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We consider the origins of the gluon chain model. The model serves as a realization of the dynamics of the
chromoelectric flux between static quark-antiquark sources. The derivation is based on the large-NC limit of
the Coulomb gauge Hamiltonian in the presence of a background field introduced to model magnetic charge
condensation inducing electric confinement.

I. INTRODUCTION

The gluon chain model of Greensite and Thorn [1–4] iden-
tifies the chromoelectric flux tube that exists between static
quark charges with a string of quasi particles, constituent glu-
ons. Through lattice simulations and phenomenological anal-
yses it is well established that the instantaneous, Coulomb po-
tential between static charges is confining [5–8]. Even though
it does not correspond to a physical observable, the static po-
tential does provide physical insight into the possible origins
of the confinement mechanism as illustrated by the Gribov-
Zwanzinger model [9, 10] and other, e.g. variational mod-
els [11–15]. Lattice simulations indicate that the correspond-
ing string tension is larger (by a factor of 2 to 3) as compared
to the string tension extracted from large, time-dependent Wil-
son loops. This is consistent with expectations of variational
analysis. At fixed quark-antiquark separation the Coulomb
potential corresponds to the energy of a quark-antiquark pair
in a vacuum state that is unmodified by the presence of the
pair while the energy extracted from the Wilson loop corre-
sponds to the energy of the exact QCD eigenstate in which
the quark-antiquark (QQ̄) pair polarizes the vacuum [16]. The
gluon chain model is a particular realization of the latter, i.e.,
the exact pair state. Confinement originates from the conden-
sation of chromomagnetic charges [17–20]. Formation of the
gluon chain should therefore also provide insights into the in-
terplay between constituent gluons and magnetic domains in
the vacuum.

In the Hamiltonian formulation the true QQ̄ state is gen-
erated by the evolution operator limβ→∞ exp(−βH) from the
unperturbed vacuum. This is because in a physical gauge the
Hamiltonian H contains all gluon interactions which also cou-
ple to the classical, external quark-antiquark color source. In
this paper we investigate if/how the gluon chain emerges from
the evolution operator. We follow a canonical formulation of
QCD in the Coulomb gauge since it contains only physical
degrees of freedom and these can be directly related to quasi
particles. The gluon field is decomposed into normal modes
representing particle excitations, and a physical state is repre-
sented as a superposition of multi-gluon states. Furthermore
the normal mode expansion is performed with respect to a
non-vanishing classical background. Such a background is in-

troduced to (phenomenologically) parametrize topologically
disconnected sectors of the vacuum. In terms of the path inte-
gral representation these sectors correspond to large field con-
figurations, i.e., field domains that cannot be smoothly con-
nected to the null field configuration [21].

The paper is organized as follows. In the next section we
review the structure of the Hamiltonian, introduce the particle
basis, and discuss the role of the individual interaction terms
in formation of the chain. In Sec. III we propose a simpli-
fied computational scheme for studying formation of the chain
state and discuss numerical results. A summary and outlook
are given in Section IV.

II. QCD HAMILTONIAN AND GLUONS

In the Coulomb gauge [22] the gluon field is described
by the vector potential, Aa(x) that, for each color compo-
nent a = 1 · · ·N2

C − 1, satisfies the transversality condition,
∇∇∇ · Aa = 0. In the Schrödinger representation the conju-
gate momenta, which are proportional to the electric field,
are given by ΠΠΠ

a(x) = −iδ/δAa(x). The temporal compo-
nent of the gluon field is eliminated using Gauss’s law. This
leads to an instantaneous interaction between color charges.
The total color charge density has two components, ρ(x,a) =
ρg(x,a) + ρq(x,a), corresponding to gluons and quarks, re-
spectively. In the following we ignore dynamical quarks, and
the only quark charge we consider is that of a static quark-
antiquark pair placed along the z-axis a distance R apart. The
corresponding density is therefore given by

ρq(x,a) = Q†
i (x)T

a
i jQ j(x)− Q̄†

i (x)T
a
jiQ̄ j(x). (1)

Here Q†
i (x)(Qi(x)) represents an operator that creates (anni-

hilates) a quark at x in a state with color i = 1 · · ·NC, and T a

are the SU(NC) color matrices in the fundamental represen-
tation. We suppress the (irrelevant) spin indices. Similarly
Q̄†

i (x) and Q̄i(x) are the creation and annihilation operators
for antiquarks. A state with a static QQ̄ pair is created by the
operator Q†

i (ẑR/2)Q̄†
j(−ẑR/2). The gluon charge density is

given by

ρg(x,a) = fabcAb(x) ·ΠΠΠc(x), (2)
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and the Hamiltonian takes the form

H = HK +HB +HC (3)

where the kinetic plus magnetic terms are given by

HK +HB =
1
2

∫
dx(J −1[A]ΠΠΠJ −1[A]ΠΠΠ+B2), (4)

and

HC =
1
2

∫
dxdyJ −1[A]ρ(x,a)J [A]Kab(x,y, [A])ρ(y,a)

(5)
represents the instantaneous Coulomb interaction between
color charges. Here J [A] = Det(−D ·∇∇∇) is the Faddeev-
Popov determinant, D = Dab = ∇∇∇δab +g facbAc is the covari-
ant derivative, and B = Ba = ∇×Aa +g fabcAb×Ac/2 is the
magnetic field. The non-abelian Coulomb kernel is formally
given by

K(x,y, [A]) = (D ·∇∇∇)−1(−g2
∇∇∇

2)(D ·∇∇∇)−1. (6)

The above describes the Hamiltonian in the Schrödinger rep-
resentation. The particle basis representation is obtained via
a canonical transformation from A,ΠΠΠ to a set of operators
α†(k,λ ,a),α(k,λ ,a) representing creation and annihilation
of gluons with three-momentum k (k = |k|, [dk] = dk/(2π)3),
helicity λ , and color a

Aa(x) =
∫
[dk]

1√
2ω(k)

[ ∑
λ=±

e(k,λ )α(k,λ ,a)eik·x +h.c]

ΠΠΠ
a(x) =

1
i

∫
[dk]

√
ω(k)

2
[ ∑
λ=±

e(k,λ )α(k,λ ,a)eik·x−h.c].

(7)

Particle operators satisfy ladder algebra and generate a Fock
space labeled by the number of gluons, ni, occupying a state
of a given momentum, helicity and color, i = (k,λ ,a)

|n1,n2, · · ·ni · · · 〉= (α†
1 )

n1(α†
2 )

n2 · · ·(α†
i )

ni · · · |0〉. (8)

The state with no gluons, |0〉 ≡ |0,0, · · · 〉 is annihilated by all
annihilation operators αi.

A. The vacuum state

In the absence of quark sources, after normal-ordering the
gluon operators, the Hamiltonian

H = 〈0|H|0〉+ : H : (9)

contains an infinite number of terms that connect states with
any numbers of gluons [11]. The ground state, |Ω〉, can there-
fore be formally written as

|Ω〉=

[
∑
n1

∑
n2

· · ·

]
Ψn1,n2,···|n1,n2, · · · 〉. (10)

The non-uniqueness associated with the definition of a gluon
state, and thus the Hamiltonian in Eq. (9), arises from the ar-
bitrariness in the choice of the function ω(k) in Eq. (7). For
example the choice ω(k) = k corresponds to a basis of non-
interacting particles which diagonalizes the free Hamiltonian
(i.e., for g = 0). Other proposals, based on the variational
principle, have been analyzed in [11–15]. These studies con-
sidered an optimal choice for the basis of states obtained with
ω(k) that approaches the free particle limit for large k and
is large and possibly divergent in the infrared (IR), i.e., for
k→ 0. This is because an IR enhanced ω(k) suppresses con-
tributions to vacuum expectation values (vev) from fields near
the Gribov horizon [23] and removes the Landau pole from the
Coulomb kernel (cf. Eq. (6)). With such an optimal choice the
vacuum in Eq. (10) is approximated by the state with a van-
ishing number of gluons1, i.e., |Ω〉= |0〉, and the ground state
energy is therefore given by the first term in Eq. (9).

B. The variational QQ̄ state

We next consider a state containing the QQ̄ pair. A vari-
ational state, |R〉, which does not take into account the back
reaction of quarks on the vacuum can be defined as (in the
volume V )

|R〉= 1
V
√

NC
Q†

i (
R
2

ẑ)Q̄†
i (−

R
2

ẑ)|0〉, (11)

and it is normalized, 〈R|R〉 = 1. Even if |0〉 was the exact
ground state, this state would only be an approximation to
the exact QCD eigenstate containing the QQ̄ pair. This is
because with ρq 6= 0 the term in HC proportional to ρq× ρg
does not conserve the gluon number. The expectation value
of the Hamiltonian in the variational QQ̄ state defines the
Coulomb potential, Vc(R), which is proportional to the expec-
tation value of the Coulomb kernel in the variational vacuum,

Vc(R)δab =−〈0|Kab(R)|0〉. (12)

Here Kab(R) is given by Eq. (6) evaluated at the positions of
the quark and the antiquark. The vacuum expectation value
may be computed by expanding the covariant derivatives in
powers of A (cf. Eq. (5)) and noticing that in the variational
vacuum,

〈0|Aa(x)Ab(0)|0〉= δab

∫ dk
(2π)3

δT (k)
2ω(k)

eik·x (13)

where δT (k) = ∑λ=± ei(k,λ )e∗j(k,λ ) = δi j − kik j/k2. The
behavior of Vc(R) at large-R is correlated with the IR behavior
of ω(k). While early variational studies indicated that with a

1 More accurate approximations, which take into account residual correla-
tions among the ”optimal gluons,” can be constructed using the standard
many-body techniques of cluster expansion [24, 25].
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proper choice of ω(k) it would be possible to obtain a confin-
ing potential, more detailed analyses showed that all solutions
are massive, i.e., when transformed to momentum space Vc(k)
is always finite in the limit k→ 0, a.k.a. non-confining [15].
We now believe this is consistent with lattice results. As
shown in [5] the large-R strength of the Coulomb potential
originates from magnetic charges in the vacuum. These are
absent in the variational model calculation of Eq. (12) that is
driven by fields in the neighborhood of the A = 0 configura-
tion. Magnetic charges are topologically disconnected from
the first Gribov region where the expansion applies. Thus it
is likely that the string tension, σc, of the variational model
Vc(r)∼ σcr should at most only be a fraction of the Coulomb
string tension and, more likely, Vc of the variational model
ought not to be confining. In the following we further explore
these scenarios.

It is straightforward to show that the expectation value of
the Hamiltonian in the variational QQ̄ state is given in terms
of Vc by

〈R|H|R〉−〈0|H|0〉=CFVc(R)−CFVc(0) (14)

where the last term arises from self-energies of the two static
quarks (CF = (N2

C − 1)/2NC is the SU(NC) color Casimir in
the fundamental representation). As already mentioned above
the Coulomb term, HC, involves coupling between quark and
gluon charges. It seems reasonable to expect that this interac-
tion might be responsible for generating the gluon chain. In
the particle basis the gluon charge density is given by

ρg(x,a) =∑
i

ρ
1
i (x,a)α

†
i αi +∑

i j
(ρ2

i j(x,a)α
†
i α

†
j +h.c.). (15)

The first term is diagonal in the particle basis and because |0〉
contains no gluons it vanishes when applied to the QQ̄ state
defined by Eq. (11). The second term, however, changes the
number of gluons by two and thus could be generating the
chain. We will return to this possibility below. There are other,
more complicated interactions involving the quark charge and
gluon operators that change the number of gluons. They orig-
inate from the A-dependence of the Coulomb kernel. In the
particle basis, the Coulomb kernel can be written as

Kab(R) =−Vc(R)+ : Kab(R) : (16)

where the normal-ordered part is schematically given by

: K(R) := ∑
{n},{m}

Kn1,n2,··· ;m1,m2···(α
†
1 )

n1(α†
2 )

n2 · · ·αm1
1 α

m2
2 · · · .

(17)
Here K{n},{m} are the matrix elements of the full kernel eval-
uated between states containing {n} and {m} gluons, re-
spectively. Thus, when multiplied by ρq the normal-ordered
Coulomb kernel mixes the variational QQ̄ state with states
containing an arbitrary number of gluons. As shown in [26],
however, in the large-R limit the matrix elements K{n},{m}
for {m},{n} 6= 0 are expected to be smaller than those for
{m}= {n}= 0. Therefore we expect that at large-R the dom-
inant interaction between quark sources and dynamical glu-
ons originates from the off-diagonal gluon charge density (c.f.

FIG. 1. Interaction between quark charge (upper line) and the off-
diagonal gluon charge ρ2

i j which creates two gluons. The dashed
line represents the Coulomb potential given by the v.e.v of the fully
dressed Coulomb kernel.

Eq. (15)) coupled to the quark charge via Vc, and is therefore
given by

−
∫

dxdyρ
a
q (x)Vc(|x−y|)∑

i j
(ρ2

i j(y,a)α
†
i α

†
j +h.c), (18)

and shown in Fig. (1). In Eq. (18) the gluon charge density
creates (annihilates) two constituent gluons in a color anti-
symmetric state. Thus the combined spin and spatial wave
function of the gluon pair also has to be antisymmetric. How-
ever, since ρg is a scalar under rotations, the matrix element,
ρ2

i j is symmetric in spin and relative momentum. Thus the
above candidate operator for the gluon chain actually vanishes
identically.

The variational basis based on the mode expansion in
Eq. (7) seems incompatible with the gluon chain picture.
There is further evidence that a model in which the vacuum is
described solely in terms of fluctuations around the A= 0 con-
figuration, as implied by Eq. (7), is inadequate. If Vc is confin-
ing then the expectation value of H in a single gluon state is
infinite [27] at all temperatures, and the model fails to predict
the deconfinement phase transition [28]. It is well established
that confinement is related to the presence of magnetic do-
mains in the vacuum, and these are absent in the variational
vacuum state. One would expect that the magnetic term B2

plays an important role in confinement since even the classi-
cal Yang-Mills field equations have monopole solutions [29].

In presence of QCD instantons (a.k.a. monopoles) quanti-
zation has to be performed in each topological sector. In our
phenomenological approach we approximate this by general-
izing the mode expansion of Eq. (7) to describe field fluctua-
tions, A f , with respect to a classical background field, AB.

Aa(x)→ Aa
f (x)+Aa

B(x). (19)

This classical field mocks the nontrivial topological vacuum
and will be specified later. Thus Eq. (7) now applies to
A f ≡ A−AB and ΠΠΠ fff = ΠΠΠ. Since Eq. (19) is a canonical
transformation the Hamiltonian can be obtained by substitu-
tion. Thus in the background field, at large-R, the dominant
contribution to the Coulomb interaction between quark and
gluon charges becomes,

HC→ Hqq +HD
qg +HD

gg +HD
gb +HM

gb. (20)
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Here Hqq is the interaction between quark charges mediated
by the Coulomb potential,

Hqq =−
∫

dxdyρq(x,a)Vc(|x−y|)ρq(y,a), (21)

HD
qg is the quark-gluon charge density interaction diagonal

with respect to the gluon number,

HD
qg =−

∫
dxdyρq(x,a)Vc(|x−y|)ρD

g (y,a) (22)

with ρD
g = ∑i ρ1

i (x,a)α
†
i αi, and HD

gg is the normal-ordered,
diagonal interaction between gluon charge densities

HD
gg =− :

∫
dxdyρ

D
g (x,a)Vc(|x−y|)ρD

g (y,a) : . (23)

Finally the two terms proportional to AB, HD
gb and HM

gb, are
given by

HD
gb +HM

gb =−
∫

dxdyρ
B
g (x,a)Vc(|x−y|)ρB

g (y,a),

(24)

with

ρ
B
g (x,a) = fabcAb

B(x)ΠΠΠ
c(x) (25)

and describe the interaction of physical gluons with the back-
ground field and the gluon pair creation in the presence of
the background, respectively. Physical states should be color
neutral, thus creation or annihilation of a single gluon can be
neglected. In the presence of the background, the expectation
value of the charge operator

Qa
B = fabc

∫
dxAb

B(x)ΠΠΠ
c(x) (26)

in physical states vanishes. However, in a simple classical
model for the distribution of background fields, as described
in Appendix A, quantum charge fluctuations do not vanish,
i.e., QaQa 6= 0 even for color singlet states. We thus modify
the right hand side of Eq. (24) in such a way that these fluctu-
ations do not contribute to the energy, yielding

HD
gb +HM

gb =−
∫

dxdyρ
B
g (x,a)Vc(|x−y|)ρB

g (y,a)

+Vc(0)Qa
BQa

B. (27)

After normal-ordering, the term in Eq. (24) proportional to
α†α defines HB

gb, and the term proportional to α†α† + h.c.
gives HM

gb. The difference between the gluon density-density
interaction and the normal ordered Hamiltonian of Eq. (23) is
proportional to either α†α or αα +h.c. These, together with
the kinetic and magnetic terms combine to [11] i) renormalize
ω via a gap equation which eliminates terms proportional to
αα + h.c, and ii) modify the single gluon energy. Thus the
final Hamiltonian can be expressed in the form

H→ Hg +HC

= ∑
i

Eiα
†
i αi +Hqq +HD

qg +HD
gg +HD

gb +HM
gb (28)

where Ei = E(k) is the single gluon energy in the presence of
the background field. The action of these operators on gluon
chain states is shown in Figs. (2), (3), (4), and (5).

FIG. 2. Illustration of the matrix element of the one-body operator
Hamiltonian, Eiα

iαi, in the gluon chain state with N = 1.

FIG. 3. Part of the leading contribution at large-NC from Hqq which
corresponds to quark or antiquark self energy, shown here for the
N = 1 gluon chain state.

FIG. 4. Quark-gluon, HD
qg, and gluon-gluon interaction, HD

gg, matrix
elements, for N = 1 and N = 2 chain states, respectively

FIG. 5. Diagonal HD
gb and off-diagonal HM

gb interactions between
quasi-gluons and the background field (shown as blobs), for N = 3
gluon chain states.

C. The basis for the gluon chain

We define the chain in a large-NC limit by a model in which
the gluon chain state is a superposition of multi-gluon states,

|QQ̄,R〉= ∑
N

aN |N〉 (29)

with each state in the sum describing a product of N single
gluons ordered in color and space along a straight line be-
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tween the quark-antiquark sources,

|N〉= ZN

V
√

NC

∫ R/2

−R/2
dxN

∫ xN

−R/2
dxN−1 · · ·

∫ x2

−R/2
dx1

× Q†
i

(
R
2

ẑ
)
[G†(xN) · · ·G†(x1)]i jQ̄

†
j

(
−R

2
ẑ
)
|0〉.

(30)

In the large-R limit the longitudinal, i.e., along the QQ̄ axis,
and perpendicular motions of gluons factorize. The spatial
distribution of gluons in the plane perpendicular to the QQ̄
axis is given by a single-particle wave function, ψ(k,λ ) =
e∗i(k,λ )ψ i(k⊥), which defines the gluon operators, G, in the
chain (x = (0⊥,x))

G†
i j(x) = ∑

λ

∫
[dk]α†(k,λ ,a)T a

i jψ(k,λ )e−ik·ẑx. (31)

The normalization constant ZN is obtained from 〈N|N〉 =
Z2

N(CF IR)N/Γ(N + 1) = 1 where I is the normalization inte-
gral for the spatial wave function, ψ , ([dk⊥]≡ d2k⊥/(2π)2)

I = 〈ψ|ψ〉=
∫
[dk⊥]ψ i(k⊥)δ

i j
T (k⊥)ψ j(k⊥). (32)

In the large-NC limit, computation of the leading contributions
to the matrix elements of the effective Hamiltonian of Eq. (28)
in the basis of the gluon chain states, Eq. (30), is straightfor-
ward. The details and numerical results are presented in the
following section.

III. FORMATION OF THE GLUON CHAIN AT LARGE
QQ̄ SEPARATION

As discussed in Sec. II B one could consider two models for
Vc(R). In what we refer to as model-I Vc(r) will be linearly
confining and of the form

V I
c (r) = σcr+Vc(0), (33)

and in model-II Vc is asymptotically flat,

lim
r→∞

V II
c (r) =Vc(∞)< ∞. (34)

We concentrate on the interactions induced by the effective
Hamiltonian in the limit of large quark-antiquark separation.

A. Matrix elements of the effective Hamiltonian in the chain
basis space

The one body term, Hg, in Eq. (28) acts independently on
individual gluons in the chain created by the operators G† (cf.
Eq. (31)). Using

[G(x),G†(y)]i j =CF〈ψ|ψ〉δ (x− y) =CF Iδ (x− y), (35)

we find

〈N|Hg|N〉= Z2
N(CF〈ψ|ψ〉)N−1

N

∑
i=1

∫ R/2

−R/2
dxN · · ·

∫ xi+1

−R/2
dxi

×CF〈ψ|E|ψ〉
∫ xi

−R/2
dxi−1 · · ·

∫ x2

−R/2
dx1

= N
〈ψ|E|ψ〉
〈ψ|ψ〉

≡ N
NC

2
[e−Vc(0)] (36)

where

〈ψ|E|ψ〉=
∫
[dk⊥]E(|k⊥|)ψ i(k⊥)δ

i j
T (k⊥)ψ j(k⊥). (37)

and to define e we subtracted from the single gluon energy in
Eq. (37) a constant proportional to the potential at the origin.
In color singlet states the total energy of the system should
be invariant under a constant shift [30, 31], which we now
demonstrate. The single gluon energy, E(k), contains self en-
ergies. In the variational approximation the component of the
self energy due to the Coulomb interaction is given by [11]

ΣC(k) =−
Nc

2

∫
[dq]Ṽc(k−q)

1+ k̂ · q̂
2

ω(k)
ω(q)

(38)

where Ṽc is the Fourier transform of the Coulomb potential.
For a linearly rising, confining potential, e.g., model-I, the
low momentum singularity of Ṽ (k) is not integrable and the
resulting infinite self energy can be interpreted as a manifes-
tation of confinement of color charges. A finite self energy is
obtained by subtracting the IR singularity which leads to

ΣC(k) = Σ
′
C(k)−

Nc

2
Vc(0) (39)

with Σ′C(k) finite and given by

Σ
′
C(k)−

Nc

2

∫
[dq]Ṽc(k−q)

[
1+ k̂ · q̂

2
ω(k)
ω(q)

−1
]

(40)

that follows from

Vc(0) =
∫
[dq]Ṽc(q). (41)

Even though for a confining potential the Fourier transform
is defined modulo a constant, it is expected that when all,
self and mutual, interactions between color charges are ac-
counted for the dependence on Vc(0) disappears from color
singlet matrix elements. This will also be the case for the ma-
trix elements of the effective Hamiltonian in the chain basis
considered here. In anticipation of this result, in Eq. (36) we
defined an IR finite single particle energy e(k) by separating
the Coulomb self energy equal to −NcVc(0)/2. Thus, in the
last line of Eq. (36), e is finite, and the IR singularity of the
confining Coulomb potential is explicit in the term propor-
tional to Vc(0). In the case of model-II with non-confining
interactions, self-energies are IR finite but we can perform the
subtractions nevertheless.

In absence of chained gluons, N = 0, the interaction be-
tween quark densities produces the Coulomb potential be-
tween quark charges (cf. Eq. (14)). With N gluons separating
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FIG. 6. A non-planar diagram, which we do not take into account,
representing direct Coulomb interaction between the quark and the
antiquark in the presence of 2 gluons.

the quark from the antiquark, the direct interaction between
quark charges is nonplanar (cf. Fig. (6)) and suppressed by a
power of NC compared to a successive Coulomb interaction
between the quark and the nearest gluon or the interaction be-
tween any two nearest-neighbor gluons in the chain. To lead-
ing order in NC the Hqq contribution thus reduces to the quark
self energies,

〈N|Hqq|N〉=−CFVc(0)→−
NC

2
Vc(0). (42)

The quark gluon interaction, to leading order in NC, couples
the quark (or the antiquark) to the nearest gluon in the chain.
For example, for the antiquark-gluon interaction we find

〈N|HD
qg|N〉 → Z2

N(CF〈ψ|ψ〉)N−1

×
∫ R/2

−R/2
dxN · · ·

∫ x2

−R/2
dx1CF〈gQ̄|Hqg(x1)|gQ̄〉

=
N
RN

∫ R/2

−R/2
dx1

(
x1 +

R
2

)N−1 〈gQ̄|Hqg(x1)|gQ̄〉
〈ψ|ψ〉

(43)

where

〈gQ̄|Hqg(x1)|gQ̄〉= NC

2

∫
d2x⊥[dk⊥][dq⊥]ei(k⊥−q⊥)·x⊥

×1
2

[√
ω(|k⊥|)
ω(|q⊥|)

+

√
ω(|q⊥|)
ω(|k⊥|)

]
Vc

(√
|x⊥|2 + |

R
2
− x1|2

)
×ψ

i(k⊥)[δT (k⊥)δT (q⊥)]i j
ψ

j(q⊥).
(44)

In the limit R→ ∞ where x1/R = O(1) this reduces to

〈gQ̄|Hqg(x1)|gQ̄〉= NC

2
Vc

(
|R
2
− x1|

)
〈ψ|ψ〉. (45)

Taking into account both quark and antiquark contributions,
for the HD

qg matrix element we obtain

〈N|HD
qg|N〉= NNC

∫ 1/2

−1/2
dz
(

z+
1
2

)N−1

Vc

(
R
(

z− 1
2

))
.

(46)
For the linearly rising potential of model-I Eq. (46) yields

〈N|HD
qg|N〉I = NC

σcR
N +1

+NCVc(0). (47)

while in the case of model-II we find

〈N|HD
qg|N〉II = NCVc(∞). (48)

The interaction between two nearby gluons in the chain given
by HD

gg is also straightforward to compute, and passing di-
rectly to the R→ ∞ limit we find,

〈N|HD
gg|N〉= Z2

N(CF〈ψ|ψ〉)N−2
N−1

∑
i

∫ R/2

−R/2
dxN · · ·

×
∫ xi+2

−R/2
dxi+1

∫ xi+1

−R/2
dxiCF

(
NC

2

)2

Vc(xi+1− xi)〈ψ|ψ〉2

×
∫ xi

−R/2
dxi−1 · · ·

∫ x2

−R/2
dx1

=
N!
CF

∫ 1/2

−1/2
dz
∫ z

−1/2
dw
(

NC

2

)2

Vc(R(z−w))
(1+w− z)N−2

(N−2)!
.

(49)

For the linear potential of Eq. (33), to leading order in NC this
yields

〈N|HD
gg|N〉I =

NC

2
N−1
N +1

σCR+
NC

2
(N−1)Vc(0) (50)

and for the asymptotically constant potential

〈N|HD
gg|N〉II =

NC

2
(N−1)Vc(∞). (51)

Since all terms in the effective Hamiltonian (including the self
energies) are O(g2), and limNC→∞ NCg2 = O(1), at large NC
all matrix elements are finite when expressed in terms of ē =
NCe/3, σ̄c = NCσc/3 for model-I and V̄c(∞) = NCVc(∞)/3,
V̄c(0)≡ NCVc(0)/3 for model-II, respectively.

Adding all diagonal contributions of the effective Hamilto-
nian matrix that are independent of the background field, we
thus find,

〈N|H|N〉I = 3
2

Nē+
3
2

σ̄CR (52)

and

〈N|H|N〉II =
3
2

Nē+
3
2
(N +1)(V̄c(∞)−V̄c(0))

≡ 3
2

Nmg + c (53)

for model-I and model-II, respectively. For N = 0 this agrees
with Eq. (14), while, for N ≥ 1, eigenstates of Eq. (52) or (53)
represent a tower of chain states with energies proportional to
the number of gluons in the chain. Clearly the lowest energy
state of the diagonal part of the Hamiltonian is the variational
QQ̄ state, with N = 0 gluons. The genuine chain contribution
to the lowest energy state must therefore originate from the
terms in the Hamiltonian which couple the constituent gluons
to the background field. The interaction of physical gluons
with the background is given by
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〈N|HD
gb|N〉= Z2

N(CF〈ψ|ψ〉)N
N−1

∑
i=1

∫ R/2

−R/2
dxN · · ·

∫ xi+2

−R/2
dxi+1

×
∫ xi+1

−R/2
dyi

∫ yi

−R/2
dxiFB(|yi− xi|)

∫ xi

−R/2
dxi−1 · · ·

∫ x2

−R/2
dx1

(54)

where

FB(|y− x|) = NC

2
γ(|y− z|)(Vc(|y− z|)−Vc(0)), (55)

and

γ =
∫

dx⊥dy⊥[dk⊥][dq⊥]
√

ω(k⊥)ω(q⊥)e−iq⊥x⊥+ik⊥y⊥

× [ψ(q⊥)δT (q)]iGi j
c (x⊥−y⊥,y− z)[ψ(k⊥)δT (k)] j

〈ψ|ψ〉
. (56)

The correlation function Gc is given by the density of the vac-
uum fields

Gi j(x⊥−y⊥,x− y) =
〈Aia

c (x⊥,x)A
ja
c (y⊥,y)〉

N2
C−1

. (57)

Here the expectation value is taken with respect to the dis-
tribution of sources of the background field. These might ef-
fectively describe monopole-antimonopole pairs in 3D, vortex
surfaces in 4D, merons, etc.. A simple model is considered in
the Appendix. Since it is these background fields that are re-
sponsible for confinement in the first place, i.e. generation
of the Coulomb potential Vc(R), we assume that the density
of the underlying magnetic sources is approximately uniform
over the quark-antiquark separation. So for |x− y| ∼< R we
expect that in general

Gi j(x⊥−y⊥,x− y)∼ Gi j(x⊥−y⊥), (58)

and therefore γ in Eq. (55) reduces to a constant of O(ΛQCD),
i.e. it is independent of the longitudinal distribution of gluons
along the chain.

For model-I evaluation of the integrals in Eq. (56) then
yields

〈N|HD
gb|N〉I =NCN!

N−1
Γ(N +3)

γσCR2 = 3
N−1

(N +1)(N +2)
γσ̄CR2.

(59)
while for model-II we find

〈N|HD
gb|N〉II = 3γR

N−1
N +1

(V̄c(∞)−V̄c(0)). (60)

Finally we consider the components of the interaction be-
tween physical gluons and the background that changes the
gluon number. From Eq. (24) we find (for N ≥ 2)

〈N−2|HM
gb|N〉= 〈N|HM

gg|N−2〉= ZNZN−2(CF〈ψ|ψ〉)N−1

×
N−1

∑
i=1

∫ R/2

−R/2
dxN · · ·

∫ xi+1

−R/2
dxiFB(xi+1− xi) · · ·

∫ x2

−R/2
dx1

(61)

which gives

〈N−2|HM
gb|N〉I = 〈N|HM

gg|N−2〉I =
3
√

N(N−1)
2N(N +1)

γσ̄cR2.

(62)
and

〈N−2|HM
gb|N〉II = 〈N|HM

gg|N−2〉II =

=
3
2

γR

√
N−1

N
(V̄c(∞)−V̄c(0)). (63)

for the two models, respectively. Collecting all the terms,
Eqs. (52),(59),(62) for model-I and Eqs. (53),(60),(63) for
model-II, we find the following expression for the matrix ele-
ments of the Hamiltonian in the gluon chain basis for large-N,

〈N′|H|N〉I = 3
2

NēδN′N +
3
2

Rσ̄C

(
1+ r

R
N

γ

)
δN′N

+
3
2

γσ̄C
R
N

RδN′,N−2 +
3
2

γσ̄C
R
N′

RδN′−2,N (64)

〈N′|H|N〉II =
3
2

Nm̄gδN′N +
3
2

rγR(V̄c(∞)−V̄c(0))δN′N

+
3
2

γR(V̄c(∞)−V̄c(0))(δN′,N−2 +δN′−2,N)

(65)

Here r is the ratio of the diagonal to off-diagonal matrix ele-
ments in the limit of large-R. The specific value r = 2 follows
from the fact that in the two models both terms originate from
the same interaction cf. Eq. (27). Below, while presenting nu-
merical result, we also discuss the dependence of the lowest
eigenvalues on this ratio.

B. Numerical Results

Before analyzing the spectra of the effective chain model
Hamiltonians we consider the large-R limit of the matrix

〈N′|H|N〉= R(δN′,N−2 +δN′−2,N). (66)

It is straightforward to show that the ground state energy of H
for large-R approaches −2R. For the Hamiltonian of model-I
this implies that if the kinetic term (proportional to Nē) was
ignored, the lowest eigenvalue of HI for large-R would behave
as

3
2

γσ̄C

(
1+ r

R
〈N〉

)
−2

3
2

γσ̄C
R
〈N〉

=
3
2

γσ̄CR+
3
2

γσ̄C(r−2)
R2

〈N〉
.

(67)
The special role of the value r = 2 is now transparent. At
r = 2 the quadratic term vanishes and the lowest chain state
energy grows linearly with R. If r >> 2 the lowest eigenvalue
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is dominated by the diagonal term. In this case the expectation
value of N,

〈N〉= ∑N N|ψ0(N)|2

∑N |ψ0(N)|2
, (68)

where ψ0 is the wave function of the lowest energy chain state,
can be determined by minimizing the diagonal part with re-
spect to N. This gives

〈N〉=
√

2γ

ē
R (69)

and the ground state energy approaches

EI
0 = 3R

√
rγσ̄Cē+

3
2

Rσ̄C. (70)

Thus for r > 2 the energy of the chain is higher than the en-
ergy of the bare state, |0〉. If r < 2 the off-diagonal term dom-
inates and the ground state energy becomes negative and pro-
portional to −R2 while the average number of gluons in the
chain 〈N〉=O(1). However, when the kinetic term is included
in the critical case r = 2 the lowest energy of the chain state
no longer increases linearly with R. After numerical diagonal-
ization we find

〈N〉I ∝ (R GeV)0.623±0.004,
EI

0
GeV

∝ (R GeV)0.787±0.006 (71)

for a reasonable set of parameters ē = 600 MeV, γ = 1 GeV
and σ̄C = 0.1 GeV2. We also find weak dependence of the
exponents on these parameters. That is, for the chain model-I,
we find that the lowest energy chain state has higher energy
than the bare state. In the critical case the energy increases
less rapidly than the length of the chain, R, and is proportional
to R2 for r > 2. The average number of gluons grows weakly
with R. The results are summarized in Figs. (7), (8) .

In the case of model-II for r > 2, one easily finds,

EII
0 =

3
2
(r−1)γR[Ṽc(∞)−Ṽc(0)]

〈N〉II
∝ R1/3 (72)

while for r < 2 with the off-diagonal term dominating,

EII
0 =−3

2
(r−1)γR[Ṽc(∞)−Ṽc(0)]. (73)

Finally for the critical choice r = 2 numerical digitalization
yields

〈N〉II
∝ (R GeV)0.338±0.005,

EII
0

GeV
∝ (R GeV)0.379±0.005 (74)

for the set of parameters, mg = 600 MeV, σ̄C = 0.1 GeV2, and
γ = 1 GeV, V̂c(∞)−V̂c(0) = 1 GeV, with the results shown in
Figs. (8), (9).

In model-II as R-increases at some point the energy of the
ground state chain increases less than the Coulomb potential.
The chain state, however, has energy which is higher than
that of the bare state, with the latter approaching a constant
at large-R. Thus in both models interactions among the chain
increase the energy of the QQ̄ pair as compared to the state
with no gluons.
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R [GeV
−1

]
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E
 [
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E
0

model−I

 

3/2 Rσ

FIG. 7. Ground state energy (solid line) of the chain Hamiltonian in
model-I. A power law fit yields EI

0 = 0.984(RGeV )0.787GeV . The
dashed line gives the energy of the bare state using for the string
tension σ̄C = 0.1 GeV2.
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<N>
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model−II

FIG. 8. Expectation value of the the number of gluons in the
chain as a function of QQ̄ separation, R. A power law fit
gives 〈N〉I = 0.985(R GeV)0.623 and 〈N〉II = 0.984(R GeV)0.787 for
model-I (solid line) and model-II (dashed line), respectively.

IV. SUMMARY AND OUTLOOK

We investigated microscopic origins of the gluon chain
model. By analyzing the physical gauge interactions among
constituent gluons, we found a scenario for generating a chain.
In this scenario a state with a number of gluons in the chain
that is increasing with the separation between the QQ̄ source
emerges from interactions of dynamical gluons with the back-
ground field. The background field is necessary in a phe-
nomenological model of confinement if the latter is to orig-
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FIG. 9. Ground state energy (solid line) of the chain Hamiltonian in
model-II. A power law fit yields EI

0 = 1.867(RGeV )0.379GeV . The
dashed line gives the energy of the bare state using for the string
tension σ̄C = 0.1 GeV2.

inate from condensation of chromomagnetic charges. These
interactions introduce off-diagonal elements into the effective
Hamiltonian, which is one of the main differences between
this and the chain model where the pair-production is absent.
We have shown that the resulting ground state energy is con-
vex [32] but the two models considered are still too simplistic
to generate the linearly rising potential. While this deficiency
can potentially be improved by considering more sophisti-
cated models for the background field we found it difficult to
reproduce the Zwanziger conjecture of ”no-confinement with-
out Coulomb confinement” [16]. The result of [16] states that
the expectation value of the Coulomb kernel in the QCD vac-
uum state is confining (if the exact QQ̄ potential is confining)
with a string tension which is not less than that of the exact
potential. Our results in the model considered (c.f. Fig. 7)
indicate the opposite. We find the energy of the chain state,
which is supposed to represent the exact QQ̄ state to be higher
then that of the bare one, defined as the expectation value of
the Coulomb kernel in a state with no-backward reaction from
the sources on the vacuum.

We find it interesting that a such a reasonable and sim-
ple model does not comply with the exact expectations from
QCD. There clearly must exist other non-diagonal interactions
which are important. It was proposed that triple-gluon interac-
tions could play an important role [33]. Such interactions may
originate from the magnetic, B2 term, but since it does not
depend explicitly on the separation between sources it most
likely is not significant at large separations. Other three-gluon
interactions could originate from the Coulomb kernel, if the
background field in the true (chain) state is polarized. This
would lead to a non-vanishing three-gluon coupling mediated
by the Coulomb interaction and thus R-dependent Finally it
is possible that a resolution of this problem requires renor-
malization for the single-gluon energies in the presence of the

chain so that effectively ē decreases with the number of glu-
ons. We leave these questions for future investigations.
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Appendix A: Background field model

The correlation function G defined in Eq. (57) is computed
using a classical distribution of sources of the background
field. For example if these are monopole- antimonopole pairs
the density ρN(cic̄i) depends on the locations of the N pairs.
The expectation value of a function of Ac is computed from

〈Aa
c(x)A

a
c(y)〉=

Z[AcAc]

Z[1]
(A1)

where

Z[O[Ac]] =
∞

∑
N

∫
dna

∫
Π

N
i dcidc̄iρ(cic̄i)O[Ac] (A2)

and the background field is given by

Aa
c(x) = na

N

∑
i=1

[Am(x⊥− c⊥,i)−Am(x⊥− c̄⊥,i)] (A3)

where Am is the abelian monopole field, and na represents the
(common) orientation of monopoles in the SU(NC) algebra.
For a uniform distribution of monopole-antimonopole pairs
along the QQ̄-axis (ẑ-axis) with the density given by

ρ(ci, c̄i) =
ρN

(V⊥R)NN!
Π

N
i=1θ(

R
2
−|ciẑ|)θ(

R
2
−|c̄iẑ|) (A4)

the background field is approximately constant along the QQ̄
axis. In Eq. (A4) ρ is the density of monopoles which is equal
to the density of antimonopoles

ρ =
ρ⊥(N2

C−1)
R

. (A5)

For the correlation function G(x⊥,x) we then obtain

G(x⊥,x) = G(x⊥) = ρ⊥

[∫
dc⊥Am(x⊥− c⊥)Am(c⊥)

− 1
V⊥

∫
dc⊥dc′⊥Am(c⊥)Am(c′⊥)

]
.

(A6)

The last term originates from the charge neutrality of the
monopole-antimonopole distribution. If the core of the
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monopole field is smoothed out over a distance scale a =
O(Λ−1

QCD) then

G(x⊥)∼ ρ⊥ log
|R2 −|x⊥||

a
(A7)

where the logR dependence comes from cutting off the long

range integral over the transverse plane. This is the standard
expression for the correlation function of a pair of 2D vor-
tices separated by a distance R. The 2D reduction originates
from the assumption the monopoles are uniformly distributed,
Eq. (A5), along the direction of the QQ̄ separation.
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