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We prove that D0-D̄0 mixing in the standard model occurs only at second order
in U-spin breaking. The U-spin subgroup of SU(3) is found to be a powerful
tool for analyzing the cancellation of intermediate-state contributions to the

D0–D
0
mixing parameter y = ∆Γ/(2Γ). Cancellations due to states within a

single U-spin triplet are shown to be valid to first order in U-spin breaking.
Illustrations are given for triplets consisting of (a) pairs of charged pions and
kaons; (b) pairs of neutral pseudoscalar members of the meson octet; (c) charged
vector-pseudoscalar pairs, and (d) states of four charged kaons and pions.
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I Introduction

The parameters x = ∆m/Γ and y = ∆Γ/2Γ describing mixing between D0 and D
0
have

been established at levels of an appreciable fraction of a percent [1], x = (0.63+0.19
−0.20)%, y =

(0.75 ± 0.12)%. A key question is whether such levels can be attained in the standard
model or require new physics.

In the SU(3) limit, the contributions to y of classes of intermediate states shared by D0

and D̄0 cancel one another in the standard model. Previous investigations have examined
the degree to which this cancellation holds inclusively [2]. Applying an exclusive approach,
Ref. [3] finds that for multiparticle states near threshold, SU(3) is broken enough by phase
space effects that values of y (and, generically via dispersion relations [4], x) of order a
percent are conceivable. This is despite the fact, proved using the full machinery of SU(3)
in Ref. [3], that neutral D meson mixing occurs only at second order in SU(3) breaking.

Contributions to y of intermediate states with zero strangeness typically cancel with
those of states with strangeness ±1. For example, a contribution from the singly-Cabibbo-

suppressed (SCS) transitions D0 → (π+π−, K+K−) → D
0
is canceled by a contribu-

tion from the doubly-Cabibbo-suppressed (DCS) transition D0 → K+π− followed by the

Cabibbo-favored (CF) transition K+π− → D
0
, plus a contribution from the CF transition

D0 → K−π+ followed by the DCS transition K−π+ → D
0
. The intermediate states in
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this case comprise a single triplet of the SU(3) subgroup known as U-spin [5]. Just as the
fundamental representation of I-spin (isospin) is composed of (u, d), that of U-spin is (d, s).

U-spin symmetry has been known for a long time to provide useful relations among
amplitudes of hadronic D decays [6, 7]. Typical U-spin breaking, described by quantities
such as (ms−md)/ΛQCD or fK/fπ−1, is of order 0.2−0.3 and may be treated perturbatively
in hadronic matrix elements. A very early suggestion was made in Ref. [8] that SU(3)
breaking at this level in a penguin amplitude may account for the somewhat unexpected
large value of the ratio of branching ratios B(D0 → K+K−)/B(D0 → π+π−) = 2.8 [9]. A
recent study of D decays into two pseudoscalars [10, 11] has shown that U-spin breaking at
a level between 10 to 20 percent in an enhanced nonperturbative penguin amplitude may
account well for this ratio and for the unexpected large difference between CP asymmetries
measured recently in these two processes [12, 13]. Two other studies discussing these two
effects of U-spin breaking have been presented recently in Refs. [14] and [15].

In this paper we shall show that a cancellation, to first order in U-spin breaking, of

contributions to D0–D
0
mixing within single U-spin triplets is a very general result. In

Sec. II we apply U-spin and its first-order breaking to a D0–D
0
mixing amplitude, ADD̄ ≡

〈D̄0|HW HW |D0〉. In Sec. III we express ∆Γ as a sum of contributions from U-spin triplet
states, deriving in Sec. IV a general sum rule corresponding to the cancellation of triplet
state contributions to ∆Γ. Examples of these sum rules for pairs of charged pseudoscalar
mesons, pairs of neutral pseudoscalar mesons, and charged vector-pseudoscalar pairs, are
given in Sec. V. Some results involving large U-spin breaking are noted in Sec. VI for states
of four charged pions and kaons and for states involving K0K̄0 and a pair of charged pions
or kaons, while Sec. VII concludes.

II U-spin breaking in a D0–D̄0 mixing amplitude

Let us consider an amplitude which connects D0 and D̄0 through second order weak inter-
actions,

ADD̄ ≡ 〈D̄0|H∆C=−1
W H∆C=−1

W |D0〉 . (1)

We will now show that this amplitude vanishes in the U-spin symmetry limit, and that it
vanishes also when including first-order U-spin corrections. Keeping the flavor structure
of the ∆C = −1 weak Hamiltonian but suppressing its Lorentz structure and denoting
C ≡ cos θc, S ≡ sin θc, one has

H∆C=−1
W =

GF√
2
[C(s̄c)− S(d̄c)][C(ūd) + S(ūs)] . (2)

Only six out of the sixteen terms in HWHW obey ∆S = 0 and contribute to ADD̄:

ADD̄ =
G2

F C2S2

2
〈D̄0| − [(d̄c)(ūs)][(s̄c)(ūd)− [(s̄c)(ūd)][(d̄c)(ūs)] + [(d̄c)(ūd)][(d̄c)(ūd)]

+ [(s̄c)(ūs)][(s̄c)(ūs)]− [(d̄c)(ūd)][(s̄c)(ūs)]− [(s̄c)(ūs)][(d̄c)(ūd)]|D0〉 (3)

We will now show that the operator contributing to ADD̄ in Eq.(3) transforms like
U = 2, U3 = 0. Neglecting cū terms, which are singlets under U-spin, this operator reduces

2



to
ODD̄ = −(d̄s)(s̄d)− (s̄d)(d̄s) + [(s̄s)− (d̄d)][(s̄s)− (d̄d)] . (4)

Taking the quark and antiquark pairs of states, (|d〉, |s〉) and (|s̄〉,−|d̄〉), to be U-spin-
doublets, we find the following behavior of q̄q′ operators under U-spin,

(s̄d) = (1,−1) , − (d̄s) = (1, 1) , (s̄s)− (d̄d) =
√
2(1, 0) , (5)

implying
ODD̄ = (1, 1)⊗ (1,−1) + (1,−1)⊗ (1, 1) + 2(1, 0)⊗ (1, 0) . (6)

Using Clebsch-Gordan coefficients for 1⊗ 1, the operator ODD̄ is seen to transform as pure
U = 2, U3 = 0.

D0 and D̄0 are U-spin singlets. Therefore ADD̄ vanishes in the U-spin symmetry limit.
Assuming that U-spin breaking may be treated perturbatively, a U-spin breaking mass term
(∝ s̄s−d̄d) behaves like U = 1, U3 = 0. Thus ADD̄ vanishes also in the presence of first-order
U-spin-breaking corrections, and may obtain a nonzero value only when including second-
order U-spin breaking. For a short notation, we will refer to this behavior of vanishing in
the U-spin symmetry limit including first-order U-spin breaking corrections as vanishing in
USFB.

Ref. [3] presented a lengthy SU(3) group theoretical argument involving high represen-
tations of this group showing that ADD̄ vanishes in the limit of flavor SU(3) symmetry and
when including first-order SU(3) breaking corrections. We have shown that this behavior
is actually due to only U-spin, a particular SU(2) subgroup of SU(3).

III ∆Γ as a sum over U-spin triplet states

Let us consider the width-difference between the two neutral D mass eigenstates, neglecting
CP violation in D0-D̄0 mixing [16, 17, 18]

∆Γ =
∑

fD

ρ(fD)
(

〈D̄0|H∆C=−1
W |fD〉〈fD|H∆C=−1

W |D0〉+ c.c.
)

. (7)

Here |fD〉 are normalized states into which both D0 and D̄0 may decay, while ρ(fD) are
corresponding densities of states, i.e., phase space factors.

The ∆C = −1 weak Hamiltonian involves three parts corresponding to ∆S = −1, 0, 1,
and behaving like three components of a U-spin vector,

H∆C=−1
W = HU3=−1 +HU3=0 +HU3=+1 ,

HU3=−1 =
GF C2

√
2

(s̄c)(ūd) ,

HU3=0 =
GF CS√

2
[(s̄c)(ūs)− (d̄c)(ūd)] ,

HU3=+1 = −GF S2

√
2

(d̄c)(ūs) . (8)
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As D0 and D̄0 are U-spin singlets, the sum in (7) obtains contributions only from interme-
diate U -spin vector states, |fU=1

U3=0,±1〉,

∆Γ =
∑

fU=1

∑

U3=0,±1

ρ(fU=1
U3

)
(

〈D̄0|H−U3
|fU=1

U3
〉〈fU=1

U3
|HU3

|D0〉+ c.c.
)

. (9)

The sum over fU=1 involves all possible U spin triplet states to which D0 decays.

IV Sum rule for a single U-spin triplet

Let us now consider the contribution to ∆Γ of a single U -spin triplet |fU=1〉 accessible to
D0 decay,

∆Γ({fU=1}) =
∑

U3=0,±1

ρ(fU=1
U3

)
(

〈D̄0|H−U3
|fU=1

U3
〉〈fU=1

U3
|HU3

|D0〉+ c.c.
)

. (10)

The triplet |fU=1
U3

〉 may consist, or instance, of three states involving pairs of charged
pseudoscalar mesons, as studied below in Sec.V.A. These states have a common phase
space factor in the U -spin symmetry limit. All other triplets states in the sum (9) are
orthogonal to |fU=1

U3
〉.

As mentioned, in the limit of U-spin symmetry ρ(fU=1
U3

) is independent of U3,

∆Γ({fU=1}) = ρ(fU=1) 〈D̄0|H−U3

∑

U3=0,±1

|fU=1
U3

〉〈fU=1
U3

|HU3
|D0〉+ c.c. (11)

The operator
∑ |fU=1

U3
〉〈fU=1

U3
| acts as a unit operator in the triplet |fU=1

U3
〉 space and as a

zero operator on all other triplet states in (9) which are orthogonal to |fU=1
U3

〉. Thus our
argument in Sec. II implies ∆Γ({fU=1}) = 0. This result holds also in the presence of first-
order U-spin breaking in 〈fU=1|HW |D0〉 and 〈D̄0|HW |fU=1〉 as such corrections behaving
like U = 1, U3 = 0 cancel in ∆Γ({fU=1}). First-order U-spin breaking in phase space
factors ρ(fU=1

U3
), which have been neglected in (11), may be made to cancel by a judicious

choice of low mass final states. This will be demonstrated in Section V through several
specific examples.

Neglecting CP violation in D0 decays and denoting |f̄〉 ≡ CP |f〉, one has

〈D̄0|HW |f〉 = 〈f̄ |HW |D0〉∗ , (12)

implying
〈D̄0|HW |f〉〈f |HW |D0〉+ c.c. = 2Re(〈f̄ |HW |D0〉∗〈f |HW |D0〉) . (13)

The generic form of a U-spin sum rule which holds in USFB by a judicious choice of final
states is thus

Re [
∑

U3=±1,0

〈f̄ 1
U3
|HW |D0〉∗〈f 1

U3
|HW |D0〉] = 0 . (14)

We note that the states |f〉 and |f̄〉 do not necessarily belong to the same U = 1 repre-
sentation. For instance |K∗+π−〉 and |K∗−π+〉, which are each other’s CP-conjugates, are
U3 = 1 and U3 = −1 states in two different U = 1 triplets.
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In the special case that |f 1
0 〉 is a CP eigenstate with eigenvalue ηCP we will denote

CP |f 1
U3
〉 = ηCP |f̄ 1

U3
〉 for all three triplet states. [Note that while |f̄ 1

U3
〉 is a state transforming

as |1,−U3〉, the two states |f̄ 1
1 〉 and |f 1

−1〉 may differ by a sign. See Eq. (18) below.] Using
this convention one finds

〈D̄0|HW |f 1
0 〉 〈f 1

0 |HW |D0〉+ c.c. = 2ηCP |〈f 1
0 |HW |D0〉|2 , (15)

〈D̄0|HW |f 1
±1〉 〈f 1

±1|HW |D0〉+ c.c. = 2ηCPRe(〈f̄ 1
1 |HW |D0〉∗〈f 1

1 |HW |D0〉) . (16)

Thus we have derived the following generic form for a U-spin sum rule in USFB for triplet
states of which |f 1

0 〉 is a CP eigenstate,

ηCP

2
∆Γ({fU=1}) = |〈f 1

0 |HW |D0〉|2 + 2Re(〈f̄ 1
1 |HW |D0〉∗ 〈f 1

1 |HW |D0〉) = 0 . (17)

Note that the triplet states |f 1
U3
〉 may be admixtures of low mass physical states. We

will now demonstrate the sum rule (17) and corresponding expressions for y({fU=1}) ≡
∆Γ({fU=1}/2Γ in several examples.

V Examples of U = 1 sum rules

A D0 decays to pairs of charged pseudoscalar mesons, π±, K±

The pairs (π−, K−) and (K+,−π+) are U-spin doublets. The four possible two-particle
states can be written in the form of U-spin states:

|π−K+〉 = |1, 1〉 , |K−π+〉 = −|1,−1〉 , (18)

1√
2
|K−K+ − π−π+〉 = |1, 0〉 1√

2
|K−K+ + π−π+〉 = |0, 0〉 . (19)

Using 〈0, 0|HW |D0〉 = 0 one may write

|〈1, 0|HW |D0〉|2 = |〈1, 0|HW |D0〉|2 + |〈0, 0|HW |D0〉|2
= |〈K−K+|HW |D0〉|2 + |〈π−π+|HW |D0〉|2 . (20)

Consequently the sum rule (14) reads

1

2
∆Γ(π±, K±) = |〈K−K+|HW |D0〉|2 + |〈π−π+|HW |D0〉|2

+ 2Re(〈π−K+|HW |D0〉∗ 〈K−π+|HW |D0〉) = 0 . (21)

A corresponding expression for y(π±, K±) = ∆Γ(π±, K±)/2Γ is obtained in terms of
branching ratios and the strong phase difference δ between amplitudes for D0 → π−K+

and D0 → K−π+,

y(π±, K±) = B(D0 → π−π+)+B(D0 → K−K+)−2 cos δ
√

B(D0 → K−π+)B(D0 → π−K+) .
(22)
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The minus sign of the last term on the right-hand-side may be traced back to three minus
signs appearing in the second operator equation (5), the third operator equation (8) and the
second state equation (18). The strong phase difference δ vanishes in the U-spin symmetry
limit [19], and cos δ = 1 holds up to a first-order U-spin breaking correction. Thus the
quantity y(π±, K±) which vanishes in USFB is given by

y(π±, K±) = B(D0 → π−π+)+B(D0 → K−K+)−2
√

B(D0 → K−π+)B(D0 → π−K+) = 0 .
(23)

Using updated branching fractions [9]

B(D0 → π+π−) = (1.401± 0.027)× 10−3 , (24)

B(D0 → K+K−) = (3.96± 0.08)× 10−3 , (25)

B(D0 → K−π+) = (3.88± 0.05)% , (26)

B(D0 → K+π−) = (1.31± 0.08)× 10−4 , (27)

we find y(π±, K±) = (0.85 ± 0.17) × 10−3, substantial cancellation between positive and
negative terms in (23) (corresponding to almost an order of magnitude suppression), and
an order of magnitude below the observed value of y = (0.75 ± 0.12)% (no CP violation
assumed [1]).

One can see that U-spin breaking cancels to first order in phase space factors in Eq.
(23). Expand the ratios of phase space factors ρ(K+K−)/ρ(π+π−) and ρ(π±K∓)/ρ(π+π−)
to first order in ∆ ≡ (m2

K −m2
π)/m

2
D [equivalently, to first order in (ms −md)/mc]. The

coefficients of ∆ in the three terms on the right-hand side of Eq. (23) are in the ratio
0 : −2 : 2 and hence cancel one another.

Ref. [3] discussed contributions to y from two pseudoscalar states belonging to a common
SU(3) representation. The expression (22) corresponding to states which are members of
a U-spin triplet has been considered as an arbitrary partial contribution to this value of y,
without motivating that choice and without noticing that y(π±, K±) in Eq. (23) vanishes
to first-order U-spin breaking.

B Decays to pairs of neutral pseudoscalar mesons, π0, η,K0, K̄0

When considering final states involving two neutral pseudoscalar mesons we will neglect
η − η′ mixing by taking η = η8. This approximation does not spoil the derived USFB sum
rule because η − η′ mixing is due to first-order U-spin breaking transforming as U = 1.

The following superpositions of single-particle states belong to a U-spin triplet:

|K0〉 = |1, 1〉 , |K̄0〉 = −|1,−1〉 , 1

2
(
√
3 |η〉 − |π0〉) = |1, 0〉 , (28)

while the orthogonal U-spin singlet is

1

2
(|η〉+

√
3 |π0〉) = |0, 0〉 . (29)

Here we have used the convention π0 = (dd̄ − uū)/
√
2, η = (2ss̄ − uū − dd̄)/

√
6, and all

states are labeled by |U, U3〉.
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We now form U-spin multiplets out of pairs of the above states. Consider first the states
with U3 = 1:

|2, 1〉 = (|1, 1〉 ⊗ |1, 0〉+ |1, 0〉 ⊗ |1, 1〉)/
√
2 , (30)

|1, 1〉 = (|1, 1〉 ⊗ |1, 0〉 − |1, 0〉 ⊗ |1, 1〉)/
√
2 , (31)

|1′, 1〉 = |1, 1〉 ⊗ |0, 0〉 , (32)

where the states on the left are two-particle states, while those on the right are one-
particle states given in Eqs. (28) and (29) in terms of neutral pseudoscalar mesons. By
Bose statistics we need not consider the state (31) as it is made of an antisymmetric
product. We shall also need the two-particle states with U3 = 0. There are two U = 0
states

|0′, 0〉 = |0, 0〉 ⊗ |0, 0〉 , (33)

|0, 0〉 = (|1, 1〉 ⊗ |1,−1〉+ |1,−1〉 ⊗ |1, 1〉 − |1, 0〉 ⊗ |1, 0〉)/
√
3 , (34)

two U = 1 states

|1′, 0〉 = |1, 0〉 ⊗ |0, 0〉 , (35)

|1, 0〉 = (|1, 1〉 ⊗ |1,−1〉 − |1,−1〉 ⊗ |1, 1〉)/
√
2 , (36)

and one U = 2 state

|2, 0〉 = (|1, 1〉 ⊗ |1,−1〉+ |1,−1〉 ⊗ |1, 1〉+ 2|1, 0〉 ⊗ |1, 0〉)/
√
6 . (37)

Again, by Bose statistics, we need not consider the state (36) further. Now we calculate the

contribution to y of decay amplitudes participating in the transition D0 → D
0
due to pairs

of neutral mesons belonging to the U = 1 multiplet. We first discuss the contributions of
the S = ±1 states K0π0, K0η0, K̄0π0, and K̄0η.

As HW transforms according to ∆U = 1, and the initial D0 has U = 0, the transition
amplitude 〈2, 1|HW |D0〉 vanishes. Expressed in terms of physical mesons, this means

[
√
3A(D0 → K0η)− A(D0 → K0π0)]/2 = 0 . (38)

We also have the transition of interest,

〈1′, 1|HW |D0〉 = [A(D0 → K0η) +
√
3A(D0 → K0π0)]/2 = (2/

√
3)A(D0 → K0π0) , (39)

where (38) was used in the second equality. Thus, in analogy with the last term in Eq.
(22), one gets a contribution to y of the form

y(|∆S| = 1) = −(8/3)
√

B(D0 → K0π0)B(D0 → K̄0π0) . (40)

Using (38) one obtains a contribution to y from the ∆S = ±1 transitions involving all pairs
of neutral octet members,

y(|∆S| = 1) = −2
√

[B(D0 → K0η) + B(D0 → K0π0)][B(D0 → K̄0η) + B(D0 → K̄0π0)] .
(41)
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Here, as in the case of charged pions and kaons, one may neglect the cosine of a strong
phase difference which is second order in U-spin breaking.

Now we turn to the SCS (∆S = 0) transitions 〈1′, 0|HW |D0〉. We have a number
of relations between amplitudes for D0 decays to ηη, ηπ0, and π0π0, and will find the
usual SU(3) result A(D0 → K0K̄0) = 0, stemming from the vanishing of the transitions
〈0′, 0|HW |D0〉, 〈0, 0|HW |D0〉, and 〈2, 0|HW |D0〉. The first of these implies

A(D0 → ηη) + 2
√
3A(D0 → ηπ0) + 3A(D0 → π0π0) = 0 . (42)

Linear combinations of the second and third imply A(D0 → K0K̄0) = 0 and the relation

3A(D0 → ηη)− 2
√
3A(D0 → ηπ0) + A(D0 → π0π0) = 0 . (43)

The transition of interest is

〈1′, 0|HW |D0〉 =
√
3

4
A(D0 → ηη) +

1

2
A(D0 → ηπ0)−

√
3

4
A(D0 → π0π0) . (44)

The absolute square of this equation contains three interference terms. However, adding
to that expression a suitable linear combination of the absolute square of the previous
two equations (the coefficients each turn out to be 1/32), one finds an expression without
interference terms:

|〈1′, 0|HW |D0〉|2 = 1

2
|A(D0 → ηη)|2 + |A(D0 → ηπ0)|2 + 1

2
|A(D0 → π0π0)|2 . (45)

When calculating decay rates involving identical particles, one must multiply the first and
last terms by 2, leading to the result

y(∆S = 0) = B(D0 → ηη) + B(D0 → ηπ0) + B(D0 → π0π0) . (46)

The final result for y(π0, η,K0, K̄0) is obtained by adding this contribution to that from
the ∆S = ±1 transitions to pairs of neutral mesons:

y(π0, η,K0, K̄0) = B(D0 → ηη) + B(D0 → ηπ0) + B(D0 → π0π0)

− 2
√

[B(D0 → K0η) + B(D0 → K0π0)][B(D0 → K̄0η) + B(D0 → K̄0π0)] . (47)

The relation y(π0, η,K0, K̄0) = 0 which holds in USFB is, of course, satisfied by less precise
SU(3) rate relations summarized in Table I. Early examples of SU(3) analyses may be found
in Refs. [20] and [21]. The results in Table I follow from the behavior of the ∆S = ±1, 0
pieces in HW as three components U3 = ±1, 0 of a U-spin triplet operator.

As in the example of charged pions and kaons, first-order SU(3)-breaking contributions
from phase space cancel in ∆y(π0, η,K0, K̄0). Here we use the rate relations of Table I.
An η in the final state counts for 4/3 of a strange quark, as η8 is an ss̄ pair 2/3 of the
time. [This is equivalent to using a Gell-Mann – Okubo mass formula (either linear or
quadratic) for Mη in terms of MK and Mπ.] The contributions to the sum rule (47) are
then (neglecting common factors)

1

2
+

1

3
+

1

2
− 4

3
= 0 , (48)
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Table I: Absolute squares of amplitudes A(D0 → f) for final states consisting of two neutral
pseudoscalar mesons. A factor of two has been included for final states with two identical
particles. An overall common factor has been omitted. The η is taken as a pure octet
member.

Final state f |A|2
K̄0π0 (1/2)C4

K̄0η (1/6)C4

π0π0 (1/2)C2S2

π0η (1/3)C2S2

ηη (1/2)C2S2

K0π0 (1/2)S4

K0η (1/6)S4

while the coefficients of ∆ from these corresponding terms are

1

2
· 8
3
+

1

3
· 4
3
+

1

2
· 0− 2 ·

{

1

2
+

1

6
·
[

1 +
4

3

]}

=
16

9
− 16

9
= 0 . (49)

No information is available for the decays D0 → K0η0 and D0 → K0π0, so we can’t tell
how well Eq. (47) cancels. Since we expect it vanishes to first order in U-spin breaking, we
have a sum rule that may be used to predict the sum of these two DCS branching fractions:

B(D0 → K0η) + B(D0 → K0π0) = (7.4± 1.2)× 10−5 . (50)

This is for a pure octet η, but we have argued that η–η′ mixing is second order in SU(3)
breaking. When data become available it will be interesting to compare this prediction
with the data and with the central value obtained from an SU(3) fit with an 11.7◦ η–η′

mixing angle [22],

B(D0 → K0η) + B(D0 → K0π0) = (2.8 + 6.9)× 10−5 = 9.7× 10−5 . (51)

This value involves however an uncertainty from first-order SU(3) breaking corrections
which do not affect the prediction (50).

C Decays to charged PV states

When one of the final state mesons is a pseudoscalar meson P and the other a vector meson
V there are more U-spin [or SU(3)] amplitudes as the final-state particles do not belong to
the same multiplet. The U-spin doublets are:

Pseudoscalar mesons :

(

K+

−π+

)

;

(

π−

K−

)

; (52)

Vector mesons :

(

K∗+

−ρ+

)

;

(

ρ−

K∗−

)

. (53)
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One can then form U-spin triplet PV states of charge zero out of the above doublets in
two different ways, using the two pairs (π−, K−) and (K∗+, ρ+) on the one hand and their
charge-conjugates on the other. A test of the very generic sum rule (14) is quite challenging,
as it requires measuring relative phases between D0 decay amplitudes for a PV state and
its charge-conjugate. In principle, this may be achieved by a Dalitz plot analysis for decays
to a common three-body final state.

Facing this experimental difficulty, we will now study testable U-spin sum rules similar
to (23), in which first-order U-spin breaking corrections cancel in phase space factors but
may occur in hadronic amplitudes. In the U-spin symmetry limit there are two classes of
amplitude relations, depending on which pair of U-spin doublets we consider:

A(D0 → π−K∗+) = −λA(D0 → K−K∗+) = λA(D0 → π−ρ+) = −λ2A(D0 → K−ρ+) ;
(54)

A(D0 → ρ−K+) = −λA(D0 → K∗−K+) = λA(D0 → ρ−π+) = −λ2A(D0 → K∗−π+) ,
(55)

where λ ≡ tan θc. One can form sets of contributions to y out of either set, but in neither
case do we have assurance that first-order U-spin-breaking effects in hadronic amplitudes
cancel one another.

C.1 (K∗+, ρ+)(π−, K−) final states

Using one pair of U-spin doublets, a set of contributions to y for which branching fractions
are known for all four processes is

y1 ≡ B(D0 → π−ρ+)+B(D0 → K−K∗+)−2
√

B(D0 → K−ρ+)B(D0 → π−K∗+) = 0 . (56)

Substituting the known branching fractions [9]

B(D0 → π−ρ+) = (9.8± 0.4)× 10−3 , (57)

B(D0 → K−K∗+) = (4.38± 0.21)× 10−3 , (58)

B(D0 → K−ρ+) = (10.8± 0.7)% , (59)

B(D0 → π−K∗+) = (3.39+1.80
−1.02)× 10−4 , (60)

one finds y1 = (2.1+1.9
−3.3) × 10−3, with the error dominated by the uncertainty in the last

branching fraction. Some cancellation occurs, but it is not as well-determined as for charged
pions and kaons (Sec. VI A).

The effects of U-spin breaking in phase space factors lead to first-order corrections
proportional to M2

K −M2
π or M2

K∗ −M2
ρ , both of which can be seen to cancel one another

in Eq. (56).

C.2 (K+, π+)(ρ−, K∗−) final states

Using the other combination of P and V U-spin doublets, one can write their contribution
to y as

y2 ≡ B(D0 → ρ−π+)+B(D0 → K∗−K+)−2
√

B(D0 → K∗−π+)B(D0 → ρ−K+) = 0 . (61)
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We have almost enough information to check this sum rule:

B(D0 → ρ−π+) = (4.96± 0.24)× 10−3 , (62)

B(D0 → K∗−K+) = (1.56± 0.12)× 10−3 , (63)

B(D0 → K∗−π+) = (5.63± 0.35)% , (64)

B(D0 → π−π0K+) = (3.04± 0.17)× 10−4 . (65)

The value B(D0 → K∗−π+) = (5.65 ± 0.35)% quoted above is three times the average
of the values [9] B(D0 → K∗−π+ → K−π0π+) = (2.22+0.40

−0.19)% and B(D0 → K∗−π+ →
KSπ

−π+) = (1.66+0.15
−0.17)%, using the lower error bar for the first and the upper error bar for

the second (because the average lies between them).
The most recent data contributing to this last branching fraction are from Belle [24] and

BaBar [25]. The former makes no statement about how much of the π−π0 state corresponds
to a ρ−, but a ρ− is clearly visible in the Dalitz plot of the latter. Assuming that all the
π−π0 is in a ρ−, one obtains a value of y2 = (−1.75 ± 0.44) × 10−3, but one may be
oversubtracting. It would be very useful if an analysis of the decay D0 → π−π0K+ could
extract B(D0 → ρ−K+).

As in the case of y1, the contributions of SU(3) breaking in the phase space factors of
y2 cancel one another to first order.

C.3 Using both pairs of U-spin multiplets

One can write a sum rule involving all eight PV modes which involves only the products of
decay amplitudes and their charge conjugates. In the absence of strong phase differences
one then finds a contribution to y of the form

y3 =
√

B(D0 → ρ−π+)B(D0 → ρ+π−) +
√

B(D0 → K∗−K+)B(D0 → K∗+K−)

−
√

B(D0 → K∗−π+)B(D0 → K∗+π−)−
√

B(D0 → ρ+K−)B(D0 → ρ−K+) (66)

Evaluation yields y3 = (−0.5+0.8
−1.2) × 10−3. This is reassuringly small, but we have not

justified the neglect of the strong phase differences between the amplitudes for charge-
conjugate final states, contributing to y1 (proportional to TP + EV in the notation of Ref.
[23]) and to y2 (proportional to TV + EP in that notation). An analysis of related charm
decays to PV final states finds a small but non-negligible strong phase difference between
the two [23, 26].

VI Four-body states of pions and kaons

The states of four pions and/or kaons were identified in Ref. [3] as likely candidates for

substantial SU(3) breaking in D0–D
0
mixing. The four-kaon channel is closed to D0 decays

so arguments based on the cancellation of first-order SU(3) breaking or U-spin-breaking
effects will fail.

A full analysis of cancellations in four-body final states would require comparison of
similar kinematic regions for individual U-spin multiplets. This is beyond the scope of
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Table II: U-spin triplets of four charged pions and kaons.

Multiplet Norm Meson states
|1, 1〉1 1/2 −|π+K+π−π−〉+ |K+π+π−π−〉+ |K+K+K−π−〉 − |K+K+π−K−〉
|1, 0〉1 1/

√
2 −|π+K+K−π−〉+ |K+π+π−K−〉

|1,−1〉1 1/2 |π+π+K−π−〉 − |π+K+K−K−〉 − |π+π+π−K−〉+ |K+π+K−K−〉
|1, 1〉2 1/2 −|π+K+π−π−〉 − |K+π+π−π−〉 − |K+K+K−π−〉 − |K+K+π−K−〉
|1, 0〉2 1/

√
2 |π+π+π−π−〉 − |K+K+K−K−〉

|1,−1〉2 1/2 |π+π+K−π−〉+ |π+π+π−K−〉+ |π+K+K−K−〉+ |K+π+K−K−〉
|1, 1〉3 1/2 −|π+K+π−π−〉+ |K+π+π−π−〉 − |K+K+K−π−〉+ |K+K+π−K−〉
|1, 0〉3 1/

√
2 −|π+K+π−K−〉+ |K+π+K−π−〉

|1,−1〉3 1/2 |π+π+π−K−〉 − |π+K+K−K−〉 − |π+π+K−π−〉+ |K+π+K−K−〉

the present article, but we can identify some useful groupings of charged pions and kaons.
These belong to U-spin doublets, as mentioned earlier, so the U-spin multiplets containing
them are those in the product

[

U =
1

2

]4

= 1(U = 2) + 3(U = 1) + 2(U = 0) . (67)

It is the U = 1 multiplets which interest us as they are the only ones reached from D0 via
H∆C=−1

W . Three mutually orthogonal U = 1 multiplets are summarized in Table II.
If they obey the pattern of previous examples, the sum rules will involve cancellations of

U3 = 0 contributions against ones of U3 = ±1. By counting kaons one can see that, at least
formally, first order U-spin-breaking corrections in phase space seem to cancel one another.
However, the |1, 0〉2 state is particularly susceptible to U-spin-breaking because it is the
only one which contains the state of four charged kaons. Hence if a source of a significant
contribution to y is to be sought in the states of four kaons, the sum rule associated with
the triplet |1, U3〉2 would be a good place to look. As we will show now this contribution
is expected to be negative, while the measured value of y is positive [1].

One may assume that nonresonant four-body decays are dominated by states in which
relative angular momenta for all particle pairs are zero, so that the state with four charged
pions is CP-even. The branching fraction for a nonresonant state involving three charged
kaons and a charged pion [9], B(K+K−K−π+)nonres = (3.3 ± 1.5) × 10−5, is three or-
ders of magnitude smaller than the branching fraction for a single kaon and three pi-
ons [9], B(K−π−π+π+)nonres = (1.88 ± 0.26)%, and may be neglected. Thus the contri-
bution to y from the triplet |1, U3〉2 is given by an expression similar to (23), but a term
B(K+K+K−K−) is missing on the right-hand-side,

y(|1, U3〉2) = B(π+π+π−π−)− 2
√

B(K−π−π+π+)B(K+π+π−π−) . (68)

All three branching ratios correspond to nonresonant four-body final states. Assuming the
usual U-spin hierarchy similar to (54),

B(K+π+π−π−) : B(π+π+π−π−) : B(K−π−π+π+) ≃ λ4 : λ2 : 1 , (69)
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one finds y(|1, U3〉2) to be negative. Using the measured value of B(K−π−π+π+)nonres to
normalize the other two branching fractions one obtains y(|1, U3〉2) ≃ −1.0× 10−3.

To conclude this section we discuss briefly a U-spin sum rule for four-body D0 decays
involving K0K̄0 and a pair of charged pions or kaons. A U-spin relation following from a
symmetry under a d ↔ s reflection,

〈K0K̄0π+π−|HW |D0〉 = −〈K̄0K0K+K−|HW |D0〉 , (70)

is strongly broken by phase space which forbids decays into four kaons [9],

B(D0 → K0K̄0π+π−) = (4.92± 0.92)× 10−3 , B(D0 → K̄0K0K+K−) = 0 . (71)

The first branching ratio would explain the measured value of y, if a sum rule including
the difference

B(K0K̄0π+π−)− 2
√

B(K0K̄0π+K−)B(K0K̄0K+π−) , (72)

(in which branching fractions involving three kaons are highly suppressed) could be obtained
for a U-spin triplet state. K0 and K̄0 are two members of a U-spin triplet to which also
(
√
3η − π0)/

√
2 belongs. [See Eq. (28)]. One may show that in fact there exists a U-spin

triplet sum rule including the difference (72) which, however, involves also unmeasured
branching fractions and interference terms with amplitudes involving π0 and η in addition
to a pair of charged pions or kaons.

VII Conclusions

In the limit of U-spin symmetry, contributions of on-shell intermediate states to the pa-

rameter y = ∆Γ/(2Γ) describing D0–D
0
mixing cancel one another. This has been shown

to be a consequence of the fact that the mixing amplitude transforms as a U-spin operator

with U = 2, U3 = 0, while the states |D0〉 and |D0〉 have U = 0 because they contain no s
or d quarks or antiquarks.

The cancellation of first-order U-spin-breaking effects then follows from the fact that
first-order U-spin-breaking (equivalent to insertion of a term ms −md) transforms as U =
1, U3 = 0 and therefore cannot contribute to the mixing.

This result implies that sum rules may be written for contributions to y each involving a
distinct U-spin triplet, explaining, for example, why the cancellation of contributions from
the intermediate states K−π+, K−K+, π−π+, and K+π− occurs. These states belong to a
U = 1 multiplet all of whose members are sufficiently far below MD that U-spin-breaking
effects in phase space factors may be treated to first order in perturbation theory, and
indeed – as expected from the general theorem – they cancel one another to first order in
U-spin-breaking.

Examples of multiplets for which cancellation of contributions to y cancel one another
have been given. In addition to the above case of pairs of charged kaons or pions, sum rules
are seen to hold for pairs of neutral members of the pseudoscalar octet, pairs of charged
pseudoscalar and vector mesons, and specific groupings of four charged pions and kaons.

When looking for standard model culprits which could induce large values of y, Ref.
[3] identified final states consisting of four particles, noting that four-kaon final states lie
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above MD and hence are inaccessible. Perturbative U-spin-breaking is thus a very poor
approximation for sum rules involving such states. We have identified a grouping of ampli-
tudes which includes the state |K+K+K−K−〉 and thus is a good candidate to participate
in strong U-spin-breaking contributions to y. We have shown that this contribution is
most likely negative of order −10−3. In contrast, we have shown that four-body D0 decays
involving K0K̄0 and a pair of charged pions or kaons may lead to a positive contribution
to y at the level observed experimentally. Thus, summing over U-spin triplet contributions
provides an order of magnitude estimate for y, but is short of being a precise method for
calculating this parameter.
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