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Abstract

We show that the double-copy structure of gravity forbids divergences in pure half-maximal (16

supercharge) supergravity at four and five points at one loop in D < 8 and at two loops in D < 6.

We link the cancellations that render these supergravity amplitudes finite to corresponding ones

that eliminate forbidden color factors from the divergences of pure nonsupersymmetric Yang-Mills

theory. The vanishing of the two-loop four-point divergence in D = 5 half-maximal supergravity is

an example where a valid counterterm satisfying the known symmetries exists, yet is not present.

We also give explicit forms of divergences in half-maximal supergravity at one loop in D = 8 and

at two loops in D = 6.

PACS numbers: 04.65.+e, 11.15.Bt, 11.30.Pb, 11.55.Bq
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I. INTRODUCTION

Recent years have made it clear that even at loop level perturbative scattering amplitudes

in gravity theories are closely related to corresponding ones in gauge theories. In particular,

a recent conjecture holds that whenever a duality between color and kinematics is made

manifest, the integrands of (super)gravity loop amplitudes can be obtained immediately

from corresponding gauge-theory ones [1, 2]. It has been clear since the original loop-

level double-copy construction that it would have important implications for resolving long-

standing questions on the ultraviolet properties of gravity theories. An obvious question is

whether it can be used to show that N = 8 [3] and other supergravity theories have a tamer

than expected ultraviolet behavior. If each order of the perturbative expansion were finite,

it would imply a deep new structure of the theory.

The double-copy structure has been used to simplify new nontrivial calculations of the

ultraviolet properties of supergravity amplitudes, demonstrating behavior remarkably similar

to corresponding gauge-theory amplitudes. In explicit calculations of amplitudes one can,

of course, directly confirm that the conjectured duality and double-copy properties hold.

For example, through at least four loops, the ultraviolet divergences of N = 8 supergravity

in the critical dimension where they first occur are proportional to divergences appearing

in the subleading-color terms of corresponding N = 4 super-Yang-Mills amplitudes [4–

6]. The double-copy construction also played a key role in a recent computation showing

that all three-loop four-point amplitudes in N = 4 supergravity in D = 4 [7] are ultraviolet

finite [8], contrary to expectations based on the availability of an apparently supersymmetric

and duality invariant [9] R4 counterterm [10].

In this paper, we use the double-copy construction to explain ultraviolet finiteness in

a simpler example: the four- and five-point two-loop potential divergences in D = 5 half-

maximal supergravity [11]. We directly link the finiteness of the half-maximal supergravity

four- and five-point amplitudes at one loop in D < 8 and at two loops in D < 6 to ultraviolet

cancellations of forbidden color factors in gauge-theory amplitudes. This can be understood

in terms of generalized gauge invariance [1, 2, 12, 13], which links the symmetries and

cancellations of gauge theory to those of gravity. We note that the absence of the potential

D = 5 two-loop four-point divergence has been seen from string-theory calculations as well,

so it offers a good way to expose cancellations in the theory [14].
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At present there does not appear to be an argument restricting counterterms using the

conventional symmetries of the theory to rule out this divergence. Indeed as shown in ref. [15]

the counterterm appears to be expressible as a duality invariant full superspace integral of a

density (which itself is not duality invariant). It would be very important to fully understand

the extent to which duality symmetry and supersymmetry by themselves can shed light on

counterterm restrictions in half-maximal supergravity at two loops in D = 5.

Some cases we study here are especially simple to analyze because the N = 4 super-

Yang-Mills amplitudes used on one side of the double-copy construction have diagrammatic

numerators that are independent of loop momenta. Because of this property, even after

performing the loop integration, the corresponding amplitudes in pure supergravity theories

with sixteen or more supercharges are simple linear combinations of corresponding gauge-

theory amplitudes [16, 17]. Indeed, using the double-copy construction, in ref. [18] one-loop

four- and five-point and two-loop four-point gravity amplitudes were expressed directly in

terms of certain subleading-color amplitudes of corresponding gauge theories. There the

authors found cancellations leading to the relatively mild infrared singularities in gravity,

similar to the way we find tamer ultraviolet behavior in gravity than in the gauge-theory

amplitudes from which they are built.

Besides the double-copy relation between gravity and gauge theory, there are other rea-

sons to believe that the ultraviolet behavior of gravity might be better than expected from

applying standard symmetry arguments. Even pure Einstein gravity at one loop exhibits

remarkable cancellations as the number of external legs increases, essentially scaling with

the number of external legs in the same way as gauge theory [19, 20]. Through unitar-

ity, such cancellations feed into nontrivial ultraviolet cancellations at all loop orders [21].

Very recently, resummations of N ≥ 4 supergravity amplitudes were shown to have surpris-

ingly good behavior in the high-energy Regge limit [22], suggestive of a connection to the

surprisingly good ultraviolet behavior of loop amplitudes in these theories.

Whether the observed cancellations are sufficient to render the theory ultraviolet finite

remains an open question. (For a recent optimistic opinion in favor of ultraviolet finiteness

of N = 8 supergravity see ref. [23]. For a recent pessimistic opinion see ref. [24].) In N = 8

supergravity in D = 4, in particular, no divergence can occur before seven loops, but a

consensus holds that a valid D8R4 counterterm exists at seven loops [25]. This may seem to

suggest that in D = 4 the theory diverges at seven loops [25]. Interestingly, the candidate
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full-superspace integral for the counterterm turns out to vanish [9], leaving only a BPS

candidate counterterm represented by an integral over 7/8 of the superspace. The potential

three-loop counterterm of N = 4 supergravity in D = 4 [7] is analogous in this regard, as

it too is BPS. In a previous paper [8], we proved by direct computation that the coefficient

of the expected three-loop counterterm in N = 4 supergravity vanishes. (See ref. [14] for

a string-theoretic argument of this vanishing and ref. [26] for a conjecture linking it to a

hidden superconformal invariance.) While no nonrenormalization theorems are known for

these cases, an important open question remains whether the BPS nature of the counterterm

plays a role in explaining the finiteness. In any case, based on the vanishing of divergences in

explicit calculations presented here and in ref. [8], we see that arguments based on applying

the known symmetries of supergravity theories can be misleading. It is therefore important

to carry out explicit computations to guide future studies. In particular, the arguments

suggesting a seven-loop divergence in D = 4 also suggest that in higher dimensions, N = 8

supergravity will be worse behaved than N = 4 super-Yang-Mills theory starting at five

loops due to the availability of a D8R4 counterterm. It should be possible to test this by

direct computation [27].

Besides explaining the nontrivial cancellation of two-loop four-point divergences in half-

maximal supergravity in D = 5, we also present the explicit forms of one-loop four- and

five-point divergences in D = 8 and two-loop four-point divergences in D = 6. We obtain

these using the same double-copy construction as used to demonstrate the vanishing of all

three-loop divergences of N = 4 supergravity in D = 4 [8]. In this construction, one copy is

a maximally supersymmetric Yang-Mills amplitude in a form in which the duality between

color and kinematics holds manifestly [2], while the second copy uses ordinary Feynman rules

in Feynman gauge. The diagrams are then expanded for large loop momenta (or equivalently

small external momenta) and integrated to extract the ultraviolet divergences [28]. The

explicit expressions for divergences presented here should be useful in future studies of the

symmetries and structure of half-maximal supergravity.

This paper is organized as follows. In Section II, we briefly review some basic features

of the duality between color and kinematics and the double-copy construction of gravity.

In Section III, we show that at four and five points the potential one-loop divergences

in half-maximal supergravity cancel in D < 8 by linking them to forbidden divergences

in corresponding gauge-theory amplitudes. We also present the explicit form of one-loop
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divergences in D = 8. Then in Section IV we show that the two-loop four- and five-point

amplitudes of half-maximal supergravity do not have divergences in D < 6. In addition,

this section contains an explicit expression for four-point D = 6 divergences. We give our

conclusions and outlook in Section V. An appendix computing the two-loop four-point

divergence of pure Yang-Mills theory in D = 5 is also included. These results are used

in Section IV to explicitly demonstrate ultraviolet cancellations in the corresponding half-

maximal supergravity amplitude.

II. REVIEW OF BCJ DUALITY

In this section we review the duality between color and kinematics conjectured by Car-

rasco, Johansson and one of the authors (BCJ) and the related double-copy construction of

gravity loop amplitudes [1, 2]. These properties underlie our ability to analyze the divergence

structure of half-maximal supergravity amplitudes. Recent applications to the half-maximal

theory of N = 4 supergravity in D = 4 can be found in refs. [8, 16–18].

A. Duality between color and kinematics

We can write any m-point L-loop gauge-theory amplitude with all particles in the adjoint

representation as

AL−loop
m = iLgm−2+2L

∑

Sm

∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

njcj
∏

αj
p2αj

. (2.1)

The sum labeled by j runs over the set of distinct non-isomorphic m-point L-loop graphs

with only cubic (i.e. trivalent) vertices. Sj is the symmetry factor of graph j, removing

overcounts from the sum over m! permutations of external legs indicated by Sm and from

internal automorphism symmetry. The product in the denominator runs over all Feynman

propagators of graph j. The integrals are over L independent D-dimensional loop momenta.

The cj are the color factors obtained by dressing every three-vertex with a group-theory

structure constant,

f̃abc = i
√
2fabc = Tr([T a, T b]T c) , (2.2)

and nj are kinematic numerators of graph j depending on momenta, polarizations and

spinors. For supersymmetric amplitudes expressed in superspace, there will also be Grass-
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mann parameters in the numerators. Contact terms in the amplitude are expressed in this

form by multiplying and dividing by appropriate propagators. We note that there is enor-

mous freedom in the choice of numerators, due to generalized gauge invariance [1, 2, 12, 13].

The conjectured duality of refs. [1, 2] states that to all loop orders there should exist a

form of the amplitude where kinematic numerators satisfy the same algebraic relations as

color factors. For Yang-Mills theory this amounts to imposing the same Jacobi identities on

the kinematic numerators as satisfied by the color factors,

ci = cj − ck ⇒ ni = nj − nk , (2.3)

where the indices i, j, k denote the diagram to which the color factors and numerators belong.

Moreover, the numerator factors are required to have the same antisymmetry property as

color factors under interchange of two legs attaching to a cubic vertex,

ci → −ci ⇒ ni → −ni . (2.4)

As explained in some detail in refs. [6, 29, 30], the numerator relations are functional equa-

tions. For four-point tree amplitudes such relations were noticed long ago [31]. Beyond

the four-point tree level, the relations are rather nontrivial and work only after appropriate

rearrangements of the amplitudes.

At tree level, explicit forms of amplitudes satisfying the duality have been found for

an arbitrary number of external legs [32]. An interesting consequence of the duality is

that color-ordered partial tree amplitudes satisfy nontrivial relations [1]. These have been

proven both in gauge theory and in string theory [33]. The duality is natural to understand

using the heterotic string because of the parallel treatment of color and kinematics [13].

Although we do not yet have a satisfactory Lagrangian understanding, some progress in

this direction can be found in refs. [12, 34]. The duality (2.3) has also been expressed in

terms of an alternative trace-based representation [35], emphasizing the underlying group-

theoretic structure of the duality. Indeed, progress has been made in understanding the

underlying infinite-dimensional Lie algebra [34, 36]. Interestingly, the duality between color

and kinematics also appears to hold in more exotic three-dimensional theories [37], as well

as in certain cases with higher-dimension operators [38]. Relations similar to tree-level ones

have also been shown to hold for the identical helicity one-loop amplitudes of pure Yang-Mills

theory [39].
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At loop level, although the duality remains a conjecture, a number of nontrivial checks

have been carried out. The duality has been confirmed to hold up to four loops for the

four-point amplitudes of N = 4 super-Yang-Mills theory [2, 6], and for the five-point one-

and two-loop amplitudes of this theory [5]. It is also known to hold for the identical-helicity

one- and two-loop four-point amplitudes of pure Yang-Mills theory [2].

B. Gravity as a double copy of gauge theory

Once the gauge-theory amplitudes have been arranged into the form (2.1) where the

numerators satisfy the duality (2.3), the corresponding gravity loop integrands become re-

markably simple to obtain [1, 2] via the replacement,

ci → ñi . (2.5)

The ñi are diagram numerators from a second gauge theory. Making the substitution (2.5)

in eq. (2.1) gives us the double-copy form of gravity amplitudes [1, 2],

ML−loop
m = iL+1

(κ

2

)n−2+2L ∑

Sm

∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

njñj
∏

αj
p2αj

, (2.6)

where ML−loop
m are m-point L-loop gravity amplitudes. In the double-copy formula (2.6),

only one of the two sets of numerators nj or ñj needs to satisfy the duality relation (2.3).

Here we are interested in half-maximal supergravity in D > 4 dimensions. This theory is

obtained via the double-copy formula by taking the direct product of pure nonsupersymmet-

ric Yang-Mills theory with maximally supersymmetric Yang-Mills theory. This construction

is the same one used to construct one- and two-loop amplitudes in N = 4 supergravity in

D = 4 [8, 16–18]. While the maximally supersymmetric Yang-Mills theory has exactly the

same number of states as N = 4 super-Yang-Mills theory does in four dimensions, the pure

nonsupersymmetric theory used in this construction has additional gluon states compared

to the D = 4 case.

At tree level, eq. (2.6) encodes the Kawai-Lewellen-Tye [40] relations between gravity

and gauge theory [1]. The double-copy formula has been proven at tree level when the

duality (2.3) holds in the corresponding gauge theories [12]. It has also been studied in some

detail in a number of cases through four loops in N = 8 supergravity [2, 5, 6], and through

three loops in N = 4 supergravity [8, 16, 17].
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FIG. 1: Diagram (a) specifies the four-point color factor c
(1)
1234 used in eq. (2.7), and diagram (b)

specifies the color factor c
(1)
12345 in eq. (2.14). Diagram (a) and its permutations appear in the four-

point amplitude of maximal super-Yang-Mills theory. At five points both (b) and (c) and their

permutations appear.

C. Supergravity with Q+ 16 supercharges at one and two loops

A color-dressed four-point one-loop (super) Yang-Mills amplitude can be expressed as [41]

A(1)
Q (1, 2, 3, 4) = g4

[

c
(1)
1234A

(1)
Q (1, 2, 3, 4) + c

(1)
1342A

(1)
Q (1, 3, 4, 2) + c

(1)
1423A

(1)
Q (1, 4, 2, 3)

]

. (2.7)

The c
(1)
1234 are the color factors of a box diagram with consecutive external legs (1, 2, 3, 4),

illustrated in Fig. 1(a), and dressed with structure constants f̃abc. Here, A
(1)
Q are one-

loop color-ordered amplitudes [42]. The label Q specifies the number of supercharges. For

maximally supersymmetric Yang-Mills (Q = 16), the amplitude is given by the one-loop

scalar box integral, with the corresponding diagram numerators given by [43]

n1234 = n1342 = n1423 = stAtree
Q=16(1, 2, 3, 4) , (2.8)

where Atree
Q=16(1, 2, 3, 4) is the color-ordered tree amplitude of maximal super-Yang-Mills the-

ory in any dimension and for any states of the theory. The Mandelstam invariants are

defined as s = (k1 + k2)
2, t = (k2 + k3)

2 and u = (k1 + k3)
2. It is straightforward to check

that this form satisfies the duality between color and kinematics.

To obtain pure supergravity amplitudes with Q+16 supercharges, we simply replace the

color factors with the corresponding numerators (2.8), yielding a rather simple formula,

M(1)
Q+16 = i

(κ

2

)4

stAtree
Q=16(1, 2, 3, 4)

[

A
(1)
Q (1, 2, 3, 4) + A

(1)
Q (1, 3, 4, 2) + A

(1)
Q (1, 4, 2, 3)

]

. (2.9)
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32

(b)

FIG. 2: The two-loop planar and nonplanar double-box diagrams.

In four dimensions, the prefactor in eq. (2.9) can be written in a supersymmetric form [44],

stAtree
Q=16(1, 2, 3, 4) = −iδ(8)(Q)

[1 2][3 4]

〈1 2〉〈3 4〉 , (2.10)

which makes half the supersymmetries manifest. Here 〈1 2〉 and [1 2] are the usual four-

dimensional spinor-inner products for Weyl spinors (see e.g. ref. [45]). In this form all

states of the N = 4 super-Yang-Mills multiplet are encoded in the Grassmann-valued delta

function of the supercharges Q. Simple superspace expressions also have been constructed

in six dimensions [46]. Here we do not use any superspace properties, other than the fact

that all states are encoded in one simple prefactor.

The two-loop four-point case is also relatively simple. The color-dressed two-loop four-

point (super) Yang-Mills amplitude can be conveniently written as [16, 17]

A(2)
Q (1, 2, 3, 4) = g6

[

cP1234A
P
Q(1, 2, 3, 4) + cP3421A

P
Q(3, 4, 2, 1) (2.11)

+ cNP
1234A

NP
Q (1, 2, 3, 4) + cNP

3421A
NP
Q (3, 4, 2, 1) + cyclic(2, 3, 4)

]

,

where ‘cyclic(2, 3, 4)’ indicates a sum over the remaining two cyclic permutations of legs

2, 3 and 4. Here cP1234 and cNP
1234 are the color factors obtained by dressing the planar and

nonplanar double-box diagrams in Fig. 2 with structure constants f̃abc. The AP
Q and ANP

Q

are the integrated planar and nonplanar kinematic parts of the amplitudes. The form (2.11)

matches the one used in N = 4 super-Yang-Mills theory [47]. This form is valid for any

theory with only adjoint representation particles, as can be shown using color Jacobi-identity

rearrangements [41].

For maximal (Q = 16) super-Yang-Mills theory in any dimension, the standard loop-

integral representation of the two-loop four-point amplitude [2, 48] satisfies the duality

between color and kinematics (2.3). An important simplifying feature is that the numerator

factors do not have loop-momentum dependence, and are

nP
1234 = s2tAtree

Q=16(1, 2, 3, 4) , nNP
1234 = s2tAtree

Q=16(1, 2, 3, 4) , (2.12)
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corresponding to the two partial amplitudes AP
Q=16(1, 2, 3, 4) and ANP

Q=16(1, 2, 3, 4) in

eq. (2.11). When constructing gravity amplitudes via the replacement (2.5), the numer-

ator of the N = 4 super-Yang-Mills copy comes outside the integral, and thus one can

express the integrated supergravity amplitude as a linear combination of integrated (su-

per) Yang-Mills amplitudes [16]. Using this, the integrated four-point two-loop supergravity

amplitude is [17]

M(2)
Q+16(1, 2, 3, 4) = i

(κ

2

)6

stAtree
Q=16(1, 2, 3, 4)

[

s
(

AP
Q(1, 2, 3, 4) + ANP

Q (1, 2, 3, 4)

+ AP
Q(3, 4, 2, 1) + ANP

Q (3, 4, 2, 1)
)

+ cyclic(2, 3, 4)
]

, (2.13)

which holds in any dimension D ≤ 10 and for pure supergravity theories with Q + 16

supercharges.

Now consider the five-point case. At one loop, a five-point gauge-theory amplitude with

only adjoint representation particles can be written in the form [41],

A(1)
Q (1, 2, 3, 4, 5) = g5

∑

S5/(Z5×Z2)

c
(1)
12345 A

(1)
Q (1, 2, 3, 4, 5) , (2.14)

where the color factor c
(1)
12345 is that of the pentagon diagram, displayed in Fig. 1(b). The

sum runs over all permutations with the five cyclic ones and reflections removed, signified

by S5/(Z5 ×Z2). For the maximally supersymmetric (Q = 16) case, only pentagon and box

integrals contribute in the BCJ form [5], illustrated in Fig. 1(b) and (c).

Using the substitution rule (2.5), together with the observation that at four and five

points, the duality-satisfying maximal super-Yang-Mills numerators with states restricted

to a four-dimensional subspace are independent of loop momenta, we immediately obtain

the simple expression [16],

M(1)
Q+16(1, 2, 3, 4, 5) = i

(κ

2

)5 ∑

S5/(Z5×Z2)

ñ12345 A
(1)
Q (1, 2, 3, 4, 5) . (2.15)

For Q = 0 the obtained amplitudes are those of half-maximal pure supergravity theory.

In a four-dimensional external subspace, the maximal super-Yang-Mills kinematic nu-

merators appearing in eq. (2.15) for external gluons in an MHV configuration are given

by [5]

ñ12345 = β12345 ≡ 〈i j〉4 [1 2][2 3][3 4][4 5][5 1]
4ε(1, 2, 3, 4)

, (2.16)
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where i and j label the two negative-helicity legs and ε(1, 2, 3, 4) ≡ εµνρσk
µ
1k

ν
2k

ρ
3k

σ
4 = Det(kµ

i ).

The anti-MHV case is given by the parity conjugate. Five-point amplitudes with other

states beside gluons have also been discussed in ref. [5], but we will not use them here.

A conjectured D-dimensional generalization of these numerator functions may be found in

ref. [30].

While only numerators corresponding to the pentagon diagram in Fig. 1(b) are required

for eq. (2.15), in Section IIIB we will use the expressions for the numerators of the box

diagrams, illustrated in Fig. 1(c), as well. Since the maximal super-Yang-Mills numerators

satisfy the duality (2.3), the box numerators can be written in terms of the pentagon nu-

merators by the kinematic Jacobi relations: ñ[12]345 = ñ12345 − ñ21345, where ñ[12]345 is the

numerator for the box diagram in Fig. 1(c). This gives

ñ[12]345 = γ12 ≡ γ12345 ≡ 〈i j〉4 [1 2]
2[3 4][4 5][3 5]

4ε(1, 2, 3, 4)
. (2.17)

The γ’s are symmetric in their last three indices, so they can be specified by the first two

indices only. They also satisfy the relations,

5
∑

i=1

γij = 0, γij = −γji , (2.18)

from which we see that there are six linearly independent γ’s. They are completely inter-

changeable with the β’s because,

γ12 = β12345 − β21345,

β12345 =
1

2
(γ12 + γ13 + γ14 + γ23 + γ24 + γ34) , (2.19)

so there are also six linearly independent β’s.

III. ULTRAVIOLET STRUCTURE OF HALF-MAXIMAL SUPERGRAVITY AT

ONE LOOP

In this section, we illustrate how the double copy links cancellations of supergravity

divergences to those of forbidden color factors in gauge-theory divergences using simple

one-loop examples. In particular, we discuss the divergence properties of the four- and

five-point amplitudes in higher dimensions from this vantage point. The one-loop four- and

five-point double-copy formulas (2.9) and (2.15) give integrated supergravity amplitudes
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with 16 or more supercharges directly in terms of corresponding integrated (super) Yang-

Mills amplitudes. This allows us to obtain the divergences of these supergravity amplitudes

simply by plugging in known Yang-Mills counterterm amplitudes.

We note that in D = 4 the one-loop amplitudes of N < 8 supergravity theories have

been extensively studied recently in refs. [20, 49]. For the cases of four and five points, a

double-copy construction has been given in ref. [16]. Very recently the one-loop four-graviton

amplitude forN = 4 supergravity coupled toN = 4 vector multiplets has also been obtained

by taking the field-theory limit of string-theory results [50]. Here we are mainly interested

in higher dimensions.

A. Four-point divergences at one loop

We now demonstrate that pure half-maximal supergravity does not have four-point di-

vergences at one loop for D < 8. In dimensional regularization at one loop, there can be

no divergences in any dimension other than even integer dimensions. We will start with a

warm up in D = 4 before turning to the more interesting cases of D = 6 and D = 8.

1. D = 4 warm up

We start by reproducing the well-known result that the four-point amplitude of pure

N = 4 supergravity has no divergence at one loop [51]. The renormalizability of Yang-

Mills theory in D = 4 implies that the full one-loop divergence must be proportional to the

color-dressed tree amplitude:

A(1)
Q

∣

∣

∣

D=4div.
=

βQ
0

ǫ
Atree

Q . (3.1)

Here βQ
0 is a constant proportional to the one-loop beta function of the theory. The only part

of the renormalizability of the theory that we need is that it implies that the color structure

of the divergence must match exactly the color structure of the tree amplitude. This holds

for any (super) Yang-Mills theory in four dimensions, though for N = 4 super-Yang-Mills

theory the beta-function coefficient vanishes, since the theory is ultraviolet finite [52]. The

color-ordered tree amplitudes satisfy U(1) decoupling relations,

Atree
Q (1, 2, 3, 4) + Atree

Q (1, 3, 4, 2) + Atree
Q (1, 4, 2, 3) = 0 , (3.2)
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which are a simple consequence of the color structure. Finiteness of the four-point super-

gravity amplitude follows immediately by applying eqs. (3.1) and (3.2) to the supergravity

amplitude (2.9),

M(1)
Q+16(1, 2, 3, 4)

∣

∣

∣

D=4div.
= i
(κ

2

)4

stAtree
Q=16(1, 2, 3, 4)

×
[

A
(1)
Q (1, 2, 3, 4) + A

(1)
Q (1, 3, 4, 2) + A

(1)
Q (1, 4, 2, 3)

]
∣

∣

∣

D=4div.

= 0 . (3.3)

In six dimensions, Yang-Mills theory is not renormalizable. However, the counterterm has

a color structure similar to the D = 4 one. For this reason, it is useful to slightly rephrase

the D = 4 cancellation in terms of a basis of independent color tensors. As we shall see

in the following section, this approach will also clarify the two-loop finiteness of four-point

half-maximal supergravity in D = 5.

We start with tree level, where there are two independent color tensors corresponding to

the color factors of s- and t-channel diagrams,

b
(0)
1 ≡ c

(0)
1234 = f̃a1a2bf̃ ba3a4 , b

(0)
1 ≡ c

(0)
1423 = f̃a2a3bf̃ ba4a1 . (3.4)

The remaining u-channel color factor c
(0)
1324 is given in terms of the previous two by the color

Jacobi equation, c
(0)
1324 = −b

(0)
1 − b

(0)
2 . At one loop there is one additional independent color

tensor (see for example Appendix B of ref. [53]),

b
(1)
1 ≡ c

(1)
1234 = f̃a1b2b1 f̃a2b3b2 f̃a3b4b3 f̃a4b1b4 . (3.5)

The other color factors in the one-loop amplitude (2.7) are given in terms of these color

tensors after using the color Jacobi identity and the ability to reduce the color factors with

triangle or bubble subdiagrams to tree color tensors. For example, we have

c
(1)
1342 = b

(1)
1 − 1

2
CAb

(0)
1 , c

(1)
1423 = b

(1)
1 − 1

2
CAb

(0)
2 , (3.6)

where CA is the adjoint representation quadratic Casimir. For an SU(Nc) group, CA = 2Nc

with our nonstandard normalization.

Rewriting the gauge-theory amplitude (2.7) in terms of these independent color tensors

gives

A(1)
Q (1, 2, 3, 4) = g4

[

b
(1)
1

(

A
(1)
Q (1, 2, 3, 4) + A

(1)
Q (1, 3, 4, 2) + A

(1)
Q (1, 4, 2, 3)

)

− 1

2
CAb

(0)
1 A

(1)
Q (1, 3, 4, 2)− 1

2
CAb

(0)
2 A

(1)
Q (1, 4, 2, 3)

]

. (3.7)
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(a) (b)

FIG. 3: The four-point diagrams generated by the F 3 counterterm in pure Yang-Mills at one loop

D = 6 or at two loops in D = 5. The large dot indicate an insertion of a counterterm vertex, while

a vertex without a dot represents an ordinary Yang-Mills vertex. In (a) a three-point counterterm

vertex appears while in (b) a four-point counterterm vertex appears.

Since the Yang-Mills divergence in D = 4 contains only the tree color tensors, it cannot

contain the one-loop color tensor b
(1)
1 , implying that

A
(1)
Q (1, 2, 3, 4) + A

(1)
Q (1, 3, 4, 2) + A

(1)
Q (1, 4, 2, 3)

∣

∣

∣

div.
= 0 . (3.8)

This is equivalent to the tree-level decoupling relation (3.2), except in eq. (3.8) there is no ex-

plicit requirement that the divergence of the color-ordered amplitude be proportional to the

tree amplitude, only that the one-loop color tensor b
(1)
1 not appear in the divergence. Thus,

we obtain the vanishing of the supergravity divergence (3.3) purely from group-theoretic

properties of the corresponding gauge theory.

2. D = 6 finiteness

In six dimensions, while the pure graviton R3 counterterm is ruled out by supersymmetry,

naively one might worry about counterterms of the form φkR3. As we now show, the same

group-theoretic cancellations apply just as well in D = 6. Since the maximal super-Yang-

Mills theory in six dimensions has N = (1, 1) supersymmetry, the supergravity theory we

are considering is the non-chiral N = (1, 1) theory, in contrast to the chiral N = (2, 0)

theory.

From simple power-counting considerations, the one-loop D = 6 pure Yang-Mills coun-

terterm operator is of the form [54],

F 3 ≡ f̃abcF aµ
νF

bν
ρF

cρ
µ , (3.9)
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because there are no other gauge-invariant operators of the proper dimensions that give non-

vanishing matrix elements. (The gauge-invariant operator D2F 2 is also allowed by dimen-

sional analysis, as noted in ref. [54]. However, these can be removed via field redefinitions.)

The symmetric color tensor dabc does not appear because the combination of field strengths

has an overall antisymmetry. The F 3 counterterm is forbidden in super-Yang-Mills theories

because, in a four-dimensional external subspace, it generates a nonvanishing amplitude with

helicities (±,+,+,+) that is disallowed by supersymmetry Ward identities [55]. However,

in nonsupersymmetric pure Yang-Mills theory in D = 6, it is a perfectly valid counterterm

with a nonvanishing coefficient.

The key observation is that the counterterm diagrams displayed in Fig. 3 cannot generate

color tensors other than the tree-level ones b
(0)
1 and b

(0)
2 , defined in eq. (3.4). This follows

because the counterterm three-vertex has a single f̃abc and the four-vertex has a pair of these,

so the diagrams in Fig. 3 each have a pair of f̃abc’s. Since the one-loop color tensor b
(1)
1 is

built from four f̃abc’s, it cannot appear in the Yang-Mills divergence. Thus, the situation is

quite similar to the D = 4 case where only tree color tensors can appear in the divergence.

Following the D = 4 discussion, we demand that the one-loop color tensor b
(1)
1 not appear

in the divergence. From eq. (3.7) we see that the U(1) decoupling equation (3.8) holds for

the D = 6 divergences. Plugging this into eq. (2.9) immediately shows that the one-loop

divergence for D = 6 pure supergravity with 16 or more supercharges must vanish:

M(1)
Q+16(1, 2, 3, 4)

∣

∣

∣

D=6div.
= 0 . (3.10)

For Q > 0, the divergence not only vanishes because the decoupling equation (3.8) holds,

but also because F 3 is not a valid supersymmetric counterterm of the corresponding gauge

theory.

It is straightforward to confirm that the decoupling identity (3.8) holds using the explicit

forms of pure Yang-Mills counterterm amplitudes generated by the diagrams in Fig. 3. For

example, the all-plus helicity counterterm amplitude in a four-dimensional subspace is [56]

A(1+, 2+, 3+, 4+) =
α

ǫ

stu

〈12〉〈23〉〈34〉〈41〉 , (3.11)

where α is a proportionality constant which can be fixed by explicit computation, but its

value is unimportant for our discussion. This expression does indeed satisfy the required
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U(1) decoupling identity (3.8) because

1

〈12〉〈23〉〈34〉〈41〉 +
1

〈13〉〈34〉〈42〉〈21〉 +
1

〈14〉〈42〉〈23〉〈31〉 = 0 . (3.12)

The vanishing of the Q = 16 counterterm can also be understood using a color-trace

basis. Using the double-copy formula, ref. [18] showed that the one-loop Q ≥ 16 super-

gravity amplitudes can be written as the double-trace Yang-Mills amplitude multiplied by

a kinematic-dependent factor. This immediately leads us to conclude that six-dimensional

N ≥ 4 supergravity must be one-loop ultraviolet finite since counterterm amplitudes gener-

ated with the F 3 operator do not contain a double-trace contribution.

We have also computed the coefficient of the D = 6 divergence of half-maximal supergrav-

ity using the procedure of ref. [8] and have confirmed that it vanishes. In this construction,

one copy is the maximally supersymmetric Yang-Mills amplitude, while the second copy is

based on ordinary Feynman rules. As mentioned earlier, the pure Yang-Mills numerators

do not need to satisfy the duality eq. (2.3) since the maximal super-Yang-Mills side already

does. A key simplifying feature of this method is that pure Yang-Mills numerators are

required only for the box diagram since four-point maximal super-Yang-Mills numerators

vanish for all other diagram topologies. In addition, there are no subdivergences since we

are dealing here with one loop. We find the divergence cancels completely, in complete

agreement with the above much simpler counterterm considerations.

3. D = 8 divergences

We now consider the D = 8 case. From ref. [57], the pure nonsupersymmetric Yang-Mills

divergence is described by an F 4 operator of the form,

F 4 = cabcd
[

d1F
aµνF b

νσF
c σρF d

ρµ + d2F
aµνF b

νµ F
c ρσF d

σρ

]

, (3.13)

where

cabcd ≡ f̃a e1e2 f̃ b e2e3 f̃ c e3e4 f̃ d e4e1 , (3.14)

is the box-diagram color factor using the normalization in eq. (2.2). Only the linearized

part of the field strength contributes to the divergent part of the four-point amplitude,

Fµν ≡ ∂[µAν]. In D = 8 at one loop the constants appearing in the operator are

d1 =
g4

8

1

(4π)4
1

ǫ

238 +Ds

360
, d2 =

g4

8

1

(4π)4
1

ǫ

Ds − 50

288
, (3.15)

17



where Ds is a state-counting parameter. It comes from contracting the metric ηµν from

gluon propagators around the loop. In pure Yang-Mills theory in eight dimensions, we take

the state-counting parameter to be Ds = 8. (This is equivalent to the four-dimensional

helicity regularization scheme [58] but with the state count adjusted to match the one of

eight dimensions.) The divergence was first derived in the trace basis in ref. [54]. For the

four-gluon amplitude at one loop, ns = Ds − 8 counts additional minimally-coupled scalars

circulating in the loop. The key difference between the D = 8 case and the previous D = 4, 6

cases is that the gauge-theory divergence contains the independent color tensor b(1). Thus

the U(1) decoupling equation (3.8) does not hold.

The amplitude is given by replacing the vector potential with the polarization vector εj,

giving a polarization field strength for each leg j,

F µν
j ≡ i(kµ

j ε
ν
j − kν

j ε
µ
j ) . (3.16)

For notational convenience, we define the contractions of these polarization field strengths

as

(FiFj) ≡ F µν
i Fjµν , (FiFjFkFl) ≡ Fi

µνFjνρFk
ρσFlσµ . (3.17)

In terms of these, the nonvanishing divergence in the nonsupersymmetric pure Yang-Mills

amplitude is

A(1)
Q=0(1, 2, 3, 4)

∣

∣

∣

D=8div.
=

i

8ǫ

1

(4π)4
g4ca1a2a3a4

[

8
238 +Ds

360
(F1F2F3F4)

+ 4
Ds − 50

288

(

(F1F2)(F3F4) + (F2F3)(F4F1)
)

]

+ cyclic(2, 3, 4) , (3.18)

where, as before, ‘cyclic(2, 3, 4)’ indicates that one should in addition include the two cyclic

permutations of legs 2, 3 and 4 along with their color indices. Matching eq. (3.18) with

eq. (2.7) and replacing color factors by the corresponding Q = 16 super-Yang-Mills nu-

merators immediately gives the explicit form of the Q = 16 eight-dimensional supergravity

divergence:

M(1)
Q=16(1, 2, 3, 4)

∣

∣

∣

D=8div.
= −1

ǫ

1

(4π)4

(κ

2

)4

stAtree
Q=16(1, 2, 3, 4) (3.19)

×
[238 +Ds

360
(F1F2F3F4) +

Ds − 50

288
(F1F2)(F3F4)

]

+ cyclic(2, 3, 4) ,
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where Ds = 8 in the pure supergravity case. The factor Atree
Q=16(1, 2, 3, 4) is just the max-

imally supersymmetric four-point tree amplitude, for any of the states in the theory. The

corresponding states in the Q = 16 supergravity theory are just the tensor product of these

states with gluon states of the pure nonsupersymmetric Yang-Mills theory.

The explicit four-graviton R4 counterterm for half-maximal supergravity in D = 8 is

given in ref. [59]. It is built from the seven linearly independent R4 forms in D = 8 [60] (in

D < 8 these are no longer independent):

T1 = (RµνρσR
µνρσ)2,

T2 = RµνρσR
µνρ

λR
σ

γδκ Rγδκλ,

T3 = RµνρσR
µν

λγR
λγ

δκR
ρσδκ,

T4 = RµνρσR
µν

λγR
ρλ

δκR
σγδκ,

T5 = RµνρσR
µν

λγR
ρ λ
δ κR

σδγκ,

T6 = RµνρσR
µ ρ
λ γR

λ γ
δ κR

νδσκ,

T7 = RµνρσR
µ ρ
λ γR

λ ν
δ κR

γδσκ . (3.20)

On shell the combination,

−T1

16
+ T2 −

T3

8
− T4 + 2T5 − T6 + 2T7 , (3.21)

is a total derivative, so only 6 of the Ti are independent on shell. This gives us some freedom

in how we write the explicit counterterm, which we give as [59]

1

ǫ

1

(4π)4
1

11520
[(−126 + 3Ds)T1 + (1968− 24Ds)T2 + (−252 + 6Ds)T3

+ (8− 4Ds)T4 + 3840T5 − 1920T6 + (−3776− 32Ds)T7] , (3.22)

where there is a relative i between the operators and amplitudes. The appropriate powers

of the coupling are generated by expanding the metric around flat space, gµν = ηµν + κhµν .

Since the kinematic numerators for one-loop four-point N = 4 super-Yang-Mills theory

are independent of loop momenta, we can also write the counterterm in a manner more

suggestive of the double-copy structure. The four-point numerators in eq. (2.8) are given by

an F 4 operator:

F 4 = −2

[

(F1F2F3F4)−
1

4
(F1F2)(F3F4) + cyclic(2, 3, 4)

]

. (3.23)
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Up to an overall constant including color factors, this is the same F 4 counterterm for four-

point one-loop N = 4 sYM in D = 8. Using this operator as a replacement for the kinematic

numerator in eq. (3.19), we build an R4 counterterm by making the association,

Fi µνFi ρσ → −2Ri µνρσ . (3.24)

At the linearized level, both terms in eq. (3.24) give the same contribution to the amplitude.

On the gravity side, we replace the graviton field h by the polarization tensor ǫµν , which

can itself be replaced by the symmetrization of two polarization vectors ǫµν → ǫ(µǫν). For

the case of gravitons, we treat the two polarization vectors as being identical since the two

possible replacements are ǫ++
µν → ǫ+µ ǫ

+
ν and ǫ−−

µν → ǫ−µ ǫ
−
ν . We then have

Rµνρσ = ηµλ
(

∂ρΓ
λ
νσ − ∂σΓ

λ
νρ

)

=
1

2
ikρ(ikσǫµǫν + ikνǫµǫσ − ikµǫνǫσ)−

1

2
ikσ(ikρǫµǫν + ikνǫµǫρ − ikµǫνǫρ)

=
1

2
(kµǫν − kνǫµ)(kρǫσ − kσǫρ) . (3.25)

Comparing to the polarization field strength tensor in eq. (3.16) gives us the replacement rule

(3.24). After taking into account permutations, this replacement rule gives us the following

contributing R4 forms:

U1 = RµνλγR
ν γ
ρ δR

ρ δ
σ κR

σµκλ,

U2 = RµνλγR
ν
ρδκR

ρ γδ
σ Rσµκλ,

U3 = (RµνρσR
µνρσ)2,

U4 = RµνλγR
µν

δκR
λγ

ρσ Rρσδκ,

U5 = RµνλγR
ν λγ
ρ Rρ

σδκR
σµδκ,

U6 = RµνλγR
ν
ρδκR

ρ λγ
σ Rσµδκ , (3.26)

and the counterterm is given by

1

ǫ

1

(4π)4
1

23040
[(−3808− 16Ds)U1 + (−7616− 32Ds)U2 + (−250 + 5Ds)U3

+(−500 + 10Ds)U4 + (3904− 32Ds)U5 + (1952− 16Ds)U6] . (3.27)

At the linearized level this is equivalent to eq. (3.22), but instead the index structure has

been reorganized to expose the double-copy structure of gravity.
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In terms of spinor helicity in a four-dimensional external subspace for the four-graviton

case with external helicities (1+, 2+, 3−, 4−), the divergence in D = 8 is

M(1)
Q=16(1

+, 2+, 3−, 4−)
∣

∣

∣

D=8 div.
=

i

ǫ

1

(4π)4

(κ

2

)4 58 +Ds

180
〈34〉4[12]4 , (3.28)

where we have plugged in spinor helicity for the (1+, 2+, 3−, 4−) configuration on the right

side of eq. (3.19). Similarly, any of the other helicity amplitudes can be extracted from

eq. (3.19).

As in D = 4, 6 dimensions, we have also used the procedure described in ref. [8] for

explicitly computing the divergences in half-maximal supergravity, finding agreement with

the divergence in eq. (3.19).

B. Five points at one loop

To make the vanishing of ultraviolet divergences of half-maximal supergravity in D = 4

and D = 6 manifest at five-point one-loop, we write the one-loop supergravity amplitude

(2.15) in terms of a basis of six independent β’s (defined in eq. (2.16)):

M1-loop
Q+16 (1, 2, 3, 4, 5) = i

(κ

2

)5

×
(

β12345(A
(1)
Q (1, 2, 3, 4, 5) + A

(1)
Q (2, 1, 3, 4, 5) + A

(1)
Q (2, 3, 1, 4, 5) + A

(1)
Q (2, 3, 4, 1, 5))

+ β12354(A
(1)
Q (3, 1, 2, 5, 4) + A

(1)
Q (1, 3, 2, 5, 4) + A

(1)
Q (1, 2, 3, 5, 4) + A

(1)
Q (1, 2, 5, 3, 4))

+ β12435(A
(1)
Q (2, 1, 4, 3, 5) + A

(1)
Q (1, 2, 4, 3, 5) + A

(1)
Q (1, 4, 2, 3, 5) + A

(1)
Q (1, 4, 3, 2, 5))

+ β12453(A
(1)
Q (4, 1, 2, 5, 3) + A

(1)
Q (1, 4, 2, 5, 3) + A

(1)
Q (1, 2, 4, 5, 3) + A

(1)
Q (1, 2, 5, 4, 3))

+ β13245(A
(1)
Q (5, 1, 3, 2, 4) + A

(1)
Q (1, 5, 3, 2, 4) + A

(1)
Q (1, 3, 5, 2, 4) + A

(1)
Q (1, 3, 2, 5, 4))

+β13425(A
(1)
Q (3, 1, 4, 2, 5) + A

(1)
Q (1, 3, 4, 2, 5) + A

(1)
Q (1, 4, 3, 2, 5) + A

(1)
Q (1, 4, 2, 3, 5))

)

.

(3.29)

This expression is valid for all amplitudes where the external gluons on the super-Yang-Mills

side of the double copy are in an MHV configuration in a four-dimensional subspace. The

MHV result is just the parity conjugate. From the form (3.29), it is clear that when the

gauge-theory divergences satisfy five-point U(1) decoupling relations,

A
(1)
Q (1, 2, 3, 4, 5) + A

(1)
Q (2, 1, 3, 4, 5) + A

(1)
Q (2, 3, 1, 4, 5) + A

(1)
Q (2, 3, 4, 1, 5)

∣

∣

∣

div.
= 0 , (3.30)
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and relabelings thereof, the supergravity amplitude (3.29) is finite, in much the same way

as at four points. At tree level, these decoupling identities and their related Kleiss-Kuijf

relations [61] are purely a consequence of color considerations [41]. Alternatively, as noted in

ref. [1], they follow from the requirement that the color-ordered amplitudes can be described

by diagrams with antisymmetric cubic vertices. As discussed above for the four-point case,

in both D = 4 and D = 6 the Yang-Mills counterterms generate exactly the same color

structures as at tree level, so the decoupling equation (3.30) indeed holds. Therefore, we

immediately conclude that

M(1)
Q+16(1, 2, 3, 4, 5)

∣

∣

∣

D=4div.
= 0 , M(1)

Q+16(1, 2, 3, 4, 5)
∣

∣

∣

D=6div.
= 0 . (3.31)

Had we used a different basis of β’s, there could have been more terms multiplying a given

β, but at the end the divergences still cancel due to the U(1) decoupling identity.

We have also directly confirmed the vanishing of the divergences in D = 4, 6, and com-

puted the nonvanishing divergence of half-maximal supergravity in D = 8, using the proce-

dure in ref. [8]. In this procedure we take one copy to be maximal Q = 16 super-Yang-Mills

theory and the other copy pure nonsupersymmetric Yang-Mills theory. From the double-

copy formula (2.15), we have

M(1)
Q=16(1, 2, 3, 4, 5) = −

(κ

2

)5∑

S5

(

1

10
β12345

∫

dDp

(2π)D
n12345
∏

αj
p2αj

+
1

4
γ12

∫

dDp

(2π)D
n[12]345
∏

αj
p2αj

)

.

(3.32)

Here n12345 and n[12]345 are numerators of pure Yang-Mills pentagon (shown in Fig. 1(b))

and box diagrams (shown in Fig. 1(c)) respectively, derived from Feynman diagrams in

Feynman gauge. As described in ref. [8], the derived numerators include ghost contributions

and contributions from four-point contact terms assigned according to their color factors.

The β12345 given in eq. (2.16) and γ12 given in eq. (2.17) are the corresponding pentagon

and box numerators of maximal super-Yang-Mills theory. The propagators are those of each

graph. The sum S5 runs over all 5! permutations of the external legs, with symmetry factors

included to adjust for the overcount. The symmetry factors for Fig. 1(b) and Fig. 1(c) are

10 and 4 respectively. The expression (3.32) is valid when the external gluons on the super-

Yang-Mills side of the double copy are in an MHV configuration in the four-dimensional

external subspace. The MHV configuration is obtained using parity.

Restricting the integrals to the divergent part, we find the divergences in D = 4, 6 to

vanish, as was the case at four points. In D = 8 we find a nonvanishing divergence, the
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(a) (b)

FIG. 4: The counterterm diagrams describing the one-loop divergences of either pure Yang-Mills

theory or half-maximal supergravity inD = 8. The large dots indicate an insertion of a counterterm

vertex generated by either an F 4 operator in Yang-Mills theory or an R4 operator in supergravity.

explicit form of which we have included in an accompanying Mathematica attachment [62].

The first two terms of this expression are

M(1)
Q=16(1, 2, 3, 4, 5)

∣

∣

∣

D=8div.
=

1

(4π)4

(κ

2

)5
[

238 +Ds

180
√
2ǫ

γ34 ε1 · ε4k1 · ε2k1 · ε5k2 · ε3 (3.33)

− Ds − 122

180
√
2ǫ

γ14
ε1 · ε2ε4 · ε5k1 · ε3s23s24

s45
+ · · ·

]

,

where the γij are the box numerators defined in eq. (2.17) and the εi are gluon polarization

vectors. As always the supergravity states are simply tensor products of the maximal super-

Yang-Mills states with those of pure Yang-Mills theory.

As a nontrivial check, we have reproduced the D = 8 result in an additional way, which we

briefly summarize. We used the Yang-Mills F 4 operator in eq. (3.13) to obtain the five-point

pure Yang-Mills divergence using the Feynman diagrams illustrated in Fig. 4. Plugging the

color-ordered Yang-Mills divergences into eq. (2.15) yields the gravity divergence:

M(1)
Q=16(1, 2, 3, 4, 5)

∣

∣

∣

D=8div.
= i
(κ

2

)5 ∑

S5/(Z5×Z2)

β12345 A
(1)
Q=0(1, 2, 3, 4, 5)

∣

∣

∣

D=8div.
. (3.34)

Remarkably, this suggests that the entire five-loop divergence in D = 8 for half-maximal

supergravity is contained in the operators that describe four-point divergences and that no

further independent operators should appear at five points.

As a first test of this, we used the R4 counterterm as determined at four points to compute

the five-graviton divergence, again using diagrams of the form shown in Fig. 4. We used

both forms of the counterterm (eq. (3.22) and eq. (3.27)); in both cases we find agreement

with eq. (3.34) for four-dimensional external graviton states. For cases with other external

states, we suspect again all two-loop supergravity divergences are locked to the four-point
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divergences given that no new independent five- or higher-point counterterms arise in pure

Yang-Mills theory (by simple gauge invariance and dimensional considerations). It would

be interesting to investigate this further.

C. Comments on the four-point one-loop N = 4 gravity-matter system

The above group theoretic analysis can also be applied to understand the divergence

structure of Q ≥ 16 supergravity with matter. A particularly interesting case is N = 4

supergravity in D = 4 coupled to nv N = 4 vector multiplets. These theories naturally arise

from dimensional reduction of half-maximal pure supergravity models in higher dimensions.

Over 30 years ago, Fischler showed that this theory is ultraviolet divergent at one loop [63].

This result can be simply understood from the double-copy vantage point.

In the double-copy picture, N = 4 supergravity amplitudes with vector multiplets are

constructed using N = 4 super-Yang-Mills amplitudes for one copy and a Yang-Mills theory

with adjoint scalars that interact with gluons. In the latter theory, the only allowed inter-

actions of the scalar are the standard minimal interactions with gluons or self interactions

via a φ4 operator for the second copy. With either interaction, simple renormalizability con-

straints in D = 4 show that the only gauge-theory operators that can act as counterterms

are the form F 2, (Dµφ)
2 or φ4. The first two operators generate amplitudes containing only

tree-level color tensors, so the divergences satisfy U(1) (3.8) decoupling relations. Hence

from eq. (2.9), we immediately have that amplitudes with only supergravity multiplet states

on the external lines or with two-graviton and two-vector multiplet states are finite irrespec-

tive of the number of vector multiplets. However, one-loop four-point amplitudes where all

external legs belong to the matter multiplet are different. In the scalar-Yang-Mills system,

the four-scalar counterterm operator with a one-loop color tensor of the form,

cabcdφaφbφcφd , (3.35)

is allowed, where cabcd is defined in eq. (3.14). Here the generated divergence does not satisfy

U(1) decoupling, and when fed through eq. (2.9), the corresponding supergravity amplitude

diverges. Indeed this is consistent with the divergence in the four-matter-multiplet amplitude

found long ago by Fischler [63]. The same conclusion was also reached in ref. [64] with a

corrected overall constant.
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The case of D = 6 is a bit different. Here a divergence for the two-matter two-gravity

matrix element appears. The presence of this supergravity divergence can be understood

from the double-copy viewpoint as originating from a counterterm of the nonsupersymmetric

scalar-Yang-Mills system:

cabcdF a
µνF

bµνφcφd . (3.36)

In the double-copy formula, when this is combined with maximally supersymmetric Yang-

Mills theory, we obtain a nonvanishing two-graviphoton and two-matter-photon counterterm

of the form D2F 4. This is related by supersymmetry to the two-graviton two-matter-photon

counterterm R2F 2. While we have not explicitly computed this divergence, it would be an

interesting exercise to do so.

IV. HALF-MAXIMAL SUPERGRAVITY AT TWO LOOPS

We now turn to the main topic of this paper, which is the divergence structure of half-

maximal supergravity at two loops. We follow similar reasoning as for the cases of D =

4, 6 at one loop. In particular, we demonstrate that the same cancellations that prevent

forbidden color structures from appearing in pure Yang-Mills divergences are responsible

for making the half-maximal pure supergravity two-loop four-point amplitude finite in D =

5. On dimensional grounds, we expect the D = 5 two-loop four-point counterterm of

supergravity to be a supersymmetric completion of an R4 operator [11, 15]. Nevertheless the

corresponding divergence vanishes. We also explicitly demonstrate the ultraviolet finiteness

of a subset of five-point amplitudes with external states in a four-dimensional subspace;

specifically we look at those amplitudes where the external supergravity states are those

obtained as a tensor product of gluon states in the four-dimensional subspace. Besides

explaining the lack of a two-loop divergence in these amplitudes in D = 5, we also obtain

the explicit value of the four-point divergence in D = 6.
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A. Four-point divergence cancellations at two loops

1. Group theory considerations

Ordinary nonsupersymmetric Yang-Mills theory in D = 5 is, of course, divergent. At two

loops in D = 5, the available counterterm in this theory is of the same F 3 form (3.9) as at

one loop in D = 6. In D = 5 there are no one-loop divergences in dimensional regularization,

so we do not need to concern ourselves with subdivergences.

Following the same logic as at one loop, we impose the constraint that the F 3 operator

generates only the tree-level color structures. Using the color basis described in Appendix

B of ref. [53] (see also ref. [65]), we express the color factors in eq. (2.11) in terms of the

independent tree and one-loop color tensors given in eqs. (3.4) and (3.5), as well as two

additional two-loop color tensors, b
(2)
1 and b

(2)
2 . For the planar color factors we have

cP1234 = b
(2)
1 , cP3214 = b

(2)
2 ,

cP3421 = b
(2)
1 − 1

4
C2

Ab
(0)
1 , cP1423 = b

(2)
2 − 1

4
C2

Ab
(0)
2 ,

cP1342 = −b
(2)
1 − b

(2)
2 +

3

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
1 ,

cP3142 = −b
(2)
1 − b

(2)
2 +

3

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
2 . (4.1)

Similarly for the nonplanar color factors we have

cNP
1234 = cP1234 −

1

2
CAb

(1)
1 ,

cNP
3214 = cP3214 −

1

2
CAb

(1)
1 ,

cNP
3421 = cP3421 −

1

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
1 ,

cNP
1423 = cP1423 −

1

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
2 ,

cNP
1342 = cP1342 −

1

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
1 ,

cNP
3142 = cP3142 −

1

2
CAb

(1)
1 − 1

4
C2

Ab
(0)
2 . (4.2)

Inserting these into the gauge-theory amplitude (2.11) and demanding that the divergent

parts cannot have the two-loop tensor structures b
(2)
1 and b

(2)
2 , we find constraints that must

be satisfied by the divergent parts:

0 = t(AP
Q(1, 3, 4, 2) + AP

Q(1, 4, 2, 3) + AP
Q(3, 1, 4, 2) + AP

Q(3, 2, 1, 4)
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+ ANP
Q (1, 3, 4, 2) + ANP

Q (1, 4, 2, 3) + ANP
Q (3, 1, 4, 2) + ANP

Q (3, 2, 1, 4))

+ s(AP
Q(1, 3, 4, 2) + AP

Q(3, 1, 4, 2) + ANP
Q (1, 3, 4, 2) + ANP

Q (3, 1, 4, 2))
∣

∣

∣

D=5div.
,

0 = s(AP
Q(1, 2, 3, 4) + AP

Q(1, 3, 4, 2) + AP
Q(3, 1, 4, 2) + AP

Q(3, 4, 2, 1)

+ ANP
Q (1, 2, 3, 4) + ANP

Q (1, 3, 4, 2) + ANP
Q (3, 1, 4, 2) + ANP

Q (3, 4, 2, 1))

+ t(AP
Q(1, 3, 4, 2) + AP

Q(3, 1, 4, 2) + ANP
Q (1, 3, 4, 2) + ANP

Q (3, 1, 4, 2))
∣

∣

∣

D=5div.
.

(4.3)

Solving this system for the divergent parts of two of the partial amplitudes and plugging the

solution into the supergravity expression (2.13), we immediately find that the corresponding

two-loop supergravity divergence in D = 5 vanishes:

M(2)
16+Q(1, 2, 3, 4)

∣

∣

∣

D=5div.
= 0 . (4.4)

It is interesting that there is no need to impose the vanishing of the contribution proportional

to the one-loop color tensor b
(1)
1 to deduce this. This demonstrates that the cancellations

that eliminate the D = 5 divergence in the two-loop four-point amplitude of half-maximal

pure supergravity are identical to the ones that eliminate forbidden color tensors from the

corresponding nonsupersymmetric pure Yang-Mills divergences. For supergravity theories

with more than 16 supercharges, not only does the divergence vanish for this reason, but it

also vanishes because the F 3 operator (3.9) in the corresponding super-Yang-Mills theory is

no longer a valid counterterm.

InD = 6, pure Yang-Mills has a two-loop divergence described by an F 4 operator contain-

ing color factors not appearing at tree level. (See eq. (3.13), but also containing a two-loop

color tensor.) Feeding the F 4 counterterm of pure Yang-Mills theory into the double-copy

formula (2.13) immediately shows that half-maximal supergravity diverges in D = 6. Below

we compute the explicit value of this divergence.

2. Explicit cancellations in D = 5

We can see the supergravity divergence cancellation more directly in a four-dimensional

external subspace starting with the explicit values of the D = 5 pure Yang-Mills divergences

computed in Appendix A for identical external helicity states. For Yang-Mills this external

helicity configuration is sufficient because it detects the divergence generated by the F 3
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operator. We note that the (−+++) external helicity configuration is also divergent, but

not the (−−++) case. This is because the allowed F 3 counterterm cannot generate the latter

helicity configuration. The fact that the D = 5 pure Yang-Mills amplitude with helicities

(−−++) in the four-dimensional subspace does not diverge at two loops immediately tells

us that four-graviton amplitudes in the four-dimensional subspace must also be finite: the

(±+++) graviton amplitude vanishes due to supersymmetric Ward identities [55], while

the (−−++) graviton amplitude is finite due to the lack of the corresponding Yang-Mills

divergence. On the other hand, the presence of (−+++) or (++++) pure Yang-Mills

divergences implies possible divergences in the supergravity theory with one or two external

scalars unless there are additional cancellations beyond these helicity arguments, which, in

fact, are present, as described above.

To explicitly see these additional cancellations in the four-dimensional external subspace,

we use the results for the planar and nonplanar contributions to the divergence given in the

appendix,

AP(1+, 2+, 3+, 4+)
∣

∣

∣

D=5div.
= −i

[1 2] [3 4]

〈1 2〉 〈3 4〉s (Ds − 2)
π

70ǫ

1

(4π)5
,

ANP(1+, 2+, 3+, 4+)
∣

∣

∣

D=5div.
= i

[1 2] [3 4]

〈1 2〉 〈3 4〉s (Ds − 2)
π

70ǫ

1

(4π)5
, (4.5)

where we take the state-counting parameter to be Ds = 5 for the pure Yang-Mills theory.

Plugging the above result back into the two-loop gravity amplitude (2.13), we immediately

see that the divergences in the nonplanar contributions cancel with those in the planar

contributions,

M(2)(1+, 2+, 3+, 4+)
∣

∣

∣

D=5div.
= (Ds − 2)

π

70ǫ

1

(4π)5

(κ

2

)6

stAtree
Q=16(1, 2, 3, 4)

×
[

s2
[1 2] [3 4]

〈1 2〉 〈3 4〉 (1− 1 + 1− 1) + cyclic(2, 3, 4)
]

= 0 , (4.6)

valid for any external states in the graviton multiplet that are a tensor product of the states

of the N = 4 super-Yang-Mills multiplet and identical-helicity gluons. This explicit can-

cellation highlights the fact that supergravity can be less divergent than the component

gauge-theory amplitudes because of cancellations between planar and nonplanar contribu-

tions.
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B. Two loops and four points in D = 6

In D = 6, on dimensional grounds one expects an F 4 counterterm in pure Yang-Mills

theory of the form in eq. (3.13), but with two-loop color tensors. As for the one-loop D = 8

case, the appearance of multiloop color tensors in the gauge-theory divergence implies that

the corresponding supergravity divergences will not cancel.

In order to obtain the explicit value of the divergences, we follow the same procedure

as carried out in ref. [8] for three-loop N = 4 supergravity in D = 4. The ultraviolet

divergences are then extracted by expanding in external momenta and integrating, while all

subdivergences are subtracted integral by integral.

This construction yields the explicit form of the two-loop four-point divergence for any

external states in the graviton multiplet,

M(2)(1, 2, 3, 4)
∣

∣

∣

D=6div.
=

1

(4π)6

(κ

2

)6

stAtree
Q=16(1, 2, 3, 4)

{((Ds − 6)(26−Ds)

576ǫ2
+

(19Ds − 734)

864ǫ

)

×
[

s (F1F2)(F3F4) + t (F1F4)(F2F3) + u (F1F3)(F2F4)
]

+
(48Ds − 1248)

864ǫ

[

u (F1F2F3F4) + t (F1F3F4F2) + s (F1F4F2F3)
]}

,

(4.7)

including the subtraction of one-loop subdivergences that appear for Ds 6= 6. These sub-

divergences come from extra states that circulate in the loop when Ds 6= 6. For pure half-

maximal supergravity (where the state-counting parameter is Ds = 6), the 1/ǫ2 divergence

vanishes as expected since, as discussed in Section III, there are no one-loop subdivergences

in pure half-maximal supergravity.

We can simplify the expression for the divergences in a four-dimensional external subspace

using spinor helicity. For example, for four external gravitons with helicity configuration

(−−++) we have

M(2)(1−, 2−, 3+, 4+) = − i

(4π)6

(κ

2

)6 ((Ds − 6)(26−Ds)

576ǫ2
+

19Ds − 734

864ǫ

)

s〈12〉4[34]4 ,
(4.8)

for the one-loop-subtracted result. Among the (FiFj)(FkFl) terms on the pure Yang-Mills

side, only (F1F2)(F3F4) gives a nonvanishing contribution, while the contributions of the

(FiFjFkFl) terms cancel among themselves. We note that the expression (4.8) has the

helicity structure and dimensions of a D2R4 counterterm.
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C. Two loops and five points in D = 5

We now turn our attention to five points. While the previous discussion rules out an

R4 divergence in D = 5, one may worry about a counterterm of the form φR4 and its

supersymmetric completion, which would lead to a divergence at five points. However, from

the SO(1,1) duality symmetry obeyed by half-maximal supergravity in D = 5 [66], we know

that φR4 is not a valid counterterm because it is not invariant under the φ → φ + v shift

symmetry. Nevertheless, it is interesting to see how the potential divergence cancels from

the double-copy vantage point.

For the two-loop five-point amplitudes, the numerators of maximal super-Yang-Mills

theory depend on loop momenta [5]. This complicates the analysis of the corresponding

half-maximal supergravity theory, though it is straightforward to work out the divergences

in D = 5 following the procedure of ref. [8].

1

2

3
4

5
p q

(a)

1

2

3
4

5
p q

(b)

5

1

2 3

4
p q

(c)

1

2

3 4

5

p q

(d)

1

2

3 4

5

p q

(e)

1

2

3 4

5

p q

(f)

FIG. 5: Diagrams contributing to the five-point two-loop amplitude of maximal super-Yang-Mills

theory. From ref. [5].

Once again we employ the double-copy construction (2.6) to obtain the results for pure

half-maximal supergravity. In ref. [5], a form of the maximal super-Yang-Mills amplitude

that satisfies BCJ duality was found for any internal dimension with the external states

30



TABLE I: The numerator factors of the graphs in Fig. 5. The first column indicates the integral,

the second column the numerator factor for maximal N = 4 super-Yang-Mills five-gluon MHV

amplitudes, where the external momenta and states live in a four-dimensional subspace. From

ref. [5].

I(x) maximal super-Yang-Mills numerator

(a),(b) 1
4

(

γ12(2s45 − s12 + τ2p − τ1p) + γ23(s45 + 2s12 − τ2p + τ3p)

+ 2γ45(τ5p − τ4p) + γ13(s12 + s45 − τ1p + τ3p)
)

(c) 1
4

(

γ15(τ5p − τ1p) + γ25(s12 − τ2p + τ5p) + γ12(s34 + τ2p − τ1p + 2s15 + 2τ1q − 2τ2q)

+ γ45(τ4q − τ5q)− γ35(s34 − τ3q + τ5q) + γ34(s12 + τ3q − τ4q + 2s45 + 2τ4p − 2τ3p)
)

(d)-(f) γ12s45 − 1
4

(

2γ12 + γ13 − γ23

)

s12

restricted to a four-dimensional subspace. We employ this here for pure gluon amplitudes.

In the double copy this gives us access to all states obtained by tensoring two gluon states

in the subspace. The graphs with nonvanishing numerators for maximal super-Yang-Mills

are shown in Fig. 5, and the corresponding numerators are in Table I [5]. Since there

is no need to have a BCJ form in the second copy, we follow ref. [8] and use ordinary

Feynman-gauge Feynman diagrams on the pure Yang-Mills side to generate a set of suitable

numerators. (See ref. [8] for a description of this procedure.) While using Feynman diagrams

as a starting point is not efficient, enormous simplifications arise from the fact that we do

not need contributions corresponding to those with vanishing numerators on the maximal

super-Yang-Mills side. Unlike the cases covered earlier, the maximal (Q = 16) super-Yang-

Mills two-loop five-point numerators contain loop momenta and therefore cannot be pulled

out of the integral.

A generic integral for a graph in Fig. 5 is of the form,

I(x) =

∫

dDp

(2π)D
dDq

(2π)D
n
(x)
Q=16(1, 2, 3, 4, 5; p, q)n

(x)
Q=0(1, 2, 3, 4, 5; p, q)

∏

α(x)
l2α(x)

, (4.9)

where nQ=16 denotes the maximal super-Yang-Mills numerators specified in Table I and nQ=0

the pure Yang-Mills numerator found via Feynman rules. Including the symmetry factors,
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Graph (divergence)/(iγ12 ε1 · ε3 ε4 · ε5 k1 · ε2 s12/(4π)5)

(a) −64497+925Ds

362880
√
2

1
ǫ

(b) 820641−149788Ds

1451520
√
2

1
ǫ

(c) −27555+8116Ds

80640
√
2

1
ǫ

(d)
(

20605+912Ds

53760
√
2

+ −38+Ds

240
√
2

s14
s13

+ 655−161Ds

1680
√
2

s23
s13

+ −5171−148Ds

6720
√
2

s24
s13

)

1
ǫ

(e)
(

−71986+4511Ds

241920
√
2

+ 935+6Ds

6720
√
2

s14
s13

+ −907+342Ds

6720
√
2

s23
s13

+ 27859+844Ds

60480
√
2

s24
s13

)

1
ǫ

(f)
(

−31847−8615Ds

241920
√
2

+ 129−34Ds

6720
√
2

s14
s13

+ −1713+302Ds

6720
√
2

s23
s13

+ 2335+61Ds

7560
√
2

s24
s13

)

1
ǫ

TABLE II: The graph-by-graph divergent coefficients of the term containing the factor iγ12 ǫ1 ·

ǫ3 ǫ4 · ǫ5 k1 · ǫ2 s12/(4π)5 for the two-loop five-point half-maximal supergravity amplitude in D = 5.

As discussed in the text we have reduced each expression to a set of terms independent under

momentum conservation and spinor identities. Each expression in the table includes a permutation

sum over external legs, with the symmetry factor appropriate to the indicated graph. The sum of

contributions over all graphs vanishes for any value of the state-counting parameter Ds; all other

divergent terms amplitude similarly cancel.

the gravity amplitude is then given by

M(2)
Q+16(1, 2, 3, 4, 5) = −i

(κ

2

)7∑

S5

(

1

2
I(a) +

1

4
I(b) +

1

4
I(c) +

1

2
I(d) +

1

4
I(e) +

1

4
I(f)
)

,

(4.10)

where the sum S5 is over all permutations of external legs.

We carry out the extraction of the potential ultraviolet divergences exactly as in ref. [8],

to which we refer the reader. In brief, we extract the ultraviolet divergences by expanding

the external momenta [28], as has been recently carried out in various determinations of

ultraviolet divergences in super-Yang-Mills theory and supergravity [4, 6, 8, 27, 53, 67, 68].

The resulting vacuum integrals are reduced to a basis using FIRE [69], giving integrals

that are straightforward to evaluate. In D = 5, there are no subdivergences to subtract,

simplifying the construction compared to ref. [8].

As was the case at four points, we find the divergence to vanish:

M(2)
Q=16(1, 2, 3, 4, 5)

∣

∣

∣

D=5div.
= 0 . (4.11)

This result is valid for any states obtained by tensoring a pair of gluon states restricted
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to a four-dimensional subspace. The cancellation of the divergence between graphs for one

independent term is shown in Table II. Each row gives the divergent coefficient of the term

iγ12 ε1 · ε3 ε4 · ε5 k1 · ε2 s12/(4π)5 from the indicated graph in Fig. 5. This includes the sum

over permutations of external legs. We have applied momentum conservation as well as

taken a basis of six γij. Our choice is to eliminate k5 via

k5 · εi = −(k1 + k2 + k3 + k4) · εi , k4 · ǫ5 = −(k1 + k2 + k3) · ǫ5 , ki · εi = 0 . (4.12)

We use the five independent Mandelstam invariants s12, s13, s14, s23 and s24. The six in-

dependent numerator factors are γ12, γ13, γ14, γ23, γ24 and γ34. This gives a total of thirty

monomials γijskl; however, as explained in ref. [5], there are actually only twenty-five inde-

pendent ones due to nontrivial additional relations amongst them. We have used this fact

to eliminate the following monomials from our graph-by-graph results:

γ12s14 , γ12s23 , γ13s12 , γ13s13 , γ34s24 . (4.13)

After reducing to this basis (or any similar one), all divergences completely cancel in a

manner similar to the cancellation obtained by summing the contributions in Table II. It is

interesting that this cancellation is independent of the state-counting parameter Ds.

V. CONCLUSIONS AND OUTLOOK

In a previous paper [8], we proved that at three loops in N = 4 supergravity an R4

counterterm—valid under all currently known supersymmetry and duality constraints [9]—

has vanishing coefficient. In the present paper, we analyzed the simpler two-loop case of

pure half-maximal supergravity in D = 5, which has a valid counterterm under all known su-

persymmetry and duality constraints. However, using the double-copy structure, we showed

that the corresponding divergences completely cancel. Indeed we found that there are no

four-point divergences in D < 8 at one loop and in D < 6 at two loops, and we linked

these cancellations to similar ones occurring in corresponding pure Yang-Mills amplitudes

that prevent forbidden color structures from appearing in divergences. We also reached the

same conclusions for the five-point amplitudes that we analyzed at one and two loops. This

is consistent with previous explicit calculations showing that ultraviolet divergences of su-

pergravity theories can bear a strong resemblance to those of corresponding gauge theories,

not only in their general structure but in their details [6, 53].
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For the half-maximal supergravity one- and two-loop four- and five-point cases studied

here, when divergences of the corresponding pure-Yang-Mills amplitudes contain color struc-

tures other than the tree ones, then the supergravity amplitudes also diverge. In D = 8

and at two loops in D = 6 the pure Yang-Mills divergences have such color factors so the

half-maximal supergravity amplitudes also diverge. In lower dimensions, only tree color ten-

sors appear, so the corresponding supergravity amplitudes are finite. Using the double-copy

formula we also presented explicit expressions for the valid supergravity divergences in terms

of Yang-Mills ones.

The above results are suggestive of a strong link between the divergences of the two

theories when the number of loops or legs increases. With large numbers of loops or legs,

loop momenta can appear in both gauge-theory numerator factors of certain diagrams in the

double-copy formula. This makes it is more difficult to directly tie the integrated divergence

properties of supergravity theories to gauge theories. Nevertheless, it is rather striking that

the finiteness of the three-loop four-point N = 4 supergravity amplitude [8] is correlated

with the lack of multiloop color tensors in the corresponding pure Yang-Mills divergences,

suggesting a general pattern. Similarly, we found nontrivial cancellations in D = 5 five-

point two-loop amplitudes of half-maximal supergravity, even though both gauge-theory

copies have loop momenta in their numerators. An obvious conjecture is that the pattern

continues to higher loops, with divergences possible in (Q + 16)-supercharge supergravity

only when the divergences of corresponding Q-supercharge gauge theory contain independent

color tensors other than tree ones. In D = 4 this would suggest ultraviolet finiteness of pure

N ≥ 4 supergravity.

In order to test this and to guide future studies, it is, of course, crucially important

to carry out further explicit studies of divergences with larger numbers of loops or legs.

In particular, a computation of the five-loop four-point divergence in N = 8 supergravity

should be within reach [27], now that the corresponding N = 4 super-Yang-Mills integrand

has been obtained [27] (although not in a BCJ format). The calculation of the four-loop

four-point divergence of N = 4 supergravity in D = 4 is also doable with the procedure of

ref. [8] since the BCJ form of the corresponding N = 4 super-Yang-Mills amplitude required

by the double-copy formula is known [6].

There are a number of other obvious directions for future research. A key issue is to

find the extent to which supersymmetry and duality symmetries by themselves can be used
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to place restrictions on counterterms corresponding to the results described here. Very

interestingly, the potential two-loop four-point D = 5 counterterm does appear to be a

duality satisfying full superspace integral of a density (which itself is not duality invariant)

so such an explanation would be nontrivial [15]. It would be interesting to see if any of the

recent developments in tree-level gravity amplitudes [70] can shed any light on the nontrivial

ultraviolet cancellations we see at loop level.

In summary, in this paper we linked the divergences of half-maximal supergravity to

those of pure Yang-Mills theory. In particular, for the D = 5 two-loop four-point ampli-

tudes of half-maximal supergravity, the divergences vanish via the same cancellations that

remove forbidden color factors from the divergences of corresponding pure Yang-Mills ampli-

tudes. This case was particularly simple to analyze because the maximal super-Yang-Mills

numerators used in the double-copy construction are independent of loop momenta. The

next challenge is to fully unravel the ultraviolet cancellations implied by the double-copy

structure at higher-loop orders.
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Appendix A: Two-loop pure Yang-Mills divergence in D = 5

In this appendix, we explicitly compute the D = 5 divergence of the two-loop pure

Yang-Mills four-point amplitude. The counterterm in this case is the F 3 operator (3.9).

To simplify the analysis we restrict ourselves to a four-dimensional external subspace. In

this subspace, the operator generates nonvanishing contributions to the (++++) helicity

states. The all-plus helicity two-loop integrand in Yang-Mills was given in ref. [71] in a form

valid for arbitrary internal dimensions. Here we integrate this expression in D = 5 − 2ǫ
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to obtain the explicit form of the ultraviolet divergence. We then use this expression to

explicitly confirm our more general discussion of the cancellations of the divergences in

D = 5 half-maximal supergravity.

The unintegrated form of the pure Yang-Mills amplitude with identical external helicities

is [71]

AP(1+, 2+, 3+, 4+) = i
[1 2] [3 4]

〈1 2〉 〈3 4〉
{

s IP
4 (s, t) + 4(Ds − 2) Ibow-tie

4 [(λ2
p + λ2

q) (λp · λq)](s)

+
(Ds − 2)2

s
Ibow-tie
4

[

λ2
p λ

2
q ((p+ q)2 + s)

]

(s, t)
}

,

ANP(1+, 2+, 3+, 4+) = i
[1 2] [3 4]

〈1 2〉 〈3 4〉 s I
NP
4 (s, t) , (A1)

where Ds is the state-counting parameter [58]. In pure half-maximal supergravity we take

Ds = 5. Here, the external kinematics are four-dimensional, while the loop momenta are in

D = 5− 2ǫ, and (λp, λq) are the (D− 4)-dimensional components of the two-loop momenta.

The planar and nonplanar double-box integrals are defined as

IP
4 (s, t) ≡

∫

dDp

(2π)D
dDq

(2π)D

(Ds − 2)(λ2
p λ

2
q + λ2

p λ
2
p+q + λ2

q λ
2
p+q) + 16

[

(λp · λq)
2 − λ2

p λ
2
q

]

p2 q2 (p+ q)2(p− k1)2 (p− k1 − k2)2 (q − k4)2 (q − k3 − k4)2
,

INP
4 (s, t)

≡
∫

dDp

(2π)D
dDq

(2π)D

(Ds − 2)(λ2
p λ

2
q + λ2

p λ
2
p+q + λ2

q λ
2
p+q) + 16

[

(λp · λq)
2 − λ2

p λ
2
q

]

p2 q2 (p+ q)2 (p− k1)2 (q − k2)2 (p+ q + k3)2 (p+ q + k3 + k4)2
,

(A2)

with corresponding diagrams shown in Fig. 2. The ‘bow-tie’ double-triangle integrals, dis-

played in Fig. 6, are defined as

Ibow-tie
4 [P(λi, p, q, ki)](s)

≡
∫

dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2 q2 (p− k1)2 (p− k1 − k2)2 (q − k4)2 (q − k3 − k4)2
. (A3)

We now compute the divergent parts of the integrals. In five dimensions, there are no

infrared divergences so all divergences are ultraviolet in nature.

The bow-tie integrals are finite in five dimensions:

Ibow-tie
4 [λ2

pλ
2
q](s) =

π3s

576

1

(4π)5
,
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FIG. 6: The bow-tie integral.

Ibow-tie
4 [λ2

pλ
2
q(p+ q)2](s, t) =

π3s(2t− 15s)

18432

1

(4π)5
,

Ibow-tie
4 [λ2

p (λp · λq)](s) = 0 , (A4)

thus the ultraviolet divergence comes solely from the double-box integrals.

Using Schwinger parameters, we write the planar double-box integral in eq. (A2) with

constant numerator as

IP
4 [1](s, t) =

7
∏

i=1

∫ ∞

0

dti [∆P(T )]
−D

2 exp

[

−QP(s, t, ti)

∆P(T )

]

, (A5)

where

∆P(T ) = (TpTq + TpTpq + TqTpq) , (A6)

with

Tp = t3 + t4 + t5, Tq = t1 + t2 + t7, Tpq = t6 . (A7)

As the subscripts indicate, Tp, Tq and Tpq are the sum of Schwinger parameters whose cor-

responding propagators contain loop momenta p, q and p + q respectively. Finally, we also

have

QP(s, t, ti) = −s
(

t1t2Tp + t3t4Tq + t6(t1 + t3)(t2 + t4)
)

− t t5t6t7 . (A8)

The effects of λ2
p, λ

2
q and λ2

p+q in the numerators are derived by taking derivatives on
∫

dλ1−2ǫ
p dλ1−2ǫ

q exp
[

−Tpλ
2
p − Tqλ

2
q − Tpqλ

2
p+q

]

∝ [∆P(T )]
− 1

2
+ǫ , (A9)

with respect to Tp, Tq and Tpq. This leads to the following extra factors, for example, to be

inserted in the integrand of eq. (A5) ,

λ4
p → (ǫ− 1

2
)(ǫ− 3

2
)
(Tpq + Tq)

2

∆2
P(T )

,

λ2
pλ

2
p+q → (ǫ− 1

2
)2

∆P(T )
+

(ǫ− 1
2
)(ǫ− 3

2
)T 2

q

∆2
P(T )

. (A10)
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We account for the extra factors of ∆a
P(T ) by shifting the dimension D → D− 2a. We now

change six of the Schwinger parameters to Feynman parameters such that the delta-function

constraint on the Feynman parameters is
∑

i 6=6 αi = 1. We then have

IP
4 [P(λp, λq)](s, t) = Γ[7−D+γ]

∫ ∞

0

dα6

∏

i 6=6

∫ 1

0

dαiδ

(

1−
∑

i 6=6

αi

)

[∆P(T )]
7− 3D

2
+γ

[QP(s, t, αi)]
7−D+γ

D(αi) ,

(A11)

where D(αi) are the extra factors in eq. (A10), with ti → αi. If the extra factors in eq. (A10)

depend on Tp, Tq and Tpq, then γ = 2; otherwise, we have γ = 0. Following Smirnov [72], we

perform a change of variables that imposes the delta-function constraint:

α1 = β1ξ3 , α2 = (1− ξ5)(1− ξ4) , α3 = β2ξ1 , α4 = ξ5(1− ξ2) ,

α5 = β2(1− ξ1) , α7 = β1(1− ξ3) , β1 = (1− ξ5)ξ4 , β2 = ξ5ξ2 . (A12)

The parameters can then be straightforwardly integrated to obtain a Mellin-Barnes repre-

sentation, and explicit integration gives

IP
4 [λ

2
pλ

2
q] =

π

70ǫ

1

(4π)5
+O(ǫ0) ,

IP
4 [λ

2
pλ

2
p+q] = − π

70ǫ

1

(4π)5
+O(ǫ0) ,

IP
4 [λ

4
p] = − π

70ǫ

1

(4π)5
+O(ǫ0) ,

IP
4 [λ

4
p+q] = O(ǫ0) . (A13)

Inserting these results into eq. (A1), the all-plus helicity planar amplitude is

AP(1+, 2+, 3+, 4+) = i
[1 2] [3 4]

〈1 2〉 〈3 4〉
{

−s (Ds − 2)
π

70ǫ

1

(4π)5
+O(ǫ0)

}

. (A14)

The evaluation of the nonplanar double-box integrals follows the same steps as the planar

ones, with ∆NP(T ) taking the same form as ∆P(T ), but now identifying:

Tp = t1 + t2, Tq = t3 + t4, Tpq = t5 + t6 + t7 . (A15)

Similarly, we also have

QNP(s, t, u, ti) = −s (t1t3t5 + t2t4t7 + t5t7(Tp + Tq))− t t2t3t6 − u t1t4t6 . (A16)

However, here we find it advantageous to change only four Schwinger parameters to Feynman

parameters. Performing this change gives

INP
4 [P(λp, λq)] = Γ[7−D + γ] (A17)

38



×
7
∏

i=5

∫ ∞

0

dαi

4
∏

j=1

∫ 1

0

dαjδ

(

1−
4
∑

i=1

αi

)

[∆NP(T )]
7− 3D

2
+γ

[QNP(s, t, u, αi)]
7−D+γ

D(αi) .

The delta-function constraint can be imposed via further redefinition:

α1 = ξ3(1− ξ1) , α2 = ξ3ξ1 , α3 = (1− ξ3)(1− ξ2) , α4 = (1− ξ3)ξ2 . (A18)

The parameters can once again be straightforwardly integrated, and we arrive at

INP
4 [λ2

pλ
2
q] = − π

42ǫ

1

(4π)5
+O(ǫ0) ,

INP
4 [λ2

pλ
2
p+q] =

2π

105ǫ

1

(4π)5
+O(ǫ0) ,

INP
4 [λ4

p] = O(ǫ0) ,

INP
4 [λ4

p+q] =
π

35ǫ

1

(4π)5
+O(ǫ0) . (A19)

Inserting these results into eq. (A1), the all-plus helicity nonplanar amplitude is given by

ANP(1+, 2+, 3+, 4+) = i
[1 2] [3 4]

〈1 2〉 〈3 4〉
{

s (Ds − 2)
π

70ǫ

1

(4π)5
+O(ǫ0)

}

. (A20)

We use the results for the two-loop divergences in eqs. (A14) and (A20) in Section IV

to explicitly demonstrate the cancellation of the corresponding divergence of D = 5 half-

maximal supergravity.
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