shown in Fig. 4 is dependent on the spatial volume. In Fig. 6 we show the
previous data for the derivative of the potential, obtainedon a 123×4 lattice, together with data for the same observable obtained
on an 83×4 lattice. It can be seen that the volume dependence is negligible in this case.

V. POTENTIAL V P IN SU(2) GAUGE-HIGGS THEORY

We now add a matter field to the gauge theory, to see how this will affect the potential. To keep the computation requirements
very modest, we consider a scalar matter field, in the fundamental representation, with a fixed modulus (i.e. a “gauge-Higgs”
theory). For the SU(2) gauge group, the matter field can be mapped onto SU(2) group elements, and the action can be expressed
as

S= β ∑
plaq

1
2

Tr[UUU†U†]+ γ ∑
x,µ

1
2

Tr[φ†(x)Uµ(x)φ(x+ µ̂)] . (46)
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FIG. 7. Plaquette energy vs. gauge-Higgs couplingγ at fixedβ = 2.2, for the SU(2) gauge-Higgs theory with fixed Higgs modulus,showing a
sharp crossover atγ ≈ 0.84.

There have been many numerical studies of this action, following the work of Fradkin and Shenker [14], itself based on a
theorem by Osterwalder and Seiler [15], which showed that the Higgs region and the “confinement-like” regions of theβ − γ
phase diagram are continuously connected. Subsequent Monte Carlo studies found that there is only a single phase at zero
temperature (there might have been a separate Coulomb phase), although there is a line of first-order transitions between the
confinement-like and Higgs regions, which eventually turnsinto a line of sharp crossover aroundβ = 2.775,γ = 0.705, cf. [16]
and references therein. Atβ = 2.2 the crossover occurs atγ ≈ 0.84, as seen in the plaquette energy data shown in Fig. 7. There
is also a steep rise in the Polyakov line expectation value asγ increases past this point.

Fig. 8(a) shows the potential derivativeL−3dVP/dP0 vsP0, along with a best fit to the data, atβ = 2.2 andγ = 0.75, which is
somewhat below the crossover, in the “confinement-like” regime. We compute this derivative, again in a 123×4 lattice volume,
at both positive and negative values ofP0, to test for the presence of a small center-symmetry breaking term in the potential
(which is not obvious in Fig. 8(a)). The data over the full range is fit to the form

f (P) = c′0+ c′1P+ c′2sign(P)P2+ c′3P3 (47)
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which translates, upon integration, into a potential

V (Pxxx) = c′0Pxxx+
1
2

c′1P2
xxx +

1
3

c′2|Pxxx|3+
1
4

c′3P4
xxx . (48)

with a center symmetry breaking termc′0Pxxx. The constants obtained from the fit are shown in Table II.

Potential fit: gauge-Higgs model
c′0 c′1 c′2 c′3

0.025(1)4.70(2)−4.70(8) 1.91 (7)

TABLE II. The constantsc′0−3 derived from a best fit ofc′0+c′1P+c′2sign(P)P2+c′3P3 to the potential data of the SU(2) gauge-Higgs model.

The slight asymmetry which breaksf (P) = − f (−P), and therefore center symmetry, is more evident when we expand the
plot in the immediate region ofP0 = 0, as in Fig. 8(b). It can be seen that the best fit through the data points does not go through
f (P0) = 0 atP0 = 0, but rather crosses they-axis at a positive valuef (0) = c′0 = 0.025. The line shown in Fig. 8(b) is taken from
a best fit to the full range of data, not just the nearP0 = 0 data. Since the underlying gauge-Higgs theory breaks center symmetry
explicitly, a term linear inPxxx is of course expected. The coefficientc0 = 0.025 of the symmetry breaking term is quite small, but
the expectation value of the Polyakov line atγ = 0.75 is also quite small:〈Pxxx〉= 0.055 at these couplings and lattice size.
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FIG. 8. Derivative of the Polyakov line potential, per unit volume, with respect to the Polyakov line valueP, for the SU(2) gauge-Higgs theory
on a 123 ×4 lattice. Data is taken at gauge couplingβ = 2.2 and gauge-Higgs couplingγ = 0.75. (a) the data over the range−1< P< 1,
together with the best fit; (b) the data in the vicinity ofP= 0, also showing the fit in this region derived from the full range of data (i.e. same
curve as in (a)). Note that the line through the data does not pass through the origin, which implies a small breaking of center symmetry.

VI. PLANE-WAVE DEFORMATIONS

We now return to the pure gauge theory atβ = 2.2. So far the potential termVP of the effective Polyakov line action has been
determined, but the ultimate interest is in the full action.It was not very hard to extract this action from the log[Nn/Ntot] data at
strong couplings. Unfortunately it is not as easy to jump from the path derivatives to the full action at weaker couplings, simply
becauseSP is not so simple (and is not known in advance!). Nevertheless, knowledge of the action along a particular trajectory
in configuration space does provide some information about the full action.

As in the strong coupling case, we choose to investigate the derivatives ofSP along paths of the form (25), i.e. plane waves
of fixed wavenumber and varying amplitude on a constant background. The method is the same as outlined in section III, but
the result is different. Atβ = 1.2, it was found thatdSP/d(a2) was linear ink2

L, and independent ofP0. That is not the case at
β = 2.2. What happens in this case is shown in Fig. 9, where we display L−3dSP/d(a2) plotted against the magnitude of lattice
momentumkL = (k2

L)
1/2 at fixed values ofP0 = 0.1 andP0 = 0.8. It can be seen that thekL-dependence of the data in Fig. 9(a),

at P0 = 0.1, is consistent with linear, while thekL-dependence in Fig. 9(b), atP0 = 0.8, seems to be quadratic. This can be seen
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from fits toa−bkL in the former case, and toa−bk2
L in the latter. This suggests a possible interpolating form

1
L3

dSP

d(a2) |a=0

= f (P0)+ c
√

k2
L +gP2

0 , (49)

whosekL-dependence would vary continuously from linear, asP0 → 0, to quadratic, fork2
L ≪ gP2

0 . Fig. 10 is the same plot
as Fig. 9(a), except that data obtained on both an 83×4 lattice and a 123×4 volume are displayed together, and both sets of
data points appear to have the samekL dependence. This is, of course, evidence of the insensitivity of our results to the spatial
volume.
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FIG. 9. Derivative of the action along a path of plane wave deformations. (a) Data atP0 = 0.1 is consistent with a linear variation of the
derivative with deformation lattice momentumkL; (b) data atP0 = 0.8 is consistent with a quadratic variation w.r.t.kL.

If (49) is correct, then it ought to be consistent with the potential (43). This means thatf (P0) can be, at most, quadratic inP0,
so let us write

1
L3

dSP

d(a2) |a=0

= b0+b1P0+b2P2
0 + c

√
k2

L +gP2
0 . (50)

The constants shown are subject to three constraints by the potential, so if we insist on the potential (43) there are really only
two independent constants. In order to derive those constraints, consider a very large lattice volumeL3, such thatk2

L can be made
very small compared togP2

0 , but still non-zero, and we assume that{c1,c2,c3} do not vary much withL (we have already seen
evidence of this fact in Fig. 6). Then the kinetic term is negligible compared to the potential term, and along the trajectory (25),
taking account of the spatial average(cos2kkk ·xxx)av =

1
2, we have

1
L3

dSP

d(a2) |a=0

=
1
4

c1+
1
2

c2P0+
3
4

c3P2
0 . (51)

Comparison with (50) in thek2
L ≪ gP2

0 limit calls for identifying

b0 =
1
4

c1 , b2 =
3
4

c3 , b1+ c
√

g=
1
2

c2 . (52)

Figure 11 show a best fit of the data to the form (50), with the best fit constants given in Table III. This is hardly a perfect
fit through the data points, given the value of the reducedχ2 ≈ 30. Still, except at very lowk2

L,P
2
0 , the fitting function gives a

reasonable account of the dependence of the data onk2
L andP0. Table IV is a test of constraints, listing three combinations of

constants which, according to the identities (52), should vanish. It is seen that the second and third combinations in the table are
consistent with zero, and the first combination is very nearly so.4

4 All fits, and error estimates on fitting constants, are made using the GNUPLOT software.
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Surface fit
b0 b1 b2 c g

1.105(14)0.85(17)1.365(56)−0.529(13) 33(3)

TABLE III. Fitting constantsb0−2,c,g obtained from a best fit to the data points shown in Fig. 11, by asurface of the form (50).

VII. TOWARDS THE FULL ACTION

The interesting question, of course, is what is the full action which gives rise to the variation (50) along the path, withthe
given potential (43). We begin by noting that, with the constants shown in Tables I and III, the action

SP = 2c

{

∑
xxxyyy

PxxxQxxxyyyPyyy−∑
xxx

√
gP2

0P2
xxx

}
+∑

xxx

(1
2

c1P2
xxx +

1
3

c2|P3
xxx |+

1
4

c3P4
xxx

)
,

= KP+∑
xxx

V (Pxxx) (53)

whereKP is the kinetic term

KP = 2c

{

∑
xxxyyy

PxxxQxxxyyyPyyy−∑
xxx

√
gP2

0P2
xxx

}
(54)

and

Qxxxyyy =
(√

R
)

xxxyyy

Rxxxyyy = (−∇2
L)xxxyyy+gP2

0δxxxyyy

=
3

∑
i=1

(2δxxxyyy− δxxx,yyy+ı̂ − δxxx+ı̂)+gP2
0δxxxyyy , (55)

Constraints
b0− 1

4c1 b1+ c
√

g− 1
2c2 b2− 3

4c3

-0.05(2) 0.06(23) 0.04(8)

TABLE IV. The constraints (52) imply that the combination ofconstants in the second line of the table should vanish within errorbars, and the
last line shows the actual values of these combinations, forthe constants given in Tables I and III.
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gives the known results for the potential (43) and for the variation ofSP with a2 (50) along the paths of plane wave deformations
(25). The operator∇2

L is the usual lattice Laplacian operator, andQ has the spectral representation

Q=∑
kkk

(√
k2

L +gP2
0

)
|kkk〉〈kkk|

Qxxxyyy =
1
L3 ∑

kkk

(√
k2

L +gP2
0

)
eikkk·(xxx−yyy) , (56)

where∑kkk is shorthand for the sum over lattice wave vectors with componentski = (2π/L)mi, and lattice momentumkL has been
defined previously in (28). The ket vectors|kkk〉 correspond to normalizedL−3/2exp[ikkk ·xxx] plane wave states.

For the paths (25), setPxxx = P0+acos(kkk·xxx), and compute the resulting action on such configurations up to leading order ina2.
Using the spectral representation for the operatorQ, a short calculation gives, up toO(a2),

SP = L3
V (P0)+a2L3

{
1
4

c1+(
1
2

c2− c
√

g)P0+
3
4

c3P2
0 + c

√
k2

L +gP2
0

}
. (57)

Applying the identities (52), which are reasonably well satisfied by the data, this becomes

SP = L3
V (P0)+a2L3

{
b0+b1P0+b2P

2
0 + c

√
k2

L +gP2
0

}
. (58)

So we find that for constant configurations (a= 0), the action is simply the known potential, i.e.SP = L3
V (P0), while the path

derivative is

1
L3

dSP

d(a2) |a=0

= b0+b1P1+b2P2
0 + c

√
k2

L +gP2
0 , (59)

in complete agreement with (50).

Denote byPav and∆P2 the lattice average value and mean square deviation, respectively, of a given Polyakov line configura-
tion. It is clear that for the paths (25) considered so far,P0 = Pav. One further generalization, which will not affect agreement
with the data so far, is to allow the kinetic term to also depend on∆P2, i.e.5

KP = 2c

{

∑
xxxyyy

Pxxx

(√
−∇2

L +gP2
av+g′∆P2

)
xxxyyy

Pyyy−∑
xxx

√
gP2

av+g′∆P2P2
xxx

}
(60)

It is not hard to see that the O(a2) contribution that would arise from thea2-dependence of the square root terms also selects, at
this order, the constanta2-independent part ofPxxx andPyyy. In that casekL = 0, and this contribution to the O(a2) part of the kinetic
term vanishes.

In order to investigate the possibility of a∆P2-dependence a little further, let us consider trajectoriesconsisting of plane waves,
of varying amplitudeA, with Pav = 0, i.e.

Px = Acos(kkk ·xxx) , (61)

and study the derivativeL−3dSp/dA evaluated atA = A0. To compute this derivative by the relative weights approach, we
construct a set of configurations

U (n)
xxx = P(n)

xxx 1+ i
√

1− (P(n)
xxx )2σ3

P(n)
xxx = Ancos(kkk ·xxx)

An = A0+
(

n− 1
2
(M+1)

)
∆A , n= 1,2, ...,M

ki =
2π
L

mi . (62)

5 A generalization of (53) which doesnotwork is the replacement ofP0 by Px in (53) and (55). This leads to additional contributions todSP/d(a2) which spoil
the agreement with (59).
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and proceed as before. The conjectured action is

SP = 2c

{

∑
xxxyyy

Pxxx

(√
−∇2

L +gP2
av+g′∆P2

)
xxxyyy

Pyyy−∑
xxx

√
gP2

av+g′∆P2P2
xxx

}

+∑
xxx

(1
2

c1P2
xxx +

1
3

c2|P3
xxx |+

1
4

c3P4
xxx

)
(63)

whose path derivative is6

1
L3

dSP

dA |A=A0

=
1
2

c1A0+ .424c2A
2
0+ .375c3A

3
0+2cA0

(√
k2

L +
1
2

g′A2
0−
√

1
2

g′A2
0

)

+
1
2

cg′A3
0


 1√

k2
L +

1
2g′A2

0

− 1√
1
2g′A2

0


 (64)

Takingc andc1−3 as given in Tables I and IV, there is only one free constant left to fit the data, and the best fit, shown in
Fig. 12, is obtained atg′ = 3.45(4). Once again, this plot should not be interpreted as a perfectfit through the data points within
errorbars, given that reducedχ2 ≈ 45. On the other hand, with only one fitting constant, the expression (64) does seem to give
a quite reasonable account of the dependence of the data onA0 andkL, despite the highly non-local expression∆P2 introduced
into the kinetic term.

6 The numbers multiplyingc1,c2,c3 are the lattice averages of cos2(kkk ·xxx), |cos3(kkk ·xxx)|,cos4(kkk ·xxx) respectively. These numbers are almost independent of the
wavenumberkkk on finite lattices, so long askkk 6= 0, and converge rapidly to the infinite volume limit as lattice volume increases.
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VIII. CONCLUSIONS

I have presented a method for computing derivativesdSP/dλ of the effective Polyakov line action along any given path
through field configuration space, parametrized by the variableλ . The technique is easily implemented in a lattice Monte Carlo
code by simply replacing updates of timelike links, on a single timeslice, by a Metropolis step which updates that set of links
simultaneously, and the potential partVP of the effective Polyakov line action can be readily determined, for any given lattice
coupling, temperature, and set of matter fields, up to an irrelevant constant. It is also possible to determine, from the derivatives,
the actionSP along any given trajectory in field configuration space.

The method has been applied here to SU(2) lattice gauge theory, both without and with a scalar matter field. At a strong
coupling (β = 1.2) and finite temperature, the method easily determines the effective Polyakov line action, which we have
checked against the known result derived from a strong-coupling expansion. At a weaker coupling (β = 2.2 on a 123×4 lattice),
where the Polyakov line action is not known, it has been shownthat, up to a constant, the potential term has the form

VP = ∑
xxx

(1
2

c1P2
xxx +

1
3

c2|Pxxx|3+
1
4

c3P4
xxx

)
, (65)

with coefficients given in Table I. The center-symmetric butnon-analytic cubic term comes as a surprise; to the best of my
knowledge such a term has not been anticipated in previous studies. It would be interesting to study the evolution of the above
potential asβ andNt vary. Addition of a scalar matter field in the underlying lattice gauge theory introduces a center symmetry
breaking term into the potential which is linear inPxxx, with a coefficient reported in section V.

Data has also been obtained from small plane-wave deformations around a constant Polyakov line background (Section VI),
and for Polyakov lines proportional to a plane waves with variable amplitude (Section VII). It was found that the action (63) is
consistent with the results that have been found so far, and at this point we may conjecture that (63) approximates the desired
full Polyakov line action.

However, a strong caveat is called for. The results obtainedin this paper have been obtained for a set of very special configu-
rations, of the types just mentioned, and the criterion for keeping only a few terms in the action was simply the goodness-of-fit.
In fact these simple configurations were quite successful indetermining the action at strong couplings, but it is still the case that
such configurations have little in common with the set of Polyakov lines found in, e.g., a typical thermalized lattice. Wehave
worked so far in only a small corner of configuration space, and one cannot rule out the possibility that, at weaker couplings,
the action in the important regions of configuration space would look quite different from (63). Therefore the conjectured ac-
tion needs to be investigated in more complicated, and much more general, backgrounds. Given an effectiveSP that seems to
work, the ultimate test is to calculate observables such as the Polyakov line correlator〈PxxxPyyy〉 in both the effective theory and the
underlying lattice theory, and compare the results.

Those tests, and the extension to the SU(3) group, would be the obvious next steps in the approach introduced here.
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