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Abstract

We clarify questions related to the convergence of the OPE and conformal block
decomposition in unitary Conformal Field Theories (for any number of spacetime
dimensions). In particular, we explain why these expansions are convergent in a
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1 Introduction

Conformal Field Theories (CFTs) appear in many branches of theoretical physics: fun-
damental interactions beyond the Standard Model, string theory and quantum gravity,
inflationary cosmology etc. They play a particularly important role in all problems involving
renormalization group (RG) flows, such as the theory of critical phenomena. Indeed, a
general Quantum Field Theory (QFT) can be thought of as an RG flow starting from a
CFT in the UV and flowing to another CFT in the IR.

CFTs are also under better theoretical control than general QFTs, with several tools
which are not available or much less powerful without conformal symmetry. In this paper
we will be concerned with one such tool: the Operator Product Expansion (OPE).

For simplicity we will be considering here the OPE of two identical scalar operators.
In any Lorentz-invariant QFT, the operator product φ(x)φ(0) in the short-distance limit
x→ 0 can be approximated by a sum of local operators with c-number coefficient functions
depending only on x2:

φ(x)φ(0)
x→0'

∑
O

C(x2)xµ1 . . . xµlOµ1...µl(0) . (1.1)

The RHS will in general contain both scalars and operators of nonzero spin l, and in the
latter case their indices have to be contracted as shown.

In the conformal case, Eq. (1.1) has three more specific properties. First of all, the x2

dependence of the coefficient functions is a power law fixed in terms of the operator scaling
dimensions1

C(x2) = const.(x2)−∆φ+(∆O−l)/2 . (1.2)

Second, conformal symmetry allows us to classify all local operators of the theory into
primaries, which transform homogeneously under the conformal group,2 and their derivatives
(descendants). We can now rewrite the OPE as a summation just over primaries, denoted
by curly O:

φ(x)φ(y) =
∑
O

fφφOP (x− y, ∂y)O(y) . (1.3)

The index contractions if O has nonzero spin are implicit. The coefficient function P is now
a power series in ∂y and encodes the contribution of O and all of its descendants. Up to the
overall numerical coefficient λφφO, the form of this function is completely fixed by conformal
symmetry in terms of the operator scaling dimensions.

1Strictly speaking, this is only guaranteed in a unitary theory so that the dilatation operator can be
diagonalized. There is a special class of non-unitary theories called logarithmic CFTs in which the dilatation
operator has Jordan blocks, and some correlation function contain logarithmic deviations from power-laws.
In this paper we only consider unitary theories.

2≡ the group SO(D + 1, 1) of global conformal transformations of the D-dimensional Euclidean space.
Our main results will apply for any D, although for D = 2 stronger results could be obtained using the full
Virasoro algebra. What we call primaries is usually called quasi-primaries in 2D.
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To make this more concrete, let us discuss the case of a scalar O in some detail. Consider
the three point function 〈φφO〉. On the one hand it is fixed by conformal symmetry:

〈φ(x)φ(y)O(z)〉 = fφφO|x− y|∆O−2∆φ|x− z|−∆O |y − z|−∆O . (1.4)

On the other hand according to the OPE (1.3) it should be computable as:

〈φ(x)φ(y)O(z)〉 = fφφOP (x− y, ∂y)〈O(y)O(z)〉 , (1.5)

where
〈O(y)O(z)〉 = |y − z|−2∆O . (1.6)

Demanding that the two expressions agree, the coefficient function P can be fixed unam-
biguously. Here are the first few terms in the expansion:

P (x, ∂y) = |x|∆−2∆φ

[
1 +

1

2
xµ∂µ + αxµxν∂µ∂ν + βx2∂2 + . . .

]
, (1.7)

α =
∆ + 2

8(∆ + 1)
, β = − ∆

16(∆−D/2 + 1)(∆ + 1)
.

For the OPE of two identical scalars considered here the coefficients depend on ∆ ≡ ∆O
but not on ∆φ; in general they would also depend on ∆φ1 − ∆φ2 . Such expansions have
been worked out to all orders (and also for O of nonzero spin) in the 1970’s [1–3] and show
interesting structure visible already in (1.7). For example, the D dependence appears only
in the terms multiplied by x2, and would therefore be subleading on the light cone. Notice
also that the D-dependent term becomes singular when ∆O hits the scalar field unitarity
bound D/2− 1. This is not a problem since such an O is necessarily free and so fφφO = 0.

Once the OPE structure is determined, we can use it to express any n-point function as
a sum of (n− 1)-functions. Schematically:

〈φ(x)φ(y)
∏

ψi(zi)〉 =
∑
O

fφφOP (x− y, ∂y)〈O(y)
∏

ψi(zi)〉 . (1.8)

For n = 3 there is a single exchanged primary O = ψ1, and we go back to Eq. (1.5), but
for n > 4 the sum will be infinite. Actually, it will be doubly infinite since P ’s are infinite
series in ∂y.

And here comes the third special property of the conformal OPE: it converges. By this
we mean that the representations (1.8) are actually absolutely convergent at finite separation
x− y, rather than being just asymptotic expansions in the limit x→ y.

This property has two important applications:

• Correlation functions of arbitrarily high order can be computed by applying the OPE
recursively. Of course, to do this we must know all primary operator dimensions ∆i

and all OPE coefficients fijk (collectively known as the CFT data).

• Eq. (1.8) can also be used to constrain the CFT data itself, by means of an old
idea known as the conformal bootstrap [4–6]. The point is that a conformal four
point function can be computed using the OPE in three different channels: (12)(34),
(13)(24), and (14)(23). That the results agree is a constraint on the CFT data.
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To explain how this works in the simplest setting, consider the correlator of four identical
scalars

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(xij ≡ xi − xj) , (1.9)

constrained by the conformal symmetry to have this form with g(u, v) a function of the
cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (1.10)

The same four point function can be computed by using the OPE twice in the (12)(34)
channel, which gives:

〈φφφφ〉 =
∑
O

(fO)2P (x1− x2, ∂2)P (x3− x4, ∂4)〈O(x2)O(x4)〉 ≡
∑
O

(fO)2 GO(u, v)

x
2∆φ

12 x
2∆φ

34

. (1.11)

The conformal blocks GO(u, v) defined by the last equality (see [7] for a longer introduction)
are completely fixed by conformal symmetry; they depend on O’s dimension and spin as
parameters. The function g(u, v) can thus be expressed as a series in conformal blocks:

g(u, v) = 1 +
∑
O

(fO)2GO(u, v) , (1.12)

where the first term represents the contribution of the unit operator in the OPE φ× φ.

Eq. (1.12) solves the problem of computing the four point function in terms of the CFT
data. To derive this equation, we made an arbitrary choice of applying the OPE in the
(12)(34) channel. However, the representation in the crossed channel (14)(23) should be
equally valid. In the considered case of four identical scalar, the crossed and direct channels
involve the same primary exchanges, and their equivalence can be expressed as a functional
equation satisfied by the function g(u, v):

g(u, v) = (u/v)∆φg(v, u) . (1.13)

Substituting the conformal block expansion we get

[v∆φ − u∆φ ] +
∑
O

(fO)2[v∆φGO(u, v)− u∆φGO(v, u)] = 0 . (1.14)

Since 1970’s it was hoped that this equation and its generalizations to more general four
point functions impose nontrivial constraints on the CFT data. In the last few years this
hope is starting to be realized. A practical way of extracting information from Eq. (1.14) is
as follows [8] (see [9–16] for generalizations, and [17] for a different method used for large
N theories).

Using conformal freedom, let’s put the four operator insertions in a plane with three
points fixed at 0, 1 and ∞ (see Fig. 1). Conformal blocks are then functions of the fourth
point complex coordinate z, and the cross ratios are given by

u = zz̄ , v = (1− z)(1− z̄) . (1.15)
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x1 x3

x4 → ∞x2

z

1

x1 x3

x4 → ∞x2

z

1

Figure 1: Using conformal freedom, three operators can be fixed at x1 = 0, x3 = (1, 0, . . . , 0),
x4 →∞, while the fourth point x2 can be assumed to lie in the (12) plane. The variable z is
then the complex coordinate of x2 in this plane, while z̄ is its complex conjugate.

Eq. (1.14) is then Taylor-expanded around the point z = 1/2, and each coefficient is equated
to zero. This gives a system of linear equations for infinitely many unknown non-negative
coefficients pO ≡ (fO)2.

One can now try to make an assumption about the spectrum, like that there is no scalar
operator below a certain dimension, or that there is a gap between the stress tensor and the
next spin two operator, etc. Any such assumption can be encoded by saying that pO should
vanish in a certain interval. One then asks if there are nontrivial solutions satisfying the
assumption, which is a question of linear algebra and can be decided numerically. If there
are none, then a CFT with such a spectrum cannot exist.

For reasons which are not yet fully understood, this simple-minded approach gives pretty
strong, sometimes optimal [9, 16], bounds on the operator spectrum and also on the OPE
coefficients. Partly this success must be due to the fortunate choice of the Taylor-expansion
point z = 1/2, halfway between the direct channel OPE limit z → 0 and the crossed
channel limit z → 1. But does the conformal block expansion converge near this point, as
is necessary for the validity of the method? We noticed on several occasions that it does,
supporting this statement with brief arguments of various convincing power. However, the
issue is sufficiently important to warrant a detailed investigation. This is the main purpose
of this paper.

The discussion will be structured as follows. We begin in section 2 by sketching a well-
known argument relating convergence of the OPE expansion to the convergence of a scalar
product of two Hilbert space states in the radial quantization. We believe that this way of
viewing the problem is correct, and will try to eliminate whatever doubts may still exist in
its validity. First of all, to illustrate the Hilbert space techniques used in the argument we
perform a few simple CFT computations and check that results agree with other methods
(section 3). The heart of the paper is section 4, where we focus on a CFT four point
function and discuss the rate (as opposed to just the region) of OPE convergence for this
correlator. We show that this convergence is exponentially fast and derive the exponent.
As a prerequisite to this result we derive asymptotics of the CFT spectral density weighted
by the OPE coefficients, which is of independent interest. In section 5, we show that the
convergence of the conformal block decomposition can be proven by the same methods, and
that it is also exponentially fast. Consequences and potential applications of our results are
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discussed in section 6.

2 Radial quantization argument

The following result concerning the convergence of the OPE is rather well known: expansion
(1.8) will converge as long as x is closer to y than any other operator insertion:

|x− y| < min
i
|zi − y| . (2.1)

Sketch of proof. (see Polchinski [18], Sec 2.9) Let’s quantize the theory radially with the
point y as the origin. If the condition (2.1) is satisfied, we can find a sphere separating the
points x, y from the rest of the operators (see Fig. 2). The correlation function in the LHS
of (1.8) can then be viewed as the overlap

〈Ψ|Φ〉 (2.2)

between the two states living on this sphere which are produced by acting with φ’s and ψ’s
on the radial quantization in and out vacua:

|Φ〉 = φ(x)φ(y)|0〉 , 〈Ψ| = 〈0|
∏

ψ(zi) . (2.3)

Furthermore, the state |Φ〉 can be expanded into a complete basis of energy eigenstates:

y

x

z1

z2

z3

Figure 2: An n-point correlation function can be viewed as the overlap of two states in the
radial quantization Hilbert space, living on a sphere.

|Φ〉 =
∑
n

Cn(x− y)|En〉 . (2.4)

Since the radial quantization Hamiltonian is the dilatation generator, these states are
generated by acting on the vacuum by local operators of definite scaling dimension ∆n = En.
Moreover, there is one-to-one correspondence between this expansion and the OPE (1.3).
For every primary O in the OPE, the expansion (2.4) will contain a series of states produced
by O(y) and all of its descendants. Schematically:

|En〉 = (∂y)
nO(y)|0〉 En = ∆O + n . (2.5)
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The coefficients Cn(x − y) with which such a state enters into the expansion is found by
simply picking up the coefficient of (∂y)

n in the conformal OPE.

Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2
cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2

RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.
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It is a basic property of CFT that correlation functions on conformally flat backgrounds
can be computed by rescaling the flat space correlation functions. For scalars, we have:3

〈φ(x) . . .〉e2σ(x)dx2 = e−σ(x)∆φ〈φ(x) . . .〉RD , (3.2)

which on the cylinder becomes:

φ(τ,n)cyl = r∆φφ(x)RD . (3.3)

Let us demonstrate this rule by computing the two point function on the cylinder starting
from the flat space expression (1.6). We get [22]:

〈O(τ2,n2)O(τ1,n1)〉cyl = e−β∆|1− 2e−β(n1 · n2) + e−2β|−∆ . (3.4)

The cylinder times enter only via their difference β = τ2 − τ1, consistently with time
translation invariance. It is also interesting to expand the two point function in the large β
limit:

e−β∆

∞∑
n=0

cne
−βn . (3.5)

The powers of e−β appearing in this expression are consistent with the tower of states (2.5)
propagating along the cylinder. The coefficients cn can be found explicitly: they are the
Gegenbauer polynomials entering via their generating function:

cn = C(∆)
n (n1 · n2) . (3.6)

We will reproduce this result via the operator methods below.

3.2 Positivity and conjugation

We next discuss reflection positivity and conjugations. On the cylinder we have the time
reflection transformation θ : τ → −τ . Any (2n)-point correlation function with operator
inserted symmetrically under this transformation will be positive (in a unitary theory). In
fact this correlation function can be viewed as computing the norm of a state generated
by half of the operators (see Fig. 4) acting on the vacuum. This can also be seen in the
Hamiltonian formulation where φ(τ,n)cyl ≡ eτHcylφ(0,n)e−τHcyl , so that for an hermitean
Minkowskian field φ(0,n) one has

φ(τ,n)†cyl = (eτHcylφ(0,n)e−τHcyl)† = e−τHcylφ(0,n)eτHcyl = φ(−τ,n)cyl . (3.7)

Reflection positivity in the Euclidean theory then corresponds to unitarity in the Minkowskian
theory. For instance, 〈φ(−τ,n)φ(τ,n)〉cyl = 〈φ(τ,n)†φ(τ,n)〉cyl corresponds to the (positive)
norm of the state φ(τ,n)|0〉cyl.

3See e.g. [19, 20] for specific applications of this rule. The only exception from the rule is the stress
tensor Weyl anomaly [21].
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φ1

φ2 φ3

φ3

φ2

φ1

l

∆

∆∗

∆ = l + 2

Figure 4: Example of a reflection-positive six point function on the cylinder.

When we go back to the flat space, the transformation θ maps to the inversion R :
x→ x/x2. We conclude that a flat space correlator with operators inserted in an inversion-
invariant way computes the norm of a state in radial quantization. Similarly, when dealing
with operators, hermitean conjugation corresponds to the inversion R. For real primary
scalars, eqs. (3.3,3.7) then imply

φ(x)† = r−2∆φφ(Rx) = R(φ(x)) . (3.8)

(Analogous rules can be written for operators of nonzero spin.) For example, an inversion-
invariant two point function can now be written as

〈0|φ(x)†φ(x)|0〉 , (3.9)

where |0〉 and 〈0| are the radial quantization in and out vacua.

Hermitean conjugation in the Euclidean theory extends to the conformal algebra gener-
ators. In particular, we have

P †µ = Kµ . (3.10)

This follows from the fact that a special conformal transformation is obtained from a
translation by conjugating with the inversion: Kµ = RPµR. One way to check this result
is by considering the corresponding differential operators expressed in terms of the cylinder
coordinates:

Pµ = −i∂µ → −ie−τ [nµ∂τ + (δµν − nµnν)∂/∂nν ] ,

Kµ = −i[x2∂µ − 2xµ(x∂)]→ −ieτ [−nµ∂τ + (δµν − nµnν)∂/∂nν ] . (3.11)

We now see that they go one into the other under the time reflection. Moreover when going
back to the Minkowskian cylinder, τ → it, we do find Kµ = P †µ, implying the same relation
for the Hilbert space operators.4

4To avoid possible confusion, we should stress that the relation Kµ = P †µ is only valid in the radial
quantization, i.e. on the cylinder (Euclidean or Minkowski). For the original theory on flat Minkowski space
the conformal generators are hermitean: K† = K, P † = P .
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Relation (3.10) has several consequences. First, given a radial quantization state |Φ〉
and a conjugate state 〈Φ| the states

Pµ|Φ〉 and 〈Φ|Kµ (3.12)

will be also conjugate, as more general states obtained by acting with several P ’s and K’s.
Their scalar product will be positive as a norm should.

The second application concerns expressing the operators φ(x) and φ(x)† in terms of the
radial quantization “asymptotic states”, i.e. operators inserted at 0 and ∞. We have the
usual QFT formula

φ(x) = eiP ·xφ(0)e−iPx =⇒ φ(x)|0〉 = eiP ·xφ(0)|0〉 ≡ eiP ·x|φ〉 , (3.13)

where we introduced the notation for the state produced by acting with φ(0) on the in
vacuum. On the other hand for φ(x)† we have the following representation:

φ(x)† = eiK·xφ(∞)e−iK·x =⇒ 〈0|φ(x)† = 〈φ|e−iK·x , (3.14)

where the conjugate state 〈φ| is obtained by acting with φ(∞) on the out vacuum. The
definition of φ(∞) as a conjugate of φ(0) contains as usual a rescaling factor necessary to
get a finite limit: φ(∞) = limr→∞ r

2∆φφ(x).

3.3 Reproducing two point function

We would now like to illustrate the operator formalism with a few simple computations,
checking that it gives results agreeing with other techniques.

Let’s begin with the scalar two point function. According to the above discussion, it can
be evaluated in radial quantization as:

〈O(x2)O(x1)〉 = r−2∆
2 〈0|O(Rx2)†O(x1)|0〉 = r−2∆

2 〈O|e−iK·(Rx2)eiP ·x1|O〉 . (3.15)

Expanding the exponentials, we get a sum of the same form as (3.5) with

cn =
1

(n!)2
〈n,n2|n,n1〉 , |n,n1〉 = (P · n1)n|O〉 , 〈n,n2| = 〈O|(K · n2)n . (3.16)

These are precisely the states mentioned in (2.5). The scalar products can be now evaluated
using the conformal algebra commutation relations:

[Kµ, Pν ] = 2i(δµνD +Mµν) ,

[Mµν , Xρ] = −i(δµρXν − δνρXµ) (X = P,K) , (3.17)

[D,Pµ] = −iPµ , [D,Kµ] = iKµ ,

taking into account the action of the generators on the primary scalar state |O〉:

Kµ|O〉 = Mµν |O〉 = 0, D|O〉 = −i∆|O〉 . (3.18)
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The states |n,ni〉 with different n’s are mutually orthogonal.

It is not difficult to show that cn’s satisfy the Gegenbauer polynomial recursion relation

ncn = 2(n+ ∆− 1)(n1 · n2)cn−1 − (n+ 2∆− 2)cn−2 (3.19)

and therefore coincide with (3.6). For the first few terms the agreement is easy to check
directly:

c0 = 〈∆|∆〉 = 1 , c1 = 2∆(n1 · n2) , c2 = 2∆(∆ + 1)(n1 · n2)2 −∆ , . . . (3.20)

Notice that for n1 = n2 the states |n,n1〉 and 〈n,n2| become conjugate. The scalar product
cn then computes their norm and must be positive. Eq. (3.20) is consistent with this.

3.4 OPE and three point function

A similar check can be done for the three point function. For simplicity we consider the
case y = 0. Eq. (1.4) then predicts the following radial quantization matrix element:

〈0|O(x2)φ(x1)|φ〉 = fφφOr
−2∆O
2 r

∆O−2∆φ

1 |1− 2e−β(n1 · n2) + e−2β|−∆O/2 . (3.21)

If needed, this can be also expanded into powers of e−β ≡ r1/r2 with Gegenbauer polynomials
as coefficients.

We would like to see how the same matrix element is computed in the Hamiltonian
language. The key is to interpret the OPE (1.3),(1.7) as an expansion of the state φ(x)|φ〉
into energy eigenstates on the cylinder, as we already remarked in section 2. Replacing
∂y → −iP , we get

φ(x1)|φ〉 =
∑
O

fφφOr
∆O−2∆φ

1

[
1 +

i

2
r1P · n− r2

1{α(P · n)2 + βP 2}+ . . .
]
|O〉 . (3.22)

For the bra part 〈0|O(x2) we use the same expression as in (3.15).

The three point function computation is now reduced to evaluating matrix elements of
products of K’s and P ’s, just like in the two point function case. Using the values for α
and β given in (1.7), it is easy to check explicitly that the first few coefficients of the e−β

expansion agree with (3.21).

4 Four point function

In the previous section we saw how the state-operator correspondence can be used to
compute two and three point functions. Since the form of these correlators is anyway
fixed by conformal invariance, the point of this exercise was mostly to check the formalism.
We will now apply these methods to the OPE convergence argument from section 2.
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4.1 Convergence

Consider then the simplest higher point function: the correlator of four identical scalars.
There are many ways to map this correlator to the cylinder, depending on the choice of the
radial quantization origin and the infinity. For simplicity we will first assume that two out
of the four φ operators are inserted at these two special points: x1 = 0, x4 = ∞. A more
symmetric configuration will be useful later on.

In this limit the four point function (1.9) maps to the radial quantization matrix element

〈φ|φ(x3)φ(x2)|φ〉 . (4.1)

We wish to compute this matrix element as follows. First we expand the state φ(x2)|φ〉 by
using the OPE in the φ(x2) × φ(x1) channel, as in Eq. (3.22). Second, by conjugating the
same equation, we get an analogous expansion of the state 〈φ|φ(x3) into conjugate states
generated by the action of K’s. Taking the scalar product, we get a sum of the form:

∑
O

(fφφO)2

∞∑
n=0

e−Enβ〈O, n,n3|O, n,n2〉 , En = ∆O + n , . (4.2)

Here |O, n,n2〉 are states generated by acting on |O〉 with n powers of P with various
contractions involving n2, while 〈O, n,n3| are the conjugate states involving K’s and n3.
For operators O which are Lorentz tensors these states also carry spin indices which are
left implicit. The exact structure of these states is fixed by the functional form of the OPE
coefficients, as demonstrated in Eq. (3.22) for the scalar O case, but we will not need to
know it.

The expansion parameter in (4.2) is related to the cylinder time interval:

e−β = r2/r3 ⇔ β = τ3 − τ2 . (4.3)

According to the criterion (2.1), the series is expected to converge whenever β is positive.
This looks plausible as the terms with large dimensions are exponentially suppressed for
β > 0. However, what about the coefficients multiplying the exponentials? Can’t they
somehow overcome the suppression? Also, shouldn’t one worry about the density of states?

As we will now explain, convergence can be proven in a way which makes no assumptions
about the size of the OPE coefficients or the density of states. To do this, consider the matrix
element (4.1) as a scalar product of two states

|Φ〉 = φ(x2)|φ〉 and 〈Ψ| = 〈φ|φ(x3) . (4.4)

The norms of these states represent the correlators of the same form as (4.1) but at special,
inversion symmetric, configurations. (If β > 0, then by dilatation invariance we can assume
that r2 < 1 < r3 = r−1

2 so that the matrix elements defining the norms are radially ordered.)
So these norms must be finite (and positive). In fact they can be computed by setting
n2 = n3 in (4.2), which makes every single term positive, being a scalar product of two
conjugate states.
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Now, a basic theorem about Hilbert spaces says that the scalar product of two finite
norm states converges. The proof is by judicious application of the Cauchy inequality. We
could apply it to the scalar product and bound it by the product of the norms. However,
this would not prove that the scalar product converges. For this we should consider the tail
of the scalar product series (4.2) and show that it tends to zero as the cutoff En > E∗ is
sent to infinity. By Cauchy, such a tail is bounded by the product of the corresponding tails
of the norm series. Since the latter tails consist of positive terms, they must tend to zero if
the norms are to be finite. Q.E.D.

With convergence of series (4.2) established, the next step is to study the convergence
rate.

4.2 Spectral density estimates

It will be convenient to write the series as the Laplace transform of a “weighted spectral
density”

L(β) =

∫ ∞
0

dE f(E)e−Eβ , f(E) ≡
∑
k

ρk δ(E − Ek) . (4.5)

Here the energies Ek run over all the states present in the theory, primaries or not. The
weights ρk can be read off from (4.2). We will be considering the reflection positive case
n2 = n3 for which all of these coefficients are positive. As explained above, the general case
reduces to this one via the Cauchy inequality.

For each fixed β > 0, the convergence rate of this integral is clearly controlled by how
fast the spectral density grows at large E. We therefore begin by studying this second
question.

The key observation which will allow us to control the spectral density is that for β → 0
the four point function (4.1) can be computed by using the leading OPE for the product of
two colliding operators φ(x3)φ(x2). Thus the small β behavior of the Laplace transform is
fixed:5

L(β) ∼ β−2∆φ (β → 0) . (4.6)

This asymptotics puts a strong constraint on the behavior of spectral density at large E.
Were we to assume a power law growth of f(E), Eq. (4.6) would immediately fix the
exponent and the prefactor:

f(E) ∼ E2∆φ−1

Γ(2∆φ)
(naive) . (4.7)

This of course cannot be interpreted literally as f(E) is a sum of δ-functions. But the
integrated version of this equation is mathematically true: the integrated spectral density

F (E) ≡
∫ E

0

dE ′ f(E ′) (4.8)

5Notation a ∼ b means a/b→ 1 in the assumed limit.
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must behave asymptotically as

F (E) ∼ E2∆φ

Γ(2∆φ + 1)
. (4.9)

This is known as the Hardy-Littlewood tauberian theorem and is surprisingly subtle to
prove, if one wants to get the exact prefactor; see [23], Theorem I.7.4 for integer-spaced
spectra and Theorem I.15.3 for the general case. The difficulty comes precisely from the
fact that one does not make any regularity assumption about the weights ρk apart from
them being positive.

Denote by EHL the energy above which the Hardy-Littlewood asymptotics (4.9) becomes
effective, in the sense that the ratio F (E)/E2∆φ can be bounded from above and below by
positive constants. The precise value of EHL of course depends on these constants but we
will not keep track of this dependence. Analogously suppose that the Laplace transform
asymptotics (4.6) is effective for β 6 β0. By dimensional reasoning, we expect EHL ≈ 1/β0.
An elementary proof of this relation can be given as follows.

Start with the obvious estimate:

L(β) >
∫ E

0
dE′ f(E′)e−E

′β > e−EβF (E) . (4.10)

This is true for any β. Fixing β = b/E with an arbitrary b = O(1) we get

F (E) 6 ebL(b/E) 6 const. ebb−2∆φE2∆φ . (4.11)

The second inequality is true as long as b/E 6 β0, i.e. E > EHL = b/β0. A lower bound on F (E)
can also be shown by similar tricks; see [24], Section 7.5.2.

In the asymptotic limit E →∞ we could take const.→ 1 in the last inequality. The prefactor

can then minimized by picking b = 2∆φ, but it is still worse than the one in (4.9). To get the

optimal prefactor, a much more elaborate argument is required.

Finally, let us discuss the error term estimates in the Hardy-Littlewood asymptotics.
The error in (4.6) is controlled by ∆0, the dimension of the first non-trivial operator in the
φ× φ OPE:

L(β) = β−2∆φ [1 +O(β−∆0)] . (4.12)

One could wonder if this power-suppressed error would translate into a similarly power-
suppressed error term in (4.9). However, this expectation is wrong, proving once more that
this theorem is more subtle than it seems. In fact, the best possible error estimate under
these conditions is only logarithmic (independently of ∆0):

(4.12) =⇒ F (E) =
E2∆φ

Γ(2∆φ + 1)
[1 +O(1/ logE)] . (4.13)

See [23], Chapter VII, for this result and for the elementary examples showing that the
estimate cannot be improved without further assumptions.
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4.3 Comparison with partition function spectral densities

To appreciate better the estimate (4.9), let us reproduce the parallel story for the usual,
“unweighted”, spectral density

f0(E) ≡
∑
k

δ(E − Ek) , (4.14)

which counts all the states with equal weight one. In this case the Laplace transform L0(β)
has the interpretation of the CFT partition function on SD−1 times a circle of radius β. The
β → 0 asymptotics then takes quite a different form, as we expect

L0(β) ∼ exp[−vol(SD−1)F(β)] (β → 0) , (4.15)

where F(β) is the CFT free energy density in flat space RD−1× time. This is because in
the high-temperature limit the curvature of SD−1 can be neglected.

Furthermore, by dimensional analysis the CFT free energy density must be given by (see
e.g. [25]):

F(β) = −κ/βD−1 . (4.16)

The constant κ > 0 provides a measure of the number of degrees of freedom and one expects
it to be O(central charge). In 2D, this can be shown rigorously using modular invariance:

κ = (π/12)c (2D). (4.17)

So, L0(β) grows exponentially fast as β → 0, and this requires an exponential growth of
the corresponding spectral density. Using the stationary phase approximation, we find:

f0(E) ≈ exp[γE1− 1
D ] , γ =

D

D − 1

[
vol(SD−1)

D − 1
κ

]1/D

. (4.18)

This should be understood as an order of magnitude estimate after averaging; see [23],
Section IV.16, for a rigorous formulation. For D = 2 and κ as in (4.17), this result reduces
to the well-known formula for the asymptotic density of states in 2D CFTs.

Eq. (4.18) puts our result (4.9) into nice perspective: the unweighted CFT spectral
density entering the partition function grows exponentially fast, but the weighted ones
relevant for the correlator computations have much slower power-like growth. This means
that the OPE coefficients squared must be exponentially suppressed.

4.4 Convergence rate

We will now study the convergence rate of the OPE representation (4.2), written as the
Laplace transform (4.5). In other words, we must study how fast the tail of this integral

L(β,E∗) =

∫ ∞
E∗

dE f(E)e−Eβ . (4.19)
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tends to zero for E∗ →∞ and a fixed β > 0.

The necessary estimation is done as follows:

L(β,E∗) = β

∫ ∞
E∗

dE [F (E)− F (E∗)]e
−Eβ 6 β

∫ ∞
E∗

dE F (E) e−Eβ

∼ β

∫ ∞
E∗

dE
E2∆φ

Γ(2∆φ + 1)
e−Eβ = β−2∆φ

Γ(2∆φ + 1, E∗β)

Γ(2∆φ + 1)
. (4.20)

Here in the first line we integrated by parts and then dropped the F (E∗) term; keeping it is
not useful because of the very weak error estimate in (4.13). We then used the asymptotics
(4.9) and wrote the answer in terms of the incomplete gamma function.

The most interesting case of this estimate occurs for E∗ � ∆φ/β. Using the incomplete
gamma function asymptotics, we get6

L(β,E∗) .
1

Γ(2∆φ + 1)
E

2∆φ
∗ e−E∗β (E∗ � ∆φ/β, E∗ � EHL) . (4.21)

We also added explicitly the condition that E∗ should be above EHL, so that the used
spectral density asymptotics be applicable.

Estimate (4.21) shows that the OPE expansion for the four point function converges
exponentially fast. Given the importance of this result, we will give its alternative derivation
directly from (4.6), bypassing the spectral density estimates.

We can write:

L(β,E∗) =

∫ ∞
E∗

dE f(E)e−Eβ
′ × e−E(β−β′), (4.22)

where β′ ∈ (0, β) is a parameter to be fixed below. Now estimate the last factor by e−E∗(β−β
′).

The remaining integral is L(β′, E∗) but estimate it generously by L(β′). We obtain

L(β,E∗) 6 L(β′)e−E∗(β−β
′) 6 const. (β′)−2∆φe−E∗(β−β

′) , (4.23)

as long as β′ is smaller than β0 introduced in section 4.2, so that the asymptotics (4.6) is effective.
The β′ dependence is minimized for

β′ = 2∆φ/E∗ , (4.24)

and we get

L(β,E∗) 6 CE
2∆φ
∗ e−E∗β (4.25)

where C = const.(e/2∆φ)2∆φ is the same sub-optimal constant that we had in (4.11). For the
estimate to be valid, we must have that β′ defined via (4.24) be smaller than both β and β0, which
requires

E∗ > 2∆φ/β, E∗ > 2∆φ/β0 . (4.26)

These are the analogues of the two conditions present in Eq. (4.21).

6In this paper a . b means that lim sup a/b 6 1 in the considered limit, E∗ →∞ in this particular case.
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5 Conformal block decomposition

In the previous section we discussed convergence of the OPE series representation of a
four point function. This series (4.2) was a double series, the first summation being over
primaries appearing in the OPE and the second over the descendants of each primary. As a
matter of fact, this second sum over descendants computes the conformal block of a given
primary:

GO(u, v) =
∞∑
n=0

e−Enβ〈O, n,n3|O, n,n2〉 . (5.1)

The values of u, v are found by taking the limit x1 → 0, x4 →∞ in their defining equations.
We find:

u = (r2/r3)2, v = 1 + (r2/r3)2 − 2(r2/r3) cosα , (5.2)

where α is the angle between n2 and n3. It is then easy to solve for z defined in (1.15):

z = (r2/r3)eiα . (5.3)

It’s interesting to compare expression (5.1) with the standard definition of conformal
blocks given in (1.11). These expressions are not manifestly identical, for the following
reason. In (1.11) the usual OPE is used on both sides of the four point function. On the other
hand, when deriving (5.1) we use the OPE on the RHS of the correlator, and the conjugate
OPE on the LHS. One consequence of this difference is that expression (5.1) is term-by-term
positive for real 0 < z < 1, which corresponds to reflection positive point configurations,
while the definition (1.11) is not manifestly positive. In spite of these apparent differences,
the conformal blocks defined by (5.1) of course agree with the old definition as they should.
As a check, we can evaluate the first few terms of small z expansion for the case of scalar
O, using the OPE coefficients from (3.22) and norms from (3.20). Focussing on real z for
simplicity, we find agreement with the formula

G∆,0(z, z) =

(
z2

1− z

)∆/2

3F2

(
∆
2
, ∆

2
, ∆−D

2
+ 1; ∆+1

2
,∆− D

2
+ 1;

z2

4(z − 1)

)
(5.4)

recently derived in [16].

Notice that representation (5.1) makes obvious two other general properties of the
conformal blocks: they increase for real 0 < z < 1 and decrease as z rotates away from the
real axis. More precisely, the second property reads

|GO(z = reiα, z̄ = re−iα)| 6 GO(r, r) (0 < r < 1) ; (5.5)

it follows by Cauchy inequality.

5.1 Convergence

We now turn to the question posed in the introduction: what is the region and rate
of convergence of the conformal block decomposition (1.12)? By convergence we mean
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convergence of the partial sums

lim
∆∗→∞

∑
∆O6∆∗

f 2
OGO(u, v) , (5.6)

and by convergence rate the speed at which the tails

g∆>∆∗(u, v) =
∑

∆O>∆∗

f 2
OGO(u, v) , (5.7)

tend to zero.

These questions can be answered based on the results of section 4. The point is that
the tails of the conformal block series include but a subset of the terms in the tails (4.19) of
the OPE series, identifying ∆∗ = E∗. This means that the conformal block decomposition
converges not worse than the OPE series.7 Applying the main result (4.21) about the OPE
convergence, we conclude that the conformal block decomposition converges exponentially
fast for each z in the unit disc r = |z| < 1 with the tail estimate:

|g∆>∆∗(z, z̄)| . 1

Γ(2∆φ + 1)
∆

2∆φ
∗ r∆∗ for ∆∗ � ∆φ/(1− r) . (5.8)

5.2 Extending the region of convergence

Eq. (5.8) is sufficient to prove convergence of the conformal block decomposition at z =
1/2, the point used in the conformal bootstrap applications described in the Introduction.
However, this is not the best possible estimate of the convergence rate. This can already
be suspected from the fact that conformal blocks are known to be real-analytic in the full
z plane minus the cut (1,+∞) along the positive real z axis. We will now show that the
conformal block decomposition converges in this larger region, with the following rate:

|g∆>∆∗(z, z̄)| . 1

Γ(4∆φ + 1)
∆

4∆φ
∗ |ρ(z)|∆∗ . (5.9)

Here the function
ρ(z) =

z

(1 +
√

1− z)2
(5.10)

maps the cut plane on the unit disc. Thus the convergence is exponentially fast everywhere in
the cut plane. For |z| < 1 we have |ρ(z)/z| < 1 and so the rate of exponential convergence
predicted by (5.9) is stronger than the one following from (5.8). For z = 1/2 we have
ρ(z) ≈ 0.17.

As a matter of fact, the same function ρ(z) enters the individual conformal blocks
asymptotics which can be derived [8] in D = 2 and D = 4 starting from the explicit
formulas of [26–28]. While this by itself would not be enough to prove (5.9), it hints at the
best possible character of this estimate. As we discuss below, this is indeed the case.

7To be precise, this argument should first be done for real z, where the series are term-by-term positive,
and then extended to complex z by Cauchy inequality.
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To show the new estimate, we will have to change the quantization origin. To compute
conformal blocks at |z| > 1 in radial quantization as an overlap of two states, we need to
find a sphere separating x1 and x2 from x3 (and x4 =∞). Such a sphere exists for all z in
the cut plane, but for |z| > 1 it can no longer be chosen centered at x1.

x4 = 1
x3 = −1

x1 = reiα

x2 = −reiα

Figure 5: Here we are considering four operators inserted at the shown points in a plane
passing through the origin. We give complex coordinates in this plane. The circles are
intersections of the spheres of radius 1 and r with the plane. The angle α is arbitrary.

The needed geometry is best captured by inserting the four operator as in Fig. 5. On
the cylinder, this configuration maps into the one shown in Fig. 6. Here φ3,4 are inserted
at the cylinder time 0, while φ1,2 at smaller time log r < 0. Computing the cross ratios and
the value of z in this geometry, we find

z = 4ρ/(1 + ρ)2 (ρ ≡ r eiα) ⇔ ρ = ρ(z) . (5.11)

In other words, z(ρ) is precisely the inverse of the function (5.10).

We now have to repeat the main steps leading to (5.8) in the new geometry. First of all
we should express the radial quantization matrix element

〈0|φ(x3)φ(x4)φ(x1)φ(x2)|0〉 (5.12)

using the OPE with respect to the new in and out vacuum positions. To begin with, the
state φ(x1)φ(x2)|0〉 is expanded into states generated by primaries and their descendants
inserted at the origin. This expansion represents an equivalent form of OPE, the difference
from (1.3) being that we have O(x+y

2
) and not O(y) in the RHS. It’s trivial to work out

coefficient functions in such modified OPE in terms of those appearing in (1.3). We will not
need their exact form below. Schematically we will get:

φ(x1)φ(x2)|0〉 = (2r)−2∆φ

∑
O

fφφO

∞∑
n=0

r∆O+n|O, n, α〉, (5.13)

where the n sum is over descendants, the states |O, n, α〉 being generated by acting on |O〉
with n powers of Pµ in various contractions. Apart from the overall fφφO factors, their form
and the relative coefficients are completely fixed by conformal symmetry. In the considered
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φ1

φ2

φ3 φ4

Figure 6: The configuration on SD−1 ×R obtained from Fig. 5 by the Weyl transformation.
The pairs of points φ3,4 and φ1,2 are in antipodal positions on the spheres at the cylinder time
0 and log r. Their positions on their respective spheres are rotated with respect to each other
by angle α.

geometry these states also have dependence on the angle α which we don’t need to know
explicitly.

Conjugating the last equation, we can write an expansion of the state 〈0|φ(x3)φ(x4)| in
terms of the states 〈O, n, α = 0| obtained by acting with K’s on the primary out state 〈O|.
Taking the overlap of the two expansion, the four point function on the cylinder is expressed
as the double series ∑

O

(fφφO)2

∞∑
n=0

r∆O+n〈O, n, 0|O, n, α〉. (5.14)

By the same argument as in section (4.1), we conclude that this series converges for all
r < 1.

To estimate the convergence rate we go to the reflection positive case α = 0 and consider
the limit r → 1. In this limit the sum of the series (5.14) must behave consistently with the
OPE. Two pairs of the operators are colliding simultaneously, so the asymptotics is given
by ∼ (1 − r)−4∆φ . This in turn implies that the integrated spectral density must behave
asymptotically as

F (E) ∼ E4∆φ

Γ(4∆φ + 1)
. (5.15)

By analogy with Eq. (4.21), the tails of the sum (5.14) obtained by cutting off the energies
En = ∆O + n > E∗ must therefore decay exponentially as

.
1

Γ(4∆φ + 1)
E

4∆φ
∗ rE∗ for E∗ � ∆φ/(1− r) . (5.16)

This is the needed estimate, since for α = 0 we have r = ρ(z) according to (5.11). We just
have to interpret it for the conformal block decomposition. Just as before, conformal blocks
are given by the sums over n in (5.14). Conformal block decomposition tails can be simply
bounded by the OPE series tails with E∗ = ∆∗, since the latter tails include more terms
and all the terms in the considered case α = 0 are positive.
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Finally, consider nonzero α. The matrix elements entering the OPE series can be
bounded by Cauchy inequality as follows:

|〈O, n, 0|O, n, α〉| 6
√
〈O, n, 0|O, n, 0〉〈O, n, α|O, n, α〉 = 〈O, n, 0|O, n, 0〉 , (5.17)

where we used that the norms in the RHS are equal by rotation invariance on SD−1. In
particular, individual conformal blocks can only decrease in absolute value as α becomes
nonzero keeping r fixed: ∣∣GO|α 6=0

∣∣ 6 GO|α=0. (5.18)

This inequality is the analogue of Eq. (5.5) in the new geometry. Therefore the conformal
block decomposition tails at α 6= 0 satisfy the same estimate as in the already considered
case α = 0. This is precisely what is stated in (5.9), as r = |ρ(z)| according to (5.11).
Q.E.D.

We now explain in which sense Eq. (5.9) is best possible. First of all, this can be checked
numerically in simple solvable CFTs. For example, one can consider the four point function
of free scalar boson in 4D whose conformal block decomposition is known explicitly [27].
Focussing on real 0 < z < 1 for simplicity, one finds that the convergence rate is well fit by

C(z)∆γ(z)
∗ ρ(z)∆∗ . (5.19)

Here γ(z) ≈ 1.5 weakly dependent on z. This shows that while the power-like prefactor

∆
4∆φ
∗ is improvable, the exponential convergence rate is best possible.

It is also instructive to see why it would be impossible to do better than ρ(z)∆∗ using
our method. Consider the following family of reflection-positive operator insertion configu-
rations:8

x1 = r, x4 = 1, x2 = −kr, x3 = −1/k. (5.20)

For r < 1 and k between 0 and 1 this family interpolates between the configurations
considered in section 4 and here. We also have an interpolating family of four point functions
expansions, with the operators in the RHS of the OPE always inserted at the origin and at
infinity. The r → 1 limit corresponds to colliding operators, and the Laplace transform has
a power-like singularity. The order of this singularity will depend on whether k < 1 (one
pair collides) of k = 1 (two pairs collide). But the leading exponential asymptotics of the
Laplace transform tails at finite r will be the same: r∆∗ . Now, the conformal invariant z
for the configuration (5.20) is given by:

z = (1 + k)2r/(1 + kr)2 . (5.21)

To maximize the convergence rate for a given z, we must find a k such that the value of r
found from this equation is smallest. It is then simple to check that k = 1 is always the
optimal choice.

8A more general family of reflection-positive configurations obtained from (5.20) by rotating x1 and x4

with respect to the origin by the same angle ϕ leads to the same conclusion.
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6 Discussion

The purpose of this paper was to provide a set of criteria for determining the region and
the rate of convergence of the OPE and of the conformal block expansions routinely used in
CFT. For simplicity, we focused on the four point function of identical scalars, although the
method is general. Our main results are Eq. (4.21) and (5.16), establishing the exponential
convergence rate of the OPE for two different schemes, depending whether φ(x)φ(y) is
expressed as a sum of operators inserted at y or (x + y)/2. Convergence of the conformal
block decomposition was shown to follow from that of the OPE. The optimal estimate
(5.9) is obtained by using the second scheme. Near the point z = 1/2 used in the conformal
bootstrap studies, truncating the conformal block decomposition at scaling dimension ∆∗ �
1 induces the error . 0.17∆∗ .

Convergence is good news for the conformal bootstrap, because it means that the method
and the results obtained so far are on mathematically solid ground. Fast convergence also
means that approximate expressions for the conformal blocks obtained by throwing out
the descendants beyond certain level may be used where all-order expressions are not yet
easily available, like for external operators with spin. On the other hand, exponentially fast
convergence also has a downside: it means that the very high-dimension operators effectively
decouple, and it will be very difficult to learn about them by studying consistency conditions
for the correlators of low-dimension operators, how it’s done in conformal bootstrap.9

For CFTs with a gravitational dual, decoupling of high-dimension operators can be
understood as an ordinary effective field theory decoupling of high-mass states in the bulk.
In the AdS/CFT context, a CFT truncated to just the subsector of low-dimension operators
has been dubbed “Effective CFT” [29]. Our results show that such a truncation gives an
approximate description in any CFT, with or without AdS dual.

To prove the exponentially fast convergence, we represented the four point function as
the Laplace transform of a spectral density concentrated on the sequence of dimensions
of the exchanged local operators (primaries and descendants). The weights were given by
the OPE coefficients squared times kinematical factors (the descendant norms). The main
observation was that the short-distance limit of the Laplace transform could be controlled
by using the OPE for the colliding operators. By the Hardy-Littlewood tauberian theorem,
this implied a power-like asymptotic behavior for the (averaged) spectral density. From here
it was fairly simple to show that the Laplace transform tails at finite operator separation
are exponentially small.

The power-like asymptotics of the weighted spectral density is interesting in its own
right. As we reviewed in section 4.2, the same density with unit weights (i.e. simply counting

states) is expected to have an exponentially growing asymptotics ≈ exp[γE1− 1
D ]. To make

these two statements compatible, the individual OPE coefficients must be exponentially
suppressed with the same exponent.

Recently, faster-than-exponential suppression for OPE coefficients of high-dimension ∆

9One possibility to enhance the contribution of high-spin operators is to consider consistency conditions
for the correlators analytically continued to the Minkowski space.
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and not-too-high spin l operators was discussed in [30]. For large-N theories with gravity
duals, they have an estimate

f∆,l ∼ exp

[
−1

2

(
∆D−2

N2

) 1
D−3

]
for ∆� N

2
D−2 , l�

(
∆D−2

N2

) 1
D−3

. (6.1)

This results follows from the fact that in the limit of large AdS radius the conformal block
decomposition of the CFT four point function goes into the partial wave decomposition of
the flat space gravitational S-matrix. High-dimension, low angular momentum contributions
in (6.1) correspond to the transplanckian scattering at small impact parameters. Black
hole production is then expected to dominate, while the elastic 2 → 2 amplitude will be
exponentially suppressed by the black hole entropy. The corresponding piece of the four
point function, f 2

∆,l times the conformal block, should then be similarly suppressed.

Clearly, Eq. (6.1) comes from a very different physics input compared to our results. Thus
it should not be surprising that it is stronger, predicting faster-than-exponential decay in
the given range.10 However, there remain points of contact between the two approaches.
For example, it should be possible to show using our methods that, quite generally, the
super-exponential suppression cannot extend for all spins (see below). This is also what is
expected from the gravitational S-matrix point of view, since for large impact parameters
near-elastic 2→ 2 scattering replaces black hole formation.

Our results can be developed in several directions. Finding interesting generalizations
involving different external states (unequal operators, operators with spin or with asymp-
totically growing dimension) is one line of research. A less obvious question is how to make
better use of the crossing symmetry constraint (1.14). As in [8], let us rewrite it dividing
by the contribution of the unit operator:∑

O

(fO)2FO(u, v) ≡ 1, FO(u, v) =
v∆φGO(u, v)− u∆φGO(v, u)

u∆φ − v∆φ
. (6.2)

This “sum rule” has to be satisfied for any u, v where it converges (i.e. in the cut z plane
as explained in section 5.2). A cornerstone of our argument was Eq. (4.6), obtained by
using the OPE in the crossed channel. As such it is also a form of crossing symmetry, but a
very weak one: it can be interpreted as saying that Eq. (6.2) must be satisfied in the limits
z → 0, 1.

However, Eq. (4.6) has a shortcoming: it does not say how fast the limit is reached.
Suppose that we want to have L(β) 6 2β−2∆φ for β < β0, how small a β0 should we take?
A priori this is not known, the answer may depend on a CFT and on a correlator under
consideration. This ignorance feeds into the minimal value of the dimension cutoff above
which our exponential asymptotic estimates become rigorous inequalities, as in Eq. (4.26).
It would be nice to eliminate this non-constructive feature from our results, by showing that
a universal β0 can be chosen. Preliminary work [31, 32] indicates that for D = 4 this may
be done starting from the sum rule (6.2), at least for φ’s of dimension less than about 1.7.

10For this reason it can be stated as a result for f∆,l alone, since the conformal blocks behave like simple
exponentials.
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The sum rule can be also used to explain why we believe (as mentioned above) that
the super-exponential decay of all, rather than just low spin, OPE coefficients would be
inconsistent with crossing symmetry. Morally such an assumption would be not too different
from throwing out all high dimension primaries from the sum rule. Considering the case
of real 0 < z < 1, the functions FO are peaked for z ∼ 1 − O(1/∆2) and go to zero as z
approaches 1 past this value. Thus it seems impossible to satisfy the sum rule near z = 1
under such conditions. It would be interesting to work out the details of this argument.

To conclude, we would like to emphasize once more the fundamental principle used in
deriving the results of this paper: that the CFT correlation functions can be computed using
the quantum-mechanical dynamics on the cylinder SD−1×R, which is Weyl equivalent to the
flat Euclidean space. It was assumed that we have a complete Hilbert space of normalizable
states on the sphere SD−1, that the Hamiltonian can be diagonalized, and that the energy
eigenstates form a basis. Given these assumptions it is possible to prove the existence of the
OPE by expanding the state φ(x)φ(y)|0〉 into the states of fixed energy. It is also a simple
matter to convince oneself that any state on the sphere gives rise to a local operator in the
flat space (and vice versa), proving the state-operator correspondence.

The discreteness of the spectrum per se was not assumed: all of our arguments go
through if the sums over primary operators are replaced by integrals. The spectrum of
operator dimensions is expected to be discrete in D > 3. In D = 2 there exist CFTs with
a continuous spectrum of scaling dimensions, such as the free scalar boson with its vertex
operators eipX . The Liouville theory and non-compact sigma-models also have continuous
spectrum. In such cases care must be taken in applying our results, since local operators
generate states which are not normalizable (they are rather δ-function normalizable).

As the very last comment, we should quote two monumental axiomatic quantum field
theory papers [33, 34] devoted to the question of OPE convergence in CFT. Most of their
efforts seem to go towards establishing rigorously the first step of our argument: that the
OPE can be viewed as an expansion in the Hilbert space sense, after which the convergence
is automatic. The question of convergence rate was not discussed.
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