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A calculation of the interaction potential of two heavy-light mesons in lattice QCD is

used to study the existence of tetraquark bound states. The interaction potential of the

tetraquark system is calculated on the lattice with 2+1 flavours of dynamical fermions with

lattice interpolating fields constructed using colorwave propagators. These propagators pro-

vide a method for constructing all-to-all spatially smeared the interpolating fields, a tech-

nique which allows for a better overlap with the ground state wavefunction as well as reduced

statistical noise. Potentials are extracted for 24 distinct channels, and are fit with a phe-

nomenological non-relativistic quark model potential, from which a determination of the

existence of bound states is made via numerical solution of the two body radial Schrödinger

equation.

PACS numbers: 12.38.Gc,14.40.Nd,14.65.Fy,12.39.Hg

I. INTRODUCTION

The calculation of hadronic forces from first principles allows insight into how interactions of

the fundamental quark and gluonic degrees of freedom manifest themselves at the hadronic level.

Lattice QCD is an excellent tool for calculating hadronic observables in the low energy regime.

Although lattice calculations in euclidean space are not well suited for the study of real-time

scattering processes, two methods can be used to extract interaction information from the lattice.

One method, developed by Lüscher [1], relates the elastic scattering phase shift of a two particle

system in a finite periodic box with the energy levels of the system. An alternate method, used in

the present work, extracts the interaction energy as a function of hadron separation. This method

is only applicable for systems of hadrons containing more than one heavy quarks which can be

treated in the static approximation providing a definite spatial position for the hadrons.

Phenomenologically, two heavy-light meson systems (which we will denote as HLHL) have

become interesting in the study of tetraquark bound states [2] [3] [4]. It has long been known
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that the binding of a Q̄Q̄qq (with q = u, d) system increases with the mass ratio of the heavy

to light quark flavours [5], thus c̄c̄qq and b̄b̄qq systems are excellent candidates in the search

for exotic four quark bound states. In Ref. [4] a distinction was made between two types of

tetraquark bound states: molecular, in which the four quarks exhibit a single physical two-meson

(singlet-singlet) component, and the more exotic compact bound states. The latter would involve

a complicated color space structure in which quark pairs form color vectors which then combine to

form a colorless four quark state [4]. In spite of this complicated color structure, compact bound

states can be interpreted as a mixture of various two meson (color singlet) components [6]. The

expected features that would characterize a molecular bound state would be a small binding energy

and a bound state RMS radius greater than that of the sum of the two particle sizes, i.e.:

∆R ≡
RMS4q

RMSM1 +RMSM2

> 1

A compact state, on the other hand, would be more tightly bound and have a smaller RMS

radius than the molecular state. In Ref. [7] doubly heavy four quark states were modeled as

hadronic molecules interacting via a meson exchange potential. Several of the doubly bottom bound

states were found to be deeply bound and spatially compact, making them excellent candidates

for tetraquark bound states. It is with these ideas in mind that we may begin to search for the

signature of compact bound states on the lattice.

Lattice calculations of the interaction potential of the heavy-light heavy-light system were first

performed over 20 years ago (see eg. Ref. [8]), however only recently have these simulations included

fully dynamical fermions for the light up and down quarks [9][10][11][12]. The study of tetraquark

states from lattice calculations had remained unexplored until only recently with Ref [11] hinting

at the possibility of a bound tetraquark state in one heavy-light heavy-light channel that exhibits

a particularly wide and deep potential well when compared with other channels. In Ref. [12] this

particular channel was investigated further by fitting lattice potentials with a simple potential

model and numerically solving the two body Schrödinger equation to extract a binding energy1. In

the present work we perform a calculation similar to ([11], [12]) using the anisotropic clover Wilson

action for the light quarks. Using a highly constrained phenomenological potential model, we then

present a quantitative determination of a bound state energy in the HLHL system.

An inherent difficulty in making comparisons between theoretical models and lattice calculations

performed in the static limit stems from the omission of the heavy quark spin in the static limit.

1 The recent work of Ref. [12] appeared as a preprint while this manuscript was at its final stages of preparation
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As mH →∞, the integer valued (J = 0, 1) angular momemtum eigenstates of a single heavy light

meson map onto a single static limit eigenstate with J = 1/2. The energies of the non-static angular

momentum eigenstates also converge to a single energy corresponding to the J = 1/2 eigenstate.

Although the two spaces map onto each other, there is not a simple one to one correspondence

between static limit eigenstates and their non-static counterparts, and care must be taken in making

identifications between the two spaces. Previous lattice studies of HLHL interaction energy ([8],

[13] for example) performed in the quenched approximation and included uncontrolled systematic

errors because of this. Recently dynamical quarks have been used to calculate the HLHL interaction

energy using a complete set of quantum numbers which exploits the full set of symmetries of the

HLHL system [14].

With our choice of quantum numbers (presented in section II) we are able to draw a connection

between the quantum numbers and the qualitative behavior of the states. Additionally, by way of

symmetry arguments, we are able to relate our static-limit states to non-static angular momentum

eigenstates.

II. BACKGROUND

A. Heavy-Light states

The quark model view of a heavy-light meson is of a heavy anti-quark Q̄ coupled to a light

quark q. The relevant quantum numbers to describe such a state are total angular momentum J

and its projection along some axis (here arbitrarily chosen to be ẑ) Jz, and the parity Pi as well as

the relevant flavor quantum numbers. For our interests, we choose Q̄ = b̄ and q = {u, d}. Therefore

all states then have bottomness b = +1, and are otherwise classified by total isospin and the third

component of isospin (I, Iz) = (1/2,±1/2). Throughout this work, we make the assumption that

we fit our correlation functions with a sufficiently large tmin such that contributions from excited

states have died out and we extract only the ground state energy. Furthermore, we assume that

states with non-zero orbital angular momentum L are at sufficiently high energies as to have a

negligible contribution to the ground state energies which we extract. We are then free to speak

of the spin and total angular momentum interchangeably.

In heavy quark effective theory, spin dependent contributions enter into the heavy quark action

at order 1/mH , and in the static limit (mH → ∞) the heavy quark acts as a static color source.

This means that the spin of the HL meson comes only from the light degrees of freedom. Because
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of this, the physical HL meson states with J = (0, 1) become degenerate in the static limit, with

both represented by a single J = 1/2 state. The relevant angular momentum classification is then

(J, Jz) = (1/2,±1/2). With the above flavor assignments, the lowest energy excitations of the

B spectrum with JP = {0, 1}− (coupling to the static JP = 1/2− B) are B0,± and B∗, and for

JP = {0, 1}+ (coupling to the static JP = 1/2+ B1), the ground state B1 (5721)0 (neglecting

excited states).

B. Heavy-Light Heavy-Light states

When constructing states with a pair of HL mesons, care must be taken in determining a relevant

set of quantum numbers that fully exploit the symmetries of the problem. The flavor quantum

numbers for a Heavy-Light Heavy-Light (HLHL) system are straightforward, and for a Q̄qQ̄q (with

q = {u, d}) there are two isospin combinations, an isospin triplet with I = 1 and an I = 0 singlet.

For a HLHL pair separated by a vector ~r the rotational symmetry is broken to rotations around the

separation axis. Total angular momentum J is therefore no longer a conserved quantity, though its

projection along the axis of separation (arbitrarily taken to be ẑ) is still conserved. The system will

also be symmetric or antisymmetric under parity as well as reflections through a plane containing

the separation axis, which we shall call P⊥. This last transformation can be accomplished by a

parity transformation followed by a rotation of π about an axis perpendicular to the reflection

plane. States with Jz = ±1 are not invariant under this transformation (being mapped onto

each other), but their average is an eigenstate of P⊥. Lastly we choose to classify HLHL states

by intrinsic parity Pi, defined to be the product of the intrinsic parities of the two light quarks,

and (full) parity P , defined as the product of the intrinsic parity transformation and coordinate

inversion of the two particle spatial wavefunction. We will use both parity quantum numbers in

our classification of states.

III. METHODOLOGY

A. HL and HLHL interpolating fields

A general interpolating operator coupling to a single heavy-light state is given by:

OHL (~x) = Q̄ (~x) Γq (~x) (1)
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with Γ chosen to achieve the desired angular momentum and parity quantum numbers. For pseu-

doscalar HL states, Γ = γ5, γi (with i = 1, 2, 3), corresponding to a particle in the static limit with

JP = 1/2−, which we will refer to simply as B. J = 1 meson states with Γ = 1, γiγ5 correspond

to a state with JP = 1/2+, which we shall refer to as B1. We make the choice Γ = γ5 for OB and

Γ = 1 for OB1 . As it will be useful in the analysis of HLHL states, it should be noted that for these

choices of Γ, correlation functions constructed from OB interpolating fields will consist of only

upper (positive parity) components in the Dirac basis of the light quarks while those constructed

from OB1 will consist of only lower (negative parity) components. This is explicitly shown in Ap-

pendix A. The states are classified by the additional flavor quantum numbers (I, Iz) = (1,±1) for

q = {u, d}.

For HLHL states, we want to create states with definite (I, Iz, |Jz|, P⊥, P, Pi) and displacement

~r at the source and sink. To do this, we want to couple only our light quarks in spinor space to

specify the quantum numbers of the state while allowing the heavy quarks to act only as color

sources. Our general HLHL operator is then given by:

O(I,Iz ,|Jz |,P⊥,P,Pi)
HLHL (~x,~r) = Q̄ (~x, t) Q̄ (~x+ ~r, t)× [q (~x, t) q (~x+ ~r, t)]

∣∣∣∣
(I,Iz ,|Jz |,P⊥,P,Pi)

(2)

where the light quark wavefunctions [q (~x, t) q (~x+ ~r, t)] are combined in such a way as to achieve

the set of quantum numbers (I, Iz, |Jz|, P⊥, P, Pi) of the system. The explicit construction of these

wavefunctions is described in Appendix B. For simplicity we restrict ourselves to identical source

and sink interpolating fields neglecting any cross correlators between states. Isospin is a good

quantum number on the 2 + 1 flavor lattices with which we work, and we choose our interpolating

fields to be isospin eigenstates with (I, Iz) = (1, 1) and (I, Iz) = (0, 0). At large spatial separations,

we expect the energy of the four quark state to asymptotically approach the energy of it’s dominant

two meson component2. States with Pi = −1 will tend towards the energy of a BB1 combination at

large spatial separations. There are two possible combinations of the light quark parities that yield

Pi = +1: (p1, p2) = (+,+) , (−,−). In light of the above discussion of parity content of single HL

states, we project our Pi = +1 interpolating fields to contain only negative or positive parity spinor

components and retain these as distinct interpolating fields. The expectation is that interpolating

fields constructed from lower spinor components will exhibit a significantly higher ground state

energy in relation to those constructed from upper components. The reason for this is that the

(−,−) interpolating field are constructed by the product of two B1 meson interpolating fields, thus

2 Here we are referring to the dominant lowest energy contribution, as we expect excited states to contribute
negligibly to the extracted HLHL ground state energies
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should exhibit an asymptotic energy (as ~r →∞) near twice that of the single B1 energy. Similarly

the (+,+) interpolating field is constructed from the product of two B meson interpolating fields

tending asymptotically as ~r →∞ towards a ground state energy of twice that of a single B meson.

We differentiate all interpolating fields by their dominant asymptotic content in the tabulation of

interpolating fields in Table I.

(I, Iz |Jz| , P⊥, P, Pi) (I, Iz, |Jz| , P⊥, P, Pi) Dominant asymptotic content

(1,1,1,–,–,+) (0,0,1,–,+,+) BB

(1,1,0,–,–,+) (0,0,0,–,+,+) BB

(1,1,0,+,+,+) (0,0,0,+,–,+) BB

(1,1,1,–,–,+) (0,0,1,–,+,+) B1B1

(1,1,0,–,–,+) (0,0,0,–,+,+) B1B1

(1,1,0,+,+,+) (0,0,0,+,–,+) B1B1

(1,1,1,+,+,–) (0,0,1,+,–,–) BB1

(1,1,0,+,+,–) (0,0,0,+,–,–) BB1

(1,1,0,–,–,–) (0,0,0,–,+,–) BB1

(1,1,1,+,–,–) (0,0,1,+,+,–) BB1

(1,1,0,+,–,–) (0,0,0,+,+,–) BB1

(1,1,0,–,+,–) (0,0,0,–,–,–) BB1

TABLE I: HLHL interpolating operator basis and expected asymptotic values

IV. DETAILS OF THE LATTICE CALCULATION

We work with colorwave propagators (described below) calculated on nf = 2 + 1 anisotropic

(243 × 128) lattices generated by the Hadron Spectrum Collaboration [15] with a pion mass of

roughly 380 MeV. The fermion action used was the clover Wilson action with stout link smearing,

not smeared in the temporal direction. The gauge action was Symanzik tree level tadpole-improved

without a rectangle in the temporal direction, preserving temporal ultra-locality. The spatial and

temporal lattice spacings for these lattices are as = 0.1227(8)fm and at = 0.03506(23)fm. The pion

mass on this ensemble is 0.0681(4) in temporal lattice units. The Chroma Software package for

Lattice QCD [16] was used to generate both colorwave and heavy propagators. The calculation

of the HL and HLHL energies was performed using 305 gauge field configurations with eight

sources spaced evenly in the temporal direction. Ground state energies were extracted using single

exponential correlated fits, with an appropriate tmin determined from the quality of the fit.
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A. Colorwave Formalism

1. Two quark states

Consider a general operator for a two quark mesonic state:

O (~x) = q̄1 (~x) Γq2 (~x) (3)

where we assume for simplicity that the two quarks have different flavors. We seek to calculate

the correlation function with localized interpolating fields: (averaged over spatial source and sink

locations to increase statistics)

C (t, t0) =
∑
x,y

〈
O (y)O† (x)

〉
=
∑
x

∑
y

tr (S1 (x, t0|y, t) ΓS2 (y, t|x, t0) Γ) (4)

Following the methodology presented in [17], we now consider any complete set of orthonormal

states {φi (x)} which satisfy:∑
i

φ∗i (x)φi (y) = δ (x− y) ,
∑
x

φ∗i (x)φj (x) = δij . (5)

By inserting the completeness relation of eq. 5 twice into the two point function of eq. 4:

C (t, t0) =
∑
x,x′

∑
y,y′

〈
S1
(
x, t0|y′, t

)
δ
(
y − y′

)
ΓS2

(
y, t|x′,0

)
δ
(
x− x′

)
Γ
〉

=
∑
x,x′

∑
y,y′

〈
S1
(
x, t0|y′, t

)∑
i

φ∗i (y)φi
(
y′
)

ΓS2
(
y, t|x′, t0

)∑
j

φ∗j (x)φj
(
x′
)

Γ

〉

=
∑
i,j

Sj,i1 (t0, t) ΓSi,j2 (t, t0) Γ (6)

where we have defined:

Si,j (t, t0) ≡
∑
x,y

φ∗i (y)S (y, t;x, t0)φj (x) (7)

A convenient choice for the {φi (x)} is a plane wave basis: φi (x) ≡ φp (x) = e−ipxδs,s′δc,c′ . The

delta functions here operate on color and spin. This choice of basis greatly reduces to computational

cost of contractions because a substantial part of the work can be done analytically. With this

choice of basis, we define Si,j (t, t0) ≡ Sp,p
′
(t, t0) to be colorwave propagators. It is also evident

that the colorwave propagators can be also viewed as a generalization of gauge fixed wall source

propagators. The use of these propagators allows us to implement spatial smearing at the source
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and sink of our correlation functions. In the limit where all momenta are summed over in equation

7, all to all point-point propagators are recovered. However, introducing a maximum momentum

cutoff p2cut we are able to introduce and control the effective amount of spatial smearing3. The

effect of restricting the plane wave basis to |p|2 ≤ p2cut (summing over a momentum space volume)

is illustrated in Fig. 1 where effective masses for single HL B meson correlation functions4 are

presented. It’s evident that the noise of the signal decreases by increasing the momentum space

cutoff (as this increases the statistics contributing to the correlation function).

Each effective mass plateau appears to begin at roughly the same point independent of p2cut,

and thus a common fit range of 17− 30 was chosen for all values of p2cut. In Fig. 1 we can see that

as p2cut increases the overlap with excited states drops resulting lower values for the effective mass

at earlier times. This indicates that a small radial smearing of the quarks field results interpolating

fields that have better overlap with the ground state of the system. Such behavior is likely due to

the fact that the a non-relativistic HL meson in the static limit is a highly localized object whose

wavefunction is confined to a small spatial region.

In light of this behavior and in order to reduce computational cost associated with increasing

the momentum cutoff, a value of p2cut = 1 was chosen for calculations of the HLHL system.

2. HLHL States

We begin with a correlation function for two heavy-light mesons separated by ~r as described

above:

CHLHL (t, ~r) =
∑
x

〈
OHLHL (~x,~r, t)O†HLHL (~x,~r, t0)

〉
(8)

=
∑
x

〈
Q̄ (~x, t) Q̄ (~x+ ~r, t) q (~x, t) q (~x+ ~r, t) q̄ (~x+ ~r, t0) q̄ (~x, t0)Q (~x+ ~r, t0)Q (~x, t0)

〉
Each heavy quark source can only be contracted with the sink at the same spatial location,

and upon contraction we work only with the Wilson line portion of the heavy quark propagator,

as we want the quantum numbers of the system to be determined entirely by the light degrees of

freedom. There are two possible light quark contractions, one where the light quarks contract with

source and sink at the same spatial location (direct), and one where the light quarks contract at

3 It should be noted that smearing is achieved only in fixed gauge. In our case we use the Coulomb gauge, which
is a smooth gauge allowing to project out high energy modes if the cutoff p2

cut is kept small. However, no gauge
dependence is introduced to our correlation functions as they are gauge invariant by construction.

4 These HL correlation functions are defined in Appendix A, eq. A1
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FIG. 1: Effective mass for HL B for increasing |p2| ≤ |p2cut|
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the other spatial location (crossed). Performing these contractions, we have (omitting the overall

color trace):

CHLHL (t, ~r) =
∑
x

γ5W
† (~x; t, t0) γ5γ5W

† (~x+ ~r; t, t0) γ5

× trd [S (~x+ ~r, t; ~x+ ~r, t0)S (~x, t; ~x, t0)− S (~x+ ~r, t; ~x, t0)S (~x, t; ~x+ ~r, t0)] (9)

Here, trd denotes the trace over Dirac space spinor indices and W is the Wilson line

W (~x; t, t0) =

t∏
t′=t0

U †4(~x, t′) (10)

We now introduce our partially fourier transformed light quark propagators as:

S
(
x′1, t;x1, t0

)
=
∑
p′1,p1

eip
′
1x
′
1S
(
p′1, t; p1, t0

)
e−ip1x1 (11)

where sums over momenta pi have been restricted to |p2| ≤ 1 as described in the previous section.

Using this, the above correlator can be rewritten as:

CHLHL (t, ~r) =
∑

p1p′1p2p′2

∑
x

γ5W
† (~x; t, t0) γ5γ5W

† (~x+ ~r; t, t0) γ5 × ei(p
′
1−p1+p′2−p2)xei(p

′
2−p2)r

×
[
S
(
p′2, t; p2, t0

)
S
(
p′1, t; p1, t0

)
− S

(
p′2, t; p1, t0

)
S
(
p′1, t; p2, t0

)]
(12)

Defining

D (~r, t, t0, ω) ≡
∑
x

γ5W
† (~x; t, t0) γ5γ5W

† (~x+ ~r; t0, t) γ5e
i(ω)x (13)

with ω ≡ p′1 − p1 + p′2 − p2, our the final form of our HLHL correlation function becomes:

CHLHL (t, ~r) =
∑

p1p′1p2p′2

D (~r, t, t0, ω)× ei(p′2−p2)r

×
[
S
(
p′2, t; p2, t0

)
S
(
p′1, t; p1, t0

)
− S

(
p′2, t; p1, t0

)
S
(
p′1, t; p2, t0

)]
(14)

With this method, we calculate the costly D (~r, t, t0, ω) first using a parallel code (paralleliza-

tion over space time) and then perform the far less expensive contractions with the colorwave

propagators for our complete operator basis on a scalar workstation class machine.

V. HLHL RESULTS

For q = {u, d} we have 24 unique HLHL corresponding to the operators enumerated in Table

I. Each potential curve is calculated by taking the jackknife difference between the energy of the
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HLHL state for various ~r and the energy of the expected two meson asymptotic state:

V (~r) = EHLHL (~r)− EB(1)
− EB(1)

(15)

The statistical uncertainty for each point is determined from jackknife statistical analysis. The

systematic uncertainties are determined by adjusting the chosen fit range by one time slice in each

direction and averaging the observed deviations in the energy. The systematic uncertainty for both

EHLHL and EB(1)
are determined independently and then added in quadrature to determine the

systematic uncertainty on V (r).

We find three different asymptotic values for the various states as illustrated in Fig. [2]. The

lowest lying asymptotic value corresponds to states with a positive intrinsic parity Pi with all spin

components in the correlation function projected to the upper spin components, while the highest

asymptotic value corresponds to states with positive intrinsic parity and all spins projected to the

lower components. This asymptotic behavior is in line with our expectation that the spin projection

of our positive intrinsic parity operators helps to increase the coupling to the lower energy BB state

or the higher energy B1B1 state. The energy difference between the highest and lowest asymptotic

values is roughly twice the energy difference between the single HL B and B1 states, indicating

that they are both tending asymptotically towards their expected two meson asymptotic energies

at long distances. The slight overshoot of the highest asymptotic state beyond it’s expected value

of twice the B1 energy for d > 0.8 fm may be indicative of contamination from mixing of the HL

B1 with a π−B state. All Pi = (−) states exhibit an asymptotic tendency towards the sum of the

single HL B and B1 energies as expected.

As the states with the lowest asymptotic energy values trend most cleanly towards their expected

asymptotic value (indicating the least contamination from excited states), we will focus mainly on

these states which we present in Fig. [3].

Several aspects of these potential curves should be noted: First, we find that the product

of exchange parity P and intrinsic parity Pi, which is the symmetry of the two meson spatial

wavefunction under spatial inversion, directly corresponds to the attractiveness (−) or repulsiveness

(+) of the state. This is in agreement with [11]. Second, the (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0) +−+

exhibits a significantly deeper and wider potential well when compared with the two other attractive

channels. This qualitative difference was acknowledged in [11], and the quantum numbers of this

channel are consistent with a bound state predicted in a phenomenological model in [4].
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FIG. 2: Comparison of BB vs. BB1 (left) and BB vs B1B1 (right) asymptotic states. Here we take the

energy difference for the three potential curves with respect to twice the HL B energy

VI. BOUND STATES

As the HLHL system has been predicted to be an excellent candidate for bound tetraquark

states, we seek a quantitative method for extracting such a bound state (if one exists) from our lat-

tice calculation. Our method is as follows: We fit our lattice potential to a phenomenological quark

model potential as described in [18]. We make the choice to focus on the (I, Iz, |Jz|, P⊥, P, Pi) =

(0, 0, 0,+,−,+) channel, as previous work has hinted at the possibility of a bound state here. As a

control, we also perform the fit for the (I, Iz, |Jz|, P⊥, P, Pi) = (1, 1, 0,−,−,+) channel as well. In

our fit, we neglect the ~r = 0 points as the finite value of the potential at ~r = 0 is a lattice artifact

stemming from the ultraviolet cut off introduced by the lattice discretization, leaving us with 7

data points for each potential curve, and two free parameters from the fit model. The model with

the extracted fit parameters is then taken to be the interaction potential between two B mesons

in the continuum limit. The two body (one-dimensional) Schrodinger equation is then solved nu-

merically with this interaction potential to determine the existence of any negative energy (bound)

states. It should be noted here that the solutions to the Schrodinger equation will converge to

their continuum values as the continuum limit of the lattice calculation is taken. As we have only

a single lattice spacing available to work with this continuum extrapolation is not an option, and

it should be understood that the results presented in this section are at finite lattice spacing.
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FIG. 3: Calculated HLHL BB energies with expected asymptotic value (twice the calculated HL B mass)
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A. Potential Model

We have limited our displacements |~r| ≤ 1.27 fm, therefore long range effective interactions due

to meson exchange do not provide a good description of the HLHL system. In reference [18], a

quark model picture of a two meson interaction was used to derive an interaction potential for the

HLHL system, which included color coulomb, spin-spin, linear confinement interactions. Details

of the derivation of the potential model can be found in the aforementioned reference, and we will

only highlight several modifications we make when fitting this potential model to our numerical

results. The quark model HLHL potential has the form:

VBBDS (r) = CIVcc (αs, β, r) + CS·SVss (αs, β, m̄, r) + CIVlc (b, β, r) (16)

with:

Vcc (αs, β, r) =
−4αs

9r

[
1 +

(
2

π

)1/2

βr − 4Erf

(
βr

2

)]
e−β

2r2/2 (17)

Vss (αs, β, m̄, r) =
2

27

(
2

π

)1/2 αsβ
3

m̄2
e−β

2r2/2 (18)

Vlc (b, β, r) =
b

3β

[
βre−β

2r2/2 + 2

(
2

π

)1/2

e−β
2r2/2

−
(
βr +

2

βr

)
Erf

(
βr

2

)
e−β

2r2/2 − 2

π1/2
e−3β

2r2/4

]
(19)

Here, αs is the strong coupling constant, β is the spatial width of the quark model single HL

meson wavefunction, m̄ is the mass of the light quark in the MS scheme, and b is the QCD string

tension. The coefficients CI and CS·S, which contain the spin information of the HLHL state, are

defined as matrix elements between initial (unprimed) and final (primed) two meson states and will

be discussed further below. It should be noted that the above potential model acquires an overall

minus sign if the isospin wavefunction of the two meson state is antisymmetric. Additionally, the

potential is a function of |~r| and not ~r, as any tensor interaction terms are neglected in this model.

B. Fit Model

When applying the above model to our lattice data, we must make several modifications to the

above quark model potential. Due to the use of periodic boundary conditions in the calculation,

interactions with image “charges” lying past the boundary must be accounted for. We must

also consider the possibility that there will be long range meson exchange interactions that were
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FIG. 4: Contribution of image charges to the potential (left) and contributions to the potential model

VHLHL from the individual terms in eq. 16

neglected in our choice of potential model. To account for these long range interactions, we extend

the original model by adding a simple Yukawa like term for one pion exchange:

V Y uk (r) = VBBDS (r) + g
e−mπr

r
(20)

Here we take mπ to be the mass of the pion on the gauge field configurations used in the calculation

(∼ 390 GeV). The parameter g is discussed below.

In principle, interactions with each of the infinitely many image charges contribute to the

potential and must be included. In practice however, we may restrict ourselves to contributions

where the image of the first meson is ≤ 3L/2 (∼ 4.5 fm) away from the second and vice versa. This

approximation is valid as the contribution of these truncated images (at separations of r > 3L/2) to

the potential (with the choice of parameters outlined below) is O
(
10−4

)
MeV. With the inclusion

of the image charges our potential model then becomes:

V Y uk
Im = V Y uk (r) + 2

∑
ri<3L/2

V Y uk (ri) (21)

The addition of these image charges modify the potential at long distance as illustrated in Fig. 4

The final modification made to the potential model is a modification of the spin dependent

coefficients CI and CS·S. The original presentation of this phenomenological potential model in

Ref. [18] sought to provide a comparison with the lattice calculations of the time, which had an

incomplete classification of the HLHL states in terms of the total isospin I and spin S of the

system, while also maintaining a connection with the physical B meson states. Because of this,

classification of the various potentials was made in terms of the physical B and B∗ (first angular

excitation of the B meson) with respect to the quantum numbers I and S.
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The difference in angular momentum spaces of the non-static and static limit prevents a direct

interpretation of the lattice data from the present work in terms of physical B and B∗ states, and

our classification of states makes it difficult to reconcile the previous classification with ours. We

therefore choose to recalculate the spin dependent coefficients of the potential model relevant for

the static limit BB system we study on the lattice, the results of which are presented in Table II

(For details of the calculation, see Appendix C). The previous determination of these coefficients

for the HLHL system included spin degrees of freedom for the heavy quarks in the two meson states

|MiMj > allowing for better classification of the potential in terms of non-static limit states. We

choose to neglect the spin degrees of freedom of the heavy quarks in our determination, effectively

fully implementing the static limit for the the potential model. Thus the spin degrees of freedom

of our two meson kets |MiMj > are just those of the spin of the light degrees of freedom of our

HLHL state. The evaluation of these coefficients however requires knowledge of the total angular

momentum of the two meson state, a point that has been neglected until now. As we seek to fit

the (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0,+,−,+) and (1, 1, 0,−,−,+) states, we need to determine if

these particular states are in a symmetric angular momentum triplet, or an antisymmetric angular
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momentum singlet. In order to make this identification, we must rely on the overall symmetries of

the state in question. We know that the parity P of a given state is the product of the intrinsic parity

Pi and the symmetry of the spatial wavefunction. From this relationship, and with knowledge of the

symmetry of the isospin spatial wavefunction, we can infer the symmetry of the angular momentum

wavefunction:

SymJ = (−) (SymI) (Pi) (P ) , (22)

where SymJ and SymI the symmetries of the angular momentum and isospin wavefunctions. The

overall negative sign appears from exchanging fermions in the parity operation. Using this we are

able to identify the (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0,+,−,+) channel with SymJ = − as a J = 0

state, and the (I, Iz, |Jz|, P⊥, P, Pi) = (1, 1, 0,−,−,+) channel with SymJ = + as a J = 1 state.

The spin dependent coefficients can then be recalculated for our states and are shown in Table [II].

C. Fitting Procedure and Bound State Determination

In fitting the potential model of eq. 20 to our lattice data, we use two free fit parameters: β and

g and take the remaining parameters b, m̄ and αs to be 0.18GeV2, 0.33GeV, and 0.5 respectively

as in Ref. [18]. A fit is performed for each of 305 jackknife ensembles, allowing for an accurate way

to estimate the error on the extracted fit parameters, shown in Table [II]. As we are ultimately

interested in the energy levels allowed by the potential model, and not the model parameters

themselves, we will only briefly comment on the fit parameters. It is immediately obvious that

g is not well determined for the J = 1 channel. It’s also interesting that the fit parameter β is

significantly smaller for the J = 0 channel, indicating a much narrower spatial distribution of the

two meson wavefunction.

Once the fit parameters have been extracted they are then inserted into the two body radial

Schrodinger equation to determine if any bound states exist. As we are restricting ourselves to

L = 0 states, the two body Schrodinger equation can be written as:[
− ~2

2m̄

d2

dr2
+ V Y uk (r)

]
u (r) = Eu (r) (23)

where m̄ is the reduced mass of a two B meson system (with the single meson mass taken from

the Particle Data Group [19]), u (r) = rΨ (r) and V Y uk (r) is the potential model presented in the

preceding section excluding the image terms.

Eq. 23 is then solved numerically as an eigenvalue problem with a spatial discretization of 0.01

fm and a spatial cutoff of 10 fm (corresponding to a sphere with r = 10 fm), and the boundary
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condition that Ψ (r)

∣∣∣∣
r=10

= 0. This spatial volume provides ample space for the potential to decay

to zero. The eigenvalue spectrum is then analyzed for each of the two states discussed above.

While the J = 1 channel exhibits a near continuum of positive eigenvalues (discrete only because

of the numerical solution method), the J = 0 channel does admit a single bound state with energy

E0 = −50.0(5.1) MeV (with the uncertainty determined by carrying through the jackknife analysis

from the fit parameters and solving eq. 23 for each of the 305 (β, g) sets). Aside from the binding

energy, we can also calculate the RMS radius for the two meson wavefunction Ψ (r) from the

wavefunctions u (r) above:

rRMS ≡
〈
r2
〉1/2

=

[∑
i r

2
i |u (ri)|2∑
i |u (ri)|2

]1/2
(24)

For the bound state wavefunction u0 (r), we find an RMS radius of 0.383(6) fm, the error again

estimated by jackknife analysis.

In comparing this result with [12] (in which a numerical solution to the Schrödiner equation was

performed with a similar radial cutoff) we find our results to be consistent with all of the binding en-

ergies quoted in that work within confidence bounds. Additionally, Ref. [4] quote’s binding energies

and RMS radii for a doubly bottom JP (L, S, I) = 0+ (0, 0, 0) channel which is consistent (in the

static limit) with the quantum numbers of our static limit (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0,+,−,+)

channel. This reference uses two different potential models to calculate binding energies: the con-

stituent quark cluster model CQC and the the Bhaduri-Cohler-Nogami or BCN model. The BCN

model includes the same interactions as those used in Ref. [18] to derive the potential used to

fit our lattice results (namely, color coulomb, linear confinement and spin-spin). Furthermore,

the BCN parameters corresponding to string tension b, strong coulpling αs, and constituent

quark mass m̄ used in [4] are very similar to those used in our potential model (compare our

(b, αs, m̄) =
(
0.18 GeV2, 0.5, 0.33 GeV

)
to
(
0.186 GeV2, 0.52, 0.337 GeV

)
). These binding energies

should provide a relevent point of comparison for our results provided our lattice discretization er-

rors have minor effects on the extracted potential model fit parameters. In comparison, we find our

values for the binding energy and RMS radius to be consistent with the values quoted in [4] from

the BCN model (E0, rRMS) = (−52MeV, 0.334fm), providing a good cross check that our lattice

calculation has identified a bound state in the static limit (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0,+,−,+)

channel. The fact that the bound state identified in that work has an RMS radius that is smaller

than the sum of the individual mesonic RMS radii is indicative of the compact nature of that bound

state. Additionally, as illustrated in Ref. [14] (see eqns. 4), the static limit HLHL tetraquark state
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can be written as a linear combination of products of two single meson wavefunctions in different

spin states. This is consistent with the idea that although the compact tetraquark state may have

a complicated color space structure composed of color vectors, this state can always be decomposed

into a linear combination of products of two single meson wavefunctions.

(J, Jz) CI CS·S β (GeV) g χ2/d.o.f. E0 (MeV)

(0,0) -1 3/4 0.274(14) 0.041(12) 0.9943 -50.0(5.1)

(1,0) 1 1/4 0.459(38) 0.016(20) 0.4119 N/A

TABLE II: Spin dependent coefficients from reference [20] and fit parameters from fitting our lattice data

to a modified version of the model presented in ref. [18]. Here β corresponds to the spatial width of the HL

meson wavefunction, and g is the coupling strength of the additional Yukawa term introduced in this work.

The uncertainties quoted for the fit parameters are jackknife estimates.

VII. CONCLUSIONS

We have computed using lattice QCD the interaction potential between two b-meson states

in the limit of static b quarks. With this lattice potential parametrized with a functional form

motivated by the quark model description of the two b-meson interaction, we have determined

the bound state energies in the heavy-light-heavy-light (HLHL) tetraquark system. To perform

this study we introduced colorwave propagators for calculating meson correlation functions and

extended the formalism to the HLHL system in order to provide a novel way for an efficient

calculation of HLHL correlation functions for several (I, Iz, |Jz| , P⊥, P, Pi) channels. The effect

of limiting the colorwave plane wave basis on the ground state overlap of single HL correlation

functions was explored, and a choice for the momentum cutoff p2cut was made to optimize the

quality of the signal versus the computational cost. For a single HL meson, results indicate that a

more localized interpolating field has a better overlap on the ground state, suggesting the compact

nature of the HL meson.

HLHL potentials were calculated for 24 distinct (I, Iz, |Jz| , P⊥, P, Pi) channels, exhibiting three

distinct asymptotic values as r → ∞ corresponding to the different ways B and B1 mesons can

be combined. The tendency of the HLHL energy to overshoot the expected asymptotic value of

EB1 + EB and 2EB1 may be due to contamination from excited states and the possibility of B1

mixing with a B−π state. It was determined that the attractiveness or repulsiveness of the HLHL

potential corresponds directly to the symmetry of the two meson spatial wavefunction under spatial
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inversion, in agreement with Ref. [11]. The asymptotic behavior of the various HLHL states was

shown to be dependent on the intrinsic parity of the state. While the Pi = − states have only

one asymptotic value (corresponding to a single two meson BB1 component), the Pi = + channels

have two asymptotic values corresponding to both BB and B1B1 two meson components. By

examining the construction of single HL correlation functions, it was determined that we could

increase overlap with the BB and B1B1 two meson wavefunctions by projecting the correlation

functions to include only positive or negative parity components of the Dirac basis quark spinors.

The existence of bound states was then explored for the (I, Iz, |Jz|, P⊥, P, Pi) = (0, 0, 0,+,−,+)

channel as it exhibited a wider and deeper potential when compared with the other attractive

potentials. Analysis was also carried out for the (I, Iz, |Jz|, P⊥, P, Pi) = (1, 1, 0,−,−,+) for the

purposes of comparison. A modified version of the potential model described in Ref. [18] was used

to fit the lattice data, and two fit parameters β (the gaussian width of the HL meson wavefunction)

and g (the Yukawa interaction constant) were extracted from, the fit. Inserting the potential with

the extracted fit parameters into the two body Schrödinger equation, we then solved numerically for

the eigenvalues of the hamiltonian, searching for any negative energy eigenstates. A single negative

energy bound state was found in the (0, 0, 0,+,−,+) channel, with an energy of E0 = −50.0(5.1)

MeV and RMS radius rRMS = 0.383(6) fm. These results were found to be consistent with

results presented in Ref. [12] as well as phenomenological results presented in Ref. [4] for the state

JP (L, S, I) = 0+ (0, 0, 0) (which maps onto our (0, 0, 0,+,−,+) channel in the static limit). The

errors quoted on these results are statistical only. One needs to account for several systematic errors

such as 1/mb corrections (mb the b quark mass), lattice spacing effects as well as dependence on

the light quark mass.
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Appendix A: Parity content of HL interpolating operators

Here we show that correlation functions for our B(B1) states are composed entirely of up-

per(lower) components of the Dirac basis components of the light quark flavors. We begin with a



21

general HL correlation function with arbitrary source and sink operators (neglecting color indices

and working in the Dirac basis):

CHL (t)i,j =
∑
~x

〈
OBi (~x, t)O†Bj (~x, 0)

〉
=
∑
~x

〈
Q̄ (~x, t) Γiq (~x, t) q̄ (~x, 0) ΓjQ (~x, 0)

〉
=
∑
~x

tr
(
γ5 (SH (~x, t; 0))† γ5ΓiSL (~x, t; 0) Γj

)
(A1)

SH is a heavy quark propagator given by:

SH (~x, t; t0) =

(
1 + γ4

2

)
W (~x, t; t0) = P+W (~x, t; t0) (A2)

where W (~x, t; t0) is a Wilson line from t0 to t. Substituting this, we have:

CHL (t) =
∑
~x

tr
(
γ5

(
P+W

† (~x, t; 0)
)
γ5ΓiSL (~x, t; 0) Γj

)
=
∑
~x

trc

(
W † (~x, t; 0) trd (ΓiP−ΓjSL (~x, t; 0))

)
(A3)

where we have used γ5P+γ5 = P−. For Γi = Γj = 1, we project to only the lower components

of the Dirac basis light quark propagator, while for Γi = Γj = γ5 we project only to the upper

components of the Dirac propagator.

Appendix B: Construction of light quark wavefunctions

To determine two quark wavefunctions in spin and flavor space yielding the quantum numbers

(I, Iz, |Jz|, P⊥, P, Pi), we begin with states of definite (I, Iz, J, Jz, Pi):

[q1 (p1) q2 (p2)]

∣∣∣∣
(I,Iz ,J,Jz ,Pi)

=
∑
m1,m2
t1,t2

W J,Jz
m1,m2

W I,Iz
t1,t2

q1 (m1, t1, p1) q2 (m2, t2, p2) (B1)

where m, t, p are the projections of spin and isospin along the z-axis and the intrinsic parities

of the light quarks, and the W J,Jz
m1,m2 = 〈1/2,m1, 1/2,m2|J, Jz〉, W I,Iz

t1,t2
= 〈1/2, t1, 1/2, t2|I, Iz〉 are

the Clebsch-Gordon for angular momentum and isospin. From these operators, we average over

Jz = ±1 states and determine P⊥ from the quantum numbers Pi and P and the spatial symmetry

of the operator. It should be noted here that there are two combinations of (p1, p2) that contribute

to the Pi = +1 HLHL states, and we make the decision to keep these as distinct operators.
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Linear combinations of the above operators are then taken to produce states of definite exchange

parity P , the necessary combinations determined by summing over sets of the above operators that

map onto each other under P with the appropriate weight WP
p1,p2

= ±1

[q1q2]

∣∣∣∣
(I,Iz ,|Jz |,P⊥,P,Pi)

=
∑
p1,p2

WP
p1,p2

[q1 (p1) q2 (p2)]

∣∣∣∣
(I,Iz ,|Jz |,P⊥,Pi)

(B2)

Appendix C: Determination of spin coefficients for potential model

Here we present our derivation of the spin coefficients CI and CS·S presented in Table II. In

Ref. [20], an interaction potential for two meson states is calculated by including spin-spin, color

coulomb and linear confinment interactions in a two quark interaction hamiltonian. By considering

these interactions between each of the quark quark pairs in a 4 quark (2 meson) scattering state,

transfer matrix elements are calculated and then Fourier transformed to give a corresponding

position space potential. In Ref. [18], this method was applied to the HLHL system. When

calculating the spin dependent portion of the potential, all but one of the interaction diagrams

(referred to as “Transfer 2”) can be neglected because the spin of the heavy quarks is neglected

in the static approximation. This diagram includes an insertion of the interaction hamiltonian

between the two light quarks, as illustrated in in Fig. 6. The spin dependent contribution of

this diagram to the potential can be factorized such that all the dependence enters through two

coefficients, which are defined as matrix elements between the initail and final two meson states:

CI = 〈CD|I|AB〉 (C1)

CS·S = 〈CiDj |Si · Sj |AiBj〉 (C2)

Where I here is understood to be the identity operator in spinor space. Upon inspection of the

diagram, it’s clear that the matrix element of I will not always trivially be unity due to the quark

interchange between the initial and final two meson state.

With respect to Fig. 6, these matrix elements as outlined in [20] are defined explicitly as:

CI = 〈CD|I|AB〉

= χλCsc,sc̄χ
λD
sd,sd̄

[
< sc, sd|I|sa, sb > δsā,sc̄δsb̄,sd̄

]
χλAsa,sāχ

λB
sb,sb̄

(C3)

CS·S = 〈CiDj |Si · Sj |AiBj〉

= χλCsc,sc̄χ
λD
sd,sd̄

[
< sc, sd|Si · Sj |sa, sb > δsā,sc̄δsb̄,sd̄

]
χλAsa,sāχ

λB
sb,sb̄

(C4)
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FIG. 6: Transfer 2 diagram from Ref. [18]

For our purposes, we wish to entirely neglect the spin of the heavy quarks in the above matrix

elements. Because of this, the Clebsch-Gordan coefficients χλCsc,sc̄ etc. (relating the spin of the two

quark state to the meson state) are all unity. The states between which we wish to calculate these

matrix elements are two particle angular momentum eigenstates |J, Jz〉a,b ≡ |sa, sb〉
∣∣∣∣
J,Jz

, of which

we are only interested in |1, 0〉 and |0, 0〉. To account the light quark exchange in Fig. 6, we note

the following relations:

|sa, sb〉
∣∣∣∣J=0,
Jz=0

=
1√
2

(|↑↓〉 − |↓↑〉) = − 1√
2

(|↓↑〉 − |↑↓〉) = − |sc, sd〉
∣∣∣∣J=0,
Jz=0

(C5)

and

|sa, sb〉
∣∣∣∣J=1,
Jz=0

=
1√
2

(|↑↓〉+ |↓↑〉) =
1√
2

(|↓↑〉+ |↑↓〉) = |sc, sd〉
∣∣∣∣J=1,
Jz=0

(C6)

From the above relations, it is easy to calculate the matrix elements of interest for our problem

(for the states |1, 0〉 → |1, 0〉 and |0, 0〉 → |0, 0〉):

〈1, 0|c,d I |1, 0〉a,b = 〈1, 0|a,b I |1, 0〉a,b = 1 (C7)

〈0, 0|c,d I |0, 0〉a,b = (−) 〈0, 0|a,b I |0, 0〉a,b = −1 (C8)

and

〈1, 0|c,d Si · Sj |1, 0〉a,b = 〈1, 0|a,b Si · Sj |1, 0〉a,b = 1/4 (C9)

〈0, 0|c,d Si · Sj |0, 0〉a,b = −〈0, 0|a,b Si · Sj |0, 0〉a,b = −(−3/4) (C10)
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