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Abstract

It is shown that in a scale-invariant relativistic field theory, any field ψn belonging to the (j, 0)
or (0, j) representations of the Lorentz group and with dimensionality d = j + 1 is a free field.
For other field types there is no value of the dimensionality that guarantees that the field is free.
Conformal invariance is not used in the proof of these results, but it gives them a special interest;
as already known and as shown here in an appendix, the only fields in a conformal field theory that
can describe massless particles belong to the (j, 0) or (0, j) representations of the Lorentz group
and have dimensionality d = j + 1. Hence in conformal field theories massless particles are free.
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This note will show that in a scale-invariant relativistic field theory, any fields that belong to
the minimal 2j + 1-component (j, 0) or (0, j) representations of the Lorentz group (where j is an
integer or half-integer) and have canonical dimensionality d = j + 1 are necessarily free fields.
This conclusion is already known for j = 0 [1]; here it is extended to all spins. Although conformal
invariance is not used here, this result gains interest from the fact [2] that in conformal field theories
the only fields that can describe massless particles belong to the (j, 0) and (0, j) representations
of the Lorentz group and have canonical dimensionality. An elementary proof of this theorem is
given in an appendix. It follows that, according to the main result of the present paper, massless
particles in a conformally invariant field theory must be free particles.

To begin, consider a field ψn(x) belonging to any representation of the Lorentz group. Poincaré
invariance tells us that

LρσGnm(z) = −
∑

l

[Jρσ]nlGlm(z) +
∑

l

Gnl(z)[J
†
ρσ ]lm (1)

where G is the vacuum expectation value

Gnm(x− y) ≡
〈

0
∣

∣

∣ψn(x)ψ†
m(y)

∣

∣

∣0
〉

, (2)

Lρσ are the differential operators

Lρσ ≡ −izρ
∂

∂zσ
+ izσ

∂

∂zρ
, (3)

and [Jρσ]nm are the matrices representing the generators of the Lorentz group in the representation
furnished by the field ψ(x). Iteration of Eq. (1) gives (suppressing matrix indices)

LρσLρσG(z) = J ρσJρσG+GJ † ρσJ †
ρσ − 2J ρσGJ †

ρσ (4)

The point of this exercise is that by elementary commutations of derivatives and coordinates,
one can derive the identity

LρσLρσ = −2z22 + 2S2 − 4S , (5)

where 2 ≡ ∂2/∂zρ∂zρ is the usual d’Alembertian, and S is the scale transformation operator

S ≡ −zρ
∂

∂zρ
. (6)

(This is analogous to the identity in three dimensions that can be used to show that the Laplacian
of the spherical polynomial rℓY m

ℓ (θ, φ) vanishes.) We will use Eqs. (4)–(6) to show that if ψ belongs
to the (j, 0) or (0, j) representations of the Lorentz group and has canonical dimensionality then
2ψ = 0.

If ψ(x) belongs to the (j, 0) representation of the Lorentz group, then

Jij = ǫijkJk , Ji0 = −iJi , (7)

where Ji are the Hermitian matrices representing the generators of the rotation group in its spin j
representation. It follows that

1

2
J ρσJρσG = 2JiJiG = 2j(j + 1)G

1

2
GJ †ρσJ †

ρσ = 2GJ †
i J

†
i = 2j(j + 1)G (8)

J ρσGJ †
ρσ = 0 .
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Also, if ψ has dimensionality d (counting powers of momentum) then in a scale-invariant theory

S G(z) = 2dG(z) . (9)

So for these fields, Eq. (4) reads

−2z22G(z) + 8d2G(z) − 8dG(z) = 8j(j + 1)G(z) , (10)

and in particular, for d = j + 1,
2G(z) = 0 . (11)

Operating again with a d’Alembertian, it follows trivially that

0 =
〈

0
∣

∣

∣2xψn(x) [2yψm(y)]†
∣

∣

∣0
〉

, (12)

so
[2yψm(y)]†

∣

∣

∣0
〉

= 0 (13)

But any local operator that annihilates the vacuum must vanish[3], so

2yψm(y) = 0 , (14)

and the field is therefore free. The proof for (0, j) fields is identical, except for an inconsequential
difference of sign of Ji0. This does not say that the theory for which 2yψm(y) = 0 is a free-field
theory, but only that the field ψn is free; there may be other fields in the same theory, which trans-
form according to other representations of the Lorentz group and/or have other dimensionalities,
that are not free.

It is only fields belonging to the (j, 0) or (0, j) representations of the Lorentz group that can be
shown in this way to be free. Indeed, for fields χr belonging to other irreducible representations of
the Lorentz group, there is no value of dimensionality d for which it is guaranteed that 2χr = 0.
If χr transforms according to the (j, j′) representation, then χrχ

†
s in general transforms reducibly,

as a sum of the representations (A,B) with both A and B running by unit steps from |j − j′| to
j+j′. The vacuum expectation value F ≡ 〈0|χrχ

†
s|0〉 has a corresponding decomposition into terms

F (A,B) belonging to the same representations, for which in place of Eq. (10) we have

−2z22F (A,B)(z) + 8d2 F (A,B)(z) − 8dF (A,B)(z) = 4[A(A + 1) +B(B + 1)]F (A,B)(z) . (15)

If F (A,B) itself is non-zero, then the only way that 2F (A,B) can vanish is if d takes a value for which

2d(d − 1) = A(A+ 1) +B(B + 1) . (16)

There is obviously no value of d for which this is satisfied for all values of A and B between |j − j′|
and j + j′ unless either j′ = 0 or j = 0, in which case both A and B take the unique value j or j′.
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APPENDIX: MASSLESS PARTICLE FIELDS IN CONFORMAL THEORIES

This appendix offers an elementary demonstration of Mack’s result [2], that the only fields in
a conformal field theory that can describe a massless particle of helicity j or −j (in the sense that
the field has a non-vanishing matrix element between the particle state and the vacuum) is a (0, j)
or (j, 0) field of canonical dimensionality d = j + 1. Together with the main result of the present
work, this shows that massless particles in conformal field theories are free.

It is necessary first to say how massless particle states transform under infinitesimal conformal
transformations. This is already known[4] (as I learned after working out the transformation rules),
but it is worth presenting a detailed derivation here to show that these transformation rules are
unique. To define the massless particle states, we first introduce a standard three-momentum κẑ of
magnitude κ in the +3-direction, and define a state |κẑ, σ〉 with this momentum and with helicity
σ, in the sense that this is an eigenstate of the generator J12 of rotations in the 1 − 2 plane with
eigenvalue σ:

J12|κẑ, σ〉 = σ|κẑ, σ〉 . (A.1)

In order to avoid introducing new continuous degrees of freedom, it is also necessary to assume
that these states are annihilated by the generators of the invariant Abelian subgroup of the little
group (the group of Lorentz transformations that leave the standard three-momentum invariant):

[J10 + J13]|κẑ, σ〉 = [J20 + J23]|κẑ, σ〉 = 0 . (A.2)

We then take
|p, σ〉 ≡ U

(

L(p)
)

|κẑ, σ〉 , (A.3)

where U
(

L(p)
)

is the unitary operator representing a standard Lorentz transformation Lµ
ν(p)

that takes the standard three-momentum κẑ to p. For instance, we can take Lµ
ν(p) as a boost

along the 3-axis that takes κẑ to |p|ẑ, followed by a rotation in the ẑ − p̂ plane that takes |p|ẑ to
p. These states are here normalized to have the Lorentz-invariant scalar product

〈p, σ|p′, σ′〉 = δσσ′ |p| δ3(p− p′) , (A.4)

rather than the conventional scalar product which does not contain the factor |p|. As is well
known[5], acting on such a state, the unitary operator U(Λ) representing a Lorentz transformation
Λµ

ν gives∗∗

U(Λ)|p, σ〉 = exp
(

iσφ(p,Λ)
)

|Λp, σ〉 (A.5)

∗∗We take i, j, k, · · · to run over the spatial coordinate indices 1, 2, 3, while µ, ν, · · · run over the spacetime indices

0, 1, 2, 3. Repeated indices are summed, and the spacetime metric ηµν has non-zero components η11 = η22 = η33 = 1,

η00 = −1.
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where (Λp)i ≡ Λi
jp

j + Λi
0|p|, and φ is the real angle appearing in the Wigner rotation for massless

particles:

U
(

L−1(Λp)Λ L(p)
)

|κẑ, σ〉 = exp
(

iσφ(p,Λ)
)

|κẑ, σ〉 . (A.6)

For infinitesimal Lorentz transformations Λµ
ν = δµν + ωµ

ν (with ωµν ≡ ωµ
λ η

νλ infinitesimal
and antisymmetric) we have

U(1 + ω) = 1 +
i

2
ωµνJµν (A.7)

with Jµν Hermitian and antisymmetric in µ and ν, and satisfying the commutation relations

i[Jµν , Jκλ] = ηνκJµλ − ηµκJνλ − ηνλJµκ + ηµλJνκ . (A.8)

In this case, Eq. (A.5) reads

Jij |p, σ〉 =

[

i

(

pi
∂

∂pj
− pj

∂

∂pi

)

+ σφij(p)

]

|p, σ〉 , (A.9)

Ji0|p, σ〉 =

[

i|p|
∂

∂pi
+ σφi0(p)

]

|p, σ〉 , (A.10)

where the antisymmetric real coefficients φµν (which will play a large role in what follows) are
defined by

φ(p, 1 + ω) =
1

2
ωµνφµν(p) . (A.11)

Of course, also
Pµ|p, σ〉 = pµ|p, σ〉 , (A.12)

with p0 = |p|. It is straightforward to check that the operators (A.9), (A.10), and (A.12) are
Hermitian within the norm (A.4).

The functions φµν can be calculated from Eq. (A.6) in any convenient representation of the
Lorentz group, such as the two-component fundamental spinor representation. The result is

φij(p) =
ǫijk (p̂+ ẑ)k

1 + p̂ · ẑ
, φi0(p) = −

(p̂ × ẑ)i
1 + p̂ · ẑ

. (A.13)

These formulas depend on a particular prescription for the standard Lorentz transformation L(p)
that takes κẑ to p. Suppose we change this prescription by introducing some other Lorentz trans-
formation L′(p) that takes κẑ to p, The Lorentz transformation L−1(p)L′(p) is an element of the

little group, and therefore merely muliples |κẑ, σ〉 with a phase factor exp
(

iζ(p)
)

, so if we use

L′(p) in place of L(p) in Eq. (3) the one particle state is changed to

|p, σ〉′ ≡ U
(

L′(p)
)

|κẑ, σ〉 = U
(

L(p)
)

U
(

L−1(p)L′(p)
)

|κẑ, σ〉

= exp
(

iζ(p)
)

|p, σ〉 . (A.14)

Thus the formulas (A.13) for φij(p) and φi0(p) represent a particular convention for the phase
of these states, supplementing the convention (A.4) we have adopted for the normalization of the
states.

5



The generators of the conformal symmetry group in four spacetime dimensions comprise the
generator S of scale transformations and the generators Kµ of special conformal transformations,
together with the generators Jµν and Pµ of Poincaré transformations. They satisfy the well-known
commutation relations

i [Kµ , Jρλ] = ηµρKλ − ηµλKρ , (A.15)

[Kµ,Kν ] = 0 , (A.16)

i[Pµ , Kν ] = 2Jµν + 2ηµνS , (A.17)

i[S,Pµ] = Pµ , (A.18)

i[S,Kµ] = −Kµ , (A.19)

[S, Jµν ] = 0 , (A.20)

as well as the familiar commutation relations of the Poincaré group:

i [Jµν , Jρλ] = ηνρJµλ − ηµρJνλ − ηλµJρν + ηλνJρµ , (A.21)

i [Pµ , Jρλ] = ηµρPλ − ηµλPρ , (A.22)

[Pµ , Pρ] = 0 . (A.23)

It is straightforward though quite tedious to show that these commutation relations are satisfied
by the following operators on one-particle states:

K0|p, σ〉 =

[

|p|
∂2

∂pk∂pk
− 2iσφk0(p)

∂

∂pk

−
σ2

|p|
(φk0(p)φk0(p) + 1)

]

|p, σ〉 (A.24)

Ki|p, σ〉 =

[

2pk
∂2

∂pk ∂pi
− pi

∂2

∂pk ∂pk
+ 2

∂

∂pi

+ 2iσφik(p)
∂

∂pk
+
σ2

|p|

(

2φik(p)φk0(p) − p̂i[φk0(p)φk0(p) + 1]
)

]

|p, σ〉 ,

(A.25)

S|p, σ〉 = i

[

pk
∂

∂pk
+ 1

]

|p, σ〉 , (A.26)

together with the Poincaré transformation operators (A.9), (A.10), and (A.12). (These results agree
with those of [4] when we use the formulas (A.13) for φµν(p), but in what follows it will be convenient
to leave the transformation rules in the form (A.24)–(A.26).) What is less straightforward is to
show that, given massless particle states |p, σ〉 satisfying the Poincaré transformation rules (A.9),
(A.10), and (A.12), the only conformal transformation properties consistent with the commutation
relations are those given in Eqs. (A.24)–(A.26). To show this, we will outline the steps by which
Eqs. (A.24)–(A.26) are derived.

(a) The commutation relation (A.17) gives [K0, Pi] = 2iJi0. This uniquely fixes the derivative terms
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in Eq. (A.24). That is,

K0|p, σ〉 =

[

|p|
∂2

∂pk∂pk
− 2iσφk0(p)

∂

∂pk
+ α(p)

]

|p, σ〉 , (A.27)

with α(p) some c-number function that remains to be calculated. Using Eqs. (A.4) and (A.13), we
easily see that for K0 to be Hermitian, α(p) must be real.

(b) The commutation relation (A.17) also gives [K0, P0] = −2iS. Using Eqs. (A.12) and (A.27),
we obtain Eq. (A.26) for the action of the dilation generator S on one-particle states.

(c) Using Eq. (A.13) together with Eqs. (A.27) and (A.9), we can calculate that

[Jij ,K0]|p, σ〉 = −i|p, σ〉

{

pi
∂

∂pj
− pj

∂

∂pi

}

[

α(p) + φk0(p)φk0(p)/|p|
]

.

Since this must vanish, α(p)+φk0(p)φk0(p)/|p| must be a function only of the modulus |p|. Further,
Eqs. (A.19) and (A.26) tell us that this function scales as 1/p, and hence must take the form a/|p|,
with a real and p-independent. Hence Eq. (A.27) reads

K0|p, σ〉 =

[

|p|
∂2

∂pk∂pk
− 2iσφk0(p)

∂

∂pk
−
φk0(p)φk0(p) − a

|p|

]

|p, σ〉 , (A.28)

(d) From Eq. (A.15), we have Ki = −i[Ji0,K0]. Using the formulas (A.10) and (A.28) for the
operators Ji0 and K0 , we find

Ki|p, σ〉 =

[

2pk
∂2

∂pi∂pk
− pi

∂2

∂pk ∂pk
+ 2

∂

∂pi
+ 2iσφik(p)

∂

∂pk

−
2σ2

|p|
φk0(p)φki(p) − p̂i

σ2φk0(p)φk0(p) − a

|p|

]

|p, σ〉 . (A.29)

(e) It only remains to find the constant a. We can do this by requiring that Kµ be a four-vector.
Since we have constructed K0 to be a rotational scalar and Ki to be equal to −i[Ji0,K0], the
remaining requirement provided by Eq. (A.15) is that [Ji0,Kj ] = iδijK0. Now using the formulas
(A.13), equating the coefficients of δij in the non-derivative terms on both sides of this commutation
relation, we find a = −σ2. Eqs. (A.28) and (A.29) are then the desired results (A.24) and (A.25).

Now let us turn to the transformation of field operators. We will consider here only fields that
transform linearly and homogeneously under Poincaré transformations:

i[Jµν , ψn(x)] = −i
∑

m

J µν
nmψm(x) + (xν∂µ − xµ∂ν)ψn(x) (A.30)

i[Pµ, ψn(x)] = −∂µψn(x) (A.31)

where J µν is a set of spin matrices that satisfy the same commutation relation (A.21) as Jµν . This
excludes gauge fields, whose Lorentz transformation properties in an operator formalism (rather
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than a path-integral formalism) include a gauge transformation in addition to the transformation
(A.30).

A primary field may be defined as one with the familiar conformal transformation properties:

i[Kν , ψn(x)] = −2i
∑

m

[Jµν ]nmx
µψm(x) + 2dn xνψn(x) + (2xνx

ρ∂ρ − x2∂ν)ψn(x) , (A.32)

i[S,ψn(x)] = dnψn(x) + xµ∂µψn(x) , (A.33)

where dn is a real number, known as the conformal dimensionality of the field. Since neither Lorentz
nor conformal transformations mix different irreducible representations of the Lorentz group, we
will assume without loss of generality that the matrices Jµν furnish an irreducible representation
of the algebra of the Lorentz group.

Our aim in this appendix is to find what kinds of primary fields can describe a massless particle
of a given helicity σ. By a field “describing” a particle, we mean that the field has non-vanishing
matrix elements between the particle state and the vacuum. The propagator of such a field will
have a zero mass pole whose residue is proportional to the product of this matrix element and its
complex conjugate, so that S-matrix elements for this particle can be found from the residues of
poles in the vacuum expectation value of time-ordered products of the field.

Let’s first take up the simple case of dilations. Assuming that the vacuum is invariant under
these transformations, Eq. (A.33) gives

−i〈0|ψn(0)S|p, σ〉 = dn〈0|ψn(0)|p, σ〉 (A.34)

With Eq. (A.26), this becomes

dn〈0|ψn(0)|p, σ〉 =

[

pk
∂

∂pk
+ 1

]

〈0|ψn(0)|p, σ〉 . (A.35)

The way that the matrix element 〈0|ψn(0)|p, σ〉 scales with momentum depends on the Lorentz
transformation properties of the field ψn. Recall that the general irreducible representations of
the Lorentz group are labeled (A,B), where A and B are positive integers or half-integers. These
representations are defined by writing the matrices representing the generators of the Lorentz group
in terms of two Hermitian matrix 3-vectors defined by

Ai ≡
1

2
Ji +

i

2
Ji0 , Bi ≡

1

2
Ji −

i

2
Ji0 , (A.36)

where as usual Ji ≡
1
2ǫijkJjk. The commutation relations of the Jµν tell us that

[Ai,Aj ] = iǫijkAk , [Bi,Bj ] = iǫijkBk , [Ai,Bj] = 0 . (A.37)

In the (A,B) representation of the Lorentz group, these are A×A and B ×B matrices, such that

A2 = A(A+ 1) , B2 = B(B + 1) . (A.38)

It is an old result [6] that the only free fields that can describe a massless particle of helicity σ have

σ = B −A (A.39)
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and have matrix elements between the vacuum and these one-particle states that scale as pA+B;
that is

pk
∂

∂pk
〈0|ψn(0)|p, σ〉 = (A+B)〈0|ψn(0)|p, σ〉 . (A.40)

It is easy to show using Lorentz invariance that Eqs. (A.39) and (A.40) also hold for general
interacting fields. Combining Eq. (A.40) with Eq. (A.35) gives the conformal dimensionality

d = A+B + 1 . (A.41)

in which we drop the subscript n on dn since this is the same for all components of a field belonging
to an irreducible representation of the Lorentz algebra. Thus fields of Lorentz type (A,B) that
describe a massless particle (in the sense explained above) can only have conformal dimensionality
A+B + 1

Now let’s consider special conformal transformations. We will compare what we have learned
about the conformal transformation properties of one-particle states with the consequences of the
conformal transformation properties of a primary field that can describe such a particle. By taking
the matrix element of Eq. (A.32) for ν = 0 between a one-particle state |p, σ〉 and the vacuum, and
assuming that the vacuum is conformal-invariant, we find

〈0|ψn(x)K0|p, σ〉 = 2
∑

n

[Ji0]nmx
i〈0|ψm(x)|p, σ〉

+ 2id x0〈0|ψn(x)|p, σ〉 − (2x0x
ρpρ + x2)|p|〈0|ψn(x)|p, σ〉 . (A.42)

We need to rearrange the right-hand side of Eq. (A.42) so that it takes the form 〈0|ψn(x)K|p, σ〉,
where K is some xρ-independent matrix function of momentum and momentum derivatives, and
then compare K|p, σ〉 with what Eq. (A.24) gives for K0|p, σ〉. For this purpose, we first re-write
Eq. (A.42) so that it reads

〈0|ψn(x)K0|p, σ〉 = 2
∑

n

[Ji0]nmx
i〈0|ψm(x)|p, σ〉

+ 2i(d − 1)x0〈0|ψn(x)|p, σ〉 + 〈0|ψn(0)|p, σ〉 |p|
∂2eip·x

∂pk∂pk

= 2
∑

n

[Ji0]nmx
i〈0|ψm(x)|p, σ〉 + 2ix0 e

ip·x

[

d − 1 − pk
∂

∂pk

]

〈0|ψn(0)|p, σ〉

− 2i|p|eip·xxk
∂

∂pk
〈0|ψn(0)|p, σ〉 − |p|eip·x

∂2

∂pk∂pk
〈0|ψn(0)|p, σ〉

+ 〈0|ψn(x)|p|
∂2

∂pk∂pk
|p, σ〉 . (A.43)

Eq. (A.35) tells us that the term in the final expression proportional to x0 vanishes, as it must.
To calculate the derivatives of 〈0|ψn(0)|p, σ〉 with respect to momentum, we use Lorentz invari-

ance. Combining Eq. (A.30) for x = 0 with Eq. (A.10), we find

i|p|
∂

∂pk
〈0|ψn(0)|p, σ〉 =

∑

m

[Jk0]nm〈0|ψm(0)|p, σ〉 − σφk0〈0|ψn(0)|p, σ〉 .
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Using this formula, and its derivative with respect to pk, together with Eq. (A.13), we put Eq. (A.43)
in the form

〈0|ψn(x)K0|p, σ〉 =
1

|p|

∑

m

[Jk0Jk0]nm〈0|ψm(x)|p, σ〉

−
2σφk0
|p|

∑

m

[Jk0]nm〈0|ψm(x)|p, σ〉

+σ2φk0φk0〈0|ψn(x)|p, σ〉 + 2σφk0xk〈0|ψn(x)|p, σ〉

+ 〈0|ψn(x)|p|
∂2

∂pk∂pk
|p, σ〉 + eip·xp̂k

∂

∂pk
〈0|ψn(0)|p, σ〉 . (A.44)

Using the formula (A.13) for φk0, we can write

φk0xke
ip·x = φk0[xk + p̂kx0]eip·x = −iφk0

∂

∂pk
eip·x

and put the fourth term in Eq. (A.44) in the form

2σφk0xk〈0|ψn(x)|p, σ〉 = −2iσφk0〈0|ψn(x)
∂

∂pk
|p, σ〉

+
2σ

|p|
φk0

∑

m

[Jk0]nm〈0|ψm(x)|p, σ〉 −
2σ2

|p|
φk0φk0〈0|ψn(x)|p, σ〉 .

The next-to-last term here cancels the second term in Eq. (A.44). Using Eq. (A.40) again, Eq. (A.44)
now takes almost the desired form:

〈0|ψn(x)K0|p, σ〉 =

〈

0

∣

∣

∣

∣

∣

ψn(x)
[

|p|
∂2

∂pk∂pk
− 2iσφk0

∂

∂pk

−
σ2

|p|
φk0φk0 +

A+B

|p|

]

∣

∣

∣

∣

∣

p, σ

〉

+
1

|p|

∑

m

[Jk0Jk0]nm〈0|ψm(x)|p, σ〉 . (A.45)

Comparing this with Eq. (A.24), we see that for a field ψ to describe a massless particle of helicity
σ, it is necessary that

[Jk0Jk0]nm = −δnm
[

σ2 +A+B
]

= −δnm
[

(B −A)2 +A+B
]

(A.46)

But by using Eqs. (A.36) and (A.38), we see that

[Jk0Jk0]nm = [JiJi]nm − 2δnm[A(A+ 1) +B(B + 1)] (A.47)

so the requirement (A.46) is that

[J 2]nm = δnm
[

− (B −A)2 −A−B + 2A(A + 1) + 2B(B + 1)
]

. (A.48)
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This rules out most irreducible representations of the Lorentz group, for which J 2 takes different
values for different components. For instance, in the (1/2, 1/2) four-vector representations, J 2

takes the value 0 for the time-component and the value 1(1 + 1) for the space components. The
only irreducible representations for which J 2 takes the same value for all components are the
2j + 1-dimensional representations (j, 0) and (0, j), with j a positive integer or half-integer. For
all these representations Eq. (A.48) is satisfied, since with either A = j and B = 0 or A = 0 and
B = j, we have J 2 = j(j + 1) and −(B −A)2 −A−B + 2A(A + 1) + 2B(B + 1) = j(j + 1).

We conclude then that the only primary field that in a conformally invariant theory can describe
a massless particle of helicity σ is the (j, 0) representation if σ = −j or the (0, j) representation if
σ = j. The conformal dimensionalities of these fields are simply d = j + 1. Other fields of type
(A,B) with B−A = σ can describe a massless particle of helicity σ = ±j, but these are spacetime
derivatives of fields of type (j, 0) or (0, j), and cannot have the conformal transformation properties
(A.30)–(A.33) of a primary field.
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