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Abstract

Within the collinear twist-3 framework, we analyze the double-spin asymmetry in collisions between
longitudinally polarized nucleons and transversely polarized nucleons with focus on hadron and
jet production. As was the case in direct photon production, the double-spin dependent cross
section for hadron and jet production has the advantage of involving a complete set of collinear
twist-3 functions for a transversely polarized nucleon. In addition, we outline further benefits of
this observable for a potential future measurement at RHIC, which includes insight on the gluon
helicity distribution as well as information on the Efremov-Teryaev-Qiu-Sterman function TF (x, x)
that plays a crucial role in single-spin asymmetries.

1 Introduction

Spin asymmetries in hard scattering processes have been an interesting subject of research for several
decades. Starting in the mid-1970s, the large single-spin asymmetries (SSAs) observed in inclusive
hadron production [1–7] were initially an obstacle for perturbative QCD. Within the collinear parton
model, these asymmetries should be on the order of αsmq/Ph⊥ [8,9], wheremq is the mass of the quark,
and Ph⊥ is the transverse momentum of the detected hadron. However, research pioneered in the early
1980s [10] that went beyond the simplistic parton model showed that these SSAs could be generated
within a framework that involved collinear twist-3 parton correlators. This formalism, which is valid
when a process contains one large scale Q (with ΛQCD ≪ Q), has also been extensively investigated
for SSAs in various observables — see [11–19] for some specific examples. (We also mention that other
mechanisms have been proposed to explain large SSAs [20–22].)

Similarly, extensive work has been done on the longitudinal double-spin asymmetry (DSA) ALL in
processes such as polarized lepton-nucleon collisions and polarized nucleon-nucleon collisions [23,24].
This differs from the derivations of SSAs in that ALL is a leading twist (twist-2) effect that gives access
to the helicity distributions of partons in the nucleon — see [25] for a recent global extraction of these
functions. The main goal of this research has been to understand how the spin of the nucleon can be
explained in terms of the partons that compose it. A real surprise occurred when it was determined
by EMC [26] (and later confirmed at SLAC [27, 28]) that the spins of the quarks contribute an
unexpectedly small fraction to the spin of the nucleon. Clearly, the remaining percentage must come
from the orbital angular momentum of the partons and the spin of the gluons. Much research has
been done on this front to determine exactly what contribution each of these pieces make — see,
e.g., [29–31] for recent reviews on the subject.
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While the areas of hadronic spin physics outlined in the previous two paragraphs have for the most
part operated independently of each other, one observable, namely, the longitudinal-transverse DSA
ALT , offers insight into both domains. More specifically, ALT (in processes with one large scale) is a
collinear twist-3 effect that is also sensitive to parton helicities. The classic process that necessitates
this formalism is ALT for inclusive deep-inelastic lepton-nucleon scattering (DIS). In that case, one can
study the collinear twist-3 function gT . In addition, ALT has been analyzed in the Drell-Yan process
involving two incoming polarized hadrons [32–35]. More recently, ALT was calculated in inclusive
lepton production from W -boson decay in proton-proton scattering [36], for jet production in lepton-
nucleon scattering [37], and for direct photon production in nucleon-nucleon collisions [38]. However,
it was only in [38] that for the first time a spin dependent cross section was considered that required a
complete set of collinear twist-3 functions for a transversely polarized nucleon in order to fully describe
the observable. We will see this same characteristic holds for hadron and jet production. (Note that a
term containing chiral-odd correlation functions was not computed in [38]. We will also neglect these
contributions in the present work — see the discussion below Eq. (2).) These higher-twist functions do
not have a probability interpretation and are lesser known than the collinear ones relevant at leading
twist (namely, the unpolarized distribution f1, helicity distribution g1, and transversity distribution
h1 [32,39,40]), but nevertheless they provide important insight into the spin structure of the nucleon.

In the present work, we analyze the double-spin asymmetry ALT in nucleon-nucleon collisions
for the case of hadron and jet production as well as review the results for direct photon production
found in [38]. These results collectively can be considered the DSA analog to the SSAs derived in
the same processes [11,12,14,15]. Furthermore, we briefly discuss plans for a future numerical study
and highlight the prospects for this observable to provide insight on important areas of hadronic spin
physics. These include information on the gluon helicity distribution and the Efremov-Teryaev-Qiu-
Sterman (ETQS) function TF (x, x) that enters into SSAs in hadronic processes.

The paper is organized as follows: in Sec. 2, we review the collinear twist-3 formalism including
the relevant non-perturbative functions that enter into the calculation. In Sec. 3, we derive the
double-spin dependent cross section for hadron and jet production, providing a few details of the
calculation. In addition, we briefly outline a future numerical study and emphasize potential benefits
for a measurement of ALT at RHIC. In Sec. 4, we conclude the paper and summarize our work.

2 Collinear twist-3 formalism

To start, let us make explicit the process under consideration, namely,

A(P, ~S⊥) +B(P ′, Λ) → C(l) +X, (1)

where the 4-momenta and polarizations of the incoming nucleons A, B and outgoing particle (or jet)
C are indicated. The Mandelstam variables for the process are defined as S = (P +P ′)2, T = (P − l)2,
and U = (P ′ − l)2, which on the partonic level give ŝ = xx′S, t̂ = xT/z, and û = x′U/z. The
longitudinal momentum fraction x (x′) is associated with partons in the transversely (longitudinally)
polarized nucleon.

The first non-vanishing contribution to the cross section is given by terms of twist-3 accuracy and
reads

dσ(~l⊥, ~S⊥,Λ) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3), (2)
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Figure 1: Feynman diagrams for the twist-3 matrix elements that give contributions to fa/A(3). See
the text for more details.

where a sum over partonic channels and parton flavors in each channel is understood. In Eq. (2),
fa/A(t) denotes the twist-t distribution function associated with parton a in hadron A (and likewise
for fb/B(t)), while DC/c(t) represents the twist-t fragmentation function associated with particle C
in parton c. The factors H, H ′, and H ′′ indicate the hard parts corresponding to each term, while
the tensor product denotes convolutions in the appropriate momentum fractions. For the case of
the SSA AUT (where B is now unpolarized), it has already been shown that the second term in (2),
which involves chiral-odd twist-3 unpolarized distributions, is negligible because of the smallness of
the hard scattering coefficients [41]. We believe a similar statement will hold for the ALT case, which
involves chiral-odd twist-3 helicity distributions, since the hard factors will be similar to the ones for
the unpolarized case. Arguments have been made that the first term in (2) for AUT (so-called Sivers
term) is dominant [11, 12, 14]. However, recent work has shown that one cannot rule out significant
contributions from the third term (so-called Collins term) [42–44]. For this current work on ALT , we
will focus on the first term in (2) but cannot exclude that the third term could also play a critical role.

Therefore, for the situation we consider, fb/B(2) = gb1 and DC/c(2) = D
C/c
1 , where g1 and D1 are the

standard twist-2 helicity distribution function and unpolarized fragmentation function, respectively.
We then must determine what contributions are possible for fa/A(3).

A detailed discussion of collinear twist-3 functions and, in particular, those relevant for a trans-
versely polarized nucleon, is given in Ref. [17]. Here we simply review the main aspects needed for this
work. The twist-3 matrix elements that we must consider are given by the diagrams in Fig. 1. Note
that we have neglected matrix elements involving tri-gluon correlators. In the lightcone (A+ = 0)
gauge, these graphs lead to the three matrix elements [17]

〈ψ̄ψ〉, 〈ψ̄∂⊥ψ〉, 〈ψ̄A⊥ψ〉, (3)

which result from Figs. 1(a), (b), and (d), respectively. We do not have to consider Fig. 1(c) because
one does not need to simultaneously take into account k⊥ expansion and A⊥ gluon attachments (which
would give rise to twist-4 contributions).

Now that we have determined the relevant twist-3 matrix elements, we must parameterize them
in terms of twist-3 functions that will eventually be involved in our final result. We first focus on the

3



quark-gluon-quark (qgq) matrix element 〈ψ̄A⊥ψ〉. One notices that this matrix element is not gauge
invariant. This can be resolved in two ways: rewrite the gluon field A⊥ in terms of the field strength
tensor F+µ

⊥
= ∂+Aµ

⊥
or rewrite it in terms of the covariant derivative Dµ

⊥
= ∂µ

⊥
− igAµ

⊥
. The former

leads to the matrix element being written in terms of the so-called “F-type” functions, while the latter
gives the so-called “D-type” functions [11]. Respectively, we have

∫

dξ−

2π

dζ−

2π
eix1P+ξ−ei(x−x1)P+ζ−〈P, S⊥|ψ̄β(0)gF

+µ
⊥

(ζ−)ψα(ξ
−)|P, S⊥〉

=
M

2

[

FFT (x, x1) ǫ
µν
⊥
S⊥ν/n−GFT (x, x1) iS

µ
⊥
γ5/n

]

αβ
, (4)

and
∫

dξ−

2π

dζ−

2π
eix1P+ξ− ei(x−x1)P+ζ−〈P, S⊥|ψ̄β(0)iD

µ
⊥
(ζ−)ψα(ξ

−)|P, S⊥〉

=
M

2P+

[

FDT (x, x1) iǫ
µν
⊥
S⊥ν/n+GDT (x, x1)S

µ
⊥
γ5/n

]

αβ
. (5)

In Eqs. (4), (5), we have suppressed Wilson lines and have indicated the nucleon mass byM . We have
also introduced the lightcone vector n = (1+, 0−,~0⊥), whose conjugate vector is n̄ = (0+, 1−,~0⊥). Note
that we have defined the F-type and D-type functions as in Ref. [45], which differs from those used
in [38]. These functions satisfy certain symmetry properties under the interchange of their arguments:

FFT (x, x1) = FFT (x1, x) and GFT (x, x1) = −GFT (x1, x), (6)

while
FDT (x, x1) = −FDT (x1, x) and GDT (x, x1) = GDT (x1, x). (7)

Moreover, it turns out the F-type and D-type functions are not independent of each other. One
can establish the following relations between these functions [13]:

FDT (x, x1) = PV
1

x− x1
FFT (x, x1), (8)

GDT (x, x1) = PV
1

x− x1
GFT (x, x1) + δ(x − x1) g̃(x), (9)

where PV denotes the principal value. In order to derive these expressions, notice that we must
introduce an additional twist-3 function g̃(x), whose definition is given by

∫

dξ−

2π
eixP

+ξ−〈P, S⊥|ψ̄β(0)

(

iDµ
⊥
(ξ−) + g

∫

∞

ξ−
dζ−F+µ

⊥
(ζ−)

)

ψα(ξ
−)|P, S⊥〉

=
M

2

[

g̃(x)Sµ
⊥
γ5/n

]

αβ
. (10)

This function is associated with the quark-quark (qq) matrix element 〈ψ̄∂⊥ψ〉. We also mention that
g̃(x) is equivalent to the first k⊥-moment of the TMD g1T (x,~k

2
⊥
) for a longitudinally polarized quark

in a transversely polarized nucleon [17]:

g̃(x) =

∫

d2~k⊥
~k 2
⊥

2M2
g1T (x,~k

2
⊥). (11)
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Figure 2: Graphs showing factorization for contributions to ALT from (a) qq correlators and (b) qgq
correlators.

The other relevant qq matrix element 〈ψ̄ψ〉 leads to a contribution from the well-known twist-3 function
gT (x), whose definition is given by

2M

P+
Sµ
⊥
gT (x) =

∫

dy−

2π
eixP

+y− 〈P, S⊥|ψ̄(0)γ
µγ5ψ(y−)|P, S⊥〉. (12)

However, gT (x) can be related to the D-type functions (and, therefore, due to (8), (9), also the F-type
functions) through the QCD equations of motion (EOM) [10,32]:

x gT (x) =

∫

dx1 [GDT (x, x1)− FDT (x, x1)]. (13)

From the above discussion, we have identified six twist-3 functions relevant for a transversely
polarized nucleon: g̃, gT , FFT , GFT , FDT , GDT . However, from the relations given in Eqs. (8), (9),
(13), in the end one has only three independent collinear twist-3 functions relevant for a transversely
polarized nucleon. At the outset of a calculation, one can choose to work with either the F-type
functions and g̃(x) or the D-type functions and g̃(x). One cannot simply use the F-type or D-type
functions alone, but rather the function g̃(x) must also be included — see, e.g., Ref. [46].

3 Calculation of the double-spin dependent cross section

3.1 General structure of the calculation

The factorization of the process under consideration is shown in Fig. 2. This includes collinear factors
associated with the longitudinally polarized nucleon (top gray blob), the outgoing particle (or jet)
(middle gray blob), and the transversely polarized nucleon (bottom gray blob) as well as hard factors
(white blobs). We choose to work with the F-type functions and g̃(x). For each partonic channel,
the main task becomes calculating the hard scattering coefficients for each of these functions, which
then allows us to write down the double-spin dependent cross section. We will denote each channel by
ab→ cd, where a (b) is the parton associated with the transversely (longitudinally) polarized nucleon
and c is the parton that fragments into the detected particle (or jet).
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Figure 3: Hard scattering diagrams for the qq′ → qq′ channel involving (a) qq correlators and (b)–(e)
qgq correlators. Note that Hermitian conjugate diagrams for the qgq graphs are not shown.

Here we will focus on the qq′ → qq′ channel in order to present a few details of the calculation. The
relevant hard scattering diagrams for this channel are shown in Fig. 3. First, we consider the graph in
Fig. 3(a). If we keep the transverse momentum of the initial state parton q (as in Fig. 1(b)), then we
can determine the hard scattering coefficient for g̃(x). In fact, this will lead to terms involving both
g̃(x) and its derivative, as was first detailed in [11,12]. On the other hand, if we neglect the transverse
momentum of q in the initial state (as in Fig. 1(a)), then we obtain the hard part for gT (x). However,
since we work with the F-type functions and g̃(x), we use Eq. (13) in conjunction with Eqs. (8), (9)
to write gT (x) in terms of those functions. Lastly, we must attach gluons in all possible ways to
Fig. 3(a), which leads to Figs. 3(b)–(e) and their Hermitian conjugates (not shown). In these graphs
we can neglect the transverse momenta of the initial state parton q and gluon (as in Fig. 1(d)). These
diagrams allow us to find the qgq contributions to the hard factors for the F-type functions. Note that
we can combine the graphs in Figs. 3(b)–(e) with their Hermitian conjugates by using the symmetry
relations in Eq. (6).

We remark at this stage that in general the qgq diagrams are not always real but can acquire an
imaginary part whenever internal parton lines go on-shell. This requires the use of the distribution
identity

1

x± iǫ
= PV

1

x
∓ iπδ(x). (14)

However, unlike the case of SSAs, the PV part survives when we combine the various cut diagrams,
whereas the pole term vanishes — see also [38]. A related feature is that all of the qgq graphs
contribute to the hard scattering coefficients for the F-type functions, unlike the situation for SSAs
when one considers the so-called soft gluon pole (SGP) term. For example, if one were calculating the
SGP term to the SSA for AB → CX for the qq′ → qq′ channel, only Figs. 3(b), (e) (after including
the Hermitian conjugate graphs) provide such a pole [14].

Finally, collecting all the terms, we find for the qq′ → qq′ channel the following contribution to the
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double-spin dependent cross section:

l0dσqq
′→qq′(~S⊥, Λ)

d3~l
= −

2α2
sM

S
~l⊥ · ~S⊥ Λ

∑

a, b, c

∫ 1

zmin

dz

z2
D

C/c
1 (z)

∫ 1

x′

min

dx′

x′
1

x′S + T/z

1

z û
gb1(x

′)
1

x

×

{

g̃a(x)

[

CF

Nc

2ŝ2 − t̂2

t̂2

]

− x
dg̃a(x)

dx

[

CF

Nc

û− ŝ

t̂

]

+

∫

dx1 PV
1

x− x1
Ga

FT (x, x1)

[

1

2

(

2(û− ŝ)

ξt̂
+
ŝ(ŝ− û)

(1− ξ)t̂2
+
û

t̂

)

+
1

2N2
c

(

2(ŝ− û)

t̂

(

2t̂− û

ξt̂
+

1

1− ξ

)

−
û

t̂

)]

−

∫

dx1 PV
1

x− x1
F a
FT (x, x1)

[

1

2

(

û

t̂
−
ŝ(ŝ− û)

(1− ξ)t̂2

)

+
1

2N2
c

(

−
2(ŝ− û)

t̂(1− ξ)
−
û

t̂

)]}

,

(15)

where x = −x′(U/z)/(x′S + T/z), x′min = −(T/z)/(U/z + S), and zmin = −(T + U)/S. We have
introduced ξ = xg/x, where xg = x − x1, and understand 1/ξ to mean PV (1/ξ). The SU(3) color
factors depend on CF = 4/3 and Nc = 3. We note that the coefficient of (d/dx)g̃(x) in Eq. (15)
matches the hard factor for the qq′ → qq′ channel in the leading order (LO) calculation of ALL found
in [24]. This is to be expected given the Dirac projectors associated with gb1(x) and g̃a(x) and the
fact the “derivative term” at this stage is obtained by neglecting transverse momentum everywhere
except in the on-shell delta function [11, 12]. We have checked for all channels that at this point in
the calculation an agreement occurs between the derivative term and the LO ALL coefficients.

We can rewrite (15) in terms of the D-type functions and g̃(x) by using Eqs. (8), (9). If one does
so, a nice simplification occurs involving g̃(x) and its derivative:

l0dσqq
′→qq′(~S⊥, Λ)

d3~l
= −

2α2
sM

S
~l⊥ · ~S⊥ Λ

∑

a, b, c

∫ 1

zmin

dz

z2
D

C/c
1 (z)

∫ 1

x′

min

dx′

x′
1

x′S + T/z

1

z û
gb1(x

′)
1

x

×

{(

g̃a(x)− x
dg̃a(x)

dx

)[

−
1

2N2
c

(t̂− û)(ŝ− û)

t̂2

]

+

∫

dx1G
a
DT (x, x1)

[

1

2

(

2(û− ŝ)

ξt̂
+
ŝ(ŝ− û)

(1− ξ)t̂2
+
û

t̂

)

+
1

2N2
c

(

2(ŝ− û)

t̂

(

2t̂− û

ξt̂
+

1

1− ξ

)

−
û

t̂

)]

−

∫

dx1F
a
DT (x, x1)

[

1

2

(

û

t̂
−
ŝ(ŝ− û)

(1− ξ)t̂2

)

+
1

2N2
c

(

−
2(ŝ − û)

t̂(1− ξ)
−
û

t̂

)]}

.

(16)

We will comment more on this “compact” form involving g̃(x) and its derivative as well as make other
general remarks on the analytical result in the next subsection.
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3.2 Final analytical result

Following for the remaining channels the outline given above for calculating hard factors, we find the
cross section relevant for the DSA ALT in AB → CX is given by

l0dσ(~S⊥, Λ)

d3~l
= −

2α2
sM

S
~l⊥ · ~S⊥ Λ

∑

i

∑

a, b, c

∫ 1

zmin

dz

z2
D

C/c
1 (z)

∫ 1

x′

min

dx′

x′
1

x′S + T/z

1

z m̂i
gb1(x

′)
1

x

×

{[

g̃a(x)− x
dg̃a(x)

dx

]

H i
g̃ +

∫

dx1
[

Ga
DT (x, x1)H

i
GDT

− F a
DT (x, x1)H

i
FDT

]

}

,

(17)

where i denotes the channel and m̂i the corresponding partonic Mandelstam variable for that channel
(see Table 1 in Appendix A). The result in Eq. (17) is if the detected particle is a hadron, with the
hard scattering coefficients H i given in Appendix A. However, one can also obtain the expression for

the double-spin dependent cross section for jet production by setting D
C/c
1 (z) = δ(1 − z). The hard

parts in this case are again given in Appendix A, but now one can combine channels that differ by a
crossing of the final state partons. Likewise, for direct photon production one must set Dc

1(z) = δ(1−z)
but also must make the replacement αs → αeme

2
a for one factor of αs, where ea is the charge of a

quark with flavor a (in units of e). In this case, the number of channels reduces significantly, and their
respective hard parts, which first appeared in [38], are given in Appendix B. We note a correction in
the overall sign for the hard factors for the qg → γq channel.

A few comments are in order on the analytical result. First, we again mention that this calculation
of ALT is the analog to the calculation of AUT in the same processes [11,12,14,15]. Second, as we saw
with the qq′ → qq′ channel, when we write the result using the D-type functions instead of the F-type
functions, g̃(x) and its derivative combine in the same compact form as TF (x, x) did for SSAs in direct
photon and inclusive pion production [11, 14, 15]. This form was also seen in the ALT calculations
done in Refs. [36,37] (and, as mentioned above, Ref. [38]). Finally, we see Eq. (17) involves a complete
set of collinear twist-3 functions for a transversely polarized nucleon. This is because the hard parts
associated with each contribution are not the same, and, therefore, we cannot combine them into a
simpler function. Thus, in principle this process in conjunction with other reactions allows us to access
a complete set of collinear twist-3 functions for a transversely polarized nucleon.

At this point, we would also like to make a few observations about the hard scattering coefficients
H i

FDT
and H i

GDT
in Appendices A and B. We remark that these hard parts, as we have made explicit

in the Appendices, can all be written in the form

H i = H i
1 +

1

1− ξ
H i

2 +
1

ξ
H i

3, (18)

where H i
1, H

i
2, and H

i
3 are independent of ξ, and we have dropped the FDT and GDT subscripts from

the H’s. First, notice that H i
1, FDT

= H i
1, GDT

, which means one could pull these hard factors out of
the integral over x1 and, using (13), write a term involving gT (x). For some channels, like qq′ → qq′,
this is a trivial statement because the only ξ-independent terms in H i

FDT
and H i

GDT
come from the

gT (x) contribution — see the second paragraph of Sec. 3.1. However, for other channels, like qg → qg,
the qgq contributions to H i

FDT
and H i

GDT
also contain ξ-independent terms. We find it interesting

that these additional ξ-independent terms are always the same for H i
FDT

and H i
GDT

. Second, one sees

that H i
2, FDT

= −H i
2, GDT

and H i
3, FDT

= 0. We leave the former as another intriguing observation
on the structure of the result. For the latter, we remark that the pole contribution 1/ξ comes from
initial/final state interactions and can be written as a kinematical factor times the Born cross section
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— see, e.g., [11,12,14]. In this case, the Born diagram corresponding to FDT vanishes, which leads to

H i
3, FDT

= 0. Finally, one notices that Hab→cd
FDT

= −Hab→dc
FDT

(t̂↔ û), and similarly for H
ab→cd(dc)
GDT

, where

(t̂ ↔ û) means interchange of t̂ and û. Since one might surmise these hard parts for ab → dc can be
obtained from those for ab → cd by an interchange of t̂ and û (because we neglect k⊥ and k1⊥), the
negative sign might be a bit unexpected. This negative sign appears to be due to the sensitivity of
the transversely polarized gluon attachments to the transverse momentum of the outgoing partons.
When one interchanges final state partons, the transverse momenta of the outgoing partons change
signs, which is reflected in the crossed-channel hard parts. Also, the fact that Hab→cd

g̃ appears to have

no relation to Hab→dc
g̃ might seem a bit strange. However, one can see this will be the case, e.g., by

noticing the k⊥ dependence changes when one interchanges final state partons.
We conclude this section with a brief discussion of a future numerical study and of the key insights

a measurement of this observable at RHIC might provide. In order to estimate the size of ALT for
hadron, jet, and photon production, we must determine the input for the twist-3 functions that enter
into (17). We can obtain information on the function g̃(x) through its relation (11) to g1T (x,~k

2
⊥
) —

see [37] for a recent example as well as [47–49]. In addition, one can choose to pull the ξ-independent
terms in the hard factors for H i

FDT
and H i

GDT
out of the integral over x1 and write a term involving

gT (x) — see the discussion in the previous paragraph. We also have information on this function, e.g.,
through the Wandzura-Wliczek approximation [50, 51]. The main obstacle then is the qgq correlator
contributions. The off-diagonal contributions (i.e., x 6= x1) to FFT and GFT needed for this DSA
observable are not as well-determined as the diagonal pieces that enter into SSAs. In Ref. [52], a
Gaussian form was assumed for FFT (x, x1) (Tq,F in their notation) that was a maximum for x = x1
and fell off for x 6= x1. This study was done in the context of the evolution of FFT (x, x). In Ref. [53],
an analysis of higher-twist functions was conducted using light-cone wave functions that include qqqg
Fock states. In contrast to [52], this study found FFT (x, x1) (TqFq in their notation) takes on its
greatest values when x 6= x1 and some of its lowest values when x = x1. It is our plan to determine
the impact of the qgq correlators on the size of ALT and provide a complete estimate for the observable.

Given this estimate, the importance of the measurement of ALT in pion production from proton-
proton (pp) collisions at RHIC is threefold. First, through this observable one might be able to probe
the gluon helicity ∆g down to momentum fractions x ∼ 10−3 (or even lower), more than an order of
magnitude below the sensitivity of all current measurements [54–62]. Given the recent debate as to
the size of ∆g at smaller x — see [63] and references therein, ALT could offer valuable insight into the
matter. Second, a measurement of ALT in this process would be a first step towards extracting (non-
diagonal) information on the 3-parton correlators FFT and GFT . Information on these functions is
beneficial in its own right, but, as alluded to in the previous paragraph, one must know the off-diagonal
contributions to FFT and GFT in order to fully determine the evolution of FFT (x, x) [52,64–67]. This
evolution is a vital aspect if one wants to fully understand SSAs. Finally, the “sign mismatch” issue
that has arisen involving FFT (x, x) (or TF (x, x)) and the Sivers function [68] has called into question
whether the collinear twist-3 framework is the correct formalism to describe, e.g., the large SSAs seen
in inclusive hadron production from pp collisions [1–7]. The study of DSAs may provide new insights
on this point. For instance, should a significant discrepancy exist between a numerical estimate of
ALT in pion production and a future measurement of this observable at RHIC, one may ask whether
the collinear twist-3 approach taken in this paper is the appropriate mechanism to consider for both
SSAs and DSAs. Of course, one must keep in mind that knowledge of the relevant twist-3 functions
at present is rather limited [52,53].
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4 Summary

In conclusion, we have calculated the double-spin dependent cross section for inclusive hadron and
jet production for the longitudinal-transverse asymmetry ALT in nucleon-nucleon collisions within the
collinear twist-3 framework. We have also reviewed the results for ALT in direct photon production
from nucleon-nucleon scattering [38]. These derivations are the DSA analog to the SSAs calculated in
the same processes [11,12,14,15]. Furthermore, these reactions require a complete set of collinear twist-
3 functions for a transversely polarized nucleon in order to fully describe the process. We emphasize
again that we did not consider contributions involving chiral-odd correlation functions. We have found
that the solution, when written in terms of D-type functions, allows for a “compact” form involving
g̃(x) and its derivative; similar forms have manifested themselves in other reactions [11,14,15,36–38].
We also made some intriguing observations on the structure of the hard factors, in particular for H i

FDT

and H i
GDT

.
In addition, we have briefly outlined our plan for a future numerical study of this observable. The

main difficulty underlying such an analysis is how to handle the contributions from the 3-parton corre-
lators FFT and GFT since, unlike the case for SSAs, ALT is sensitive to the off-diagonal contributions
to these functions. Such an undertaking is worthwhile, however, since a measurement of this effect
at RHIC could provide insight on some important areas of research in hadronic spin physics. These
include not only information on 3-parton correlators, which are important in their own right, but
also access to the gluon helicity distribution ∆g at momentum fractions not yet explored (x ∼ 10−3),
information on the evolution of the ETQS function TF (x, x) that appears in SSAs, and a general
understanding of the mechanism that causes twist-3 spin asymmetries in nucleon-nucleon collisions.

Acknowledgments: We would like to thank C. Aidala, E. Aschenauer, and B. Surrow for helpful
exchanges on the possibility of measuring this observable at RHIC. We also appreciate useful discus-
sions with V. Braun and A. Manashov with regards to Ref. [53]. This work has been supported by
the NSF under Grant No. PHY-1205942 and by the BMBF under Grant No. OR 06RY9191.

Appendices

A Hard scattering coefficients for hadron production

Here we give the hard scattering coefficients H i for hadron production. Table 1 lists all the channels i
(ab→ cd) and gives the corresponding partonic Mandelstam variable m̂i for that channel. Note that
(t̂ ↔ û) means interchange of t̂ and û. We define ξ = xg/x, where xg = x − x1, and understand 1/ξ
to mean PV (1/ξ). We also mention that the SU(3) color factors depend on Nc = 3. The double-
spin dependent cross section for jet production takes on the same form as Eq. (17) but now with

D
C/c
1 (z) = δ(1−z). This allows hard factors to be combined for channels that differ by an interchange

of the final state partons.
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m̂i ŝ t̂ û

i (ab→ cd) qq̄ → gg qg → gq qg → qg
qq → qq qq′ → q′q qq′ → qq′

qq̄ → q̄q qq̄ → qq̄
qq̄′ → q̄′q qq̄′ → qq̄′

qq̄ → q̄′q qq̄ → q′q̄′

Table 1: Mandelstam variable m̂i for each channel i (ab→ cd).

qg → qg channel

Hg̃ =
1

2

[

(ŝ− û)û

ŝt̂

]

+
1

2N2
c

[

ŝ− û

û

]

+
1

2(N2
c − 1)

[

(ŝ− û)2

t̂2

]

(19)

HGDT
=

1

2

[

ŝ(ŝ2 − t̂û)

t̂2û
−
û2(t̂− û)

ŝt̂2
−

(ŝ2 + û2)(t̂2 − 3ŝû)

(1− ξ)ŝt̂2û
+

2ŝ(ŝ− û)

ξt̂û

]

+
1

2N2
c

[

1

1− ξ
−
ŝ2 + 2û2

ŝû
+

2(ŝ − û)

ξŝ

]

−
1

2(N2
c − 1)

[

(ŝ − û)2

t̂2

(

−
1

1− ξ
−

2

ξ

)]

(20)

HFDT
=

1

2

[

ŝ(ŝ2 − t̂û)

t̂2û
−
û2(t̂− û)

ŝt̂2
+

(ŝ2 + û2)(t̂2 − 3ŝû)

(1− ξ)ŝt̂2û

]

+
1

2N2
c

[

−
1

1− ξ
−
ŝ2 + 2û2

ŝû

]

−
1

2(N2
c − 1)

[

(ŝ− û)2

(1− ξ)t̂2

]

(21)

qg → gq channel

Hg̃ =
1

2

[

(ŝ− t̂)2(t̂û− ŝ2)

ŝt̂û2

]

+
1

2(N2
c − 1)

[

(ŝ− t̂)2

û2

]

(22)

HGDT
= −Hqg→qg

GDT
(t̂↔ û) (23)

HFDT
= −Hqg→qg

FDT
(t̂↔ û) (24)
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qq̄ → gg channel

Hg̃ = −
1

2Nc

[

(t̂2 + û2)(ŝ3 + 2t̂2û)

ŝt̂2û2

]

+
Nc

2

[

ŝ2 − 2t̂û

t̂2

]

−
1

2N3
c

[

ŝ(t̂2 + û2)

û2t̂

]

(25)

HGDT
=

1

2Nc

[

ŝ(t̂− û)(ŝ2 − t̂û)

(1− ξ)t̂2û2
+

2ŝ(t̂− û)(t̂2 + û2)

ξt̂2û2
−

(t̂− û)

ŝ

(

2ŝ4

t̂2û2
+

(t̂− û)2

ŝt̂û

)]

−
Nc

2

[

(û− t̂)(t̂2 + û2)(ŝ2 − t̂û)

ŝt̂2û2

(

−
1

1− ξ
−

2

ξ

)

−
(t̂− û)(t̂2 + û2)(ŝ2 + 2t̂û)

ŝt̂2û2

]

+
1

2N3
c

[

−
(t̂− û)ŝ

(1− ξ)t̂û
+
ŝ(t̂− û)(ŝ2 + ût̂)

t̂2û2

]

(26)

HFDT
=

1

2Nc

[

−
ŝ(t̂− û)(ŝ2 − t̂û)

(1− ξ)t̂2û2
−

(t̂− û)

ŝ

(

2ŝ4

t̂2û2
+

(t̂− û)2

ŝt̂û

)]

−
Nc

2

[

(û− t̂)(t̂2 + û2)(ŝ2 − t̂û)

(1− ξ)ŝt̂2û2
−

(t̂− û)(t̂2 + û2)(ŝ2 + 2t̂û)

ŝt̂2û2

]

+
1

2N3
c

[

(t̂− û)ŝ

(1− ξ)t̂û
+
ŝ(t̂− û)(ŝ2 + ût̂)

t̂2û2

]

(27)

qq′ → qq′ channel

Hg̃ = −
1

2N2
c

[

(t̂− û)(ŝ− û)

t̂2

]

(28)

HGDT
= −

1

2

[

2(ŝ− û)

ξt̂
−
ŝ(ŝ− û)

(1− ξ)t̂2
−
û

t̂

]

+
1

2N2
c

[

2(ŝ − û)

t̂

(

2t̂− û

ξt̂
+

1

1− ξ

)

−
û

t̂

]

(29)

HFDT
= −

1

2

[

ŝ(ŝ− û)

(1− ξ)t̂2
−
û

t̂

]

+
1

2N2
c

[

−
2(ŝ − û)

t̂(1− ξ)
−
û

t̂

]

(30)

qq′ → q′q channel

Hg̃ = −
1

2

[

ŝ(t̂− ŝ)

û2

]

+
1

2N2
c

[

2(ŝ − t̂)

û

]

(31)

HGDT
= −Hqq′→qq′

GDT
(t̂ ↔ û) (32)

HFDT
= −Hqq′→qq′

FDT
(t̂ ↔ û) (33)
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qq → qq channel

Hg̃ =
1

2

[

ŝ2(ŝ− t̂)

t̂û2

]

−
1

2N2
c

[

3ŝ

û
−
ŝ(ŝ− û)

t̂2

]

−
1

2Nc

[

2ŝ3

û2t̂

]

+
1

2N3
c

[

2ŝ3

ût̂2

]

(34)

HGDT
=

1

2

[

2ŝ3(û− t̂)

(1− ξ)t̂2û2
+

2ŝ(û− t̂)

ξt̂û
+
ŝ(û− t̂)

t̂û

]

−
1

2N2
c

[

2ŝ(t̂− û)(2ŝ2 − 3t̂û)

ξt̂2û2
−
ŝ(t̂− û)

t̂û

(

1 +
2

1− ξ

)]

−
1

2Nc

[

ŝ3(û− t̂)

t̂2û2

(

1 +
1

1− ξ

)]

+
1

2N3
c

[

ŝ3(t̂− û)

t̂2û2

(

−1 +
1

1− ξ
+

4

ξ

)]

(35)

HFDT
=

1

2

[

−
2ŝ3(û− t̂)

(1− ξ)t̂2û2
+
ŝ(û− t̂)

t̂û

]

−
1

2N2
c

[

−
ŝ(t̂− û)

t̂û

(

1−
2

1− ξ

)]

−
1

2Nc

[

ŝ3(û− t̂)

t̂2û2

(

1−
1

1− ξ

)]

+
1

2N3
c

[

ŝ3(t̂− û)

t̂2û2

(

−1−
1

1− ξ

)]

(36)

qq̄ → qq̄ channel

Hg̃ = −
1

2

[

û(ŝ− 2t̂)

ŝt̂

]

−
1

2N2
c

[

û2

ŝt̂

(

2ŝ2 + 9t̂2

ût̂
+
ŝ− 2û

ŝ

)]

−
1

2N3
c

[

2û2(ŝ− t̂)

ŝt̂2

]

(37)

HGDT
=

1

2

[

û(3t̂2 + û2)

ŝ2t̂
+

2û(t̂2 + û2)

ξŝ2t̂
−

2û(ŝ3 + ût̂2)

(1− ξ)ŝ2t̂2

]

−
1

2N2
c

[

û(3t̂2 + û2)

ŝ2t̂
−

2û(ŝ− 2t̂)

(1− ξ)ŝt̂
+

2û(2ŝ2 − t̂(ŝ− 4t̂))

ξŝt̂2

]

−
1

2Nc

[

−
2û2

ŝt̂

(

2 +
1

1− ξ

)

−
û3

ŝt̂2

(

1 +
1

1− ξ

)

−
4û2

ξŝt̂

]

+
1

2N3
c

[

−
û2(t̂− ŝ)

ŝt̂2

(

1−
1

1− ξ

)

−
2û2

ŝt̂
−

4û2

ξt̂2

]

(38)

HFDT
=

1

2

[

û(3t̂2 + û2)

ŝ2t̂
+

2û(ŝ3 + ût̂2)

(1− ξ)ŝ2t̂2

]

−
1

2N2
c

[

û(3t̂2 + û2)

ŝ2t̂
+

2û(ŝ− 2t̂)

(1− ξ)ŝt̂

]

−
1

2Nc

[

−
2û2

ŝt̂

(

2−
1

1− ξ

)

−
û3

ŝt̂2

(

1−
1

1− ξ

)]

+
1

2N3
c

[

−
û2(t̂− ŝ)

ŝt̂2

(

1 +
1

1− ξ

)

−
2û2

ŝt̂

]

(39)
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qq̄ → q̄q channel

Hg̃ =
1

2

[

t̂(t̂− ŝ)

û2

]

+
1

2N2
c

[

3t̂

û
−

2t̂(ŝ− û)

ŝ2

]

−
1

2Nc

[

2t̂2

û2

]

+
1

2N3
c

[

2t̂2

ŝû

]

(40)

HGDT
= −Hqq̄→qq̄

GDT
(t̂↔ û) (41)

HFDT
= −Hqq̄→qq̄

FDT
(t̂↔ û) (42)

qq̄ → q′q̄′ channel

Hg̃ =
1

2

[

t̂2 + û2

ŝt̂

]

+
1

2N2
c

[

(t̂− 2ŝ)(t̂2 + û2)

ŝ2t̂

]

(43)

HGDT
=

1

2

[

2û(t̂2 + û2)

ξŝ2t̂
+

2û(t̂− û)

ŝ2
+
û(t̂2 + û2)

(1− ξ)ŝ2t̂

]

+
1

2N2
c

[

2(t̂2 + û2)

ŝt̂

(

1

1− ξ
+

2

ξ

)

−
2û(t̂− û)

ŝ2

]

(44)

HFDT
=

1

2

[

2û(t̂− û)

ŝ2
−
û(t̂2 − û2)

(1− ξ)ŝ2t̂

]

+
1

2N2
c

[

−
2û(t̂− û)

ŝ2
−

2(t̂2 + û2)

(1− ξ)ŝt̂

]

(45)

qq̄ → q̄′q′ channel

Hg̃ =
1

2N2
c

[

(ŝ− û)(t̂2 + û2)

ŝ2û

]

(46)

HGDT
= −Hqq̄→q′q̄′

GDT
(t̂↔ û) (47)

HFDT
= −Hqq̄→q′q̄′

FDT
(t̂↔ û) (48)

qq̄′ → qq̄′ channel

Hg̃ =
1

2

[

û− ŝ

t̂

]

+
1

2N2
c

[

(ŝ − 2t̂)(û− ŝ)

t̂2

]

(49)

HGDT
=

1

2

[

û(ŝ− û)

(1− ξ)t̂2
−
û

t̂

]

+
1

2N2
c

[

2(ŝ − t̂)(ŝ− û)

ξt̂2
−

2(ŝ − û)

(1− ξ)t̂
−
û

t̂

]

(50)

HFDT
=

1

2

[

−
û(ŝ− û)

(1− ξ)t̂2
−
û

t̂

]

+
1

2N2
c

[

2(ŝ − û)

(1− ξ)t̂
−
û

t̂

]

(51)
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qq̄′ → q̄′q channel

Hg̃ =
1

2

[

t̂(t̂− ŝ)

û2

]

−
1

2N2
c

[

2(ŝ − t̂)

û

]

(52)

HGDT
= −Hqq̄′→qq̄′

GDT
(t̂ ↔ û) (53)

HFDT
= −Hqq̄′→qq̄′

FDT
(t̂ ↔ û) (54)

B Hard scattering coefficients for photon production

Here we give the hard scattering coefficients H i for direct photon production. We define ξ = xg/x,
where xg = x− x1, and understand 1/ξ to mean PV (1/ξ). We also note that the SU(3) color factors
depend on CF = 4/3 and Nc = 3. The double-spin dependent cross section has the same form as

Eq. (17), but now we setD
C/c
1 (z) = δ(1−z) and for one factor of αs make the replacement αs → αeme

2
a,

where ea is the charge of a quark with flavor a (in units of e).

qg → γq channel

Hg̃ =
Nc

N2
c − 1

[

t̂2 − ŝ2

ŝt̂

]

HGDT
=

Nc

N2
c − 1

[

(t̂2 − ŝ2)

ŝt̂

(

−
1

1− ξ
−

2

ξ

)]

−
1

Nc

[

û (ŝ2 + 2t̂2)

ŝt̂2
+
û

t̂

(

−
1

1− ξ
−

2

ξ

)

+
2û

ξ ŝ

]

HFDT
=

Nc

N2
c − 1

[

t̂2 − ŝ2

(1− ξ) ŝ t̂

]

−
1

Nc

[

û (ŝ2 + 2t̂2)

ŝ t̂2
+

û

(1− ξ) t̂

]

(55)

qq̄ → γg channel

Hg̃ =
1

N2
c

[

t̂2 + û2

t̂û

]

HGDT
=

(t̂2 + û2)

t̂û

(

−
1

1− ξ
−

2

ξ

)

+
2CF

Nc

[

ŝ2 (t̂− û)

t̂2û
−

(t̂− û)

t̂

(

−1 +
1

1− ξ

)]

HFDT
=

t̂2 + û2

(1− ξ)t̂û
+

2CF

Nc

[

ŝ2 (t̂− û)

t̂2û
−

(t̂− û)

t̂

(

−1−
1

1− ξ

)]

(56)
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