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The potential of the effective Polyakov line action from theunderlying lattice gauge theory
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| adapt a numerical method, previously applied to investighe Yang-Mills vacuum wavefunctional, to the
problem of extracting the effective Polyakov line actionnr SUN) lattice gauge theories, with or without
matter fields. The method can be used to find the variation efeffective Polyakov line action along any
trajectory in field configuration space; this informatiorsisficient to determine the potential term in the action,
and strongly constrains the possible form of the kinetimteiThe technique is illustrated for both pure and
gauge-Higgs SU(2) lattice gauge theory at finite tempegatuk surprise, in the pure gauge theory, is that
the potential of the corresponding Polyakov line actiontams a non-analytic (yet center-symmetric) term
proportional to|P|3, whereP is the trace of the Polyakov line at a given point, in addittorthe expected
analytic terms proportional to even powersRof

PACS numbers: 11.15.Ha, 12.38.Aw
Keywords: Confinement,lattice gauge theories

* Permanent address: Physics and Astronomy Dept., San §carfsiate University, San Francisco, CA 94132, USA



I.  INTRODUCTION

Consider a lattice gauge theory with gauge groupMUn a periodic lattice of time extei;, possibly containing matter
fields and a chemical potential. If we integrate out all degref freedom under the constraint that Polyakov line hailaies
are held fixed, then the resulting distribution depends am\those Polyakov line holonomies or, more precisely, otir the
eigenvalues. The logarithm of this distribution is defineth¢ the effective Polyakov line acti@a.

The earliest three-dimensional effective theories atditeimperature, corresponding to the 3+1 dimensional éatfauge
theories in the ultra-strong coupling limit, were derivgdRnlyakov [1] and Susskind [2], and a derivation of the Phdxeline
action in a systematic strong coupling expansion was chatg by Polonyi and Szlachanyi [3]. For a review of the eartyrkv
in this area, c.f. Svetitsky [4].

If the underlying lattice gauge theory ih= 4 dimensions has a sign problem due to a non-zero chemicahipalt then the
effective Polyakov line actioBp probably also has a sign problem. However, there are iriditathat the sign problem may be
more tractable irge than in the underlying theory. Using strong-coupling anging parameter expansions, it is possible to
actually carry out the integrations over gauge and mattieisfimentioned above, to arrive at an action of the férm

3
S=pY Zl[TrU,I TrUx1+ TUTIU ] + K 5 [ TrUx+ e HTi,] (1)
X i= X

wherefp, k are calculable constants depending on the gauge couplingsk qnasses, and temperatlire 1/N; in the underlying
theory. To minimize minus signs later on, the overall sigrgefs defined such that the Boltzmann weight is proportional to
expSq], rather than eXp-Sp|. The Polyakov line holonomiddy € SU(N) in (1) are also known as “effective spins.” A path
integral based on an effective spin action of the form (1) afevide range of3p, K, u, can be treated by a number of different
methods, including the “flux representation” [6], reweiglt[5], and stochastic quantization [7]. Even traditioraan field
methods have had some degree of success in determiningdke giagram [8].

The problem, of course, is that strong lattice coupling a@ally quark masses lie outside the parameter range of ph@eeme
logical interest, and it is not obvious how to extr&stfor parameters inside the range of interest, even at0. There have
been some efforts in this direction, notably the inverse tdd@arlo method of ref. [9], as well as early studies [10, 1hjok
employed microcanonical and Migdal-Kadanoff methodg)eetively. There is also a strategy for determining the plstisic-
ture of lattice gauge theory from an effective spin theorypse form is suggested by high-order strong-coupling ampging
parameter expansions [5]. Here, however, | will discussfargint approach to the problem, recently suggested if8gfwhich
will be illustrated for SU(2) pure gauge and gauge-Higgsthes.

Il. THE “RELATIVE WEIGHTS” APPROACH

Let Socp be the lattice QCD action at temperatdre= 1/N in lattice units, with lattice gauge coupliffy and a set of quark
masses denoted collectivety. We set chemical potential = 0 for now. Itis convenient to impose a temporal gauge cooiti
in which the timelike link variables are set to the unit masverywhere except on a single time slice, saly-a0. In that case,
Uo(x,0) is the Polyakov line holonomy passing through the gtti¢ = 0). The effective Polyakov line action is defined in terms
of the partition function

- / DUo(x, 0) eIVl | @)

or equivalently
exp[SplUx]| = | / 'DUo(X, 0)DU DD Y { []161Ux~Uo(x0) } eSoco 3)
Because temporal gauge has a residual symmetry underriiegéndent gauge transformations, it follows Salty] is invari-

ant undetJy — g(X)Uxg'(x), which means tha® only depends on the eigenvalues of the Polyakov line holoeem
Now consider a finite set &l SU(N) “effective spin” configurations in the three-dimensiooabic latticeVs of volumeL?,

{{U)E”,anxevg}, i:1,2,...,M}. (4)

1 This is the action at leading order. For the effective actietermined at higher orders in the combined strong-cogimd hopping parameter expansions,
cf. [5].



Each member of the set can be used to specify the timelike inkhe timeslicé = 0. Define

. M .
= / DU (X, 0)DUDEDY Z { [131Ux” — Uo(x,0) } eScn | (5)
i=1 U'x
and consider the ratio

exp[SUW)|  [DUo(x,0)DUDTDW { Mx3[Ux” — Uo(x,0)] } e¥ee0
exp[S[U®]| [ DUo(x,0)DUDTDY {1 SU —Uo(x,0)] } eeco

L [ DUs(x,0)DUDPDY {nx 8[Ux)) — Uo(x,0)] } esco
p— - 9 6
3/ DUo(x,0)DUDTDY { M« 3[Ux — Uo(x,0)] } e%oco ©

where in the second line we have merely divided both the natoeand denominator by a common factor. However, by
inserting this factor, both the numerator and denominatquie a meaning in statistical mechanics, because therfattcan

be interpreted as the partition function of a system in whinehconfiguration of timelike link variables at= 0 is restricted to
belong to the sefU (), i = 1,.... M}. This means that

Prolu V)] = % / DU (X, 0)DUDTDY {|‘| (UL — Ug(x, 0)]}eSQCD @

is simply the probability, in this statistical system, fbetj-th configuratiorp(x,0) = U (J)(x) to be found on the= 0 timeslice.
This probability can be determined from a slightly modifiedide Carlo simulation of the original lattice action. Thealation
proceeds by standard algorithms, for all degrees of freeothier than the timelike links at= 0, which are held fixed. Periodi-
cally, on thet = 0 timeslice, one member of the given set of timelike link cguafations is selected by the Metropolis algorithm,
and all timelike links on that timeslice are updated simmgtausly. LetN; be the number of times that tl¢h configuration is
selected by the algorithm, aml = 5; Ni. Then ProBJ ()] is given by

. N
Proju)] = lim —L 8
HU ] MmN (8)
and this in turn gives us threlative weights
ool oy,
= lim — 9)

oolsun] N

for all elements of the set. A computation of this kind allowgsto test any specific proposal 85, which may be motivated
by some theoretical considerations. But it might also besipes, given data on the relative weights of a variety ofefiét
sets, to guess the action that would lead to these resultkislarticle we will consider sets of spatially constantyébv line
configurations, and small plane wave perturbations arourwhatant background. This is already sufficient to deteentiie
potential term inSp, and to suggest the form of the full action.

The method described above was proposed long ago [12] irection with the Yang-Mills vacuum wavefunctional. Recgntl
there have been some sophisticated suggestions for theofaims wavefunctional in 2+1 dimensions, and the technigas
revived in order to test these ideas in ref. [13]. The maifedéhce between the method as applied to vacuum wavefmadsio
and as applied to determiniigg, is that in the former case the simulation chooses from a Beédf spacelike link configurations
on thet = 0 timeslice, while in the latter the choice is made from a $¢ineelike link configurations.

A. Finite chemical potential

Let S%(CD denote the QCD action with a chemical potential, which caolitained fromSocp by the following replacement
of timelike links att = O:

Sheo = Sac |Uo(x,0) — @#Uo(x,0),Ug (x,0) — & M#UJ (x,0)] . (10)

The corresponding Polyakov line acti% is in principle obtained from (3), Witl$gCD as the underlying action. Of course the
integration indicated in (3) can so far only be carried oustoong couplings and large quark masses, but it is not loesséel that
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each contribution t& in the strong-coupling + hopping parameter expansiqn-at0 maps into a corresponding contribution
to S by the replacement

Ux — eNHU, U — e MHyT (11)

Itis reasonable then to suppose that this mapping holdsiergg i.e. if we have by some means obtaiﬁﬁ:ﬂin,UI] beyond the
range of validity of the strong-coupling + hopping parametgansion, then the correspond%is obtained by making the
change of variables (11). There is, however, a possibleesaframbiguity in this scheme (noted in [8]), coming fromritdges
such as

1
Ty = = [(Trux)2 T2 (12)

in SU(3). One way around this ambiguity is to enlarge the eanido(x, 0), allowing these variables to take on values
Uo(x,0) = €°U (x) , (13)

whereU (x) is an element o8U(N). In other words, we allow thEy(x, 0) links to take on values in the (N) group, although
it will be sufficient for our purposes to l& be x-independent. Suppose we are able to determiefor this enlarged domain
of Polyakov line variables. Théﬁﬁ is obtained by analytic continuatiofl,— —iN; .

The essential point here is that if one can detern@ndy simulations ofSocp at p = 0, then this result can be used to
determiné‘P‘ at finite chemical potential. If the sign problem is in facdtable fo@, as recent results seem to suggest, then
this may be a useful way of attacking the sign problem in ful@ii

B. Relative weights, and path-derivatives of

Let % be the configuration space of effective spjik} on anL? lattice, and let the variable parametrize some paflux(A )}
through%’. The method of relative weights is particularly useful imgmuting derivatives of the Polyakov line action

(&), @

along the path. To see this, we begin by taking the logarithboth sides of eq. (9), and find

SU] - $U¥] = lim {logN; - logh }

Ntot—00
) N; N
= lim {log—- —1lo —} 15
Ntot%‘”{ gNtot gNtot (15)

(From this point on we will drop the limit.) Now imagine paratrizing the effective spins by a parametgreach value of
A gives us a different configuratiddy(A). Let the configuratiotJ 1) correspond toA = Ag+AA, andU® correspond to

A =Ag—AA. Then
ds:[uxm]) ~i{| N &) 16
( dA A:AONZA)\ C)gNtot OgNtot . (16)

However, rather than using only two configurations to coraplué derivative, we can obtain a more accurate numeridal&st
if we let A increase in increments A, e.g.

)\n_)\o+<n—MT+1>A/\ n=12..M | (17)

and use all of théV values obtained foN, in the simulation. FoAA small enough, the data for 1&& /Nt VS. An Will fit a
straight line, and then we obtain the estimate

dSe[Ux(A N
<w>)\)\o ~ slope of IogN[—Zt VS. Ap. (18)

2 Itis also sufficient to restric® to 0< 8 < 27t/N. The full rangel0, 271 is redundant, because of tAg center of SUK!).



The procedure will be illustrated explicitly in the next Sen.

Ill. TESTING THE METHOD AT STRONG COUPLING

The first step is to compu®S>/dA for a case where we know the answer analytically. As mendqmeviously,S» can be
readily computed in the strong-coupling + hopping parametpansion. We will consider here the case of pure SU(2) Yang
Mills theory at a strong couplin§. If the lattice isN; lattice spacings in the time direction, then computing ttagdhmmatic
contributions toS at leading and next-to-leading order in the strong-cogptiharacter expansion we find

B LB\ 2B\ < )
== v () ] (%)) 33 momn:
3
=PBp z _;Pxpxﬁ 5 (19)
where
PXE%Tar
B 1208)\*| (128)\™
po=4 ”“N‘(Ilw)”(u(m) | 20

Let us first consider sets of spatially constant configuratieith varying amplitudes in the neighborhoodof Py, i.e.
UxY = (Ry+an)1+iy/1— (Py+an)203

an:(n—}(M—i—l))Aa, n=12..M |, (1)
2

so in this casa is theA parameter of the previous section. If we divigleinto a kinetic and potential part, which in the case of
(19)is

S =Kp+W
1 3 )
Kp = EBP Z Z(PXPX+T - 2Px + PxPxfi)
X i=

Ve =3B P, (22)

thendS/da= dVr/dR is giving us the derivative of the potential piece, which taen be reconstructed, up to an irrelevant
constant, by integration. So the procedure for determikinassuming it were not already known from the strong-couplin
expansion) is to computdp/dRy numerically, fit the results to some appropriate polynorimidb, and then integrate the fit.

Our sample simulation is carried out in pure SU(2) latticeggtheory at couplin = 1.2 (well within the regime of strong
couplings) on a 12x 4 lattice withM = 20 sets of spatially constant configurations. Figure 1 sttberslata for logNn /Neot)
plotted vs.(Py+ a,) x spatial lattice volume (13, atPy = 0.5. It is clear that the data falls quite accurately on a shidige,
and the slope gives an estimate for the derivative

1 <w) _ 1d%(Ry)
L3 da ao L dR

which can be compared to the valyé-6, obtained from the strong-coupling expansion. The dexeaibtained from numerical
simulation vs R is plotted in Fig. 2, and it obviously fits a straight line. Téfre the potentia¥p is quadratic inPx, and we
find, atp =1.2

(23)

, (24)

0.1721(8) 5 2PZ relative weights method
Vp =
0.17105 %Pf strong-coupling expansion

where we have dropped, in the upper line, an irrelevant eohstf integration. The small numerical difference betwéen
relative weights and strong-coupling results can probabhattributed to neglected higher order terms in the stamgling
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FIG. 1. The slope of the straight-line fit to the data showregian estimate for the derivatite 3dS /da of S with respect to the amplitude
of spatially constant effective spin configurations. Irstbase, the derivative is evaluatedPat= 0.5, for an underlying pure Yang-Mills theory
at strong coupling value @8 = 1.2, on a 13 x 4 lattice.
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FIG. 2. A plot of the values fot ~3dS>/davs. Py. Each data point is extracted from a plot similar to the presifigure. Also shown are the
corresponding strong-coupling values, and a best linetar fite data points.

expansiort.
In order to investigate the kinetic term, we consider plamee deformations of spatially constant configurationse path

3 Statistical errors are estimated from best fit slopes obthfrom eight independent runs. Where errorbars are notrskaplicitly, in the two-dimensional
plots shown below, they are smaller than the symbol size.



p=1.2, 123 X 4 lattice
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FIG. 3. Derivative of the action w.r.t. path parame#érvs. squared lattice momentum. Data is taken at strong gaugglieg 8 = 1.2 for
plane-wave deformations. Squares indicate the relatiigits values, while green dots are the values obtained fnenstrong-coupling
expansion.

through configuration spaé€ is again parametrized kg with

Ux” = BV 1 +iy/1— (A")205
R = R+ ancogk-X)

2n
where the{m;, i = 1,2,3} are integers, not all of which are zero. For this class of gumétions we have, for the action (19)
1 3
S =PpL3 | 3P% + 24 Zcos(lq) : (26)
2L
Since the deformation of the action is proportionaafoit is natural to consider the derivative & with respect t&?, i.e.
1ds 1
Fm = EBPZCOS(K) ) (27)

and therefore we can choose todét rather thara,, increase in equal increments, so that= \/nAa.

The numerical procedure is similar to the determinatiorhefpotential term: we compute the derivative’dS/d(a?), at
fixed Py andk, from the slope of a plot of lo@Nn/Niot) Vs. aﬁL3. Then these values for the derivative are plotted, at variou
values ofFy, against squared lattice momentum

3
.51
K=4F sirf(Zk) . (28)
5"
The result, aBy = 0.5, is shown in Fig. 3, and we find, for a trajectory (25) at fiked
1 d$
Fm_—Ak@rB, (29)

where

A=73(2)x103, B=4.30(3)x102. (30)
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The simulation has also been carried out at other valuBg dut the results are almost indistinguishable from Fign8l, so are
not displayed here. The important point, however, is thafidith derivative (29) iBy independent.
Integrating with respect te?, we find that along any path parametrizedebyith fixed Py

SplUx(a)] = L3{—A&Pk? +Ba® + f(Po)} (31)
wheref (Fy) is a constant of integration, which can be determined froerdéita on the potential:
f(P) =CRZ , C=0.0861+0.0004. (32)

The next step is to expreSp along the path in terms ady (or Px = %Trux). From the definitions (25), (28), one easily finds
that (31) can be expressed as

3
S=4AY Zl PPsi+ [(B —6A)a%+ (C—12A)P5|L3. (33)

The constantB — 6A andC — 12A are, within statistical error, consistent with zero. So viléjust drop these terms. Then along
the trajectory the action has the form

3
S = (.0292+.0008) Z ZLPXPXH (relative weights method) (34)
X i=

and of course the natural conjecture is that this is the mdtself, at any point in configuration space. Further chegksld
be to calculate numerical derivativé§>/dA along other trajectories, to test the consistency of thigemure. We don'’t really
need to do that here, since the action at strong couplingssiady known analytically, and is given in eq. (19) to leagand
next-to-leading order in the strong-coupling expansion3A= 1.2 we have, from eq. (19), that

3
S$= .02852 ZLPXPHT (strong-coupling expansion) (35)
X =

which is a close match to what we have arrived at via the x@atieights procedure.
This is, perhaps, a lot of effort to derive a known result. Vigengone through this exercise in order to illustrate thehouht
and to make sure, in a case where the answer is known, thatetiedactually works.

IV. POTENTIALV p IN PURE-GAUGE THEORY, WEAKER COUPLINGS

We now reduce the lattice coupling of the underlying SU(2)epgauge theory, settin@ = 2.2 with inverse temperature
N = 4 in lattice units. At this coupling and temperature (whislstill inside the confinement phase of the theory), the t¥fec
Polyakov line actiorgs is not known.

The easiest task is to determine the potential part of theracFor the purposes of this article, we define the kinetit pa
of the action to be the piece which vanishes for spatiallystamt configurations, while the potential part is local. WMtthese
definitions

Vo=5 7(Uy), (36)
X
and the functior?’(Uy) is determined by evaluatir on configurationtly = U which are constant in 3-space, i.e.
1
YU)=5SU) . (37)
Then by definition the kinetic part of the action is
Kp = Sp[Ux] — Vp[Uy] . (38)

In order to determin&p, we consider as before the path through configuration sgaidep@rametrized by the variabde
and once again we can identiff& /da with d\i(Py)/dRy as in (23). The derivatives are determined by the relativighie
method described above, the dependendgas fit to a polynomial, an®p is then determined, up to an irrelevant constant, by
integration over,.

Because th&, center symmetry is unbroken @t= 2.2 and\; = 4, and¥'(Uyx) is a class function, it is natural to assume that
¥ (U) is well represented by a few group characterd) ) of zero N-ality (j = integer for SU(2)), and the potential is analytic



in Px. Surprisingly, this isrxotwhat is found.
Figure 4(a) shows the data for the derivative

1dw

_1ds

- L3 da
atf = 2.2 on a 12 x 4 volume, which, as in the strong-coupling case, extrapsltearly to zero & = 0. Also shown is a
best fit ofD(P) to the polynomial

(39)

f(P) = 1P+ coP? + c3P? (40)

with the best fit constants shown in Table I. What is initialiittle troubling about this fit is that upon integrationgdaup to an
irrelevant integration constant, we must have

V(R = 5oiPE + 3R + 50sPf (@1)
which appears to violate center symmetry, i#(P) = ¥ (—Px) for SU(2) gauge theory. Because of center symmetry, the
character expansion of (P) contains only charactepg with j = integer. Itis a property of the SU(2) group characters that
eachy; can be expressed as a polynomial of ordiginZP, containing only even powers Bffor j = integer, and only odd powers
for j = half-integer. Then if the character expansior¥(() is truncated at SOmp= jmax theP-derivative is a polynomial in
odd powers oP up toP2imax1,

One might expect that'(P) can be accurately approximated by a handful of group chercHowever, the attempt to fit
the data with only a few odd powers Bfis unsuccessful, in the sense that each of the three fittimgifins

P+ 03P3
f(P)={ cP+c3P?+csP® , (42)
C1P + c3P3 + csP° 4 ¢/P7

corresponding to truncated character expansions pith= 2, 3,4, respectively, gives an unacceptable fit, as seen in Hy. 4(
The reducedy? values in the three cases are 4800, 25, respectively. This is to be compared to the redycee 3.2 for the
fitting function (40).

Potential fit
C1 Co C3
4.61(2)—4.51(10)|1.77(8

TABLE I. The constants;_3 derived from a best fit of; P+ c,P2 -+ czP° to the potential data.

All this seems to imply tha?’(Px) has a term violating center symmetry, but of course that cglne the case. In order that
¥ (Px) is an even function o, it must be that the derivative is an odd functi®{Py) = —D(—P), which in turn means that
the coefficient of the quadratic term in (40) must change sigenPy — —Py. This is easy to check; we simply repeat the
calculation withPy < 0 in (21), with the result shown in 4(c). Here the squareslaealata foD(Py) atP) > 0, while the circles
are data fo—1) x D(Py) atPy < 0. The fact that the corresponding data pointsB§ lie on top of each other means that the
derivative is an odd function, and the potential itself ieaan function o, as it must be. The conclusion, which follows from
the best fit, is that over the full rangel < Py < 1 the potential, up to an irrelevant constant, is given by

7 (R) = %01P3+%02|Px|3+i—[1c3Pf. (43)
This function is non-analytic, because of the absoluteejahut still center symmetric, with the constants given ibl&d.
It should be emphasized again that this potential cannoppecaimated very well by a simple sum ¢f= 0,1,2,3,4 SU(2)
group characters. Of course, any class function (inclugiag) can be approximated by a sufficiently large number of group
characters, just as a step function can be approximatedropeated Fourier series. But keeping only a relatively $mahber
of group characters introduces “wiggles” in the approxiorato the potential (which are seen in Fig. 4(b)) much like th
truncated Fourier series does for the step function.

So far we have only looked at a pure gauge theory in the confihede, but it is also possible to computéP) in the
deconfined phase using the same methods. In comparing teetiabin the confining and deconfining phases it is useful to
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FIG. 4. Derivatives of the potential. Subfigure (a) showshtest fit to the data by a polynomiaP+ bP? 4 cP3, while subfigure (b) shows a
best fit by polynomials with two, three, and four odd power&pfvhich are forms that might be expected from unbroken cesymetry.

(c) is a test of whethedVp /dP is an odd function oP. Data for the derivative at values Bf < 0 are multiplied by -1, for comparison with
the data aPp > 0. (d) same data (and fit) as in subfigure (a), plotted in ardiffeway.
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B=2.4, 12° X 4 lattice
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FIG. 5. Derivative of the potential in the deconfined phaseteNhe dip in the data in the intervakOPg < 0.1. The fitis to data a‘Pg >0.1.

display the data in a slightly different way, by plotting tterivativedVi/d(P?) vs.P?, i.e.

1dw 1 1 dw
d - P 44
3d(R)  L2RdR (44)

When the data is plotted in this way, a curious feature doew stp. First, consider the confined phase. The data for theeabo
derivative in the confined phase, at the same couglirg2.2 and lattice volume as before, is shown in Fig. 4(d). In thit,p
the best fit shown in Fig. 4(a) transforms to

(Cj_ + Cz\/ﬁ + C3P2) s (45)

NI =

9(P?) =

with the same constants 3 shown in Table |, and this function is also plotted in Fig.}4(dote that if the potential didn’t have

a cubic term, then we would have to omit the term proportiémalP2. But then the data should fit a straight line in Fig. 4(d),
which it quite clearly does not.

Now we display corresponding data in the deconfined phager&b shows the result for the derivative (44Bat 2.4, again
on a 12 x 4 lattice, which is well past the deconfinement transitionte\the peculiar “dip” nealy = 0. Because of this dip,
the polynomial form (40) to the derivative, which transtate (45) fordVk/d(P?), cannot fit the data over the full range.igt
consistent with the data away from the dip, i.eP§t> 0.1, and the resulting fit to data in the interyall, 1] is also shown in
Fig. 5. The relationship of the dip in the derivative nBar= 0 to the deconfinement phenomenon is not obvious to the author

Finally, it is important to ask whether the potential showiirig. 4 is dependent on the spatial volume. In Fig. 6 we shew th

previous data for the derivative of the potential, obtaior@ 12 x 4 lattice, together with data for the same observable obthin
on an & x 4 lattice. It can be seen that the volume dependence is itglig this case.

V. POTENTIALV p IN SU(2) GAUGE-HIGGS THEORY

We now add a matter field to the gauge theory, to see how thigffigkct the potential. To keep the computation requirerment
very modest, we consider a scalar matter field, in the fundéahespresentation, with a fixed modulus (i.e. a “gaugegdig
theory). For the SU(2) gauge group, the matter field can bgetapnto SU(2) group elements, and the action can be exgresse
as

S=p %Tr[UUU U +yy %Tr[qu(x)Uu(x)qo(x—i- o). (46)
plag XM
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B=2.2, P(X)=P,

1.8 | = E
16 r = 1
14 ] .

L3 dVp/dP,
H
[

08 B Ol 4

0.6 | . l=8 o
04 t+ m L=12 ] 4

D 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 0.9 1
Po

FIG. 6. A test of volume dependence of the potentig8 at 2.2. Data for the potential derivative is displayed for latimlumes 8 x 4 (open
squares) and £2«< 4 (green circles).

SU(2) Gauge-Higgs, B=2.2, 16 Lattice

0.64
0.63 |
0.62 |
0.61 |
0.6 -
0.59

Plaquette Energy

0.58 |

0.57

0.56

0.4 0.6 0.8 1 1.2 1.4
Y

FIG. 7. Plaquette energy vs. gauge-Higgs couplirg fixed3 = 2.2, for the SU(2) gauge-Higgs theory with fixed Higgs modusimwing a
sharp crossover gt~ 0.84.

There have been many numerical studies of this action,viilig the work of Fradkin and Shenker [14], itself based on a
theorem by Osterwalder and Seiler [15], which showed thatHlygs region and the “confinement-like” regions of fhe y
phase diagram are continuously connected. SubsequeneNBarto studies found that there is only a single phase at zero
temperature (there might have been a separate Coulomb)phtikeugh there is a line of first-order transitions betwé®e
confinement-like and Higgs regions, which eventually tums a line of sharp crossover aroufid= 2.775 y = 0.705, cf. [16]
and references therein. St= 2.2 the crossover occurs gt 0.84, as seen in the plaquette energy data shown in Fig. 7. There
is also a steep rise in the Polyakov line expectation valyeiasreases past this point.

Fig. 8(a) shows the potential derivatike3dVik/dR, vs Py, along with a best fit to the data, At= 2.2 andy = 0.75, which is
somewhat below the crossover, in the “confinement-likeimeg We compute this derivative, again in &124 lattice volume,
at both positive and negative valuesRf to test for the presence of a small center-symmetry brgaierm in the potential
(which is not obvious in Fig. 8(a)). The data over the fullgans fit to the form

f(P) = ¢+ ¢ P+ c,sign(P)P? + c5P3 (47)
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which translates, upon integration, into a potential
1,04
chPx .

with a center symmetry breaking tewgP. The constants obtained from the fit are shown in Table II.

1 1
¥ (R :chx+§c’1Pf+§c/2|Px|3+ (48)

Potential fit: gauge-Higgs mode
C 1
0.025(1)4.70(2

2 3
—4.70(8)|1.91 (7

TABLE II. The constantsy, 5 derived from a best fit o)) + ¢, P+ c,sign(P)P2 + c;P2 to the potential data of the SU(2) gauge-Higgs model.

The slight asymmetry which break$P) = — f (—P), and therefore center symmetry, is more evident when werektree
plot in the immediate region ¢% = 0, as in Fig. 8(b). It can be seen that the best fit through tteepizints does not go through
f(Py) =0 atRy = 0, but rather crosses tlyeaxis at a positive valug¢(0) = ¢, = 0.025. The line shown in Fig. 8(b) is taken from
a best fit to the full range of data, not just the nBa# 0 data. Since the underlying gauge-Higgs theory breakecepmmetry
explicitly, a term linear irP is of course expected. The coefficiegt= 0.025 of the symmetry breaking term is quite small, but
the expectation value of the Polyakov lineyat 0.75 is also quite smalltP) = 0.055 at these couplings and lattice size.

B=2.2,y=0.75, 12° X 4 lattice B=2.2,y=0.75, 12° X 4 lattice

2 ‘ : : : — 0.3 : :
data = e data —s— -
L fit = i [ —
15 - 0.2 | =
1t A 1 @
,- L
& 05¢ e 01 a
3 4 3
= 0 = 0
© © =
[32] [32)
05" ;
- B - .01 £
1k o 4 B
-15 . 0.2
2= 0.3

-1 -08 -0.6 -04 -0.2

0
Po

02 04 06 038

1

-0.06

-0.04

-0.02

0
Po

0.02

0.04

[€) ?15 %\% vs. P for the gauge-Higgs theory. (b) A closeup neaPy =0.

FIG. 8. Derivative of the Polyakov line potential, per unitwme, with respect to the Polyakov line valRgfor the SU(2) gauge-Higgs theory
on a 12 x 4 lattice. Data is taken at gauge coupliig= 2.2 and gauge-Higgs coupling= 0.75. (a) the data over the rangel < P < 1,
together with the best fit; (b) the data in the vicinityRf 0, also showing the fit in this region derived from the full garof data (i.e. same
curve as in (a)). Note that the line through the data doesamx through the origin, which implies a small breaking ofteeaymmetry.

VI. PLANE-WAVE DEFORMATIONS

We now return to the pure gauge theorBat 2.2. So far the potential terivh of the effective Polyakov line action has been
determined, but the ultimate interest is in the full actiinvas not very hard to extract this action from the[lbg/Niot] data at
strong couplings. Unfortunately it is not as easy to jumprfithe path derivatives to the full action at weaker coupljsgaply
becaus& is not so simple (and is not known in advance!). Neverthelasswledge of the action along a particular trajectory
in configuration space does provide some information atheufutll action.

As in the strong coupling case, we choose to investigate ehigatives ofS> along paths of the form (25), i.e. plane waves
of fixed wavenumber and varying amplitude on a constant lrackgl. The method is the same as outlined in section Ill, but
the result is different. AB = 1.2, it was found thadSp/d(aZ) was linear inkE, and independent d%. That is not the case at
B = 2.2. What happens in this case is shown in Fig. 9, where we ¢isplddSp/d(a?) plotted against the magnitude of lattice
momenturnk_ = (kE)l/2 at fixed values oPy = 0.1 andPy = 0.8. It can be seen that tlie-dependence of the data in Fig. 9(a),
atPy = 0.1, is consistent with linear, while the -dependence in Fig. 9(b), B = 0.8, seems to be quadratic. This can be seen
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from fits toa— bk_in the former case, and o bk? in the latter. This suggests a possible interpolating form

1d
Gae, ~1R)e/iérar. (49)

‘a:o

whosek, -dependence would vary continuously from linearPas~ 0, to quadratic, fok? < gP2. Fig. 10 is the same plot
as Fig. 9(a), except that data obtained on both%r 8 lattice and a 12x 4 volume are displayed together, and both sets of
data points appear to have the saékpelependence. This is, of course, evidence of the insergitiour results to the spatial
volume.

Po=0.1, B=2.2, 12° X 4 lattice Py = 0.8, B=2.2, 12° X 4 lattice
1 , 02 ; ‘ ‘ ‘
data —&— TR data —&—
08 [ a-bk -~ | 0.15 TR a-bko ]
0.1 | e
~ 067 e 1 005t
I I E
< s o} .
S 04r N =] .,
o =, i .0.05 |
[%)] )] .
T 02} ER S o1l =
@, e @, : o,
ol ] -0.15 | e,
e 02} g
02y a -0.25
0.4 L L L L 0.3 L L L L
0.5 1 15 2 2.5 3 0.5 1 1.5 2 25 3
k. ke
(@) =01 (b) Ph=0.8

FIG. 9. Derivative of the action along a path of plane waveodweftions. (a) Data & = 0.1 is consistent with a linear variation of the
derivative with deformation lattice momentukn; (b) data aPy = 0.8 is consistent with a quadratic variation w.kit.

If (49) is correct, then it ought to be consistent with thegmbial (43). This means thdt{P) can be, at most, quadratic i,

so let us write
1 dS$ 5 /AP
Fm‘azo - bo+blpo+b2P0 +C kE+gP02 . (50)

The constants shown are subject to three constraints byotieatal, so if we insist on the potential (43) there arelyeahly
two independent constants. In order to derive those cantgtraonsider a very large lattice volurhd such thak? can be made
very small compared tng, but still non-zero, and we assume tHat, c,,c3} do not vary much with. (we have already seen
evidence of this fact in Fig. 6). Then the kinetic term is ngifle compared to the potential term, and along the trajgd25),
taking account of the spatial avera@®s’ K- X)ay = % we have

1 d$ 1 1 3
CGd@), a7 2% g

a=

caP? . (51)

Comparison with (50) in thi? < gP? limit calls for identifying

bg = %Cl , b= 203 R bl-i-C\/@:%Cz. (52)
Figure 11 show a best fit of the data to the form (50), with th&t fieconstants given in Table Ill. This is hardly a perfect
fit through the data points, given the value of the redug®e- 30. Still, except at very low?, POZ, the fitting function gives a
reasonable account of the dependence of the dak& andPy. Table IV is a test of constraints, listing three combinasiof
constants which, according to the identities (52), shoaluish. It is seen that the second and third combinationsitetble are
consistent with zero, and the first combination is very nesot*

4 All fits, and error estimates on fitting constants, are madfegusie GNUPLOT software.
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Py=0.1, B=2.2

0.8 | o
0.6 B
0.4 E

0.2 - o

L dSp/d(a?)
il

04 1 1 1 1
0.5 1 15 2 25 3

FIG. 10. A check of insensitivity to lattice volume. Paragretare the same as in Fig. 9(a), but this time including datiairmed on an 8x 4
lattice volume (L = 8), in addition to data on a $2 4 volume ( = 12).

Surface fit
bo bl b2 Cc g
1.105(14)0.85(17)1.365(56)—0.529(13)33(3)

TABLE lll. Fitting constantshy_», ¢, g obtained from a best fit to the data points shown in Fig. 11, syréace of the form (50).

VII. TOWARDS THE FULL ACTION

The interesting question, of course, is what is the fullattivhich gives rise to the variation (50) along the path, lité
given potential (43). We begin by noting that, with the can$$ shown in Tables | and IIl, the action

1 1 1
S =2c{ S RQyR— S \/gPPZ } + 5 ( ZciP? + S|P3 + ScaPy ) |
{Xznyxyy; gox} Z(le 32|x| 43x)
=Kp+ Y 7 (R (53)
X

whereKp is the kinetic term

szzc{%PxQxyPy—Z,/ngP,%} (54)

and
%= (R),
Ray = (=0 )xy + 9F5 &y
= f (284 — Sxy 11— Ox41) + GRSy (55)

Constraints
b —%Cl b1+C\/g—%Cz b —%C3
-0.05(2) 0.06(23) 0.04(8)

TABLE IV. The constraints (52) imply that the combinationazinstants in the second line of the table should vanish mvéhiorbars, and the
last line shows the actual values of these combinationgh&constants given in Tables | and 111
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FIG. 11. Two views, at different viewing angles, of the datal(crosses) fat

the best fit (green surface) of the form (50) to the data.
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gives the known results for the potential (43) and for théatam of Se with a2 (50) along the paths of plane wave deformations
(25). The operato? is the usual lattice Laplacian operator, @ddhas the spectral representation

Q:;<\/kﬁ+gP§) KK
Qw—l_—le,z <\/kﬁ+gP§) gty (56)

wherey g is shorthand for the sum over lattice wave vectors with camepésk; = (271/L)m;, and lattice momentut_has been
defined previously in (28). The ket vectdk$ correspond to normalized %2 exgik - x| plane wave states.

For the paths (25), s& = Py +acogk- x), and compute the resulting action on such configurations igatling order ira?.
Using the spectral representation for the oper@aa short calculation gives, up @(a?),

1 1 3
S = L3 (Ry) +a%L3 { 201+ (52— cv@)Po+ ZC3P§+ c\/K2 + gPOZ} : (57)
Applying the identities (52), which are reasonably welisfa&d by the data, this becomes
S =L (Ry) +a’L3 {bo+ b1Po + 2P + ¢y /K2 +ng} : (58)
So we find that for constant configuratioras= 0), the action is simply the known potential, i%.= L37 (Py), while the path
derivative is
1ds _ 2 /2

in complete agreement with (50).

Denote byP,, andAP? the lattice average value and mean square deviation, iasggocof a given Polyakov line configura-
tion. It is clear that for the paths (25) considered soRar= Pay. One further generalization, which will not affect agreeme
with the data so far, is to allow the kinetic term to also depenAP?, i.e.®

o= 2e{ 3 BT 909) - 3 a9 | 60
xy X

It is not hard to see that the 8% contribution that would arise from tre-dependence of the square root terms also selects, at
this order, the constaat-independent part d andR,. In that casdq = 0, and this contribution to the @) part of the kinetic
term vanishes.

In order to investigate the possibility ofP?-dependence a little further, let us consider trajectar@sisting of plane waves,
of varying amplitude?, with Py, =0, i.e.

P.=Acogk-x) , (61)
and study the derivative3dS,/dA evaluated al\ = Ay. To compute this derivative by the relative weights apphoaee
construct a set of configurations

U =RV +iy/1- (R")20
A" = A,cogk-x)
An=Ag+ (n— %(M+1))AA . n=12..M

21
ki=--m . (62)

5 A generalization of (53) which doe®twork is the replacement & by Px in (53) and (55). This leads to additional contributionsi& /d(a?) which spoil
the agreement with (59).
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L (dSp/dA)s,

FIG. 12. Variation of Polyakov line action with Polyakov déiramplitude L ~3d S /dA evaluated af = Ag, for Polyakov line configurations
proportional to plane waved = Acogk- x), as a function of\yp and lattice momenturk_. Red crosses are data points, and the green surface

is a best fit to the data by the analytic form (64).

and proceed as before. The conjectured action is

S= ZC{ Xzy Px(\/—DE +ORG+ g’APZ)XyPy— Z \/ 9P%+ g/APZP)%}

1, 1 1
+Z(§clpf+§cz|P3|+Zc3Pf) (63)

whose path derivative &

id_SP 7} 2 3 \/2}/2_\/}/2
3 dAAAO_201A0+.424czA0+.37EC3A0+20A0< kL+29A0 ngO

1 1 1
+ZcdAd - (64)
2 \/ K2 +39A3 \/ 39A;

Takingc andc; 3 as given in Tables | and 1V, there is only one free constantttefit the data, and the best fit, shown in
Fig. 12, is obtained a’ = 3.45(4). Once again, this plot should not be interpreted as a pdifélctough the data points within
errorbars, given that reduced ~ 45. On the other hand, with only one fitting constant, the esgion (64) does seem to give
a quite reasonable account of the dependence of the da#tg@amdk,_, despite the highly non-local expressitR? introduced

into the kinetic term.

6 The numbers multiplying, c,,c3 are the lattice averages of égk- x), |cos’ (k- x)|,cos* (k- x) respectively. These numbers are almost independent of the
wavenumbek on finite lattices, so long de=~ 0, and converge rapidly to the infinite volume limit as lagticolume increases.
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VIIl. CONCLUSIONS

| have presented a method for computing derivatid&s/dA of the effective Polyakov line action along any given path
through field configuration space, parametrized by the bibgia. The technique is easily implemented in a lattice Monte €arl
code by simply replacing updates of timelike links, on a Ertgneslice, by a Metropolis step which updates that seingsl
simultaneously, and the potential p&ft of the effective Polyakov line action can be readily detewi, for any given lattice
coupling, temperature, and set of matter fields, up to ateiramt constant. It is also possible to determine, from #érévdtives,
the actionSs along any given trajectory in field configuration space.

The method has been applied here to SU(2) lattice gaugeythemth without and with a scalar matter field. At a strong
coupling B = 1.2) and finite temperature, the method easily determines fteetiee Polyakov line action, which we have
checked against the known result derived from a strongdammexpansion. At a weaker coupling & 2.2 on a 13 x 4 lattice),
where the Polyakov line action is not known, it has been shibzat) up to a constant, the potential term has the form

Vp = Z(%01P3+%CZ|PX|3+%1C3P)‘(‘) , (65)
with coefficients given in Table I. The center-symmetric hoh-analytic cubic term comes as a surprise; to the best of my
knowledge such a term has not been anticipated in previadgest It would be interesting to study the evolution of theae
potential ag3 andN; vary. Addition of a scalar matter field in the underlyingitgauge theory introduces a center symmetry
breaking term into the potential which is linearRg with a coefficient reported in section V.

Data has also been obtained from small plane-wave defaynsasiround a constant Polyakov line background (Section VI)
and for Polyakov lines proportional to a plane waves withalzle amplitude (Section VII). It was found that the actié3) is
consistent with the results that have been found so far, aitidsapoint we may conjecture that (63) approximates thérelés
full Polyakov line action.

However, a strong caveat is called for. The results obtaiméus paper have been obtained for a set of very specialgonfi
rations, of the types just mentioned, and the criterion fmging only a few terms in the action was simply the goodoési-

In fact these simple configurations were quite successfugtermining the action at strong couplings, but it is shi# tase that
such configurations have little in common with the set of Bkby lines found in, e.g., a typical thermalized lattice. Méxe
worked so far in only a small corner of configuration spacel, @me cannot rule out the possibility that, at weaker coggslin
the action in the important regions of configuration spaceald/took quite different from (63). Therefore the conjeetdrac-
tion needs to be investigated in more complicated, and mumte igeneral, backgrounds. Given an effectigehat seems to
work, the ultimate test is to calculate observables sucheBolyakov line correlatqiPkR,) in both the effective theory and the
underlying lattice theory, and compare the results.

Those tests, and the extension to the SU(3) group, wouldebelihious next steps in the approach introduced here.
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