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Abstract

We investigate and classify Fermi surface behavior for a set of fermionic modes in a family
of backgrounds holographically dual to N = 4 Super-Yang-Mills theory at zero temperature with
two distinct chemical potentials. We numerically solve fluctuation equations for every spin-1/2
field in five-dimensional maximally supersymmetric gauged supergravity not mixing with gravitini.
Different modes manifest two, one or zero Fermi surface singularities, all associated to non-Fermi
liquids, and we calculate dispersion relations and widths of excitations. We study two limits where
the zero-temperature entropy vanishes. In one limit, a Fermi surface approaches a marginal Fermi
liquid, which we demonstrate analytically, and conductivity calculations show a hard gap with the
current dual to the active gauge field superconducting, while the other is insulating. In the other
limit, conductivities reveal a soft gap with the roles of the gauge fields reversed.
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1 Introduction

States of ordinary metals are well-described by Fermi liquid theory, consisting of weakly-coupled,

long-lived quasiparticle excitations around a Fermi surface. It is of interest, however, to move

beyond standard Fermi liquid theory; indeed, certain strongly correlated electron systems, such as

the “strange metals” arising in high-Tc cuprates [1, 2] and heavy fermion systems [3], are known to

possess a Fermi surface from photoemission experiments, but the associated gapless excitations are

not long-lived. Such systems, with Fermi surfaces but without ordinary quasiparticles, have been

called “non-Fermi liquids”, and developing frameworks to characterize them is important from the

theoretical point of view.

The gauge-gravity correspondence [4, 5, 6] is a promising avenue to investigate these phenom-

ena, as strongly-coupled systems which are difficult to characterize in non-gravitational variables

are described holographically by black hole geometries that may be far more tractable calculation-

ally. Holographic Fermi surfaces were first investigated in [7, 8, 9], and have been the subject of

substantial study. Non-Fermi liquid systems have indeed been obtained; a study of Fermi surface

behavior for general dimension, mass and charges was carried out in [10].

Much of the work so far has followed a “bottom-up” approach: a convenient effective Lagrangian

in the gravity theory is postulated, and its consequences worked out. However, while such an

approach is quite valuable, it does not make direct contract with supergravity or string theory.

The potential drawbacks are twofold. First, the exact nature of the dual field theory remains

unknown, as only the symmetries can be reliably established without the string theory map, so one

is ignorant of exactly what system is supporting the Fermi surface. Second, without the guidance

of a known string theory construction, one may worry that the masses or charges selected may

contain a hidden instability or other secret unphysical property, and therefore that the results may

be less trustworthy. Therefore, a “top-down” approach, where one starts from a known string

or supergravity construction, is naturally valuable both for understanding the system and having

confidence in its validity. Previous top-down approaches to Fermi surfaces include [11, 12], which

studied fermions realized on probe branes, and [13, 14, 15], which studied the gravitino in the gravity

multiplet of minimal supergravity and found no Fermi surface singularity; [16] (see also [17, 18])

discusses rotating black holes with zero entropy in supergravity and relates them to Fermi surfaces

from a different perspective. For other studies of finite density systems using the gauge-gravity

correspondence, see for example [19]-[45]; recent reviews appear in [46, 47, 48].

Many known holographic examples also have a nonzero entropy remaining even at zero temper-

ature. This characteristic is somewhat mysterious physically and is unlike most strongly correlated

systems that one might want to apply the gauge/gravity correspondence to. Thus, it is also useful

to pursue examples of holographic Fermi surfaces where the zero-temperature entropy vanishes.

In [49], we presented top-down constructions of Fermi surfaces in five- and four-dimensional
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maximally supersymmetric gauged supergravity, dual to four-dimensional N = 4 Super-Yang-Mills

(SYM) theory and three-dimensional ABJM theory, respectively. The work [49] studied for each

case a single mode in a single background corresponding to all chemical potentials equal, and was

primarily concerned with establishing the existence of top-down holographic Fermi surfaces. It is

natural, however, to wish to go beyond a single case to study a wide variety of fermionic modes,

in a variety of backgrounds with varying chemical potential, and attempt to classify the diversity

of Fermi surface behavior. Moreover, the explicit knowledge of the dual field theory in top-down

constructions means an understanding of the dual zero-temperature states is within reach, and

understanding a broader class of solutions can only help make this identification. In this paper, we

undertake such a study for the case of N = 4 Super-Yang-Mills.

N = 4 Super-Yang-Mills has an SO(6) R-symmetry within which three distinct chemical po-

tentials may be turned on. Here we study the class of extremal black brane geometries dual to

zero-temperature states in which two of these chemical potentials are set equal to one another,

while the third may vary separately; the dimensionless ratio provides us with a one-parameter

family of geometries. The cases where one chemical potential or the other is set to zero are also

of interest, and we study extremal limits of these as well: one is a non-thermodynamic BPS state

on the Coulomb branch, and the other is a black hole with vanishing entropy at zero temperature.

We study all the spin-1/2 fermionic modes of five-dimensional maximal gauged supergravity —

corresponding to the smallest-dimension fermionic operators in the large-N , large-coupling limit —

that do not mix with the spin-3/2 gravitino fields. There are 18 such modes, along with their con-

jugates, obeying 8 distinct Dirac equations. Characteristic of these equations are scalar-dependent

(and therefore position-dependent) mass and Pauli terms, absent in the usual class of bottom-up

models.

The extremal geometries with two distinct chemical potentials, called the 2+1-charge black

holes, are of a class with a double pole at the horizon studied in general in [10]. In this paper

we numerically solve the various Dirac equations in these backgrounds, looking for Fermi surface

singularities. We find that fermions dual to Tr F+λ operators made from a field strength and a

gaugino have no Fermi surfaces, while fermions dual to Tr λX made from a gaugino and a scalar may

have two, one or zero Fermi surfaces, depending on the net charge. Double fermi surfaces appear as

nested spheres in k-space. These systems all behave as non-Fermi liquids, with excitations that are

not stable in the low-energy limit and hence are not true quasiparticles; we determine dispersion

relations and width per energy ratios for these excitations. The fermions also generically possess

so-called oscillatory regions manifesting log-periodic behavior where the Fermi surfaces disappear

[8, 10], and we identify these as well.

There are two interesting limits of our family associated to vanishing zero-temperature entropy.

One is associated to taking the two identical chemical potentials much larger than the third, and

we show that in this limit one of our Fermi surface singularities approaches a marginal Fermi liquid
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(MFL), which occupies the border between Fermi and non-Fermi liquids, and was postulated to

describe the optimally doped cuprates [1]. We are able to show analytically that this behavior is

exact, and is controlled by the extremal limit of the “1-charge” black hole where the two equal

chemical potentials strictly vanish, which is a non-thermodynamic BPS Coulomb branch state [50].

We solve the fermion fluctuation spectrum in this background, completing the analysis of [51]. We

calculate conductivities in this geometry as well, and find a hard gap manifested by a step function,

and argue that the current dual to the active gauge field is superconducting, while the other is

insulating. We also determine the conductivities in the 2+1-charge backgrounds near the marginal

Fermi liquid limit, which we may think of as “doping” the 1-charge background with a little of

the other charge, and see that the delta function in the conductivity associated to superconducting

behavior in the 1-charge background broadens into a Drude peak.

The extremal limit of the “2-charge” black hole where the identical chemical potentials are

nonzero but the other is zero is also of interest, for it is also dual to a system with zero entropy

at zero temperature. We study the fermion fluctuation equations in this geometry as well, and

find that while two modes have Fermi surface singularities, the form of the nearby small energy

fluctuations is damped rather than infalling. This system displays a soft gap with a rapid but

smooth rise in conductivity, again with a zero-frequency delta function in the active gauge field,

although this may be a result of translation invariance rather than superconductivity.

In section 2 we review the charged black hole solutions we will use, as well as their field the-

ory duals, and in section 3 we show how these solutions are embedded within five-dimensional

maximally supersymmetric gauged supergravity. In section 4 we determine the Dirac equations in

these backgrounds for the spin-1/2 fields of gauged supergravity, as well as describing their dual

operators. In section 5 we discuss the near-horizon behavior of the Dirac equations and make gen-

eral statements about oscillatory regions and Fermi surfaces, and in section 6 we solve these Dirac

equations in the 2+1-charge backgrounds and obtain Fermi surfaces, whose properties we plot as

functions of the ratio of chemical potentials. Section 7 studies the 1-charge black hole, enabling us

to analytically derive the marginal Fermi liquid limit, as well as calculating the conductivities in the

1-charge and nearby 2+1-charge backgrounds. In section 8 we determine Fermi surface singularities

and conductivities in the 2-charge background, and in section 9 we conclude.

2 Charged black hole solutions

N = 4 Super-Yang-Mills theory with SU(N) gauge group is dual to type IIB string theory on

AdS5×S5. In the limit of large N and large ’t Hooft coupling, string theory may be approximated

by type IIB supergravity. The Kaluza-Klein reduction of type IIB supergravity on the five-sphere

may be consistently truncated to only the lowest-mass modes constituting a single five-dimensional

multiplet, resulting in five-dimensional maximally supersymmetric gauged supergravity. Each mode
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in the gauged supergravity theory is dual to a known operator in the field theory.

The reduction on the S5 leads to an SO(6) gauge group in five-dimensions. Black brane so-

lutions are known that are charged under the SO(2) × SO(2) × SO(2) = U(1)a × U(1)b × U(1)c

Cartan subgroup. (We will use the terms “black brane” and “black hole” interchangably; all our

geometries have three-dimensional spatial translation invariance.) The gauged supergravity theory

also contains 42 scalar fields; general black holes with three unequal charges (Qa, Qb, Qc) source

two distinct scalars and leave only the Cartan subgroup unbroken. The consistent truncation of

the full theory to include the metric, the three gauge fields and the two scalars is called the STU

model [52].

A simplification of this situation, which we pursue here, is to take two of the three charges

equal; we take Qb = Qc and define Q1 ≡ Qa, Q2 ≡ Qb = Qc. In this case we have a larger

preserved symmetry, SO(6)→ SO(2)×SO(4), and only one scalar field is turned on. The effective

Lagrangian for the metric, two gauge fields and single scalar (in mostly minus signature) is

e−1L = −R+
1

2
(∂φ)2 +

8

L2
e
φ√
6 +

4

L2
e
−2φ√

6 − e
−4φ√

6 fµνf
µν − 2e

2φ√
6FµνF

µν − 2εµνρστfµνFρσAτ . (1)

The unconventional gauge field normalizations will be convenient for matching to maximal gauged

supergravity. Here we will study a class of black brane solutions

ds2 = e2A(r)(h(r)dt2 − d~x2)− e2B(r)

h(r)
dr2 ,

aµdx
µ = Φ1(r) dt , Aµdx

µ = Φ2(r) dt , φ = φ(r) .

(2)

Particular limits that have been studied and will play central roles here include the “1-charge black

hole” (Q2 = 0), the “2-charge black hole” (Q1 = 0) and the “3-charge black hole” (Q1 = Q2).

We will refer to a solution with general Q1, Q2 as a 2+1-charge black hole. We now review these

solutions.
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2.1 2+1-charge black holes and 3-charge case

The 2+1-charge black hole involves both gauge fields aµ and Aµ as well as the active scalar. It

satisfies the ansatz (2) with solution

A(r) = log
r

L
+

1

6
log

(
1 +

Q2
1

r2

)
+

1

3
log

(
1 +

Q2
2

r2

)
,

B(r) = − log
r

L
− 1

3
log

(
1 +

Q2
1

r2

)
− 2

3
log

(
1 +

Q2
2

r2

)
,

h(r) = 1−
r2(r2

H +Q2
1)(r2

H +Q2
2)2

r2
H(r2 +Q2

1)(r2 +Q2
2)2

, φ(r) = −
√

2

3
log

(
1 +

Q2
1

r2

)
+

√
2

3
log

(
1 +

Q2
2

r2

)
,

Φ1(r) =
Q1(r2

H +Q2
2)

2LrH

√
r2
H +Q2

1

(
1−

r2
H +Q2

1

r2 +Q2
1

)
, Φ2(r) =

Q2

√
r2
H +Q2

1

2LrH

(
1−

r2
H +Q2

2

r2 +Q2
2

)
,

(3)

where we have traded in a mass parameter for the horizon radius rH , which is the largest solution

of h(rH) = 0. In the limit of large r, the solutions approach anti-de Sitter space with radius L.

The temperature and chemical potentials are determined by the usual methods to be1

T =
2r4
H +Q2

1r
2
H −Q2

1Q
2
2

2πL2r2
H

√
r2
H +Q2

1

, µ1 =
Q1(r2

H +Q2
2)

L2rH

√
r2
H +Q2

1

, µ2 =

√
2Q2

√
r2
H +Q2

1

L2rH
, (4)

and the entropy and charge densities are

s =
1

4GL3
(r2
H +Q2

1)1/2(r2
H +Q2

2) , ρ1 =
Q1s

2πrH
, ρ2 =

√
2Q2s

2πrH
. (5)

An extremal black hole exists for any solution setting the temperature to zero with chemical po-

tentials nonzero. This requires a non-negative solution to

r2
H =

1

4

√
Q4

1 + 8Q2
1Q

2
2 −

1

4
Q2

1 , (6)

and it is easy to see for nonzero Q1 and Q2 such a solution always exists. Thus for general charges

in the 2+1-charge black hole there is an extremal limit. The entropy density is generally nonzero

at extremality. In practice it will be more convenient to solve the extremality condition (6) by

eliminating Q2,

Q2
2 =

2r4
H

Q2
1

+ r2
H , (7)

so the horizon radius rH remains an explicit parameter.

Perhaps counterintuitively, the ratio of chemical potentials µR ≡ µ1/µ2 at extremality decreases

1The chemical potentials are defined relative to canonically normalized gauge fields.
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as Q1/Q2 (or Q1/rH) increases,

µR ≡
µ1

µ2
=

√
1

8

(
Q1

Q2

)2

+ 1− 1√
8

Q1

Q2
=

1√
1 + 1

2

(
Q1

rH

)2
, (8)

while the ratio of charge densities
ρ1

ρ2
=

Q1√
2Q2

, (9)

more expectedly moves in the other direction. Furthermore, we see the expression (8) is bounded

above at µR = 1; no extremal black holes in this class exist with larger ratio. The Q1/Q2 → 0 and

Q1/Q2 → ∞ (or Q1/rH → 0 and Q1/rH → ∞) limits of the extremal solutions are related to the

1-charge and 2-charge black holes, as we describe momentarily.

The 3-charge black hole is the equal-charge special case of a 2+1-charge solution:

Q1 = Q2 ≡ Q. (10)

which holds when

Aµ = aµ → Φ2 = Φ1 . (11)

The scalar field thus vanishes for the 3-charge solution, which solves the simplfied effective action

e−1L = R+
12

L2
− 3fµνf

µν − 2εµνρστfµνfρσaτ . (12)

The 3-charge black hole has an extremal limit as well, with r2
H = Q2/2, corresponding to

µR =
1√
2
. (13)

Unlike the 2-charge and 1-charge black holes we describe next, the 3-charge geometry behaves as

just another member of the general class of 2+1-charge black holes.

2.2 2-charge black hole

The 2-charge black hole comes from setting Q1 = 0 in the general 2+1-charge solution (3); this

removes the gauge field aµ from the system. The solution is

A(r) = log
r

L
+

1

3
log

(
1 +

Q2
2

r2

)
, B(r) = − log

r

L
− 2

3
log

(
1 +

Q2
2

r2

)
,

h(r) = 1−
(r2
H +Q2

2)2

(r2 +Q2
2)2

, φ(r) =

√
2

3
log

(
1 +

Q2
2

r2

)
, Φ2(r) =

Q2

2L

(
1−

r2
H +Q2

2

r2 +Q2
2

)
.

(14)
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The thermodynamics is

T =
rH
πL2

, µ2 =

√
2Q2

L2
, s =

rH
4GL3

(r2
H +Q2

2) , ρ2 =

√
2Q2s

2πrH
, (15)

with µ1 = ρ1 = 0. There is an extremal solution for rH = 0; most interestingly for us, we notice

that in this limit the entropy vanishes,

sT=0 = 0 . (16)

For the extremal solution the scalar diverges at the horizon, suggesting new light modes appear and

the geometry is strictly IR incomplete; however the missing modes are expected to be associated

with unbroken abelian gauge symmetry based on a D3-brane configuration in ten dimensions [53, 50]

(where the scalar describes the squashing of the S5) which are O(N) and so subleading.

2.3 1-charge black hole

The 1-charge black hole, conversely, comes from setting Q2 = 0, which removes the gauge field Aµ

from the problem. The solution is

A(r) = log
r

L
+

1

6
log

(
1 +

Q2
1

r2

)
, B(r) = − log

r

L
− 1

3
log

(
1 +

Q2
1

r2

)
,

h(r) = 1−
r2
H(r2

H +Q2
1)

r2(r2 +Q2
1)

, φ(r) = −
√

2

3
log

(
1 +

Q2
1

r2

)
, Φ1(r) =

Q1rH

2L
√
r2
H +Q2

1

(
1−

r2
H +Q2

1

r2 +Q2
1

)
.

(17)

The temperature and remaining chemical potential become

T =
2r2
H +Q2

1

2πL2
√
r2
H +Q2

1

, µ1 =
Q1rH

L2
√
r2
H +Q2

1

, (18)

with µ2 = 0, and the entropy and nonzero charge density are

s =
r2
H

4GL3
(r2
H +Q2

1)1/2 , ρ1 =
Q1s

2πrH
. (19)

Note there is no longer any solution for an extremal black hole. Instead, the limit rH → 0 of the

1-charge black hole is a BPS configuration with no gauge fields and no horizon function, preserving

four-dimensional Lorentz invariance with only the scalar running. It is actually the so-called n = 2

renormalization group flow solution studied in [50], corresponding to a zero temperature and zero

chemical potential state on the Coulomb branch of N = 4 Super-Yang-Mills; our scalar is related

to the one in [50] by φ = −2µ, the parameter ` of that solution is simply Q1 and the variable v
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used there is given by

v =
r2

r2 +Q2
1

. (20)

The 1-charge black hole is also a Poincaré patch limit of superstars considered in [54]. Again the

scalar diverges and the geometry is IR incomplete, but the lift is known to be a disc of D3-branes

[50] and the missing modes should again be O(N) in number.

2.4 Relation of extremal geometries

Up to overall rescaling of coordinates, the extremal 2+1-charge black holes are a one-parameter

family of solutions determined by Q1/rH (or equivalently Q1/Q2 or Q2/rH). It would seem natural

that the extreme limits of the one-parameter family are the extremal 2-charge black hole on one

side and the Coulomb branch solution on the other. In fact, order of limits issues make these

identifications somewhat subtle.

The Coulomb branch solution follows from taking Q2 → 0 strictly to reach the 1-charge black

hole, without first requiring extremality, and only afterwards taking rH → 0. Thus the ratios of

the parameters are

Q2

Q1
→ 0 ,

rH
Q1
→ 0 ,

Q2

rH
→ 0 (Coulomb branch) . (21)

On the other hand, if we first take the extremal limit and afterward take Q2 → 0 with Q1 held

finite, then Q2 and rH are linked by the extremality condition (6), and we have

Q2

Q1
→ 0 ,

rH
Q1
→ 0 ,

Q2

rH
→ 1 (extremal 2 + 1) . (22)

The same ratios result from Q1 → ∞ with rH fixed when one has eliminated Q2 for extremality

using (7). The Coulomb branch solution also has µ2 = 0, while the limit of the 2+1 black holes

has instead µ1/µ2 → 0.

Thus the limits are not the same. As it happens, despite the difference in the limits, the

metric, gauge field Φ1 and scalar of the 2+1-charge extremal black holes nonetheless approach the

Coulomb branch solution in the rH → 0 limit. The only field that does not is Φ2, which instead of

approaching Φ2 → 0 as one should have for the 1-charge black hole, instead achieves the nonzero

value

Φ2 →
Q1

2L
. (23)

Thus a general field in the rH → 0 limit of the 2+1-charge extremal black holes will not explore

the Coulomb branch geometry. A field that is unaware of Φ2, however, will find its dynamics

approaching that of the Coulomb branch. We will see this come in handy later.

There is a similar story for the 2-charge extremal black hole. The true 2-charge extremal case
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involves Q1 → 0 strictly, followed by rH → 0 with Q2 finite. This implies

Q1

Q2
→ 0 ,

rH
Q2
→ 0 ,

Q1

rH
→ 0 (extremal 2) . (24)

Indeed we have in this case
Q1Q

β
2

rαH
→ 0 (extremal 2) , (25)

for any α and β. In addition the chemical potentials are µ1 = 0, µ2 6= 0.

On the other hand, if we first take the extremal limit of the 2+1-charge black holes and then

take Q1 → 0 with rH finite, we find Q2 → ∞. Although the relations (24) all follow in this case,

we also have
Q1Q2

r2
H

→
√

2 (extremal 2 + 1) , (26)

whereas in the true 2-charge black hole, Q1Q2/r
2
H = 0. In addition the chemical potentials approach

µ1/µ2 → 1. Thus again the limits are not the same.

Examining the solutions, again only one field fails to agree in the two limits: this time it is Φ1,

which is zero in the true 2-charge black hole, but in the limit described around (26) approaches

Φ1 →
Q2√
2L

. (27)

Any fermion insensitive to the aµ gauge field would thus not notice the difference in limits; however,

unlike the previous case, we will have no such fermions.

2.5 Field theory duals

The dual field theory to the extremal charged black hole solutions is N = 4 Super-Yang-Mills with

gauge group SU(N) at large number of colors and large ’t Hooft coupling, at zero temperature and

nonzero chemical potentials µ1 and µ2.

The field content for N = 4 SYM is a gauge field, adjoint Majorana fermions λa, a = 1 . . . 4 in

the 4 of SO(6), and adjoint scalars X in the 6 of SO(6). The charges of the dual gauginos and

dual scalars Zj ≡ X2j−1 + iX2j , j = 1, 2, 3 under the Cartan subgroup U(1)a × U(1)b × U(1)c are

λ1 λ2 λ3 λ4 Z1 Z2 Z3

qa
1
2

1
2 −1

2 −1
2 1 0 0

qb
1
2 −1

2
1
2 −1

2 0 1 0

qc
1
2 −1

2 −1
2

1
2 0 0 1

(28)
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The charges q1 ≡ qa and q2 ≡ qb + qc associated to the chemical potentials µ1 and µ2 are then

λ1 λ2 λ3 λ4 Z1 Z2 Z3

q1
1
2

1
2 −1

2 −1
2 1 0 0

q2 1 −1 0 0 0 1 1

q3
3
2 −1

2 −1
2 −1

2 1 1 1

(29)

where we also included q3 ≡ q1 + q2.

The nonzero scalar field φ(r) in the gravity background (3) leads to a vacuum expectation value

for the dual operator in the 20′,

O20′ ∼ Tr (−2|Z1|2 + |Z2|2 + |Z3|2) , (30)

implying expectation values for the individual scalars. The expectation value for O20′ vanishes at

the 3-charge black hole µR = 1/
√

2, and has opposite signs on either side of this point.

We will introduce the fermionic fields we study in this paper and the operators they are dual

to, including their charges, in section 4.2.

3 Charged black holes from maximal gauged supergravity

In order to derive the fermion fluctuation equations in the black brane geometries, we first obtain

the embedding for the Lagrangian (1) in the full maximal gauged supergravity theory. This section

is somewhat technical and may be skipped by a reader anxious to get to the results.

3.1 Scalar coset representative

The scalar fields of D = 5, N = 8 gauged supergravity [55] parameterize an E6(6)/USp(8) coset

manifold, and the SO(6) gauge group is embedded in both the numerator and denominator groups.

Under SO(6) the scalars transform in the representations 20′ ⊕ 10 ⊕ 10 ⊕ 1 ⊕ 1. The E6(6) is

conveniently parameterized in terms of an SL(6,R)×SL(2,R) subgroup, with SO(6) embedded in

SL(6,R) in the natural way. Elements of the 20′ sit in the coset SL(6,R)/SO(6), while the singlet

complex dilaton sits in the SL(2,R)/SO(2) and the 10⊕ 10 sit in the off-diagonal blocks.

The scalar arising in the 2+1-charge black holes lives in the 20′ and may be described in terms

of the SL(6,R) element

S = diag{e
φ√
6 , e

φ√
6 , e

−φ
2
√

6 , e
−φ
2
√

6 , e
−φ
2
√

6 , e
−φ
2
√

6 } , (31)

while the SL(2,R) element is S′ = I and the off-diagonal terms are zero; φ(x) is the dynamical

scalar field. Decomposing the SL(6,R) indices I, J = 1 . . . 6 into x, y = 1, 2 and i, j = 3, . . . 6 and
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denoting the SL(2,R) index α, β, we then have

S y
x = e

φ√
6 δyx , S j

i = e
− φ

2
√

6 δji , S x
i = S i

x = 0 , (S′) β
α = δβα . (32)

The E6(6) elements U are defined as2

U IJKL = 2(S−1)
[I

[K (S−1)
J ]

L] , U IJKα = UKαIJ = 0 , U Jβ
Iα = S J

I (S′) β
α , (33)

and the scalar coset representatives are then

V IJab =
1

8

[
(ΓKL)abU IJKL + 2(ΓKβ)abU IJ Kβ

]
,

V ab
Iα =

1

4
√

2

[
(ΓKL)abUIαKL + 2(ΓKβ)abU Kβ

Iα

]
.

(34)

Here a, b = 1 . . . 8 are USp(8) indices raised and lowered with the symplectic metric Ωab and its

inverse Ωab:

Aa = ΩabA
b , Aa = ΩabAb , (35)

where Ω−1 = ΩT = −Ω.3 The ΓX , X = 0, 1, . . . 6 are hermitian, antisymmetric and pure imaginary

8× 8 Euclidean Γ-matrices obeying

{ΓX ,ΓY } = 2δXY , (36)

and related to each other by

Γ0 = iΓ1 · · ·Γ6 . (37)

The Γ-matrices act on the USp(8) space as Clebsch-Gordan coefficients. Following [55], we separate

out ΓI , I = 1 . . . 6 from Γ0, and define

ΓIJ ≡
1

2
(ΓIΓJ − ΓJΓI) , ΓIα ≡ (ΓI , iΓIΓ0) , (38)

where α = 1, 2. It is straightforward to show that ΓIJ and ΓIα are also antisymmetric as 8 × 8

matrices. The USp(8) metric Ωab may be written as

Ωab = −Ωab = i(Γ0)ab . (39)

2By using the inverse of S in the first term we correct a typo in equation (5.34) of [55].
3A counterintuitive fact is that Ωab is not what you get when you raise both indices of Ωab according to this rule;

you get ΩacΩbdΩcd = Ωba.
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The coset representatives (34) then become

V xyab =
1

4
e
−2φ√

6 (Γxy)
ab , V ijab =

1

4
e
φ√
6 (Γij)

ab , V ixab =
1

4
e
−φ
2
√

6 (Γix)ab ,

V ab
xα =

1

2
√

2
e
φ√
6 (Γxα)ab , V ab

iα =
1

2
√

2
e
−φ
2
√

6 (Γiα)ab ,
(40)

and the inverses are

Ṽabxy =
1

4
e

2φ√
6 (Γxy)

ab , Ṽabij =
1

4
e
−φ√

6 (Γij)
ab , Ṽabix =

1

4
e

φ

2
√

6 (Γix)ab ,

Ṽ xα
ab = − 1

2
√

2
e
−φ√

6 (Γxα)ab , Ṽ iα
ab = − 1

2
√

2
e

φ

2
√

6 (Γiα)ab .
(41)

3.2 Composite connection and scalar kinetic terms

The covariant derivative of D = 5, N = 8 gauged supergravity acts on both USp(8) indices with a

composite connection Q b
µa , and on SO(6) indices with the fundamental gauge fields AµIJ ≡ Aµ[IJ ]:

DµXaI = ∂µXaI +Q b
µa XbI − gA J

µI XaJ ,

DµX
aI = ∂µX

aI −Q a
µb X

bI − gA I
µ JX

aJ .
(42)

The covariant derivative of the coset representative defines the quantity P abcd
µ ,

P abcd
µ ≡ Ṽ abABDµV

cd
AB , (43)

where AB is a formal index pair in the 27 of E6(6), whose contraction is defined as

Ṽ abABDµVABab ≡ Ṽ ab
IJDµV

IJ
ab + Ṽ abIαDµVIαab , (44)

and where the composite connection is defined so that P abcd
µ is totally antisymmetric and sym-

plectic traceless, denoted P abcd
µ = P

[abcd]|
µ ; this leads to

Q b
µa = −1

3

[
Ṽ bcAB∂µVABac + gAµ ILδ

JL(2V IK
ac Ṽ

bc
JK − VJαac Ṽ bcIα)

]
. (45)

In our background the composite connection is

Q b
µa = −g

2
aµ(Γ12)ab − g

2
Aµ(Γ34 + Γ56)ab . (46)

The scalar kinetic terms in the gauged supergravity theory are

Lscalar =
1

24
Pµabcd P

µabcd , (47)
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and P abcd
µ evaluates to

P abcd
µ =

1

8
√

6
∂µφ

(
− (Γxy)

ab(Γxy)
cd +

1

2
(Γij)

ab(Γij)
cd − 1

2
(Γix)ab(Γix)cd

+ (Γx)ab(Γx)cd − (Γ0Γx)ab(Γ0Γx)cd − 1

2
(Γi)

ab(Γi)
cd +

1

2
(Γ0Γi)

ab(Γ0Γi)
cd

)
,

(48)

leading to the kinetic term for the neutral scalar φ,

Lscalar =
1

8
(∂φ)2 . (49)

As we will see, this unconventional normalization will become canonical when we rescale the gauged

supergravity Lagrangian to match (1).

3.3 Scalar potential

The gravity/scalar sector is then given by the Lagrangian

e−1Lgravity+scalar = −1

4
R+

1

8
(∂φ)2 − V (φ) . (50)

The potential may be determined in terms of a few USp(8) tensors that depend on the scalar; these

tensors will also enter into the fermion couplings. These start with the tensor T abcd,

T abcd ≡ (2V IKae ṼbeJK − V ae
Jα Ṽ Iα

be ) ṼcdIJ , (51)

which is evaluated to be (with one index lowered),

Tabcd =
3i

16
e
−φ√

6 (Γ0ΓIi)
ab(ΓIi)

cd +
3i

16
e

2φ√
6 (Γ0ΓIx)ab(ΓIx)cd . (52)

It is easy to see that this is symplectic traceless in the first pair of indices and in the second pair,

ΩabTabcd = ΩcdTabcd = 0 , (53)

as well as antisymmetric in the second pair but symmetric in the first,

T(ab)cd = Tab[cd] = Tabcd . (54)

The tensor Tab is defined as

Tab ≡ T cabc , (55)
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and evaluates to be

Tab =

(
−15

4
e
−φ√

6 − 15

8
e

2φ√
6

)
δab , (56)

and finally the tensor Abcd is defined as the antisymmetrization and trace-removal over the final

three indices of Tabcd,

Aabcd ≡ Ta[bcd]| , (57)

which can be shown with a little calculation to be

Aabcd =
1

3
(Tabcd + Tacdb + Tadbc) +

1

9
(TabΩcd + TacΩdb + TadΩbc) . (58)

It is also straightforward to see that T abcd, T ab and Aabcd have the same values for their components

as Tabcd, Tab and Aabcd. The five-dimensional N = 8 gauged supergravity potential is then defined

in all generality as

V =
g2

96

(
AabcdA

abcd − 64

225
TabT

ab

)
, (59)

and is in our case

V (φ) = −g
2

2
e
φ√
6 − g2

4
e
−2φ√

6 . (60)

The superpotential W (φ) may be defined as Wab ≡W (φ)δab, where

Wab ≡
4

15
Tab , (61)

becoming in our case

W (φ) = −e
−φ√

6 − 1

2
e

2φ√
6 . (62)

The potential may be recovered from the superpotential by the usual gauged SUGRA formula

V (φ) =
g2

8

(
∂W (φ)

∂φ

)2

− g2

3
W (φ)2 . (63)

3.4 Gauge fields

Turning to the gauge fields, the gauge kinetic term coming from N = 8 SUGRA is

e−1Lgauge kin = −1

8
FµνabF

µνab , (64)

where we have set the two-form fields to zero, and

F ab
µν ≡ FµνIJV IJab . (65)
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Using our expressions (40) for the coset representatives, we obtain for the three Cartan gauge fields

Aµ12, Aµ34, Aµ56,

e−1Lgauge kin = −1

4
e
−4φ√

6 Fµν12F
µν12 − 1

4
e

2φ√
6Fµν34F

µν34 − 1

4
e

2φ√
6Fµν56F

µν56 . (66)

Let us define

aµ ≡ Aµ12 , Aµ ≡ Aµ34 = Aµ56 , (67)

and then we have

e−1Lgauge kin = −1

4
e
−4φ√

6 fµνf
µν − 1

2
e

2φ√
6FµνF

µν . (68)

There is also a Chern-Simons term,

LCS = − 1

96
εµνρστ εIJKLMNFIJµνFKLρσAMNτ , (69)

where we have dropped O(FA3) and O(A5) terms which vanish for us. This evaluates to

LCS = −1

6
εµνρστ (2fµνFρσAτ + FµνFρσaτ ) = −1

2
εµνρστfµνFρσAτ , (70)

where in the second equality we integrated by parts and dropped a surface term. The complete

gravity/scalar/gauge Lagrangian is thus

e−1L = −1

4
R+

1

8
(∂φ)2 + g2

(
1

2
e
φ√
6 +

1

4
e
−2φ√

6

)
− 1

4
e
−4φ√

6 fµνf
µν − 1

2
e

2φ√
6FµνF

µν − 1

2
εµνρστfµνFρσAτ ,

(71)

If we identify the gauged supergravity coupling g with the AdS radius L,

g ≡ 2

L
, (72)

the Lagrangian precisely matches (1) up to an overall factor 1/4, which can be absorbed into a

definition of the gravitational constant.

4 Fermionic fluctuation equations

We now study the Lagrangian for spin-1/2 fields in N = 8 gauged supergravity, and extract

the Dirac equations for fermionic fluctuations in the backgrounds of the black holes discussed in

section 2. A reader wishing to skip the details of gauged supergravity may proceed to the general

Dirac equation (80).

15



4.1 Spin-1/2 Dirac equations

The spin-1/2 fields are the 48 χabc, which are both antisymmetric and symplectic traceless, χ[abc]| =

0. The 48 fermions are complex, but not independent; they are related by the symplectic Majorana

condition:

χabc = C(χ̄abc)T . (73)

where C is the conjugation matrix defined via (γµ)T = CγµC−1. The barred version of the fermi

field is defined via conjugation as

χ̄abc = (χabc)
†γ0 . (74)

Note this definition relates a conjugate fermion with indices up to the original fermion with indices

down. Thus χabc and χabc, which are a priori independent fields thanks to raising and lowering by

the symplectic matrix Ωab (for example, χ567 = χ123 6= χ567) are related as one another’s conjugates

by the symplectic Majorana condition. Hence for the 48 spin-1/2 fields, only 24 are independent;

the remaining are related to the conjugates of the first 24. Completely analogous relations hold for

the 8 gravitini ψaµ.

The kinetic term for the fermi fields is

e−1Lkin =
i

12
χ̄abcγµDµχabc , (75)

where the covariant derivative acting on the χabc is

Dµχabc = ∇µχabc +Q d
µa χdbc +Q d

µb χadc +Q d
µc χabd , (76)

where ∇µ contains the spin connection and Q b
µa is the composite connection (46); this provides

the gauge couplings for the fermions. The spin-1/2 fields also have mass terms of the form,

e−1Lmass =
ig

2
χ̄abc

(
1

2
Abcde −

1

45
ΩbdTce

)
χ de
a , (77)

where Tab (56) and Aabcd (58) are tensors on the scalar space defined previously, as well as Pauli

terms

e−1LPauli =
i

8
F ab
µν χ̄acdγ

µνχ cd
b

=
i

16

(
e
−2φ√

6 fµν(Γ12)ab + e
φ√
6Fµν(Γ34 + Γ56)ab

)
χ̄acdγ

µνχ cd
b .

(78)

We are interested in spin-1/2 fields that do not couple to the gravitini; we will discuss how to assure

this momentarily. For such fields the quadratic Lagrangian in a 2+1-charge black hole background
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takes the form

e−1L =
1

2
~̄χ
[
iγµ∇µK−M + γµaµQ1 + γµAµQ2 + ifµνγ

µνP1 + iFµνγ
µνP2

]
~χ , (79)

where the vector on ~χ stands for the 48 fields encoded in the abc indices. One may diagonalize and

normalize the kinetic term K to the identity. The eigenvalues of M, Qi and Pi may then be found.

The equation for a fermion eigenvector is then[
iγµ∇µ − g

(
m1e

−φ√
6 +m2e

2φ√
6

)
+ gq1γ

µaµ + gq2γ
µAµ + ip1e

−2φ√
6 fµνγ

µν + ip2e
φ√
6Fµνγ

µν

]
χ = 0 .

(80)

Here we have extracted a factor of g from the eigenvalues of Qi and exponentials depending on the

scalar from the eigenvalues of Pi, as well as writing the scalar-dependence of the M eigenvalues,

m = g

(
m1e

−φ√
6 +m2e

2φ√
6

)
. (81)

The fermion is then characterized by the six rational numbers (mi, qi, pi) .

It is straightforward to show that if a field χabc obeys (80) with couplings (mi, qi, pi), then

the conjugate field/Majorana partner C(χ̄abc)T = χabc obeys (80) with couplings (−mi,−qi, pi);
the eigenvectors thus come in pairs. A negative value of m corresponds to a fermi field whose

field theory dual has opposite chirality. In practice, one may work only with positive masses, by

changing the Clifford basis of the negative mass modes, flipping the sign of all γ-matrices. This

effectively changes the sign of m and pi. Thus instead of (−mi,−qi, pi) one may solve the equation

for the conjugate/partner field with (mi,−qi,−pi), bearing in mind that the chirality of the dual

field is opposite.

4.2 Dual operators and “maximal” spin-1/2 eigenvectors

The 48 spin-1/2 fields transform in the 20+20+4+4 representations of SO(6). The fields in the

20 are dual to N = 4 Super-Yang-Mills operators of the form,

χabc ∼ Tr (λX) . (82)

where λ is the gaugino in the 4 and X is the adjoint scalar in the 6. There are twelve such fields

with the mass values (m1,m2) = (1/2,−1/4), four with mass values (−1/2, 3/4) and four with

mass values (−1/6, 5/12); for all these cases the mass with vanishing scalar becomes

m20(φ = 0) =
g

4
=

1

2L
. (83)
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Meanwhile the spin-1/2 fields in the 4 are dual to the operators

χ ∼ Tr (F+λ) , (84)

where F+ is the self-dual part of the SU(N) field strength. These fields have mass values (m1,m2) =

(1/2, 1/4); this mass as a function of the scalar fields is proportional to the superpotential and for

vanishing scalar becomes

m4(φ = 0) =
3g

4
=

3

2L
. (85)

We would like to study spin-1/2 fields that do not mix in the quadratic Lagrangian with the 8 spin-

3/2 gravitino fields ψaµ, which transform in the 4 + 4. A number of such fields can be determined

by exploiting the conservation of the preserved U(1) charges. Since the metric and the scalar φ are

neutral, the quadratic fermion action can only couple fermi fields with equal and opposite charges

under any preserved U(1)s. So if we identify a field χabc that has a charge possessed by no ψaµ, we

can be assured that χabc does not mix with the gravitino in the quadratic action.

We can find the most decoupled spin-1/2 fields by considering a more general background: the

U(1)a×U(1)b×U(1)c solutions with Aµ12, Aµ34 and Aµ56 all nonzero and distinct. This background

has two (neutral) scalar fields in general, but we will not need to consider the details of the solutions.

In these backgrounds, each spin-1/2 field has three U(1) charges qa, qb, qc and the above argument

holds for all three. (In our background, q1 = qa and q2 = qb + qc.
4)

The 4 decomposes into U(1)a×U(1)b×U(1)c charge vectors (1
2 ,

1
2 ,

1
2), (1

2 ,−
1
2 ,−

1
2), (−1

2 ,
1
2 ,−

1
2),

and (−1
2 ,−

1
2 ,

1
2), while the 4 is the negative of these; thus all three U(1) charges for the gravitini

have magnitude 1/2. The 20, meanwhile, contains two copies of the weight vectors of the 4, and

twelve distinct weight vectors where one of the three charges has magnitude 3/2. Thus of the 48

spin-1/2 fields in 24 symplectic Majorana pairs, there are 12 pairs we can be assured do not mix

with the gravitini due to having one “maximal” U(1) charge of magnitude 3/2.

The charges of the dual gauginos λa and dual scalars Zj are given in the table in section 2.5. A

moment’s examination reveals that the way to get an operator with one charge of magnitude 3/2

is to make sure the nonzero charge of the scalar has the same sign as the corresponding charge in

the gaugino.

In the following table we list the 12 “maximal” modes χqaqbqc with positive q3. All the maximal-

charge fields have one of two sets of mass values. Some modes are right-handed; this is manifested

when the eigenvalue of the mass operator comes out negative. For such fields we use the opposite-

sign γ basis as previously discussed, flipping the sign of the mass and Pauli couplings; these have

already been flipped in the table. Such fields have right-handed duals and are indicated by χ̄

instead of χ in the first column.

4Note this is different from the rule for the black hole’s charge, which is Q2 = Qb = QC .
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χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ( 3
2
, 1
2
, 1
2

) λ1Z1 −1
2

3
4

3
2 1 −1

4
1
2

χ( 3
2
,− 1

2
,− 1

2
) λ2Z1 −1

2
3
4

3
2 −1 −1

4 −1
2

χ̄( 3
2
,− 1

2
, 1
2

) , χ̄( 3
2
, 1
2
,− 1

2
) λ3Z1, λ4Z1 −1

2
3
4

3
2 0 −1

4 0

χ( 1
2
, 3
2
, 1
2

), χ( 1
2
, 1
2
, 3
2

) λ1Z2, λ1Z3
1
2 −1

4
1
2 2 1

4 0

χ̄(− 1
2
, 3
2
, 1
2

), χ̄(− 1
2
, 1
2
, 3
2

) λ2Z2, λ2Z3
1
2 −1

4 −1
2 2 −1

4 0

χ(− 1
2
, 3
2
,− 1

2
), χ(− 1

2
,− 1

2
, 3
2

) λ3Z2, λ4Z3
1
2 −1

4 −1
2 1 −1

4 −1
2

χ̄( 1
2
,− 1

2
, 3
2

), χ̄( 1
2
, 3
2
,− 1

2
) λ3Z3, λ4Z2

1
2 −1

4
1
2 1 1

4 −1
2

(86)

The fields χ( 3
2
, 1
2
, 1
2

), χ( 1
2
, 3
2
, 1
2

) and χ( 1
2
, 1
2
, 3
2

) have maximal q3 = 5/2, and thus in the background of

the 3-charge black hole are the modes studied in [49].

The conjugates/symplectic Majorana partners of the modes in the table have the opposite

chirality, and the signs of the qi and pi flipped.

4.3 “Overlapping” spin-1/2 eigenvectors

The 24 remaining spin-1/2 fields have charges (qaqbqc) = (±1
2 ,±

1
2 ,±

1
2), each of these 8 charge

assignments occurring with multiplicity 3; these modes overlap with the gravitini, which have the

same 8 charge vectors. Although group theory does not rule out any of these fields from mixing

with the gravitini, we can see explicitly that some do not.

There are three types of χabc/ψaµ couplings in the gauged supergravity Lagrangian, a direct

coupling mediated by the Aabcd tensor, a coupling with a scalar derivative ∂µφ coming from Pµabcd,

and a Pauli-type term, which in our 2+1-charge background splits into two distinct couplings, one

for each gauge field:

e−1L3/2+1/2 =
ig

6
√

2
Adabcχ̄

abcγµψdµ +
i

3
√

2
Pνabcdψ̄

a
µγ

νγµχbcd +
i

4
√

2
F ab
µν ψ̄cργ

µνγρχabc . (87)

We may diagonalize the mass matrix for each three-dimensional charge subsector of spin-1/2 fields.

We find three distinct masses in each sector: one with mass values (m1,m2) = (1/2, 1/4), one with

(1/2,−1/4) and one with (−1/6, 5/12). Plugging the mass eigenvectors into the gravitino couplings

(87), we find the (1/2, 1/4) eigenvectors never couple to the gravitini; these are the higher-mass

modes dual to Tr F+λ.

The (1/2,−1/4) eigenvectors in this sector have zero for most gravitino couplings, but two out

of four of them notice the Aµ Pauli-type coupling. The (−1/6, 5/12) eigenvectors, on the other

hand, couple to the gravitino in almost every possible way; the only gravitino couplings they don’t

have are the two Aµ Pauli couplings just mentioned.

In the table, the last four columns indicate whether the fermion in question has a gravitino
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coupling of the sort indicated. Thus there are six distinct decoupled Dirac equations from this

sector; the ones with mass values (1/2,−1/4), however, have the same Dirac equation as some of

the “maximal” modes. Thus the only new Dirac equations we get from this sector are the four with

mass (1/2, 1/4) which are dual to Tr (F+λ), three of which are distinct.

Again, the conjugate modes exist with opposite chirality and opposite signs for the qi and pi.

χqaqbqc m1 m2 q1 q2 p1 p2 Adabc Pµabcd fµνψ Fµνψ

χ
( 1

2
, 1
2
, 1
2

)

1
1
2

1
4

1
2 1 −1

4 −1
2 — — — —

χ̄
( 1

2
, 1
2
, 1
2

)

2
1
2 −1

4
1
2 1 1

4 −1
2 — — — —

χ̄
( 1

2
, 1
2
, 1
2

)

3 −1
6

5
12

1
2 1 − 5

12
1
6 X X X X

χ̄
(− 1

2
, 1
2
, 1
2

)

1
1
2

1
4 −1

2 1 1
4 −1

2 — — — —

χ
(− 1

2
, 1
2
, 1
2

)

2
1
2 −1

4 −1
2 1 −1

4 −1
2 — — — —

χ
(− 1

2
, 1
2
, 1
2

)

3 −1
6

5
12 −1

2 1 5
12

1
6 X X X X

χ̄
( 1

2
,− 1

2
, 1
2

)

1
1
2

1
4

1
2 0 −1

4 0 — — — —

χ
( 1

2
,− 1

2
, 1
2

)

2
1
2 −1

4
1
2 0 1

4 0 — — — X

χ
( 1

2
,− 1

2
, 1
2

)

3 −1
6

5
12

1
2 0 − 5

12 0 X X X —

χ̄
( 1

2
, 1
2
,− 1

2
)

1
1
2

1
4

1
2 0 −1

4 0 — — — —

χ
( 1

2
, 1
2
,− 1

2
)

2
1
2 −1

4
1
2 0 1

4 0 — — — X

χ
( 1

2
, 1
2
,− 1

2
)

3 −1
6

5
12

1
2 0 − 5

12 0 X X X —

(88)

5 Solving Dirac equations, Fermi surfaces and oscillatory regions

In order to look for holographic Fermi surfaces in N = 4 Super-Yang-Mills theory, we must analyze

the various Dirac equations we have obtained. We do this in section 5.1 for a slightly more general

background than we later require. Then we specialize to the 2 + 1-charge extremal black hole

backgrounds, characterized by Q1/rH , or equivalently, by µR ≡ µ1/µ2, and present the near-

horizon asymptotic analysis followed by a numerical study that allows us to trace out the main

features of the holographic Fermi surfaces as a function of µR. In later sections we will consider

more carefully the 1-charge and 2-charge limits.

5.1 Solving the Dirac equation

We now analyze the Dirac equation(
iγµ∇µ −m(φ) + gq1γ

µaµ + gq2γ
µAµ + ip1e

−2φ√
6 fµνγ

µν + ip2e
φ√
6Fµνγ

µν

)
χ = 0 , (89)
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in our class of backgrounds; we follow the basic conventions of [10], though in opposite signature.

The covariant derivative contains the spin connection,

∇µ ≡ ∂µ −
1

4
ωâb̂µγ

âb̂ , (90)

and we define

χ = e−2Ah−1/4e−iωt+ikxΨ , (91)

where for convenience we have placed the momentum k in the x-direction, and the e−2Ah−1/4 factor

precisely cancels the effects of the spin connection. Choosing a γ-matrix basis including

γ r̂ =

(
iσ3 0

0 iσ3

)
, γ t̂ =

(
σ1 0

0 σ1

)
, γ î =

(
iσ2 0

0 −iσ2

)
, (92)

we can define the projectors

Πα ≡
1

2

(
1− (−1)αiγ r̂γ t̂γ î

)
, P± ≡

1

2

(
1± iγ r̂

)
, (93)

with α = 1, 2, and characterize the four components of Ψ as

Ψα± ≡ ΠαP±Ψ . (94)

The Dirac equation decomposes into pairs relating Ψα+ to Ψα− for each α:(
∂r +

meB√
h

)
Ψα− =

eB−A√
h

[u(r) + (−1)αk − v(r)] Ψα+ ,(
∂r −

meB√
h

)
Ψα+ =

eB−A√
h

[−u(r) + (−1)αk − v(r)] Ψα− ,

(95)

where we have defined5

u(r) ≡ 1√
h

(ω + gq1Φ1 + gq2Φ2) , v(r) ≡ 2e−B(p1e
−2φ√

6 ∂rΦ1 + p2e
φ√
6∂rΦ2) . (96)

We can decouple these into second-order equations, obtaining

Ψ′′α± − F±Ψ′α± +

[
∓∂r

(
meB√
h

)
− m2e2B

h
+
e2B−2A

h

(
u(r)2 − (v(r)− (−1)αk)2

)
± meB√

h
F±

]
Ψα± ,

(97)

where

F± ≡ ∂r log

[
eB−A√
h

(
v(r)− (−1)αk ± u(r)

)]
. (98)

5One should not confuse v(r) with the variable v from [50] defined in (20) and used in section 7.2.
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One can see that (97) is invariant under

qi → −qi , pi → −pi , ω → −ω , k → −k , (99)

and so the equation of the conjugate fermion has the same solutions with (k, ω)→ (−k,−ω).

In the near-boundary limit r →∞, where all our geometries approach anti-de Sitter space, the

Dirac equation is dominated by the mass term. For |mL| 6= 1/2, we have the solutions

Ψα+ ∼ Aα(k)rmL +Bα(k)r−mL−1 , Ψα− ∼ Cα(k)rmL−1 +Dα(k)r−mL . (100)

The first order equations can be used to algebraically relate B to D, and A to C [56],

Cα =
L2(ω + (−1)αk)

2mL− 1
Aα , Bα =

L2(ω − (−1)αk)

2mL+ 1
Dα . (101)

For m > 0, A is the source term, and D the response; the case m < 0 exchanges their roles. Thus

as we have mentioned previously, negative mass corresponds to opposite chirality in the dual.

For mL = 1/2, which is our primary case, we have instead

Ψα− ∼ Cα(k)r−1/2 log r +Dα(k)r−1/2 , (102)

with the relation between B and D unchanged but the relation between A and C now

Cα = L2(ω + (−1)αk)Aα . (103)

The retarded Green’s function GR for the dual fermionic operator is defined in terms of the source

A and the response D as

Dα = (GR)αβAβ , (104)

for a fluctuation with infalling boundary conditions imposed at the horizon. Due to the decoupling

of the α components in (97), the Green’s function is diagonal for us, with G22(ω, k) = G11(ω,−k).

5.2 Near-horizon analysis: 2+1-charge case

The extremal 2+1-charge black holes fit into a class of geometries with a double pole in the metric

at the horizon, which has been studied in [10]. As r → rH we have the leading terms

gii → k2
0 , gtt → −τ2

0 (r − rH)2 , grr → (L2)2(r − rH)−2 ,

Φi → βi(r − rH) , φ→ φ0 ,
(105)

22



where k0, τ0, L2, βi and φ0 are constants (we have eliminated Q2 to impose extremality using (7)):

k0 =
21/3

L

(
rH
Q1

)2/3√
r2
H +Q2

1 , τ0 =
21/3

L

(
Q1

rH

)1/3
√

4r2
H +Q2

1

r2
H +Q2

1

,

L2 =
L

22/3

Q
1/3
1 r

2/3
H√

4r2
H +Q2

1

, φ0 =

√
2

3
log

(
2r2
H

Q2
1

)
,

β1 =
2r2
H

LQ1

√
r2
H +Q2

1

, β2 =
Q1

√
2r2
H +Q2

1

2LrH

√
r2
H +Q2

1

.

(106)

Let us consider the Dirac equation in the near-horizon limit at ω = 0. We have

u→ gk0

τ0
(q1β1 + q2β2) , v → 2k0

τ0L2

(
p1e

−2φ0√
6 β1 + p2e

φ0√
6β2

)
,

m→ m(φ0) ≡ g
(
m1e

−φ0√
6 +m2e

2φ0√
6

)
,

(107)

leading to

F± → −
1

r − rH
. (108)

The Dirac equation then simplifies to

∂2
rΨα± +

1

r − rH
Ψα± −

ν2
k

(r − rH)2
Ψα± , (109)

where νk is

νk =

√(
m2(φ0) +

(
k̃/k0

)2
)

(L2)2 − g2 (q1e1 + q2e2)2 (110)

with

k̃ ≡ k − (−1)α
2k0

(L2)2

(
p1e

−2φ0√
6 e1 + p2e

φ0√
6 e2

)
. (111)

and where we have defined the ei,

ei ≡
βiL2

τ0
. (112)

taking the values

e1 =
Lr3

H

Q1(4r2
H +Q2

1)
, e2 =

LQ1

√
2r2
H +Q2

1

4(4r2
H +Q2

1)
, (113)

The solutions to (109) are then simply

Ψ ∼ (r − rH)±νk . (114)
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As described in [10], these solutions possess a hidden near-horizon region approaching AdS2 × R3;

appropriate boundary conditions are fixed by matching modes through this region. Defining the

variables

r − rH ≡
λL2

τ0

1

ζ
, t ≡ 1

λ
τ , (115)

and taking the λ→ 0 limit with ζ and τ held fixed, we arrive at the metric

ds2 =
(L2)2

ζ2

(
−dτ2 + dζ2

)
+ k2

0d~x
2 , (116)

which is AdS2 × R3 with AdS2 length L2, while the gauge fields become

aµ dx
µ =

e1

ζ
dτ , Aµ dx

µ =
e2

ζ
dτ , (117)

identifying the ei as the coefficients of the gauge fields in the AdS2 limit. Imposing infalling

boundary conditions in the AdS2 geometry and matching out into the outer region requires picking

the Ψ ∼ (r − rH)+νk boundary solution given above in (114).

5.3 The oscillatory region, Fermi surfaces and excitations

Consider the structure of the exponent νk (110). The effect of the Pauli terms is to shift the

origin of the 3-momentum k to the quantity k̃ defined in (111). The quantity ν2
k is then a sum

of positive-definite contributions from the near-horizon mass and the shifted momentum k̃, and a

negative-definite contribution from the effective near-horizon electric field coupling,

(qe)eff ≡ gq1e1 + gq2e2 . (118)

When the electric coupling is sufficiently strong certain values of k will produce an imaginary νk.

This is called the oscillatory region, associated with an instability toward the pair production of

charged particles in the AdS2 region [57], and manifesting log-periodic behavior for the spinor

excitations [8, 10]. The boundary of the oscillatory region occurs at kosc satisfying

νkosc = 0 . (119)

From (110), it is easy to see that

k̃2
osc =

(
k0

L2

)2 (
(qe)2

eff −m2L2
2

)
, (120)

and thus the oscillatory region may only exist when the effective electric coupling (qe)2
eff has greater

magnitude than the effective mass m2L2
2. It is thus significant that for the gauged supergravity
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modes we study, the mass depends on the scalar field and hence is a function of µR; bottom-up

constructions of fermion fluctuations with a constant mass miss this aspect of the spectrum. (The

effects of Pauli terms were considered in [58].) As functions of µR, these take the form

(qe)2
eff =

(
√

2q1µ
3
R + q2(1− µ2

R))2

4(1− µ2
R)(1 + µ2

R)2
, m2L2

2 =
(m1(1− µ2

R) +m2µ
2
R)2

(1− µ4
R)

, (121)

while the proportionality factor is(
k0

L2

)2

=
4r2
H(2− µ2

R)(1 + µ2
R)

L4µ2
R(1− µ2

R)
= 2µ2

2(1 + µ2
R) , (122)

where in the second equality we removed r2
H/L

4 in favor of the chemical potentials µ1, µ2. Mean-

while the shift between k and k̃ (111) is opposite for the two components α = 1, 2 and is determined

by the pi,

kshift ≡ k̃ − k = −(−1)α
2rH(

√
2p1µR + p2)

L2µR

√
2− µ2

R

1− µ2
R

= (−1)α(2p1µ1 +
√

2p2µ2) .

(123)

In plotting our results for kosc and kF , it is useful to normalize these dimensionful parameters by

a quantity meaningful in the field theory. The chemical potentials are a natural choice, and since

0 < µ1 < µ2 for the extremal 2+1-charge black holes, the more convenient choice will be to plot

the dimensionless ratio k/µ2. The results then have the form

kosc

µ2
= ±

√√√√( k̃osc

µ2

)2

− kshift

µ2
. (124)

It is interesting to consider the expressions for k̃2
osc/µ

2
2 as µR → 0:

(
k̃osc

µ2

)2

=
q2

2 − 4m2
1

2
+ (2m2

1 − 4m1m2 − q2
2)µ2

R +
√

2q1q2 µ
3
R + . . . , (125)

and as µR → 1, (
k̃osc

µ2

)2

=
q2

1 − 4m2
2

4(1− µR)
+

(
7m2

2

2
+
q1q2√

2
− 4m1m2 −

9q2
1

8

)
+ . . . . (126)

We see that to leading order, the existence of the oscillatory region as µR → 0 is determined

by a competition between q2 and m1, while the existence of the oscillatory region as µR → 1 is

determined by a competition between q1 and m2. In practice things are not quite so simple: we

have q2
2 = 4m2

1 for more than half our fermions, and q2
1 = 4m2

2 holds for each and every one of them.

25



Thus the existence of the oscillatory region is generally determined by the subleading terms, which

we therefore include above. The universal vanishing of q2
1 − 4m2

2 also means that the expressions

for kosc are finite throughout the parameter space; this finiteness is another aspect that holds for

our top-down fermions that would not be present in a generic bottom-up construction.

Fermi momenta are defined as values of k ≡ kF such that the source term in the near-boundary

expansion (100) of the fermion vanishes:

A(kF ) = 0 . (127)

Fermi surfaces exist outside the oscillatory region. Varying µR can cause a Fermi momentum to

pass inside the oscillatory region, at which point the Fermi surface ceases to exist.

We will see that when a Fermi surface exists, the location of the Fermi momentum kF is often

(but not always) right outside the oscillatory region. Thus while we do not have an analytic formula

for the value of kF , we can gain some insight by using kosc satisfying (124) as a proxy for the Fermi

surface location. We will see there are several cases where kF ≈ kosc holds quite well, but also a

few where it does not.

Once a Fermi surface is located, the properties of nearby excitations may be studied. Several

of these depend solely on νkF [10]. The retarded Green’s function near the Fermi surface for small

ω takes the form

GR(k, ω) ∼ h1

k⊥ − 1
vF
ω − h2e

iγkF (2ω)2νkF
, (128)

with h1, h2 positive constants, k⊥ ≡ k − kF and the angle γk defined by

γk ≡ arg
(

Γ(−2νk)
(
e−2πiνk − e−2π(qe)eff

))
. (129)

For non-Fermi liquids, which have νkF < 1/2, we can ignore the Fermi velocity vF term as sublead-

ing. The dispersion relation between the excitation energy ω∗ and the momentum k⊥ is then

ω∗ ∼ (k⊥)z , (130)

where the exponent is

z ≡ 1

2νkF
. (131)

Furthermore the residue Z vanishes at the Fermi surface like

Z ∼ (k⊥)z−1 . (132)
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Figure 1: Multiple fermi surface singularities correspond to nested spheres (left). When the signs
of kF are opposite and the excitation spectrum is the same at both surfaces, one interpretation is
a thick shell (right).

Finally, the ratio of the excitation width to its energy is given by

Γ

ω∗
= tan

(
γkF
2νkF

)
, k⊥ > 0 ,

= tan

(
γkF
2νkF

− πz
)
, k⊥ < 0 .

(133)

Different formulas hold for Fermi liquids, which have νkF > 1/2; as we shall see, all our Fermi

surfaces are non-Fermi liquids, with one interesting special case approaching the marginal Fermi

liquid at νkF → 1/2.

6 Fermi surfaces in 2+1-charge black holes

To obtain the locations kF of Fermi surfaces as a function of µR ≡ µ1/µ2 for the various fermions,

we numerically solve the decoupled second-order Dirac equation (97) at ω = 0, beginning at the

horizon where we impose the positive sign exponent in (114) as a boundary condition, and searching

for values of kF that cause the source term to vanish as (127). We arbitrarily solve for the spinor

component α = 1; the other component α = 2 has identical results with k → −k. We plot the

values of kF /µ2 vs. µR for the Dirac equations with Fermi surfaces in the following figures, as well

as νkF , z and Γ/ω for each case.

A few general points before we consider each fermion in turn:

• The fermions with asymptotic mass m→ 3
2L , which sit in the 4 of SO(6) and are dual to the

operators Tr F+λ, possess no Fermi surfaces.
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• For the fermions with asymptotic mass m → 1
2L , sitting in the 20 of SO(6) and dual to the

operators Tr λX, the number of Fermi surfaces for each background can be classified by the

total charge q3 ≡ q1 + q2. The two distinct equations with q3 = 5/2 have two Fermi surfaces

for at least part of the range of µR; the three distinct equations with q3 = 3/2 have one Fermi

surface for at least part of the range of µR; and those with q3 = 1/2 have none. This is in

harmony with a general expectation that fermions with greater charge are more likely to form

Fermi surfaces.

• The Fermi surfaces have 0 < νkF < 1/2, indicating they are all non-Fermi liquids.

• The Fermi surfaces for the most part exist close to the boundary of the oscillatory region; in

each plot we include the values of kosc and shade the oscillatory region. As µR is varied, kF

may pass below kosc, at which point the Fermi surface ceases to exist. As the Fermi surface

approaches the oscillatory region we have νkF → 0, implying the dispersion relation exponent

z →∞ as the system moves further into the deeply non-Fermi regime.

• At the 3-charge black hole point, denoted as 3QBH, the two Dirac equations q3 = 5/2 coincide,

as do the three equations with q3 = 3/2. Thus the values of kF and kosc must match for

fermions of the same type, as indeed they do. The q3 = 5/2 modes at the 3-charge black hole

point are the fluctuations studied in [49], and we match the results found there; different radial

coordinates and conventions for the sign of the gauge fields mean that khere = −
√

3kthere.

• When the spectrum of a fermion with charges (qi, pi) contains a Fermi surface singularity at

kF , the conjugate (antiparticle) equation with charges (−qi,−pi) will have a Fermi surface

singularity at −kF (see equation (99)); allowing k to point in the y and z directions will

complete these antipodal points into a full three-dimensional Fermi sphere. For the examples

where multiple values of kF are observed, this corresponds to nested Fermi spheres (see

figure 1).

• As noted in equation (133), one can examine excitations around Fermi surfaces with k⊥ ≡
k − kF > 0, corresponding to particles, and k⊥ < 0, corresponding to holes; such excitations

should be on the physical sheet of the complex ω-plane [10]. We found that excitations with

k⊥ < 0 exist on the physical sheet for small ω, but those with k⊥ > 0 do not, a manifestation

of particle/hole asymmetry. In the following we plot Γ/ω for k⊥ < 0. The role of particles

and holes is exchanged for the conjugate equation with charges (−qi,−pi).

We turn now to a discussion of the results for each of the five distinct Dirac equations for which

we find Fermi surface singularities.

Case 1: χ( 1
2
, 3
2
, 1
2

) and χ( 1
2
, 1
2
, 3
2

), dual to Tr λ1Z2 and Tr λ1Z3
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Figure 2: The values of kF /µ2 for case 1, Tr λ1Z2 and Tr λ1Z3.
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Figure 3: The values of νkF , z and Γ/ω for case 1, Tr λ1Z2 and Tr λ1Z3.

These modes have (q1, q2) = (1
2 , 2), (p1, p2) = (1

4 , 0) and (m1,m2) = (1
2 ,−

1
4); kF is given in figure 2

and νkF , z and Γ/ω in figure 3.

The oscillatory region has the shape of a wavy band, as k̃osc/µ2 approaches a constant value in

either limit, while kshift approaches zero at µR → 0 but a finite value at µR → 1. This fermion is

one of two with the largest total charge q5 = 5/2, and has two Fermi surfaces for larger values of

µR; these track the oscillatory region boundary very closely. At the 3-charge point these fermions

reduce to the results of [49]. The Fermi surfaces disappear into the oscillatory region at around

µR ≈ 0.47.

The values of νk are small throughout the range, resulting in a scaling exponent z for the

excitations that never gets smaller than z & 5, and which (as it must) grows without bound as

the Fermi momenta approach the oscillatory region. The ratio Γ/ω of excitation width also stays

small, being bounded above by Γ/ω ≈ 1/10 and going to zero as µR → 1; thus in this limit the

would-be quasiparticle excitations become more and more stable.

In the full three-dimensional k-space, these two Fermi surface singularities are completed into

nested spheres. The excitation spectrum near both surfaces is the same; since the two kF solutions
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Figure 4: The values of kF /µ2 for case 2, Tr λ1Z1.
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Figure 5: The values of νkF , z and Γ/ω for case 2, Tr λ1Z1.

are of opposite sign, this implies that the excitations inside the outer sphere match those outside

the inner sphere. An interpretation of the two Fermi spheres is then that there is a “thick shell” of

occupied states in between them, with unoccupied states both on the outside and the inside of the

pair (see Figure 1). Put another way, there is a Fermi surface of antiparticles inside the surface of

particles, canceling out in the overlap. It is also possible that the Fermi surfaces are associated to

distinct would-be quasiparticles, but they must have opposite sign.

Case 2: χ( 3
2
, 1
2
, 1
2

), dual to Tr λ1Z1

This mode has (q1, q2) = (3
2 , 1), (p1, p2) = (−1

4 ,
1
2) and (m1,m2) = (−1

2 ,
3
4); kF is given in figure 4

and νkF , z and Γ/ω in figure 5.

As in case 1, both k̃osc and kshift approach finite values at µR → 1. At µR → 0, however, the

vanishing of q2
2 − 4m2

1 means that k̃osc goes to zero, while kshift reaches a finite value. Thus both

branches approach kosc/µ2 → 1/
√

2; the separation goes as O(µ2
R).

This is the other fermion with largest total charge q3 = 5/2, and it also has two Fermi surfaces

for much of the range of µR, again tracking the oscillatory region very closely. Unlike case 1, here

the Fermi surfaces exist as far as can be determined for arbitrarily small µR, while they disappear
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Figure 6: The values of kF /µ2 for case 3, Tr λ2Z2 and Tr λ2Z3.
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Figure 7: The values of νkF , z and Γ/ω for case 3, Tr λ2Z2 and Tr λ2Z3.

into the oscillatory region on the right side of the plot, around µR ≈ 0.93. At the 3-charge point we

coincide with case 1 and the results of [49]. The values of νk are again small, though the maximum

is slightly greater than the previous case, and the exponent reaching a minimum around z & 3.5,

with Γ/ω . 1/15.

Interestingly, in this instance one of the Fermi momenta passes through zero, while the other

does not. To the right of the zero, this case resembles case 1, where the two values of kF have

opposite sign and one interpretation is an occupied shell in momentum space. To the left of the

zero, however, the two Fermi singularities have the same sign of kF , implying the same excitations

outside each Fermi surface; the nested spheres now have the same sign excitations.

Case 3: χ̄(− 1
2
, 3
2
, 1
2

) and χ̄(− 1
2
, 1
2
, 3
2

), dual to Tr λ2Z2 and Tr λ2Z3

These modes have (q1, q2) = (−1
2 , 2), (p1, p2) = (−1

4 , 0) and (m1,m2) = (1
2 ,−

1
4); kF is given in

figure 6 and νkF , z and Γ/ω in figure 7.

Here the oscillatory region is a band as µR → 0, with vanishing kshift there due to p2 = 0, similar

to case 1. Before µR can reach 1, however, the effective mass term dominates over the effective

coupling and k̃osc ceases to exist. Hence for black holes with 0.85 . µR < 1, no oscillatory region
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Figure 8: The values of kF /µ2 for case 4, Tr λ3Z3 and Tr λ4Z2.
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Figure 9: The values of νkF , z and Γ/ω for case 4, Tr λ3Z3 and Tr λ4Z2.

exists for any k.

This fermion has total charge q3 = 3/2, and there is one Fermi surface for most values of µR.

The Fermi surface emerges from the oscillatory region close to µR ≈ 0.4, and above this kF tracks

the value of kosc for a while; however they soon separate and the fermi surface continues to exist

even as µR → 1, once the oscillatory region has disappeared. Notice that kF goes through zero:

this indicates that the Fermi surface shrinks to zero size and then re-expands with antiparticle

excitations. The exponent z as usual diverges as the Fermi surface enters the oscillatory region; it

finds its minimum at µR → 1, where it passes below z = 2. The excitation widths over energies

also diverge before the maximum µR value is reached, and the corresponding pole moves off the

physical sheet on the complex ω plane.

Case 4: χ̄( 1
2
,− 1

2
, 3
2

) and χ̄( 1
2
, 3
2
,− 1

2
), dual to Tr λ3Z3 and Tr λ4Z2.

These modes have (q1, q2) = (1
2 , 1), (p1, p2) = (1

4 ,−
1
2) and (m1,m2) = (1

2 ,−
1
4); kF is given in

figure 8 and νkF , z and Γ/ω in figure 9.

The behavior in this fermion is similar to case 2, with k̃osc vanishing at µR → 0; in fact the

charges and mass values conspire so that the first two terms in the µR → 0 expansion vanish,
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Figure 10: The values of kF /µ2 for case 5, Tr λ3Z1 and Tr λ4Z1.
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Figure 11: The values of νkF , z and Γ/ω for case 5, Tr λ3Z1 and Tr λ4Z1.

leaving a cuspy O(µ3
R) deviation away from the limiting value kosc/µ2 → −1/

√
2.

The total charge is q3 = 3/2, and again there is a single Fermi surface. For this example

the Fermi surface never enters into the oscillatory region that we can discern, although it tracks

it rather closely. The Fermi momentum again goes through zero, indicating a Fermi surface of

particles transitioning to one of antiparticles. The exponent z again reaches a minimum around

z ≈ 2, and the ratio Γ/ω has a maximum around Γ/ω . 0.23, going to zero as µR → 1.

Case 5: χ̄( 3
2
,− 1

2
, 1
2

) and χ̄( 3
2
, 1
2
,− 1

2
), dual to Tr λ3Z1 and Tr λ4Z1.

These modes have (q1, q2) = (3
2 , 0), (p1, p2) = (−1

4 , 0) and (m1,m2) = (−1
2 ,

3
4); kF is given in

figure 10 and νkF , z and Γ/ω in figure 11.

In this case the oscillatory region vanishes for µR . 0.53 as the effective mass overwhelms the

effective electric coupling. The effective charge is q3 = 3/2, and there is again one Fermi surface;

as with the other two q3 = 3/2 cases, the Fermi surface is above the oscillatory region. As µR → 1,

the Fermi momentum appears to meet the oscillatory region. It departs from the oscillatory region

before kosc ceases to exist, as in case 3, and interestingly, appears to head towards kF /µ2 → 0.

This fermion is remarkable because it has q2 = 0 and p2 = 0; it is unaware of the Aµ gauge field.
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The effective electric coupling (qe)2
eff given in (121) in general has the leading behavior as µR → 0

of (qe)2
eff → q2

2/4; with q2 = 0, the subleading behavior does not kick in until (qe)2
eff → 9µ6

R/8. The

effective electric coupling is thus very close to zero for much of the range of µR.

The width ratio Γ/ω reaches a maximum of Γ/ω ≈ 0.45 in the middle of the range of µR,

dropping off to zero on either side. Perhaps most interestingly, νkF steadily climbs as µR → 0,

approaching νkF → 1/2; this is the limit of the marginal Fermi liquid, where the non-Fermi liquid

crosses over to an ordinary Fermi liquid. Correspondingly, the exponent z approaches z → 1.

It is tempting to look for an explanation for such limiting behavior. As previously noted, the

limit µR → 0 is related to the BPS Coulomb branch solution of the 1-charge black hole, although

the order of limits is subtle as Φ2 remains nonzero. However, this fermion — which we call the

“marginal Fermi liquid” fermion — has q2 = p2 = 0, and hence is unaware of Φ2. Thus, as µR → 0,

its Dirac equation becomes a Dirac equation in the Coulomb branch background. In the next

section, we derive these results analytically by matching onto the Coulomb branch solution.

7 The 1-charge black hole and the marginal Fermi liquid fermion

In this section we explore the BPS Coulomb branch solution that is the rH → 0 limit of the 1-

charge black hole. We first describe how the µR → 0 limit of the“marginal Fermi liquid” fermion

is controlled by the infinitesimal-k limit of the Coulomb branch solution. We then describe the

solutions for all our fermionic modes at finite k, which like other related modes explored in the

literature manifest a continuous distribution over a gap. We then describe conductivities in this

background, and argue that the aµ gauge field is superconducting while Aµ is insulating, as well

as considering the extension of the conductivities into the 2+1-charge backgrounds, where the

superconducting delta function in the conductivity broadens to a Drude peak.

7.1 Derivation of the marginal Fermi liquid limit

The fermions χ̄( 3
2
,− 1

2
, 1
2

) and χ̄( 3
2
, 1
2
,− 1

2
), referred to as case 5 in the previous section, possess the

distinction of having q2 = p2 = 0. As a result, these modes are completely insensitive to the

Φ2 gauge field, and as described before there is a limit where the Dirac equation in the 2+1-

charge extremal background approaches that of the BPS Coulomb branch background, where things

simplify. As we shall see, the existence of a Fermi surface approaching the marginal Fermi liquid

value of νkF = 1/2 can be determined analytically there.

It is interesting to consider the behavior of kF /µ1, instead of kF /µ2, for solutions of this Dirac

equation. For the other cases, µ1 → 0 with µ2 fixed is the straightforward realization of µR → 0,

and kF /µ2 and kosc/µ2 remain finite in that limit. For the MFL fermion, however, it does not feel

µ2 and so allowing µ2 →∞ with µ1 fixed is a reasonable limit. As can be seen in figure 12, in this
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Figure 12: The values of kF /µ1 for case 5, the MFL fermions Tr λ3Z1 and Tr λ4Z1.

normalization we have the result

kF ≈
1

2
µ1 , (134)

over the entire range of µR; the line kF /µ1 = 1/2 is shown explicitly. As we shall see, in the µR → 0

limit this relationship can be shown to be exact. It is possible it is exact for the entire range of µR,

but we will not show this.

The 2+1-charge extremal backgrounds, having eliminated Q2 to impose extremality, depend on

the length scales rH and Q1. The limit approaching the Coulomb branch solution is rH → 0 with

Q1 finite; thus there is a separation of scales, rH � Q1. Studying Fermi surfaces requires setting

the right boundary conditions at the horizon. Consequently, we will first study the region “zoomed

in” around rH ; keeping rH finite means Q1 → ∞. We keep k finite in this limit as well, but it

drops out of the equations. The Dirac equation for all four modes reduces to

Ψ′′(r) +
r2 + r2

H

r(r2 − r2
H)

Ψ′(r)− r2

(r2 − r2
H)2

Ψ(r) , (135)

which has the solutions

Ψ±1/2(r) = (r2 − r2
H)±

1
2 . (136)

Near the horizon, these approach

Ψ±1/2(r → rH)→ [2rH(r − rH)]±
1
2 , (137)

corresponding to a value of νk = 1/2. Indeed we may verify that the formula (110) for νk evaluated

for this fermion in the large Q1 limit gives νk → 1/2.

Thus to pick the ingoing/regular boundary condition, we pick the positive exponent νk = +1/2.
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Meanwhile, at large r these solutions become

Ψ+1/2(r →∞)→ r +O(r2
H/r) , Ψ−1/2(r →∞)→ 1

r
. (138)

Thus the regular solution at the horizon goes like r far away from the horizon.

At values of r much greater than rH one finds the scale Q1, which we scaled away in the previous

limit. Let us now “zoom in” on this region, taking Q1 finite and rH → 0. Here we approach the

Coulomb branch solution (modulo the behavior of Φ2, which this fermion is insensitive to) where

the Dirac equation simplifies. Since we had k of order rH in the inner region, we will do the same

in this outer region, setting

k ≡ kprH , (139)

and holding kp finite in the limit.

To find a Fermi surface we study the Ψ1+ mode (as usual Ψ2+ has the same solutions with

k → −k), and the solutions are

Ψ1+ = A
(r2 +Q2

1)3/4

r
+B

Q2
1(1− kp) + r2(3− kp)

2r(r2 +Q2
1)5/4

, (140)

where A and B are constants. We have chosen these names for the constants for good reason, for

in the large-r limit we find

Ψ1+(r →∞)→ Ar1/2 +B
3− kp

2
r−3/2 , (141)

which are the proper boundary scalings for mL = 1/2 according to (100); A is the source term.

For a Fermi surface, A will vanish when infalling boundary conditions are imposed.

To determine what is implied by infalling boundary conditions, we match the small-r limit

of this outer region to the large-r limit of the inner region just discussed, patching the solution

together between the scales rH and Q1. The small-r limit of the outer region solutions (140) is

Ψ1+(r → 0)→ A

(
Q

3/2
1

r
+

3r

4Q
1/2
1

)
+B

(
1− kp
2Q

1/2
1 r

+
(7 + kp)r

8Q
5/2
1

)
. (142)

To match to the νk = +1/2 inner region solution, this must go like r; thus infalling boundary

conditions requires

A =
(kp − 1)B

2Q2
1

. (143)

Thus for generic kp, there is a nonzero source term. However, for the special value

kp = 1 → k = rH , (144)
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we find A = 0 when we impose infalling boundary conditions, and thus there is a Fermi surface.

Moreover at µR → 0, we have
rH
L2

(µR → 0)→ µ1

2
. (145)

Thus we expect that as Q1/rH → ∞, which corresponds to µ1/µ2 → 0, there will be a Fermi

surface in the family of extremal 2+1-charge black holes with parameters approaching

kF → rH =
µ1

2
, νkF →

1

2
. (146)

This exactly matches the results obtained previously. Figure 12 suggests that the relation kF ≈ µ1/2

continues to hold away from µR = 0, although kF = rH no longer will.

7.2 Finite momentum fermion solutions for the Coulomb branch solution

In the above analysis, the infinitesimal-k limit of fermion fluctuations in the Coulomb branch

background was matched on to the limit of the 2+1-charge extremal black holes for the marginal

fermi liquid fermion. One may also consider the finite-k fermion fluctuations, and in the true

Coulomb branch background rather than the 2+1-charge extremal limit, which we discuss here.

As discussed, this background is a zero-temperature, zero-chemical potential renormalization

group flow geometry, referred to as the “n = 2” Coulomb branch flow in [50], where the fluctuation

equation for the transverse traceless graviton modes (which appear as a free scalar) were solved.

The coupled system of the scalar and the trace of the graviton was considered in [59], [60], and then

several other modes, including the spin-1/2 fermions that couple to the gravitini were analyzed in

[51]. It is straightforward for us to do the same for the fermions we study here.

In [50, 59, 60, 51] fluctuation equations were solved subject to a regularity condition in the

deep interior. The solutions were hypergeometrics characterized by a parameter a, defined in our

notation as

a ≡ −1

2
+

1

2

√
1− L4p2

Q2
1

, (147)

where p2 ≡ ω2 − k2. The hypergeometric solutions led to two-point functions with a mass gap at

∆1 ≡
Q1

L2
, (148)

and a continuous distribution above the gap, appropriate for a state of N = 4 Super-Yang-Mills on

the Coulomb branch.

We may perform the analogous analysis for the uncoupled spin-1/2 fields. Since the gauge fields

are zero, the equation cares only about the mass parameters (m1,m2), which for the moment we
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leave arbitrary. We find for the solution regular at the deep interior (reverting to χ using (91)),

χ = (1− v)
3
2

+m1+m2vam1−
1
6F

(
3

2
+m1 + am1 , 1 +m1 + 2m2 + am1 , 2 + 2am1 , v

)
, (149)

where the variable v is given in (20), and we have defined

am1 ≡ −
1

2
+

1

2

√
4m2

1 −
L4p2

Q2
1

. (150)

For all our uncoupled fermions, we have |m1| = 1
2 , and hence am1 → a as given in (147). For all

the uncoupled fields in the 20, both (m1,m2) = (1/2,−1/4) and (m1,m2) = (−1/2, 3/4), we find

χ20 = (1− v)7/4va−1/6F (1 + a, 2 + a, 2 + 2a, v) , (151)

while for the fermions in the 4, with (m1,m2) = (1/2, 1/4), we have

χ4 = (1− v)9/4va−1/6F (2 + a, 2 + a, 2 + 2a, v) , (152)

The χ20 result exactly matches the positive-chirality solution found in the sector mixed with the

gravitino in equation (188) of [51]; the χ4 solution has the same mass gap (148) and continuous

spectrum as well. This completes the analysis of [51] to the entire fermionic spectrum.

We note that for a general m1, the solution would manifest a different gap than found for all

the other modes in [50, 59, 60, 51]. The universal spectrum is presumably a consequence of the

underlying supersymmetry, which constrains the possible values of m1.

7.3 Conductivities in extremal backgrounds

Conductivity studies complement calculations of holographic Fermi surfaces, as both should be

interpretable in terms of N = 4 super-Yang-Mills theory. Here we explain how to formulate bulk

differential equations which determine the conductivities. We will give explicit closed form results

for the Coulomb branch solution, defined through the limit (21). The nearby extremal 2+1-charge

black holes are the ones which exhibit holographic Fermi surfaces which are close to marginal Fermi

liquids, and we will provide some numerical results on their conductivities as well.

In order to study conductivities at zero wave-number but non-zero frequency, we may turn on

gauge fields at linear order:

ax = e−iωtbx(r) Ax = e−iωtBx(r) . (153)
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In general it is necessary at the same time to perturb the metric at linear order:

gtx = e−iωthtx(r) . (154)

Other components of the gauge field may be set to zero as a gauge choice, and other perturbations

may be decoupled at linear order from the ones indicated in (153) and (154). The perturbed

Einstein equations reduce to

h′tx − 2A′htx = 4X8Φ′1bx +
8

X4
Φ′2Bx , (155)

where X ≡ e
− φ

2
√

6 . The equation (155) may be used to eliminate htx from the perturbed Maxwell

equations, with the results

b′′x +

(
2A′ −B′ + h′

h
+

8X ′

X

)
b′x +

e2Bω2 − 4hX8Φ′21
e2Ah2

bx −
8Φ′1Φ′2
e2AhX4

Bx = 0

B′′x +

(
2A′ −B′ + h′

h
− 4X ′

X

)
B′x −

4X8Φ′1Φ′2
e2Ah

bx +
e2Bω2 − 8hΦ′22 /X

4

e2Ah2
Bx = 0 .

(156)

An immediate consequence of these equations is that the flux

F =
i

2
e2A−Bh

(
X8b∗x

↔
∂rbx +

2

X4
B∗x
↔
∂rBx

)
(157)

is conserved, in the sense that ∂rF = 0. It is straightforward to show that F is the imaginary part

of the on-shell action, up to an uninteresting prefactor related to the gravitational constant. Thus

it can be used to compute the real part of the conductivities without extracting the full two-point

functions of the currents dual to Aµ and aµ. In particular, if we define

Aα = lim
r→∞

(bx, Bx) , (158)

then the Green’s functions of the dual currents jx and Jx satisfies

F = A∗α(ImGRxx,αβ)Aβ , (159)

where by ImGR we mean 1
2i(G

R−GR†), and in defining GR we insist upon purely infalling boundary

conditions at the horizon. The matrix of conductivities satisfies

Reσαβ(ω) = Im
GRxx,αβ(ω)

ω
, (160)

where by Reσ we mean 1
2(σ + σ†). Because Reσ is hermitian, it is diagonalizable. Positivity

properties of the Green’s function guarantee that these eigenvalues are positive. The imaginary
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part of the conductivity, corresponding to the real part of GRαβ, has an additive ambiguity, linear

in ω, which can only be resolved through a suitable holographic renormalization prescription. Our

approach of side-stepping this difficulty by using a conserved flux to compute only the imaginary

part of the Green’s function is similar to the one in [61]; however, we will see that some useful

information about the real part of the Green’s function is available without the full technology of

holographic renormalization.

7.4 Conductivities for the Coulomb branch solution

In the Coulomb branch limit defined in (21), the equations of motion for htx, bx, and Bx all decouple

from one another. The bx and Bx equations can be simplified to

b′′x +
3r2 −Q2

1

r3 +Q2
1r
b′x +

ω2L4

r4 +Q2
1r

2
bx = 0

B′′x +
3

r
B′x +

ω2L4

r4 +Q2
1r

2
Bx = 0 .

(161)

In fact one equation can be transformed into the other by the rescaling

bx = X−6Bx , (162)

so the solutions to one may be derived from the other; the general solutions to these equations may

be expressed in terms of hypergeometric functions. These equations were studied in [51], where it

was shown that the solutions are related to the solution of the massless scalar fluctuation; however,

it is useful to review the relevant parts of the calculation from a perspective that will facilitate the

numerical work we will do in the next section. In the rest of this section will be convenient to set

L = Q1 = 1, so also for the gap (148) ∆1 = 1.

In order to determine which solutions are physical, we must examine the behavior near r = 0,

where the independent solutions to (161) take the form

bx ∼ r1±
√

1−(ω+iε)2

Bx ∼ r−1±
√

1−(ω+iε)2
for r → 0 , (163)

where we have introduced an iε prescription so that the desired solution corresponds to choosing

the plus sign in each exponent, associated to the less singular solution. The full solutions to (161)

are then

bx = B1
Γ (1 + aω) Γ (2 + aω)

Γ (2 + 2aω)
r2+2aω

2F1

(
1 + aω, 2 + aω; 2 + 2aω;−r2

)
Bx = B2

Γ (1 + aω) Γ (2 + aω)

Γ (2 + 2aω)
r2aω

2F1

(
aω, 1 + aω; 2 + 2aω;−r2

)
,

(164)
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where the Bα are integration constants, and

aω ≡ a(k = 0) = −1

2
+

1

2

√
1− ω2 . (165)

The gamma functions could have been soaked into the definitions of Bα, but including them ex-

plicitly makes the expansion near the boundary simpler. In (164) and below, we mean to continue

with the prescription ω → ω+ iε, but for simplicity of notation we do not write it explicitly. Noting

that the hypergeometric functions approach unity as r → 0, it is easy to see that

F = (|bx|2 + 2|Bx|2)θ
(
ω2 − 1

)√
ω2 − 1 . (166)

Using standard identities for hypergeometric functions, one may show that

Aα = MαβBβ where Mαβ =
Γ(2 + 2aω)

Γ (1 + aω) Γ (2 + aω)

(
1 0

0 1

)
. (167)

The matrix Mαβ is convenient because it allows us to quickly extract the real part of the conduc-

tivities from the flux:

Reσαβ(ω) =
1

ω
(M−1†)αγ

∂2F
∂B∗γ∂Bδ

(M−1)δβ . (168)

Because the equations of motion (161) decouple, Mαβ and therefore Reσαβ(ω) are diagonal. The

conductivity eigenvalues are found to be

Reσa(ω) =
1

2
ReσA(ω) =

πω

2
θ(ω2 − 1) tanh

π
√
ω2 − 1

2
for ω 6= 0 . (169)

Again we see the structure of a continuum above a gap; this is characteristic of both insulators

and hard-gapped superconductors. The difference between the two, from the point of view of

conductivities, is that superconductors have an additional contribution to Reσa(ω) proportional to

δ(ω) (infinite DC conductivity), whereas insulators do not.

We expect that the Coulomb branch state is an insulator with respect to Aµ and a supercon-

ductor with respect to aµ. The reason is that, as demonstrated in [53] (and further discussed in

[50]), the Coulomb branch state under consideration consists of a uniform disk of D3-branes, spread

out in the X1 and X2 directions, but localized to the plane X3 = X4 = X5 = X6 = 0, where Xi

are the six real scalars of N = 4 super-Yang-Mills. Rotations in the X1-X2 directions correspond

to the U(1)1 gauge symmetry of aµ in supergravity, while simultaneous rotations in the X3-X4 and

X5-X6 directions correspond to U(1)2 and Aµ. U(1)2 is genuinely a symmetry of the Coulomb

branch state because each of the D3-branes lies at a fixed point of the corresponding rotations in

ten dimensions. U(1)1 is also a symmetry, but only insofar as we regard the disk of branes as truly

uniform. At finite N , assuming individual D3-branes must take definite positions within the disk,
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U(1)1 is explicitly broken. Even in the formal limit of infinite N , corresponding to calculations

in classical supergravity, it is reasonable to expect that the main features of an explicitly broken

U(1)1 symmetry will arise, namely infinite DC conductivity and the Meissner effect.

The most efficient way to check the expectations explained in the previous paragraph is to

use the wave-functions (164) to extract enough of the Green’s function to see the infinite DC

conductivity. To this end, consider the expansions

bx = B1

[(
1− 1

r2

)
+

1 + 2 log r

4r2
ω2 +O(ω4) +O(1/r4)

]
Bx = B2

[
1 +

1 + 2 log r

4r2
ω2 +O(ω4)

]
.

(170)

Formally, we may compute the Green’s functions through the expression

lim
r→∞

FC = A∗αGRxx,αβAβ (171)

where

FC ≡ −e2A−B
(
X8b∗x∂rbx +

2

X4
B∗x∂rBx

)
. (172)

The expression (171) essentially follows from considerations of the on-shell action, i.e. the standard

AdS/CFT Green’s function prescription [5, 6]; see [62, 61]. But it is a formal expression due to the
log r
r2 in the expansions (170), which gives rise to a logarithmic divergence proportional to ω2 in the

limit on the left hand side of (171). In holographic renormalization [63], this divergence is canceled

through the introduction of a boundary counterterm proportional to f2
mn+2F 2

mn. The counterterm

only effects the real part of the Green’s function, and only at quadratic order in ω. Thus we do not

need to establish a definite renormalization prescription if our aim is to read off the ω-independent

term. In short, by plugging (170) into (171) and ignoring the divergence, we obtain

GRxx,a = −2 +O(ω2) GRxx,A = O(ω2) at small ω and ~k = 0. (173)

Recalling the familiar relation,

σ(ω ≈ 0) =
GR(0)

i(ω + iε)
= GR(0)

(
−iP 1

ω
− πδ(ω)

)
, (174)

and putting (173) together with (169), we arrive at

Reσa(ω) = 2πδ(ω) +
πω

2
θ(ω2 − 1) tanh

π
√
ω2 − 1

2

ReσA(ω) = πω θ(ω2 − 1) tanh
π
√
ω2 − 1

2
,

(175)
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confirming that the Coulomb branch solution has infinite DC conductivity for the current dual to

aµ and zero DC conductivity for the current dual to Aµ.

To understand the Meissner effect, we first recall that the two-point function for a conserved

current must take the form

Gmn(k) = G(k2)

(
gmn −

kmkn
k2

)
, (176)

where k2 = gmnkmkn and we choose mostly plus signature for the boundary metric gmn, which we

assume to be the flat Minkowski metric. Putting (173) and (176) together, we find

GRa (0) = −2 GRA(0) = 0 . (177)

We can now check that there is a Meissner effect for aµ and not Aµ, using the London equation.

Following arguments of [64] (see also the discussion in [65]), one finds at long wavelengths that

~j(0,~k) = GRa (0)~a(0,~k), or in position space ~j(~x) = GRa (0)~a(~x), provided we make the gauge choice

~∇ · ~a = 0. Assuming also the Maxwell equation ∇× ~Ba = ~j for the magnetic field ~Ba = ∇× ~a, we

arrive at [
∇2 +GRa (0)

]
~a = 0 . (178)

Because GRa (0) < 0, solutions in the presence of the condensate are exponentially rising in some

direction and falling in another. The resolution is that the magnetic field penetrates into the

condensate a characteristic distance 1/
√
−GRa (0) and destroys the condensate where it is large.

It may seem there is a loophole in the argument of the preceding paragraph: in computing

GRa (0) and GRA(0), we first set ~k = 0 and then took ω → 0. But in (178) we used GRa (0) in a

different limit: ω = 0 first with ~k made small afterward. However, due to the four-dimensional

Lorentz invariance of the system, fluctuation solutions with nonzero ~k as well as ω just take the

form (164) with aω → a, depending only on the combination p2 ≡ ω2−k2. The limit is then smooth

regardless of whether ω or ~k is taken to zero first.

7.5 Conductivities in the marginal Fermi liquid regime

We now wish to investigate conductivities of extremal 2+1-dimensional black holes in the regime

where marginal Fermi liquid behavior was found, namely large Q1/rH , corresponding to µR → 0;

we may think of this as “doping” the 1-charge Coulomb branch background with a little Q2. The

equations of motion (156) are complicated enough that it would be unenlightening to reproduce

them here; however recall the key feature that mixing between aµ and Aµ is proportional to Φ′1Φ′2,

and so it vanishes in the strict rH → 0 limit but is non-zero at any finite rH . For our class of
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extremal black holes, the coupled equations (156) may be diagonalized by either of the two choices

bx =
√

2µRX
−6Bx , bx = −

√
2

µR
X−6Bx , (179)

where it is clear that near µR → 0 these correspond to the “mostly Bx” and “mostly bx” solutions,

respectively.

Another key difference between the Coulomb branch case and the case of extremal black holes

with small but non-zero rH is that there is an AdS2 ×R3 region close to the horizon. The radial

dependence of the perturbations near the horizon may be expressed as

bx = B1e

irH

√
1+r2

H
ω

2(r−rH )(1+4r2
H

) (r − rH)
− i(1+3r2H+4r4H )ω

2
√

1+r2
H

(1+4r2
H

)2 [1 +O(r − rH)] ,

Bx = B2e

irH

√
1+r2

H
ω

2(r−rH )(1+4r2
H

) (r − rH)
− i(1+3r2H+4r4H )ω

2
√

1+r2
H

(1+4r2
H

)2 [1 +O(r − rH)] .

(180)

The leading behavior is the same (up to the integration constants Bα), but the corrections in square

brackets are not. It is worth noting that the asymptotic forms (180) do not reduce to solutions of

the form (163) when rH → 0. This is because of order of limits: In (163) we set rH = 0 first and

then took r → 0; here we take r close to the horizon at finite rH first.

Conceptually, our strategy is very similar to the one outlined in the previous subsection: We

first use (180) to write the flux as

F = ω
√

1 + r2
H

(
1

2r2
H

|bx|2 + 4r2
H |Bx|2

)
, (181)

and then we relate the coefficients Bα to the boundary values Aα of the gauge fields in preparation

for computing the Green’s function. Our numerical scheme is to start with the asymptotic forms

(180), including explicit expressions for the O(r−rH) corrections, and use them to seed a numerical

integration of the equations of motion out to large r, where we evaluate Aα.

The linearity of the equations guarantees that Aα = MαβBβ for some Mαβ, but because the

equations couple, Mαβ is not diagonal. It can however be extracted from numerical solutions for

any given ω. Then we extract the matrix of conductivities precisely as indicated in (168), using the

near-horizon form (181) for the flux. Finally, we extract conductivity eigenvalues, corresponding

to the diagonalization (179). The results are shown in figure 13.

Several points are worth noting:

• As rH → 0, the mixing between ax and Ax becomes small, and as a result, the eigenvectors

of Reσαβ(ω) are nearly

(
1

0

)
and

(
0

1

)
, consistent with (179). We will refer to the corre-

sponding conductivity eigenvalues as σa(ω) and σA(ω), since they predominantly refer to the

44



Figure 13: The eigenvalues of the real part of the conductivity matrix for the currents dual to ax
and Ax, as functions of ω, for black hole backgrounds close to the Coulomb branch solution. Red
dots show evaluations of the conductivities for rH = 1/10; blue dots are for rH = 1/100; and the
green curves are the analytic expressions (169) for the Coulomb branch solutions. The blue and
red curves are based on the Drude model, as explained in the main text.

conductivities of the gauge fields dual to aµ and Aµ, respectively.

• For ω > 1, σa(ω) and σA(ω) converge quickly to the results (169) found for the Coulomb

branch. In particular, σa(ω) ≈ 1
2σA(ω).

• For ω < 1, σA � σa. Thus σA and σa cross at ω ≈ 1.

• σA ≈ ω2r2
H for small ω and small rH . For fixed rH , this power law behavior is approximately

respected all the way up to ω ≈ 0.3.

• For small ω and small rH , one finds

Reσa ≈
σ0

1 + ω2σ2
0

where σ0 ≡
1

8r2
H

. (182)

Again the fit is good up to ω ≈ 0.3.

The functional form in (182) is based on the Drude model, in which more generally

ReσDrude =
σ0

1 + ω2τ2
, (183)

and, conventionally, τ is the scattering time while σ0 = ne2τ/m is a constant related to the density

of charge carriers. We note that for small σ0, the form (182) converges in the sense of distributions

to σa ≈ πδ(ω) at small ω, which is half as large as the Coulomb branch result (175).6 This apparent

6In taking this limit, it is important that we are considering ω to be valued over the entire real line. Alternatively,
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discrepancy is surprising, but it may find its explanation in the existence of an additional πδ(ω)

contribution to σa(ω) which our present methods do not allow us to detect.

8 The 2-charge black hole and soft gap

We turn now to a study of fermion fluctuations in the 2-charge black hole, which has similarities

and differences to the 1-charge case; a difference is that here, there is a genuine extremal black hole

with a charge density, breaking four-dimensional Lorentz invariance. As described in section 2.4,

like the 1-charge case the limit of the extremal 2+1-charge black holes is not precisely the 2-

charge extremal black hole; unlike the 1-charge case, however, we have no fermion fluctuations that

ignore the discrepancy. Therefore the behavior of our fermion fluctuations in the extremal 2-charge

solution is disconnected from the 2+1-charge results of section 6. We can nonetheless study them

in their own right. The near-horizon region of the 2-charge black hole is not AdS2 × R3, but is

conformal to it [66] and the ten-dimensional lift contains an AdS3 factor [20].

8.1 Fermion eigenvectors in 2-charge background

The 2-charge black hole has aµ = 0, and hence the charges q1 and p1 are irrelevant. A number of

Dirac equations that are distinct for the 2+1-charge background now coincide. Below we list the

positively-charged modes, both from “maximal” eigenvectors and the gravitino-free non-maximals:

m1 m2 q2 p2

2χ, 2χ̄ 1
2 −1

4 2 0

3χ, 3χ̄ 1
2 −1

4 1 −1
2

1χ, 1χ̄ −1
2

3
4 1 1

2

1χ, 1χ̄ 1
2

1
4 1 −1

2

The first column counts the number of modes of each chirality with the corresponding set of charges.

We note that each charge is chirally balanced by itself, unlike in the 2+1-charge case; this reflects

the fact that U(1)2 is non-anomalous.

There are also negatively-charged conjugate modes with opposite q2 and p2. Finally, there are

neutral modes, with balanced chiralities and two different mass functions:

m1 m2 q2 p2

2χ, 2χ̄ −1
2

3
4 0 0

2χ, 2χ̄ 1
2

1
4 0 0

if we restrict ω ≥ 0, then the distribution δ(ω) should be regarded as supported half in the ω > 0 domain and half in
the ω < 0 domain. In this alternative approach we would say

∫ ε
0
dω πδ(ω) = π

2
, and also limσ0→0

∫ ε
0
dω σ0

1+ω2σ2
0

= π
2

where ε stays fixed in the limit.
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8.2 Near-horizon analysis: extremal 2-charge case

We can perform a general near-horizon analysis of the Dirac equation (89) in the extremal 2-charge

case. Near the horizon we have

e2A → r2/3Q
4/3
2

L2
, e2B → r2/3L2

Q
8/3
2

, h→ 2r2

Q2
2

, Φ2 → −
r2

2Q2L
, (184)

while for the scalar,

φ→
√

2

3
log

(
Q2

2

r2

)
, → e

φ√
6 → Q

2/3
2

r2/3
. (185)

Like the 1-charge case but unlike the (2+1)-charge cases, the scalar diverges at the horizon. The

mass term in the limit becomes

m(φ)→ 2m2Q
4/3
2

Lr4/3
, (186)

which is also divergent. Looking at the second order equations, we find

∂2
rΨα± +

2

r
∂rΨα± +

ω2L2 − 8m2
2Q

2
2

4r4
Ψα± = 0 . (187)

The two dominant contributions to the zero-derivative term are the frequency and the diverging

mass. For ω 6= 0 this has the solutions

Ψ ∼ exp

[
± 1

2r

√
8m2

2Q
2
2 − ω2L4

]
. (188)

for either Ψα+ or Ψα−. We notice that for infinitesimal ω, these solutions are not propagating

waves; the divergence of the scalar has created a certain minimal value of ω necessary to make an

infalling solution:

∆2 =
2
√

2|m2|Q2

L2
. (189)

We can also study the ω = 0 equation directly, and then take the small r limit, The different order

of limits changes the coefficient of the first derivative term:

∂2
rΨα± +

1

r
∂rΨα± −

2m2
2Q

2
2

r4
Ψα± = 0 . (190)

Notice how this equation differs from the analogous case for the 2+1-charge black holes (109) in

having a leading 1/r4 term generated by the diverging mass, dominating over the 1/r2 term that

would contain ν2
k . Equation (190) has modified Bessel function solutions

Ψ ∼ K0

(√
2m2

2Q
2
2

r

)
, I0

(√
2m2

2Q
2
2

r

)
(191)
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which for small r have the behaviors

Ψ ∼ r1/2 exp

[
±1

r

√
2m2

2Q
2
2

]
, (192)

similar to the finite-ω solutions (188) with an additional r1/2 factor.

The behavior brought on by the diverging mass in these known N = 8 gauged supergravity

modes should be compared to [66], where Dirac equations with constant mass were studied in the

extremal 2-charge black hole; there no analog to (189) was found. This is a case in which the

top-down example is instructive, as the simpler solutions of [66] are apparently not present in any

of the actual modes known to be dual to operators N = 4 Super-Yang-Mills; it would be interesting

to diagonalize the gravitino sector to see if the behavior in the solutions of [66] is present there.

8.3 Fermi surfaces for 2-charge black hole

We numerically solved the Dirac equations listed in section 8.1 at ω = 0, subject to the regular

boundary condition at the horizon, which is the K0 Bessel function in (191), leading to the minus

sign in (192). As in the 2+1-charge case, we solved the equations out to the boundary and looked

for values of k = kF such that A(kF ) vanishes.

For the first two equations in the table, both with mass values (m1,m2) = (1/2,−1/4), we found

such Fermi-surface-type singularities. In the first case, that with (q2, p2) = (2, 0) the corresponding

value of kF is
kF
µ2

= 0.83934 , (193)

while for the second case of (q2, p2) = (1,−1/2) we obtain

kF
µ2

= 0.05202 . (194)

We find no Fermi surface singularities for the remaining equations. Unlike the (2+1)-charge case,

there is no analogue of νk and no analogous excitations; the form of the fluctuations (188) prevents

modes with small ω and k⊥ = k − kF from manifesting an ordinary infalling mode. To find such a

solution one must go to ω ≥ ∆2, where the small-ω form of the Green’s function (128) no longer

obtains. A more thorough understanding of these fluctuations is naturally of interest, and we leave

it to future work.

8.4 Conductivities for the 2-charge black hole

One may also consider the gauge field fluctuations and associated conductivities. As in the 1-charge

background, the bx and Bx fluctuation equations (156) decouple, and one can be transformed into

the other by (162). While we cannot solve the equations analytically for general ω, the ω = 0
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Figure 14: The real part of the conductivity for the currents dual to bx and Bx, as functions of ω,
for the extremal 2-charge black hole. The blue (solid) curve corresponds to the Bx mode, and has
a delta function contribution at zero frequency. The green (dot-dashed) line is for the current dual
to bx, and the DC conductivity is insulated. Note the presence of a soft gap in each.

solutions are easy to obtain (the Bx case was previously found in [67]). The zero frequency equations

of motion are

b′′x +
10 + 9r2 + 3r4

(r + r3)(2 + r2)
b′x+ = 0 ,

B′′x +

(
1

r
+

2r

2 + r2

)
B′x −

8

(2 + r2)(r + r3)2
Bx = 0 ,

(195)

where we have set Q2 = L = 1, and the solutions regular at the horizon look like

bx = B1 , Bx = B2
r2

Q2
2 + r2

. (196)

In the spirit of (172), we can formally define the complex fluxes from (161), in this case

FC = −h e2A−B
(
X8 b∗x∂rbx +

2

X4
B∗x∂rBx

)
. (197)

Inserting the regular solutions (196) into (171) via the flux (197), we thus extract the zero frequency

contributions to the Green’s function :

GRb (0) = 0 , GRB(0) = −4 . (198)

Accordingly, the real part of the conductivity for the current dual to Bx has a delta function con-

tribution 4πδ(ω), while the current dual to bx does not. Thus in both the 1-charge and 2-charge

cases, it is the gauge field turned on in that class of backgrounds whose dual current manifests
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infinite conductivity at zero frequency. Here, however, we have a nonzero charge density (15), and

lack the four-dimensional Lorentz invariance that we used in the 1-charge case to demonstrate a

Meissner effect. Thus despite the complementary appearance of the two examples, a more care-

ful investigation is necessary to find out whether the delta function is entirely a consequence of

translation invariance [68], or if there really is superconductivity.7

While we cannot analytically solve the fluctuation equations (195) for nonzero ω, we are able

to do so numerically. In figure 14, the real part of the optical conductivity for both currents is

plotted as a function of frequency. The most notable feature in this picture is the appearance of

a “soft” gap at ∆σ = 2Q2/L
2. This is to be contrasted with the “hard” gap characteristic of the

1-charge Coulomb branch conductivities (169). Interestingly, this gap appears to be larger than

the scale (189) felt by the fluctuations about the 2-charge black hole Fermi surfaces by a factor

∆σ/∆2 = 2
√

2.

9 Conclusions

We have shown that Fermi surface behavior is ubiquitous in strongly coupled N = 4 Super-Yang-

Mills theory at zero temperature and finite density; indeed for every realized value of the chemical

potentials there are multiple fermionic modes manifesting a Fermi surface singularity. These Fermi

surfaces are non-Fermi liquids for generic backgrounds; indeed they are often in the deep non-

Fermi regime, with excitations characterized by large dispersion relation exponents, as well as

small width/energy ratios.

There are exceptions to this general behavior. In particular, one fermion approaches the

marginal Fermi liquid limit, as well as vanishing zero-temperature entropy. This limit is con-

trolled by the 1-charge Coulomb branch solution; both this and the 2-charge extremal black hole

(which also has zero entropy at zero temperature) have the conductivity associated to the active

gauge field infinite at zero frequency, while the other is insulating; the gaps are hard and soft,

respectively.

There are a number of open questions, many related to the dual field theory, which thanks to the

top-down construction one may explore explicitly. One issue is the nature of the quasiparticle-like

excitations forming the Fermi surfaces; in some top-down models arguments that have been made

for a “mesino” — a gauge singlet scalar/fermion bound state (see for example [32, 48, 38]). In

[49], it was pointed out that the manifest N2 scaling of the top-down Green’s functions suggests a

particle in the adjoint, coinciding with a suggestion [20] that the gaugino itself generated the Fermi

surface. Here we see, however, that operators containing the same gaugino but different scalars

(such as e.g. Tr λ1Z2 and Tr λ1Z1, case 1 and case 2 respectively) do not have the same Fermi

surface singularities at values of µR away from the 3-charge black hole point. Thus the scalars are

7We thank C. Herzog for a discussion on this point.
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clearly important; along with the N2 scaling this suggests that adjoint scalar/fermion bound states

may be relevant. (Operators like Tr F+λ1 are never found to have Fermi surfaces.) A Luttinger

count of the charge density generalizing [49] (see also [30, 32, 38, 46, 69, 70]) could be helpful.

Another interesting question is the role of thermodynamic and superconducting instabilities.

A number of such instabilities are known to be present at nonzero temperature in the family of

geometries we discuss (see for example [20, 71, 72]). It would be valuable to understand better the

effects of these instabilities, and whether they vanish in, for example, the marginal Fermi liquid

limit.

These calculations can be generalized in a number of obvious ways. All three chemical potentials

of the SO(6) R-symmetry could be allowed to vary independently; we expect such a generic black

hole will be similar to our 2+1-charge cases, as the 3-charge case is. We have also not diagonalized

the gravitino mixing; in the 1-charge Coulomb branch case [51] the gravitino sector led to very

similar results as the uncoupled fermions, but it is possible in the general case new phenomena may

lurk there. One could also extend this analysis to the three-dimensional ABJM case, where one

mode was already studied in [49], or to the six-dimensional (2, 0) theory.

Because we find a marginal Fermi liquid and small zero-temperature entropy in the limit where

we approach the one-charge Coulomb branch solution, it is natural to inquire how closely our

construction might come to what is needed to describe important strongly coupled condensed

matter systems, such as cuprates near optimal doping and heavy fermion compounds. We have

a top-down construction, so we are finally in a position to formulate questions about a known

strongly coupled field theory (namely N = 4 super-Yang-Mills) whose answers, supergravity tells

us, include the existence of a marginal Fermi liquid. An important feature of our Coulomb branch

construction, however, is the existence of a condensate of the adjoint scalar fields in N = 4 super-

Yang-Mills, and these are fundamental scalars, not fermion composites. The condensate breaks

SU(N) down to U(1)N , and the O(N) modes associated with the unbroken U(1)N are massless

because they correspond to motions of individual D3-branes in the directions transverse to the

world-volume—which is to say, directions in which the presence of the D3-branes spontaneously

breaks translational symmetries. One can also argue that these modes are massless simply because

of the unbroken gauge invariance associated with them; at any rate, first-principles field-theory

arguments show that there are O(N) massless modes. Remarkably, we learn from supergravity

that the O(N2) non-abelian degrees of freedom are all gapped in the strict Coulomb branch limit

when g2
YMN is large: the evidence for this is the gap in the spectral measure observed, for example,

in (175). As we depart slightly from the Coulomb branch limit, we observe the marginal Fermi

liquid behavior at low energies and small kF , as compared to the energy and momentum scale

set by the gap. It is reasonable to suppose that the N = 4 super-Yang-Mills dynamics above the

gap can be integrated out, leading to some effective theory that controls the marginal Fermi liquid

behavior that we see. It would be very instructive to develop field theory arguments that support
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this picture without explicit reference to supergravity. It may happen that at subleading order in

N , the O(N) massless modes give rise to interactions that smooth out the Fermi surface singularity.

Even if the specific construction we have laid out is not directly related to specific condensed matter

systems, a first-principles understanding of how strongly coupled field theory dynamics leads (in

some appropriate limit) to a marginal Fermi liquid would clearly be an important advance.
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