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Abstract

We study the orientifold daughter of N = 4 super Yang-Mills as a candidate non-supersymmetric

large N conformal field theory. In a theory with vanishing single-trace beta functions that contains

scalars in the adjoint representation, conformal invariance might still be broken by renormalization

of double-trace terms to leading order at large N . In this note we perform a diagrammatic analysis

and argue that the orientifold daughter does not suffer from double-trace running. This implies an

exact large N equivalence between this theory and a subsector of N = 4 SYM.
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I. INTRODUCTION

Conformal field theories play a prominent role in theoretical physics. In four dimensions,

it is easy to find supersymmetric CFTs, however, constructing interacting conformal field

theories in the absence of SUSY seems to be a harder task. An early attempt for the

construction of such theories was to use the AdS/CFT correspondence [1–3] for orbifolds of

N = 4 SYM [4, 5]. These are constructed by placing a stack of N D3-branes at an orbifold

singularity R
6/Γ where Γ is a discrete subgroup of the R-symmetry. Inheritance principles

[6, 7], then, guarantee that the beta functions of marginal single-trace operators vanish in

the large N limit. If the orbifold group Γ 6⊂ SU(3) supersymmetry is completely broken and

a potential conformal field theory with reduced supersymmetry is obtained.

Now, whenever there are scalars in the adjoint or bifundamental representation, there

is a logarithmic running of double-trace operators present in the quantum effective action

[8–12]

δS = −f
∫

d4xOŌ . (1)

This is a leading effect at large N . While for supersymmetric orbifolds one can always

tune the double-trace couplings to their conformal fixed points, for non-supersymmetric

orbifolds the double-trace beta functions have complex zeros and conformal invariance is

always broken [11, 12].

The authors of [12] also found a non-trivial one-to-one correspondence between the break-

ing of conformal invariance in the field theory and the presence of closed string tachyons

in the twisted sector of the dual string theory. This result is somewhat surprising because

the correspondence is between perturbative gauge theory (dual to strongly curved AdS) and

flat space tachyons, indicating that the breaking of conformal invariance may be read from

string theory before taking the decoupling limit. These results were revisited in [13] where

it was found that the double-trace beta functions are quadratic in the coupling to all orders

in planar perturbation theory.

Here we will concentrate on the orientifold daughter of N = 4 SYM [14–16]. This theory

arises as the low energy description of D3-branes in a non-tachyonic orientifold of Type 0B,

in which the tachyon in the original string theory has been projected out by a clever choice

of the parity operator [17–19].

In [16, 20] it was argued that this theory is planar equivalent to N = 4 SYM. In light of
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the results obtained for orbifolds, the absence of a tachyon in the flat space string theory is

a good indication that the orientifold daughter should not suffer from double-trace running

and, therefore, be an example of a non-supersymmetric conformal field theory.

In this note we perform a diagrammatic analysis to see if this theory suffers from double-

trace running or not. One possible outcome is that perturbative renormalizability will force

us to add double-trace couplings of the from (1). If the double-trace beta functions have

real zeros, conformal invariance can be recovered if we tune the new couplings to their fixed

points. This would imply that we have a fixed line passing through the origin of the coupling

constant space. On the other hand, if one or more zeros are complex, conformal invariance

is broken and the theory is unstable.

Another possible outcome is that the are no leading double-trace contributions in the

effective action. If this is the case, there will be no logarithmic running and it would imply

an exact equivalence between the orientifold and a subsector of N = 4 SYM. Conformal

invariance will be preserved but in a rather trivial sense. Our results indicate that this last

behavior is the one that characterizes the orientifold daughter. In Section 2 we briefly review

how the orientifold theory is constructed. In Section 3 we perform a diagrammatic analysis

and show that for each double-trace diagram in N = 4 there is an analogous diagram in the

orientifold daughter and vice versa. Finally, we present our concluding remarks in Section

4.

II. ORIENTIFOLD CONSTRUCTION

The field theory in which we are interested in is a non-supersymmetric SU(N) gauge

theory that arises as the low energy description of D3-branes in a non-tachyonic orientifold

of Type 0B.

A. Non-tachyonic Ω′ projection

The Type 0B modular invariant partition function is given by the following string states

(NS−,NS−)⊕(NS+,NS+)⊕(R−,R−)⊕(R+,R+) .

As is well known there is a tachyonic state coming from the (NS-,NS-) sector. This theory

admits more than one consistent orientifold projection characterized by different definitions
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of the parity operator Ω [17–19]. The parity operator that gives a non-tachyonic orientifold

is usually denoted by Ω′ = Ω(−1)fR , where fR is the right world-sheet fermion number. The

projected theory 0B/Ω′ is called 0′B. This theory has no tachyon and is similar to the bosonic

sector of Type IIB. At the massless level it has a complete set of R-R fields, a graviton and

a dilaton.

B. Orientifold daughter

If we T-dualize in six directions we obtain the Ω(−1)fRI6 orientifold of Type 0B [14, 15],

where I6 is an inversion operator (xi → −xi, i=4,...,9). This theory contains an orientifold

O′3 plane at x4 = ... = x9 = 0. The gauge theory describing N D3-branes in the presence of

the O′3 plane is the orientifold daughter of N = 4 SYM we want to study. Its field content

is given by

SU(N)

Vector adj.

Scalars adj.

Weyl Fermions +

This theory is very similar to N = 4 SYM, there are 6 real scalars in the adjoint rep-

resentation and 4 Dirac fermions in the antisymmetric representation of the gauge group.

Its planar diagrams are the same as those in the parent theory, using a double-line notation

[21] is clear that the only difference is in the orientation of the color arrows for diagrams

involving fermions (see Figure 1). This suggests that the orientifold daughter and the parent

theory are equivalent in the large N limit. However, we have to be careful with potential

double-trace terms as they might render the theory non-conformal.

(a) N = 4 SYM (b) Orientifold

FIG. 1. Fermionic contribution to the scalar self-energy. The only difference is the orientation of

the arrows.
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We know that in geometric orbifolds of N = 4 SYM there is a one-to-one correspondence

between the presence of tachyons in the flat space string theory and the breaking of conformal

invariance [12]. The absence of a tachyon in the flat space construction of the orientifold

field theory is then encouraging. Still, we feel an explicit analysis is necessary in order to

check whether this theory suffers from double-trace running or not.

III. DIAGRAMMATIC ANALYSIS

Here we consider consider double-trace contributions to the effective action for the ori-

entifold daughter. We will show that they cancel by comparing them with the respective

diagrams in N = 4, which we know does not suffer from double-trace running.

A. One-loop diagrams

The lagrangian of N = 4 SYM is well known,

L = N

(

− 1

2
FµνF

µν + iψ̄aσ̄µDµψa −DµX
IDµXI

+ 2
√
λCIabψaX

Iψb + 2
√
λC̄I

abψ̄
aXIψ̄b +

λ

2
[XI , XJ ]2

)

. (2)

The orientifold daughter is obtained through the replacement

ψ j
i → {ξ[ij], η[ij]} , (3)

where i, j are color indices [22]. Its lagrangian is

L = N

(

− 1

2
FµνF

µν +
i

2
η̄aσ̄µDµηa +

i

2
ξ̄aσ̄µDµξa −DµX

IDµXI

+ 2
√
λCIabξaX

Iηb + 2
√
λC̄I

abη̄
aXI ξ̄b +

λ

2
[XI , XJ ]2

)

. (4)

The color structure of the fermion propagators is as follows,

〈ψ j
i ψ̄

l
k 〉 ∼ δliδ

j
k , (5)

〈ξ[ij]ξ̄[kl]〉 ∼ δliδ
k
j − δki δ

l
j , (6)

〈η[ij]η̄[kl]〉 ∼ δilδ
j
k − δikδ

j
l . (7)
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FIG. 2. Fermionic propagators in a double-line notation.

From Figure 2 we see that the orientifold daughter has an extra “non-planar” term coming

from the antisymmetry of the color indices.

We are only interested in double trace contributions. In particular,

δL = a(λ)OIJOIJ + b(λ)O2 , (8)

where

OIJ = Tr

(

XIXJ − δIJ

6
XKXK

)

, (9)

O = TrXKXK , (10)

and a(λ), b(λ) are functions of the ’t Hooft coupling.

These terms are easy to identify using the double-line notation, some sample contributions

for N = 4 SYM are shown in Figure 3. The bosonic diagrams are identical in both theories

and we know that the N = 4 SYM does not have double-trace running. Then, we only need

to concentrate in the fermions. There are two different sets of Wick contractions that give

fermionic double-trace contributions in N = 4, Figures 3(b) and 3(c).

To prove cancellation of double-trace terms in the orientifold we need to find equivalent

fermionic diagrams, these are shown in Figure 4. These two diagrams will give identical

contributions as those of the parent theory and the cancellation of double-trace terms is then

guaranteed. We see that the non-planarities in the N = 4 diagrams are here implemented

by the non- planar component of the fermion propagator. The extra minus sign in the non-

planar part could have presented a problem, however, both diagrams have an even number
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(a)
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ψ ψ̄

ψ̄ ψ

ψ̄ ψ

(b)

ψ ψ̄

ψ ψ̄

ψ̄ ψ

ψ̄ ψ

(c)

FIG. 3. Figure (a) is a bosonic contribution to the double-trace potential. Figures (b) and (c) are

fermionic contributions.

of them. This simple analysis confirms that the orientifold theory has no double-trace

contributions at one loop.

ξ ξ̄

η η̄

η̄ η

ξ̄ ξ

(a)

ξ ξ̄

η η̄

η̄ η

ξ̄ ξ

(b)

FIG. 4. Fermionic one-loop contributions from the orientifold daughter.

B. Two-loop example

At two-loops we should have one power of N coming from a closed color loop, if not,

the diagram is sub-leading. As before, we only need to concentrate on the diagrams with

fermions. Because we will proceed with an all-loop analysis in the next section we only

consider one two-loop example, this is shown in Figure 5.

From the color flows is clear that we have a factor of N coming from a closed color loop.

Also, for the orientifold, we have an even number of non-planar propagators and so there is

no extra minus sign.
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(a) (b)

FIG. 5. Figure (a) is a two-loop diagram in N = 4 SYM. Figure (b) is the orientifold counterpart.

C. All-loop

Here we will argue for the cancellation of double-trace terms at all loops. At ℓ-loops the

leading single and double-trace contributions are of the form,

δLST ∼ Nλℓ+1TrX4 and δLDT ∼ λℓ+1TrX2TrX2 . (11)

The key thing to notice is that a leading double-trace diagram should have N ℓ−1 from closed

color loops1. If we compare this with the N ℓ of a leading single-trace diagram it’s clear that

the double-trace contributions we are interested in are almost planar. The unique topology

is shown in Figure 6(a). It’s not hard to see that the double-trace diagrams of the previous

sections are of this form.

(a) (b)

FIG. 6. Figure (a) is a leading ℓ-loop double-trace diagram, it has N ℓ−1 coming from closed color

loops. Figure (b) is sub-leading.

To prove that the orientifold daughter does not suffer from double-trace running we will

1 In our normalization we have an overall factor of N multiplying the lagrangian, this implies that each

propagator goes as ∼ 1

N
.
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proceed as before. For each double-trace contribution in N = 4 SYM we will show that

there is an equivalent diagram in the orientifold and vice versa.

Consider an arbitrary leading double-trace diagram like the one shown in Figure 6(a).

Topologically we have an inner and an outer boundary where the external bosonic legs sit

and a number of color loops between them. Now, let’s connect the external legs belonging

to the inner boundary using an “auxiliary” bosonic propagator as shown in Figure 7.

FIG. 7. Leading ℓ-loop double-trace diagram with an auxiliary bosonic propagator (dashed) con-

tracting two external legs (compare with Figure 6(a)).

After this contraction we have a planar diagram (the new topology consists of a single

boundary with two external legs) but we know that there is a one-to-one correspondence

between the planar diagrams of these two theories [16]. We also know that the bosonic fields

are identical in both theories and the only difference between Figure 6(a) and Figure 7 is

a bosonic contraction, this implies that if there is a one-to-one correspondence between the

diagrams of the form depicted in Figure 7 then, there is also a one-to-one correspondence

between the class of diagrams depicted in Figure 6(a). Let’s rephrase this last statement:

If we have a one-to-one correspondence between planar diagrams in N = 4 SYM and its

orientifold daughter, then we also have a one-to-one correspondence between the leading

double-trace contributions to the scalar four-point function. This concludes our analysis

and confirms that both theories have identical leading double-trace contributions at all

loops.
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IV. DISCUSSION

In this note we have shown by an explicit diagrammatic analysis that the orientifold

daughter of N = 4 SYM does not suffer from double-trace running. This is in agreement

with the results of [12] and [20], where a one-to-one correspondence was found between the

breaking of conformal invariance and the presence of tachyons in the flat space string theory.

Our calculation is yet another example that confirms this observation, namely that the flat

space theory seems to know about the stability of the field theory.

In the full 0B string theory the calculation of [8, 11] implies that there is a string state

becoming tachyonic in the dual AdS background for sufficiently small λ (large curvature).

The results of this paper confirm that the orientifold daughter is stable and hence the AdS

dual contains no tachyon. It would be interesting to understand more directly how the

tachyon is projected out. Sadly, the AdS background dual to the orientifold daughter is not

known. In [23] an outline was given of the main characteristics the dual theory should have.

However, an explicit solution is yet to be found.
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