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Abstract

Quantum-corrected equations of motion generically contain higher time derivatives, computed

here in the setting of canonically quantized systems. The main example in which detailed deriva-

tions are presented is a general anharmonic oscillator, but conclusions can be drawn also for systems

in quantum gravity and cosmology.
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I. INTRODUCTION

Quantum effects, generically, are non-local in time, captured in effective actions or equa-

tions [1, 2] by correction terms containing an asymptotic series of time derivatives of higher

than second order. The path-integral formulation provides an intuitive explanation: entire

paths connecting two points, not just a local neighborhood on a single trajectory, deter-

mine observable properties. In gravitational theories, one expects quantum corrections with

higher time derivatives for an independent reason: The theory is interacting and therefore

should receive non-trivial quantum corrections. The only generally covariant extension of the

Einstein–Hilbert action by functionals of the metric is by higher powers and contractions of

space-time curvature tensors, most of which introduce time derivatives of higher than second

order in equations of motion. The presence of higher time derivatives should therefore be a

generic feature of quantum theories of gravity, referring to perturbative quantizations as well

as considerations of the semiclassical limit of non-perturbative theories. Our main motiva-

tion for this work is the latter situation, chiefly in the context of low-curvature phenomena

of loop quantum gravity, a non-perturbative quantization of gravity. In cosmological models

of this theory, effective equations have been derived, but the role of higher time derivatives

has remained unclear and disputed. This situation will present the main physical example

we have in mind throughout the paper, and to which we will come back in more detail in

the concluding section.

Many properties of classical and quantum gravity are best described and analyzed in a

canonical formulation, especially when gauge issues play a role. In canonical quantizations,

however, it is not all too clear why and how corrections with higher time derivatives should

result. Equations of motion with higher time derivatives imply additional degrees of freedom

because more initial data must be provided compared to usual second-order ones. In a

perturbative setting, the solution space does not increase in size because the surplus solutions

are not analytic in the perturbation parameter that multiplies higher-derivative terms, and

therefore must be discarded for self-consistency [3]. However, terms that contain higher time

derivatives do modify the classical solutions of second-order equations and therefore the new

degrees of freedom they come along with play an indirect role. In canonical quantizations,

however, one replaces the classical phase space by a set of basic operators of the same number,

without an obvious place for new quantum degrees of freedom. A clear identification of such
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variables together with a systematic procedure of deriving quantum corrections in which they

appear is of general interest, not just in quantum-gravity research where higher-curvature

corrections could be computed by such means.

Effective methods for canonical quantum systems do exist, using a systematic analysis

of quantum back-reaction of fluctuations and higher moments of a state on the evolution

of expectation values [2]. Applying this scheme to anharmonic oscillators with potential

V (q) = 1
2
mω2q2 + U(q), it has been shown that results equivalent to those of path-integral

based low-energy effective actions [1] are obtained. So far, these calculations, in [1] as well

as [2], have been restricted to the first order in a semiclassical expansion by h̄ and second

order in an adiabatic expansion, analogous to a derivative expansion. To these orders, in

Γeff [q(t)] =

∫

dt

(

1

2

(

m+
h̄U ′′′(q)2

32m2ω5 (1 + U ′′(q)/mω2)5/2

)

q̇2−1

2
mω2q2−U(q)− h̄ω

2

(

1 +
U ′′(q)

mω2

)1/2
)

(1)

one can see corrections by an effective quantum potential as well as a correction to the

particle mass, but no higher time derivatives result.

Nevertheless, the scheme provides a natural candidate for quantum degrees of freedom

analogous to new degrees of freedom in corrections with higher-time derivatives [4]: fluctu-

ations and higher moments of a state. As in perturbative higher-derivative theories, these

degrees of freedom play an indirect role when an adiabatic expansion is used, because their

equations of motion can be solved and solutions can be inserted into equations for ex-

pectation values to determine quantum corrections. In this article, we push the required

expansions to higher orders to compute several new correction terms for the same systems,

general anharmonic oscillators, and confirm that higher time derivatives appear. These re-

sults are collected in Sec. III and put together in Sec. IV, after our review of canonical

effective techniques in Sec. II.

Looking at the details of our analysis, we will also be able to draw several general con-

clusions about properties of effective canonical dynamics. These statements, together with

a general discussion of the relevance of our findings for (loop) quantum cosmology, can be

found in the concluding section V.
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II. ANHARMONIC OSCILLATORS

The classical Hamiltonian for an anharmonic oscillator is given by:

H(q, p) =
1

2m
p2 +

1

2
mω2q2 + U(q) (2)

with the particle mass m, harmonic frequency ω, and an arbitrary function U(q) which, for

many purposes such as quantum stability, is often restricted to be bounded from below. We

will mainly be thinking of a polynomial U(q) of higher than second order, whose total order

is even if boundedness from below is required. (Our effective equations will be meaningful

even when this condition is violated.) The frequency ω is uniquely determined only if one

requires U(q) to have no quadratic contribution.

The Hamiltonian (2) can straightforwardly be quantized, without factor ordering ambi-

guities. Quantum states |Ψ〉(t) then satisfy the Schrödinger equation

ih̄
∂|Ψ〉
∂t

= Ĥ|Ψ〉 = 1

2m
p̂2|Ψ〉+ 1

2
mω2q̂2|Ψ〉+ U(q̂)|Ψ〉 . (3)

This equation takes the form of a differential equation when a representation of states, for

instance as wave functions of q, is chosen. Effective equations, however, are independent of

this representation choice. (There may be inequivalent representations not related unitarily,

for instance on a non-separable Hilbert space [5]. In this case effective equations would

depend on which representation is chosen; see the example [6] in quantum cosmology.)

Instead of representations of wave functions, we use the general evolution equation

d〈Ô〉
dt

=
〈[Ô, Ĥ]〉

ih̄
(4)

for expectation values of observables Ô. For a Hamiltonian as given here, (4) applied to q̂

and p̂ gives rise to Ehrenfest’s equations

d〈q̂〉
dt

=
〈p̂〉
m

,
d〈p̂〉
dt

= −〈V ′(q̂)〉 , (5)

resembling the classical ones but also exhibiting quantum corrections in the force term

−〈V ′(q̂)〉 compared to −V ′(〈q̂〉). Canonical effective equations compute the difference of

−〈V ′(q̂)〉 and −V ′(〈q̂〉) in a systematic way. (In [7], these equations are used to prove that

quantum mechanics has the correct classical limit for h̄ → 0.)

Unless the potential is at most quadratic, Eqs. (5) do not provide a closed set of equations

that could be solved for the expectation values, starting from some initial values. A cubic
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term λq3 in the potential, for instance, gives rise to−3λ〈q̂2〉 = −3λ(〈q̂〉2+(∆q)2). The second

term is a quantum correction to the classical force −3λq2, but it depends on the position

fluctuation ∆q which is independent of the expectation value 〈q̂〉. Ehrenfest’s equations

therefore cannot be solved in this case, unless one already knows how the quantum state or

at least its position fluctuation evolves.

To provide a complete set of equations, effective techniques enlarge the set of Ehrenfest’s

equations by deriving differential equations for fluctuations and all moments

G̃a,n :=
〈

(q̂ − 〈q̂〉)n−a(p̂− 〈p̂〉)a
〉

Weyl
(6)

where the subscript “Weyl” indicates Weyl (or totally symmetric) ordering. Since these

variables are defined by expectation values, equations of motion for them can be derived

from the same equation (4) as used earlier. Moreover, these variables provide infinitely many

quantum degrees of freedom independent of expectation values, just the degrees of freedom

which, at least qualitatively, should be related to implications of higher time derivatives.

Unlike expectation values, moments cannot take arbitrary values. For n = 2, they must

satisfy the familiar uncertainty relation

G̃0,2G̃2,2 − (G̃1,2)2 ≥ h̄2

4
(7)

and there are analogous, but less familiar relations at higher orders. All these inequalities

follow from the Schwarz inequality. Only if they are obeyed can the moments correspond to

a state. If they are, the state may be pure or mixed; if a selection of pure states is required,

additional conditions must be imposed. (See also the examples in [8].)

Instead of calculating all the commutators required for equations of motion (4) of mo-

ments, it is usually more straightforward to take a phase-space point of view. We first con-

sider the right-hand side of (4), which in classical mechanics would be the Poisson bracket of

O with the Hamiltonian H . This comparison motivates the definition of a Poisson bracket

between expectation values of arbitrary operators,

{〈Â〉, 〈B̂〉} :=
〈[Â, B̂]〉

ih̄
. (8)

This bracket is antisymmetric, linear and satisfies the Jacobi identity by virtue of those

properties realized for the commutator. If we extend it to products of expectation values by

using the Leibniz rule, we obtain a well-defined Poisson bracket on the quantum phase space,
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whose elements are states parameterized by their expectation values of q̂ and p̂ together with

all moments. (The quantum phase space is symplectic. However, in effective equations one

truncates the system at finite orders of h̄, which translates to finite orders of the moments.

The Poisson tensor remains well-defined on these subspaces, but in general is no longer

invertible. Effective equations therefore cannot be described by symplectic techniques.)

Combining (4) and (8), the Schrödinger flow is described equivalently by a Hamil-

tonian flow on the quantum phase space, generated by the quantum Hamiltonian

HQ(〈q̂〉, 〈p̂〉, G̃a,n) := 〈Ĥ〉〈q̂〉,〈p̂〉,G̃a,n. The subscript indicates that the expectation value is

taken in a state characterized by the values 〈q̂〉, 〈p̂〉, G̃a,n; the result then defines the value

of the quantum Hamiltonian at the quantum phase-space point corresponding to the same

state.

As a function of expectation values and moments, quantum Hamiltonians can be com-

puted by writing 〈H(q̂, p̂)〉 = 〈H(〈q̂〉+(q̂−〈q̂〉), 〈p̂〉+(p̂−〈p̂〉))〉 and expanding in the “small”

quantities q̂− 〈q̂〉 and p̂− 〈p̂〉. This formal expansion is a shortcut for a direct computation

of the expectation value. Inserting a Taylor expansion and assuming H(q̂, p̂) to be Weyl

ordered (in case there is any factor-ordering choice), we obtain

HQ := 〈H(q̂, p̂)〉 =
∞
∑

n=0

n
∑

a=0

1

n!

((

n

a

))

∂nH(q, p)

∂pa∂qn−a
G̃a,n (9)

with the moments (6). (Here and from now on we identify q := 〈q̂〉 and p := 〈p̂〉 to simplify

our notation.)

The moments may be written in dimensionless form as Ga,n = h̄−n/2(mω)n/2−aG̃a,n to

facilitate future expansions. In terms of these dimensionless variables, we obtain, for the

given anharmonic oscillator, the quantum Hamiltonian as:

HQ =
1

2m
p2 +

1

2
mω2q2 + U(q) +

h̄ω

2
(G0,2 +G2,2) +

∞
∑

n=2

1

n!
(h̄/mω)n/2U (n)(q)G0,n . (10)

The first quantum correction, depending only on fluctuations but not on expectation values,

is a zero-point energy. The sum, on the other hand, contains products of expectation values

and moments if there is an anharmonic potential, and therefore describes the coupling

between quantum variables and expectation values, or quantum back-reaction. (Note that

the moments vanish identically if n = 1. The sum therefore starts at n = 2.)
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If we look at the equations of motion for expectation values and moments generated by

the quantum Hamiltonian [2],

q̇ = {q,HQ} =
p

m

ṗ = {p,HQ} = −mω2q − U ′(q)−
∞
∑

n=2

1

n!
(h̄/mω)n/2U (n+1)(q)G0,n (11)

Ġa,n = −aωGa−1,n + (n− a)ωGa+1,n − U ′′(q)a

mω
Ga−1,n (12)

+

√
h̄aU ′′′(q)

2(mω)3/2
Ga−1,n−1G0,2 +

h̄aU
′′′′

(q)

3!(mω)2
Ga−1,n−1G0,3

−a

2

(√
h̄U ′′′(q)

(mω)3/2
Ga−1,n+1 +

h̄U
′′′′

(q)

3(mω)2
Ga−1,n+2

)

+ · · ·

(not all terms are written in the last equation) we can already see that moments are related

to higher time derivatives: Eq. (11) can be interpreted as identifying an infinite linear

combination of moments with the second derivative of q, in a way that also depends on q

itself. Taking further time derivatives of the whole equation (11) and inserting (12) relates

different combinations of the Ga,n (no longer linear) to time derivatives of q of higher than

second order. It is therefore clear that moments in the canonical setting play the role of

higher time derivatives in a Lagrangian one. But so far the identification is not very direct,

and the equations we obtain for higher time derivatives in terms of moments are difficult to

invert. In the rest of this paper, we work out a systematic method, using two expansions

as in [2], to write (11) as an equation corrected by higher-derivative terms, eliminating the

moments.

III. SEMICLASSICAL AND ADIABATIC EXPANSIONS

Our first expansion is a semiclassical one. In a semiclassical state, the moments by

definition obey the h̄ierarchy G̃a,n = O(h̄n/2) so that an expansion by h̄ to a given finite

order makes use of only finitely many moments. Thanks to the definition of dimensionless

variables Ga,n = h̄−n/2(mω)n/2−aG̃a,n, suitable powers of h̄ already appear as factors in

equations of motion such as (11), and we only need to truncate the sum.

Although the leading order of h̄ is split off the moments when using dimensionless vari-

ables, each moment, as a solution of (12), could still have higher-order corrections in h̄.

For full generality, we therefore make these terms explicit by expanding by powers of
√
h̄:
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Ga,n =
∑

e G
a,n
e h̄e/2. The coefficients Ga,n

e are then independent of h̄. Some features of this

expansion may look unfamiliar, which we explain by two comments:

• As written explicitly, we should expect half-integer orders in h̄ because a moment of

order n behaves as O(h̄n/2). If all odd-order moments vanish, which is the case in a

large subclass of semiclassical states, only integer orders appear, as naively expected.

Such an assumption can always be made for an initial state, but non-trivial quantum

back-reaction can easily generate non-vanishing odd-order moments. (See for instance

the example in [9].)

• Since h̄ has non-trivial dimensions, the coefficients Ga,n
e have different dimensions for

different e. If this feature is unwanted, one can use coefficients or parameters in the

anharmonicity potential U(q), together with m and ω, to define a parameter L of

the same dimensions as h̄ and expand by
√

h̄/L. The parameters of the harmonic-

oscillator Hamiltonian have already been used to absorb the dimensions of G̃a,n, and

they do not allow a combination with the dimensions of h̄. In the harmonic case, an

expansion by
√

h̄/L cannot be done, and it is not necessary because the equations

of motion for moments can then be solved exactly, showing that each moment G̃a,n

is exactly proportional to h̄n/2 and stays so at all times. This property is no longer

realized for anharmonic oscillators, but then there are additional parameters in the

potential that can be used to define a suitable L. We refrain from doing so here

because we work with a general anharmonicity U(q). Its derivatives then provide the

correct dimensions.

With the semiclassical expansion in h̄, the equations of motion for the moments partially

decouple. At O(h̄0) and O(h̄1/2), we have

Ġa,n
0 = −aωGa−1,n

0 + (n− a)ωGa+1,n
0 − U ′′(q)a

mω
Ga−1,n

0 (13)

Ġa,n
1 = −aωGa−1,n

1 + (n− a)ωGa+1,n
1 − U ′′(q)a

mω
Ga−1,n

1 +
U ′′′(q)a

2(mω)3/2
G0,2

0 Ga−1,n−1
0

− U ′′′(q)a

2(mω)3/2

(

Ga−1,n+1
0 − (a− 1)(a− 2)

12
Ga−3,n−3

0

)

(14)

which we could try to solve order by order. The equations for Ga,n
0 couple only the n + 1

moments at fixed order n and are linear in the moments. The equations for Ga,n
1 (and
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similarly for higher orders in h̄) are inhomogeneous but also contain only moments Ga,n
1 of

the same order n, as well as non-linear inhomogeneous terms of different orders.

By the semiclassical expansion, the infinitely coupled original system has been reduced

to finitely coupled subsets. In principle one could solve this system order by order, but since

coefficients of the differential equations also depend on q for a non-trivial anharmonicity, they

are difficult to solve explicitly. We therefore make use of a second expansion, an adiabatic

one, which reduces the differential equations to algebraic ones. This approximation will also

be crucial to bring out the nature of moments as higher time derivatives. (In the conclusions

we will comment on the nature of moments in regimes in which no adiabatic expansion is

possible.)

The adiabatic expansion is defined by replacing all time derivatives in equations of motion

for moments (q and p are not assumed to change just adiabatically) by d/dt → λd/dt,

expanding all coefficients Ga,n
e =

∑∞
i=1G

a,n
e,i λ

i in λ, solving equations order by order in λ,

and setting λ = 1 in the end. The expansion is formal because there is no guarantee that

the series converges for λ = 1. Moreover, the parameter λ, unlike h̄ in the semiclassical

expansion, has no physical meaning. As we will see later, the procedure rather serves as a

systematic way of organizing the appearance of derivatives of different orders.

At zeroth order of the adiabatic approximation of Ġa,n = {Ga,n, HQ}, we have equations

0 = {Ga,n
e,0 , HQ} (15)

which are algebraic rather than differential. At higher orders,

Ġa,n
e,i = {Ga,n

e,i+1, HQ} (16)

contains time derivatives, but if we proceed order by order, we can assume that Ga,n
e,i has

already been solved for, starting with the algebraic equation for Ga,n
e,0 . With the time depen-

dence on the left-hand side of (16) known, the equation again reduces to an algebraic one

for Ga,n
e,i+1. Proceeding order by order, the main equations to be solved are algebraic. (Some

differential consistency conditions also arise, as we will see explicitly.)

Combining both expansions, our moments read

Ga,n =
∑

e

∑

i

Ga,n
e,i h̄

e/2λi . (17)

Equations to be solved for the coefficients Ga,n
e,i show both advantages noted above: They

split into finitely coupled sets, and are algebraic.
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We now proceed to computing explicit solutions to several orders. But first we interject

a comment on our designation of h̄-orders to avoid confusion. For most of this paper, we

will be looking at the moment equations (12) and their solutions, and therefore speak of the

O(h̄0)-order when all h̄-terms are dropped, of the O(h̄1/2)-order when terms linear in
√
h̄

are kept, and so on. These orders give us the relevant information about state properties at

the corresponding orders. However, if we use these moment solutions to compute correction

terms for effective equations of expectation values, inserting the moments in (11) as we

will do in the end, the h̄-orders shift because (11) contains explicit factors of h̄. Somewhat

counter-intuitively, even the O(h̄0)-order in the moments will then contribute to non-trivial

quantum corrections. This intermingling of the orders cannot be avoided because equations

of motion for different variables — expectation values or moments of different orders n —

have their own arrangements of h̄-terms.

A. Adiabatic Approximation at O(h̄0) in the Moments

At zeroth order in the adiabatic approximation, we can ignore all time dependence:

{Ga,n
e,0 , HQ} = 0. At zeroth order also in the

√
h̄ expansion, we have from (13)

0 = −aωGa−1,n
0,0 + (n− a)ωGa+1,n

0,0 − U ′′(q)a

mω
Ga−1,n

0,0 (18)

for 0 ≤ a ≤ n, which gives a solution of the form

Ga,n
0,0 = Cn

(n− a)!a!

((n− a)/2)!(a/2)!

(

1 +
U ′′(q)

mω2

)(2a−n)/4

(19)

with some coefficients Cn if both n and a are even. Otherwise, Ga,n
0,0 = 0. (For odd a, Eq. (18)

used with a = 0 implies that G1,n
0,0 = 0, which upon recurrence to a = 2k + 1 with integer k

implies that Ga,n
0,0 = 0 for odd a, no matter whether n is even or odd. For n odd and a even

in Ga,n
0,0 , Eq. (18) evaluated for a = n is meaningful, with a zero value implied for Gn+1,n

0,0 ,

only if all Ga,n
0,0 with odd n and even a vanish.)

Only the values (19) with even n and a can be non-zero. Based on the zeroth-order

equation (13) alone, the Cn could depend on q as well, but this possibility is ruled out

by a consistency condition obtained at first adiabatic order [2, 4]. The values of Cn in

general effective equations remain free (provided the resulting moments satisfy the uncer-

tainty relation) and parameterize different choices of adiabatic states. A prominent choice
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is the anharmonic vacuum, whose values can be obtained by requiring that the harmonic

limit U(q) = 0 provides the known moments of the harmonic-oscillator ground state. The

Cn = 2−n [2] are then fixed, and we have

Ga,n
0,0 =

(n− a)!a!

2n((n− a)/2)!(a/2)!

(

1 +
U ′′(q)

mω2

)(2a−n)/4

(20)

for even a and n.

As recalled here, the derivation of (20) with its precise coefficient requires additional

assumptions about the initial values of the moments, or about the kind of states whose

evolution is considered. General effective equations are not unique owing to the depen-

dence on classes of states described by them. The usual low-energy effective action (1)

is parameter-free only because it refers to a specific regime of states near the interacting

vacuum, as indicated by the qualifier “low-energy.” The underlying conditions are tanta-

mount to requiring the moments to agree with those of the harmonic-oscillator ground state

when U(q) = 0, and indeed canonical effective equations with this choice are equivalent to

equations of motion that follow from the low-energy effective action [2]. The solutions for

moments then amount to expanding around the adiabatic vacuum state of the anharmonic

system. Since our results build on (20), we will be dealing with the same states, but to

higher orders in the semiclassical and adiabatic expansions.

1. Solutions at zeroth and first adiabatic order

Using zeroth-order solutions in Ġa,n
0,0 = {Ga,n

0,1 , HQ}, the equation of motion at first order

in λ and zeroth order in
√
h̄, we have, for odd a or n,

Ġa,n
0,0 = 0 = −aωGa−1,n

0,1 + (n− a)ωGa+1,n
0,1 − U ′′(q)a

mω
Ga−1,n

0,1 (21)

But this equation is identical to (18), so we have the same solution, namely zero, for odd n.

This pattern continues to all orders in the adiabatic approximation:

Ga,n
0,i = 0 for odd n. (22)

For even n, however, solutions change with progressing adiabatic order. We can still use

(21) for a odd and n even, describing solutions Ga,n
0,1 with even a and n. Again, the equation

is identical to (18), solved by (19) with new coefficients C ′
n instead of Cn. If we match with
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the harmonic-oscillator ground state, we must require its values for the moments Ga,n
0,0 +Ga,n

0,1

to the present order, so that Cn+C ′
n = 2−n. Only this combination of Cn and C ′

n appears in

equations of motion to first adiabatic order, and therefore it is not necessary (nor possible)

to determine both coefficients independently. Since we already fixed Cn, we keep this value

as well as Ga,n
0,0 as in (20). This choice implies C ′

n = 0 and therefore

Ga,n
0,1 = 0 for even a and n . (23)

For moments of odd a and even n, finally, the solution of (21) (with odd a inserted) is

different. In this case, the time derivative of (20) becomes the left-hand side of the first-order

adiabatic equation of motion:

(n− a)!a!

2n((n− a)/2)!(a/2)!

2a− n

4

U ′′′(q)q̇

mω2

(

1 +
U ′′(q)

mω2

)(2a−n−4)/4

= −aωGa−1,n
0,1 +(n−a)ωGa+1,n

0,1 −U ′′(q)a

mω
Ga−1,n

0,1

(24)

We can solve this immediately for a = n, and then substitute the result in to solve for the

case a = n− 2, and so on. The general solution is

Ga,n
0,1 = Ca,n

U ′′′(q)q̇

mω3

(

1 +
U ′′(q)

mω2

)(2a−n−6)/4

(25)

for odd a and even n, where the Ca,n are dimensionless prefactors. In particular, while

the zeroth adiabatic order does not allow quantum correlations, they may appear at first

adiabatic order, for instance by G1,2 6= 0.

In the harmonic limit, (25) vanishes identically, and therefore the Ca,n are not restricted

by the requirement of perturbing around the harmonic ground state. Instead, the Ca,n

are fully determined by the adiabatic equations. For a = n in (24), we have Cn−1,n =

−2−(n+2)n!/(n/2)!. Plugging (25) into (24) we find

Ca−1,n =
n− a

a
Ca+1,n −

(n− a)!(a− 1)!

2n+2((n− a)/2)!(a/2)!
(2a− n) , (26)

a recurrence relation solved by the general expression

Ca−1,n = − (n− a)!(a− 1)!

2n+2((n− a)/2)!(a/2)!
(2a− n) (27)

−2−n−2

(n−a−2)/2
∑

b=0

[

b
∏

c=0

n− (a + 2c)

a + 2c

]

(n− a′b)!(a
′
b − 1)!

((n− a′b)/2)!(a
′
b/2)!

(2a′b − n)

12



for even a, where a′b = a+ 2(b+ 1).

To summarize, at first adiabatic order only moments with odd a and even n change,

depending on the time derivative of q in (25).

2. Second Adiabatic Order

At second order in λ and zeroth order in h̄, the equation of motion is

Ġa,n
0,1 = −aω

(

1 +
U ′′(q)

mω2

)

Ga−1,n
0,2 + (n− a)ωGa+1,n

0,2 . (28)

For odd n the solution is zero by (22), and even a and n in the equation of motion leads

to Ga,n
0,2 of the form (19) for odd a and even n, again with new coefficients Cn. For these

moments to vanish in the harmonic limit, we have Ga,n
0,2 = 0 for odd a.

For odd a and even n, the left-hand side is given by the time derivative of equation (25).

Substituting in this result and rearranging slightly, we have

Ga+1,n
0,2 =

a

n− a

(

1 +
U ′′(q)

mω2

)

Ga−1,n
0,2

+
Ca,n

(n− a)mω4

(

(U ′′′(q)q̈ + U ′′′′(q)q̇2)

(

1 +
U ′′(q)

mω2

)(2a−n−6)/4

+(U ′′′(q)q̇)2
2a− n− 6

4mω2

(

1 +
U ′′(q)

mω2

)(2a−n−10)/4 )

. (29)

The form of this equation suggests an ansatz

Ga,n
0,2 = Aa,n

(

1

mω4
(U ′′′(q)q̈ + U ′′′′(q)q̇2)

(

1 +
U ′′(q)

mω2

)(2a−n−8)/4
)

+Ba,n

(

1

4m2ω6
(U ′′′(q)q̇)2

(

1 +
U ′′(q)

mω2

)(2a−n−12)/4
)

+

(

n/2

a/2

)(

n

a

)−1(

1 +
U ′′(q)

mω2

)a/2

G0,n
0,2 (30)

where Aa,n and Ba,n are dimensionless coefficients determined by a and n, and the final term

is motivated by the solution at zeroth order in λ, generated by the first term in (29). Using

this ansatz in (29), we find recursion relations for Aa,n and Ba,n:

Aa+1,n =
Ca,n

n− a
+

a

n− a
Aa−1,n (31)

Ba+1,n =
Ca,n(2a− n− 6)

n− a
+

a

n− a
Ba−1,n (32)
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for odd a. Consistency of (30) requires that A0,n = B0,n = 0, which gives A2,n =
C1,n

n−1
and

B2,n = −n+4
n−1

C1,n. The recursion relations, with these initial values, give

Aa+1,n =
Ca,n

n− a
+

(a−3)/2
∑

b=0

(

b
∏

c=0

a− 2c

n− (a− 2c)

)

Ca−2(b+1),n

n− (a− 2(b+ 1))
(33)

for odd a ≥ 3, where the Ca,n are given in (26). The expression for the Ba,n is similar, the

only change being that Ca,n is replaced by (2a− n− 6)Ca,n in each term.

To fully determine the moments, which are thus far given in terms of G0,n
0,2 , we need a

condition from third order. Since we are still at O(h̄0), the third-order equation of motion

has the same form, so the condition is given by [4]

∑

even a

(

n/2

a/2

)(

1 +
U ′′(q)

mω2

)(n−a)/2

Ġa,n
0,2 = 0 (34)

for even n. From (30) we see that this is a complicated differential equation for G0,n
0,2 . Given

(30), this condition suggests an ansatz for G0,n
0,2 of the form

G0,n
0,2 = A′

n

1

mω4
(U ′′′(q)q̈ + U ′′′′(q)q̇2)

(

1 +
U ′′(q)

mω2

)r

+B′
n

1

4m2ω6
(U ′′′(q)q̇)2

(

1 +
U ′′(q)

mω2

)s

(35)

where r, s, A′
n, and B′

n are some undetermined constants. (Given a differential equation

(34), we expect one free parameter, which would be multiplying all Ga,n
0,2 . However, since we

are also solving the recurrence relation (30), whose first two terms are fixed, imposing the

consistency condition (34) will not leave any free parameters.)

Substituting (30) into (34) with (35), differentiating, and moving things around a bit, we

have that

1

mω4

∑

a

{(

n/2

a/2

)

Aa,n

[

d (U ′′′q̈ + U ′′′′q̇2)

dt
X

n−8

4 +
2a− n− 8

4

U ′′′q̇

mω2

(

U ′′′q̈ + U ′′′′q̇2
)

X
n−12

4

]

+ A′
n

(

n/2

a/2

)2(
n

a

)−1 [
d (U ′′′q̈ + U ′′′′q̇2)

dt
Xr+n

2 +
(

r +
a

2

) U ′′′q̇

mω2

(

U ′′′q̈ + U ′′′′q̇2
)

Xr+n

2
−1

]

}

+
1

4m2ω6

∑

a

{(

n/2

a/2

)

Ba,n

[

2U ′′′q̇
(

U ′′′q̈ + U ′′′′q̇2
)

X
n−12

4 +
2a− n− 12

4

U ′′′q̇

mω2
(U ′′′q̇)

2
X

n−16

4

]

+ B′
n

(

n/2

a/2

)2(
n

a

)−1 [

2U ′′′q̇
(

U ′′′q̈ + U ′′′′q̇2
)

Xs+n

2 +
(

s+
a

2

) U ′′′q̇

mω2
(U ′′′q̇)

2
Xs+n

2
−1

]

}

(36)

must vanish, where X = 1 + U ′′/mω2. By inspection, we see that for r = −(n + 8)/4 and

s = −(n + 12)/4, terms involving the same expressions with q and its derivatives also have

14



the same power of X . This leaves only the numerical coefficients to be fixed. Only the first

terms in the first two lines are proportional to X(n−8)/4d(U ′′′q̈+U ′′′′q̇2)/dt; generically, these

terms must add to zero separately, which allows us to solve for

A′
n = −

∑

a

(

n/2
a/2

)

Aa,n

∑

a

(

n/2
a/2

)2(n
a

)−1
. (37)

Similarly, only the last terms in the last two lines are proportional to (U ′′′q̇)3X(n−16)/4, the

remaining terms being proportional to U ′′′q̇ (U ′′′q̈ + U ′′′′q̇2)X(n−12)/4, so we can solve for B′
n

in similar fashion:

B′
n = −

∑

a

(

n/2
a/2

)

Ba,n(2a− n− 12)
∑

a

(

n/2
a/2

)2(n
a

)−1
(2a− n− 12)

. (38)

To confirm that these expressions are indeed valid, we need to check that the remaining

terms in (36) vanish. Substituting in our expressions for A′
n and B′

n, factoring out common

quantities, and making use of the fact that
∑

a

(

n/2
a/2

)2(n
a

)−1
(2a− n) = 0, we find that

remaining terms ∝
∑

a

(

n/2

a/2

)

(2a− n) (6Aa,n +Ba,n) . (39)

We have checked that this expression vanishes for n = 2, 4, 6, confirming the solution

G0,n
0,2 =

A′
n

mω4
(U ′′′(q)q̈ + U ′′′′(q)q̇2)

(

1 +
U ′′(q)

mω2

)−(n+8)/4

(40)

+
B′

n

4m2ω6
(U ′′′(q)q̇)2

(

1 +
U ′′(q)

mω2

)−(n+12)/4

at least to these orders, where A′
n and B′

n are given above. This expression also reduces to

the solution for G0,2
0,2 given in [4], with the correct coefficients A′

2 = 1/16 and B′
2 = −5/16,

which can be checked using the earlier expressions for Aa,n, Ba,n, and Ca,n. The solution

for G0,n
0,2 does not modify the ground-state condition for Cn in (19) because it automatically

vanishes in the harmonic limit U(q) = 0. Instead, the coefficients A′
n and B′

n are completely

fixed without a choice of state.

B. Adiabatic Approximation at O(
√
h̄) in the Moments

Starting with the first order in
√
h̄, we need to consider different adiabatic orders in

separation.
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1. Zeroth Adiabatic Order

At leading order in the adiabatic approximation, {Ga,n
e,0 , HQ} = 0. At O(

√
h̄), that is,

e = 1, this gives (from Eq. (14))

0 = −aωGa−1,n
1,0 + (n− a)ωGa+1,n

1,0 − U ′′(q)a

mω
Ga−1,n

1,0 +
U ′′′(q)a

2(mω)3/2
G0,2

0,0G
a−1,n−1
0,0

− U ′′′(q)a

2(mω)3/2

(

Ga−1,n+1
0,0 − (a− 1)(a− 2)

12
Ga−3,n−3

0,0

)

. (41)

The solutions at O(h̄0) are given by (20) for even a and n, and Ga,n
0,0 = 0 for odd a or n.

We can use this result in (41) to obtain solutions for the Ga,n
1,0 . For even a or n in (41), all

the G0,0 terms vanish, and the equation is identical to (18), giving the same solution for the

moments involved:

Ga,n
1,0 = 0 for odd a (42)

Ga,n
1,0 = C ′′

n

(n− a)!a!

((n− a)/2)!(a/2)!

(

1 +
U ′′(q)

mω2

)(2a−n)/4

for even a and n (43)

As before at first adiabatic order, we implement the ground-state condition by requiring

Ga,n
0,0 +

√
h̄Ga,n

1,0 to agree with the known harmonic values when U(q) = 0; thus, Cn+
√
h̄C ′′

n =

2−n (C ′′
n is not dimensionless). Again keeping Ga,n

0,0 unchanged compared to (20), we have

C ′′
n = 0 and therefore Ga,n

1,0 = 0 for even a and n.

For odd a and n in (41), the G0,0 terms do not vanish. Substituting (20) into (41) and

simplifying the resulting expression, we have

0 = (n− a)Ga+1,n
1,0 − a

(

1 +
U ′′(q)

mω2

)

Ga−1,n
1,0

+
U ′′′(q)a

m3/2ω5/2

4a− 3n− 1

12π
Γ
(a

2

)

Γ

(

n− a+ 1

2

)(

1 +
U ′′(q)

mω2

)(2a−n−3)/4

. (44)

For the case a = n, this gives

Gn−1,n
1,0 =

U ′′′(q)a

m3/2ω5/2

n− 1

12π
Γ
(n

2

)

Γ

(

1

2

)(

1 +
U ′′(q)

mω2

)(n−7)/4

. (45)

We can plug this solution into the a = n − 2 equation to solve for Gn−3,n
1,0 , and so on. In
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general,

Ga−1,n
1,0 =

n− a

a

(

1 +
U ′′(q)

mω2

)−1

Ga+1,n
1,0

+
U ′′′(q)

m3/2ω5/2

4a− 3n− 1

12π
Γ
(a

2

)

Γ

(

n− a+ 1

2

)(

1 +
U ′′(q)

mω2

)(2a−n−7)/4

. (46)

From (45), we see that the two terms have the same power in 1 + U ′′(q)/mω2, which

allows us to write the solution as

Ga,n
1,0 = Da,n

U ′′′(q)

m3/2ω5/2

(

1 +
U ′′(q)

mω2

)(2a−n−5)/4

for even a and odd n, (47)

where

Da,n =
(−1)bΓ

(

n
2

)

12π(1− n
2
)b

(

(n− 1)b!
√
π + (n− 8b− 1)Γ

(

b+
1

2

)

−
b−2
∑

c=0

(−1)c(n− 8(b− c− 1)− 1)Γ

(

b− c− 1

2

)

(−b)c+1

)

(48)

if n ≥ 5 and b ≥ 2, and

Da,n =







n−1
12π

Γ
(

n
2

)

Γ
(

1
2

)

if n ≥ 3, b = 0

3n−11
12π(n−2)

Γ
(

n
2

)

Γ
(

1
2

)

if n ≥ 3, b = 1
(49)

is a dimensionless prefactor that depends on a and n. In the above expression, b = (n− a−
1)/2 and (x)n = x(x+1) · · · (x+ n− 1) is the Pochhammer symbol. Comparing to (20), we

see that for odd n and even a,

Ga,n
1,0 ∝

(

1 +
U ′′(q)

mω2

)−1

Ga,n+1
0,0 . (50)

The additional dimensionful factor of U ′′′/m3/2ω5/3 in (47) provides the correct dimension

of h̄−1/2.

2. First Adiabatic Order

At first order in the adiabatic approximation and at O(
√
h̄), the equation of motion is

Ġa,n
1,0 = (n− a)ωGa+1,n

1,1 − aω

(

1 +
U ′′(q)

mω2

)

Ga−1,n
1,1 +

U ′′′(q)a

2(mω)3/2

(

G0,2
0,0G

a−1,n−1
0,1

+G0,2
0,1G

a−1,n−1
0,0 −Ga−1,n+1

0,1 +
(a− 1)(a− 2)

12
Ga−3,n−3

0,1

)

. (51)
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If a is odd, we see from (42) that the left-hand side is zero. If n is even, we see from (22)

that the last four terms on the right-hand side vanish. Let us consider the simplest case first:

odd a and even n. In this case the equation is identical to (18), giving the same solution (19)

for the moments involved, with a new (and dimensionfull) Cn. Recalling that the O(h̄1/2λ0)

and O(h̄0λ) solutions (43) and (23) were also the same, we can write

Ga,n
1,1 ∝ Ga,n

0,1 ∝ Ga,n
1,0 ∝ Ga,n

0,0

Now requiring Ga,n
0,0 +Ga,n

0,1 +
√
h̄(Ga,n

1,0 +Ga,n
1,1 ) to agree with the known ground-state moments

in the harmonic limit and keeping Ga,n
0,0 as in (20), we have

Ga,n
1,1 = Ga,n

0,1 = Ga,n
1,0 = 0 for even a and n . (52)

In these equalities we have made use of another relation. It turns out that the simpli-

fication of the equation of motion observed here is by itself not sufficient to guarantee the

same solution, because the equation does not fully determine all the moments. As in the

zeroth-order approximation in both
√
h̄ and λ, a constraint (34) is needed from the next

adiabatic order in order to determine G0,n [4]. (More specifically, the constraint shows that

Cn does not depend on q.) Here, the second-order adiabatic equation of motion at O(
√
h̄) is

Ġa,n
1,1 = (n− a)ωGa+1,n

1,2 − aω

(

1 +
U ′′(q)

mω2

)

Ga−1,n
1,2 +

U ′′′(q)a

2(mω)3/2

(

G0,2
0,0G

a−1,n−1
0,2

+G0,2
0,1G

a−1,n−1
0,1 +G0,2

0,2G
a−1,n−1
0,0 −Ga−1,n+1

0,2 +
(a− 1)(a− 2)

12
Ga−3,n−3

0,2

)

(53)

But n is still even, so the last five terms vanish, again due to (22). The right-hand side once

again is the same for all cases considered for now, so the same condition on the left-hand side

follows as in [4], and (52) is indeed correct. We note, however, that not all these equalities

between the moments will be valid at second order in λ because Ġa,n
1,1 , appearing at the

left-hand side of the equation of motion (53), will no longer be zero for odd a and even n.

Now let us consider the case where a and n in (51) are both even. The extra terms on the

right-hand side vanish, but the left-hand side is given by the time derivative of Ga,n
1,0 . The

resulting equation, which describes moments with odd a and even n, is identical to (24), the

corresponding equation at O(h̄0) — except that the coefficient 2−n is the Cn belonging to

Ga,n
1,0 , with Ga,n

1,0 = 0 for even a and n. In this case the equation of motion fully determines all

the moments; no constraint from the next order references to harmonic states are needed.
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Consequently, the solution is

Ga,n
1,1 = 0 for odd a and even n. (54)

For odd n, the solutions are not the same as the O(h̄0) solutions (22), which are zero.

In the case where a and n are both odd in (51), the extra terms remain, but the left-hand

side is zero. If we compare (51) to (41) and recall (52), we see that the additional terms are

identical, except that the G0,2Ga−1,n−1 term in (41) effectively occurs twice in (51). This

has the effect of replacing the factor of 4a− 3n− 1 in (44) with 4a− 3n+ 2, so the solution

is the same up to a change in the prefactor in (47).

The final case, where a is even and n is odd in (51) is more difficult. The left-hand side is

nonzero and given by the time derivative of (47), and the extra terms on the right-hand side

involve the expression given in (25). Here we will not attempt to find a general solution.

C. Adiabatic Approximation for n = 2-moments at O(h̄)

At second order in
√
h̄, the equations again get more complicated. We will restrict

ourselves here to deriving a relation for solutions of second-order moments (n = 2) as

needed for the leading correction in the equation of motion (11). Our considerations in this

section only illustrate the procedure but do not provide complete solutions.

The n = 2-moments, which are the same at O(h̄0) and O(h̄1/2), are different at O(h̄).

The O(h̄) equation of motion for the moments is given by [2]

Ġa,n
2 = −aωGa−1,n

2 + (n− a)ωGa+1,n
2 − U ′′(q)a

mω
Ga−1,n

2

+
U ′′′(q)a

2(mω)3/2
(

G0,2
1 Ga−1,n−1

0 +G0,2
0 Ga−1,n−1

1

)

− U ′′′(q)a

2(mω)3/2

(

Ga−1,n+1
1 − (a− 1)(a− 2)

12
Ga−3,n−3

1

)

+
U ′′′′(q)a

3!(mω)2
G0,3

0 Ga−1,n−1
0 − U ′′′′(q)a

6(mω)2

(

Ga−1,n+2
0 − (a− 1)(a− 2)

4
Ga−3,n−2

0

)

. (55)

At zeroth order in the adiabatic approximation, the left-hand side is zero. For a = 0, we

find that G1,n
2,0 = 0, as at O(h̄1/2). In particular, G1,2

2,0 = 0. The a = 2-equation gives no new

information, but confirms that G1,3
1,0 = 0, as we found in Sec. III B 1. The a = 1-equation is

0 = ωG2,2
2,0 − ω

(

1 +
U ′′(q)

mω2

)

G0,2
2,0 −

U ′′′(q)

2(mω)3/2
G0,3

1,0 −
U ′′′′(q)

6(mω)2
G0,4

0,0 . (56)
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The coefficients G0,3
1,0 and G0,4

0,0 are given by equations (47) and (20), respectively, so we can

express G2,2
2,0 in terms of G0,2

2,0:

G2,2
2,0 =

(

1− U ′′(q)

mω2

)

G0,2
2,0 −

(U ′′′(q))2

24m3ω5

(

1− U ′′(q)

mω2

)−2

+
U ′′′′(q)

8m2ω3

(

1− U ′′(q)

mω2

)−1

. (57)

In order to find G0,2
2,0, we would have to go to first order in λ.

IV. EQUATION OF MOTION FOR THE OSCILLATOR UP TO O(h̄3/2) AND THE

FOURTH ADIABATIC ORDER

It is evident from (40) compared to the previous equations that higher time derivatives ap-

pear at higher orders of the adiabatic expansion. This pattern continues at higher adiabatic

orders, even going beyond the second derivative order of the classical equations. Genuine

higher-derivative equations are then obtained when solutions for moments are inserted in

(12). Not surprisingly, it becomes more and more complicated to find explicit solutions to

higher orders, valid for generic a and n. Still, individual moments, such as G0,2 as needed

for the first corrections in (11), can be computed more easily because specific numbers take

the place of coefficients such as A′
n and B′

n subject to complicated recurrence relations.

A. Higher-derivative equation of motion

From the preceding section it is clear how such calculations are organized, and it suffices

here to quote the results needed for the leading corrections in the equations of motion of

the anharmonic oscillator, given as before by

q̇ = m−1p (58)

ṗ = −mω2q − U ′(q)−
∞
∑

n=2

1

n!

(

1

mωh̄

)n/2

U (n+1)(q)G0,n .

Taking the time derivative of the q̇ equation, we may write, correct up to O(h̄3/2) in quantum

corrections,

q̈ = −ω2q − U ′(q)/m− h̄

2m2ω
U ′′′(q)

(

∑

λ

G0,2
0,λ +

√
h̄
∑

λ

G0,2
1,λ

)

, (59)
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showing which moments and orders we need. (Moments of orders higher than n = 2 would

be required at the next order, O(h̄2).) Here we have already used the fact that G0,3
0,i = 0 for

any value of i, according to (22).

In order to evaluate (58) completely, we need to compute G0,2 to orders O(h̄0) and

O(h̄1/2) in the semiclassical expansion. The previous section contains results up to the

second adiabatic order, at which the right-hand side of (59) would be of second order in

time derivatives. In particular, we have

G0,2
0,0 =

1

2

(

1 +
U ′′(q)

mω2

)−1/2

(60)

from (20), while

G0,2
1,1 = G0,2

1,0 = G0,2
0,1 = 0 . (61)

At second adiabatic order, we have

G0,2
0,2 =

U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

− 5(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−7/2

(62)

while

G0,2
1,2 = 0 . (63)

Higher adiabatic orders cannot be obtained from the previous general formulas for Ga,n,

but the relevant contributions to the specific moment G0.2 can be computed with the previous

methods. Up to fourth adiabatic order, we have G0,2
0,3 = 0 (which holds for all moments of

even a and n) by using (28) at higher adiabatic order and observing that Ga,n
0,2 = 0 for odd

a and even n. Moreover, G0,2
1,3 = 0 and G0,2

1,4 = 0 vanish. The final moment we need, G0,2
0,4

is more difficult to derive, and we just sketch the procedure we followed. The fourth-order

equations can be manipulated to show a relation of the form

G2,2
0,4 = XG0,2

0,4 +
Θ

w
(64)
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where X = 1 + U ′′(q)/mω2 and

Θ = X−5/2

(

1

32mω5

)

[

U ′′′(q)
....
q + 4U ′′′′(q)

...
q q̇ + 3U ′′′′(q)q̈2 + 6U ′′′′′(q)q̇2q̈ + U ′′′′′′(q)q̇4

]

−X−7/2

{(

5

32m2ω7

)

[

U ′′′′(q)q̇2 + U ′′′(q)q̈
]2

+

(

15

64m2ω7

)

[U ′′′(q)q̇]
[

U ′′′(q)
...
q + U ′′′′′(q)q̇3 + 3U ′′′′(q)q̇q̈

]

}

+X−9/2

(

245

256m3ω9

)

[U ′′′(q)q̇]
2 [
U ′′′(q)q̈ + U ′′′′(q)q̇2

]

−X11/2

(

315

512m4ω11

)

[U ′′′(q)q̇]
4

(65)

Then using the consistency equation (34) from [2], we get

2XĠ0,2
0,4 +

(

U ′′′(q)q̇

mw2

)

G0,2
0,4 +

1

ω
Θ̇ = 0 . (66)

Choosing G0,2
0,4 = AX−7/2 + BX−9/2 + CX−11/2 +DX−13/2 as an ansatz, we solve for these

functions A, B, C and D. However, we have five equations (corresponding to the five

different powers of X in (66)) with four unknowns. This generates another consistency

equation which turns out to be satisfied by the coefficients in

G0,2
0,4 = −U ′′′(q)

....
q + 4U ′′′′(q)

...
q q̇ + 3U ′′′′(q)q̈2 + 6U ′′′′′(q)q̇2q̈ + U ′′′′′′(q)q̇4

64mω6

(

1 +
U ′′(q)

mω2

)−7/2

+

(

21(U ′′′′(q)q̇2 + U ′′′(q)q̈)2

256m2ω8

+
7(U ′′′(q)q̇)(U ′′′(q)

...
q + 3U ′′′′q̈q̇ + U ′′′′′(q)q̇3)

64m2ω8

)(

1 +
U ′′(q)

mω2

)−9/2

−231(U ′′′(q)q̇)2(U ′′′(q)q̈ + U ′′′′(q)q̇2)

512m3ω10

(

1 +
U ′′(q)

mω2

)−11/2

+
1155(U ′′′(q)q̇)4

4096m4ω12

(

1 +
U ′′(q)

mω2

)−13/2

. (67)

We may now rewrite the equation of motion (58) as:

q̈ = −ω2q − U ′(q)/m (68)

− h̄

2m2ω
U ′′′(q)

[

f(q, q̇) + f1(q, q̇)q̈ + f2(q)q̈
2 + f3(q, q̇)

...
q + f4(q)

....
q
]
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where

f(q, q̇) =
1

2

(

1 +
U ′′(q)

mω2

)−1/2

+
U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

− 5(U ′′′(q))2q̇2

64m2ω6

(

1 +
U ′′(q)

mω2

)−7/2

−U ′′′′′′(q)q̇4

64mω6

(

1 +
U ′′(q)

mω2

)−7/2

+
21(U ′′′′(q))2q̇4

256m2ω8

(

1 +
U ′′(q)

mω2

)−9/2

+
7U ′′′′′(q)U ′′′(q)q̇4

64m2ω8

(

1 +
U ′′(q)

mω2

)−9/2

− 231U ′′′′(q)(U ′′′(q))2q̇4

512m3ω10

(

1 +
U ′′(q)

mω2

)−11/2

+
1155(U ′′′(q))4q̇4

4096m4ω12

(

1 +
U ′′(q)

mω2

)−13/2

, (69)

f1(q, q̇) =
U ′′′(q)

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

− 3U ′′′′′(q)q̇2

32mω6

(

1 +
U ′′(q)

mω2

)−7/2

+
63U ′′′′(q)U ′′′(q)q̇2

128m2ω8

(

1 +
U ′′(q)

mω2

)−9/2

− 231(U ′′′(q))3q̇2

512m3ω10

(

1 +
U ′′(q)

mω2

)−11/2

,(70)

f2(q) = −3U ′′′′(q)

64mω6

(

1 +
U ′′(q)

mω2

)−7/2

+
21(U ′′′(q))2

256m2ω8

(

1 +
U ′′(q)

mω2

)−9/2

, (71)

f3(q, q̇) = −U ′′′′(q)q̇

16mω6

(

1 +
U ′′(q)

mω2

)−7/2

+
7(U ′′′(q))2q̇

64m2ω8

(

1 +
U ′′(q)

mω2

)−9/2

, (72)

f4(q) = − U ′′′(q)

64mω6

(

1 +
U ′′(q)

mω2

)−7/2

(73)

Once these coefficients are inserted in (58) we have the equation of motion for q correct

up to the fourth adiabatic order, for quantum corrections up to h̄3/2. From (67), it is now

clear that higher time derivatives result, up to fourth order with the present approximation.

The equations for moments shown in this section demonstrate that it is the adiabatic order,

rather than the semiclassical expansion or the order of moments, that determines the order

of derivatives. Although back-reaction of moments on expectation values is responsible for

higher time derivatives, the new degrees of freedom that higher-derivative equations would

imply if used at face value, are not identical to the moments as true quantum degrees of

freedom.

B. Uncertainty Relation and Zero-Point Energy

Having derived solutions for second-order moments, we need to make sure that they

obey the uncertainty relation so that they can correspond to a state. This requires us to
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compute not only the moment G0,2, as used in corrected equations of motion, but also G1,2

and G2,2. Since expressions with these moments get more lengthy, we restrict the orders to

(0, 0) + (0, 1) + (1, 0) + (1, 1) + (0, 2). (Especially G1,2 is more difficult to obtain to higher

orders.) We then have

G0,2 =
1

2

(

1 +
U ′′(q)

mω2

)−1/2

+
U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

− 5(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−7/2

(74)

G2,2 =
1

2

(

1 +
U ′′(q)

mω2

)1/2

− U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−3/2

+
7(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−5/2

(75)

G1,2 = −U ′′′(q)q̇

8mω3

(

1 +
U ′′(q)

mω2

)−3/2

. (76)

To check the uncertainty relation G0,2G2,2 − (G1,2)2 ≥ 1/4, it is useful to write G0,2 =

1
2
X−1/2 + Y while G2,2 =

(

1
2
X−1/2 − Y + (U ′′′(q)q̇)2

32m2ω6 X−7/2
)

X , where X = 1 + U ′′(q)
mω2 and

Y =
U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

− 5(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−7/2

.

With these definitions, the required expression is of the form

G0,2G2,2 − (G1,2)2

= X

[

(1
4
X−1 − Y 2) + (1

2
X−1/2 + Y )

(U ′′′(q)q̇)2

32m2ω6
X−7/2 − (U ′′′(q)q̇)2

64m2ω6
X−4

]

= 1/4−XY 2 +
(U ′′′(q)q̇)2

32m2ω6
X−5/2Y . (77)

In the limit U(q) → 0, we have X = 1 and Y = 0, yielding a value of 1/4 for the above ex-

pression and exact saturation of the uncertainty relation, in accordance with our assumption

of the Gaussian ground state in the harmonic limit. With anharmonicity, it is not obvious

to see the sign of G0,2G2,2 − (G1,2)2 − 1/4. It is, however, clear that we need Y ≥ 0. The

adiabaticity condition for the anharmonic ground state is therefore not guaranteed to be

valid automatically, but with our equations the uncertainty relation can easily be monitored

when numerical solutions are analyzed.

Finally, having determined the moments G0,2 as well as G2,2 to some orders, we can

compute anharmonic corrections to the zero-point energy Z = 1
2
h̄ω(G0,2 + G2,2) =: 1

2
h̄ωZ ′.
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With (74) and (75) we have, now valid up to the order (1, 3),

Z ′ = G0,2 +G2,2

=
1

2

(

1 +
U ′′(q)

mω2

)−1/2

+
U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−5/2

−5(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−7/2

+
1

2

(

1 +
U ′′(q)

mω2

)1/2

− U ′′′(q)q̈ + U ′′′′(q)q̇2

16mω4

(

1 +
U ′′(q)

mω2

)−3/2

+
7(U ′′′(q)q̇)2

64m2ω6

(

1 +
U ′′(q)

mω2

)−5/2

=
1

2
X−1/2(1 +X) + Y (1−X) +

(U ′′′(q)q̇)2

32m2ω6
X−5/2 . (78)

V. CONCLUSIONS

We have shown explicitly how higher time derivatives arise in effective equations of canon-

ical quantum systems. Physically, quantum back-reaction by moments of a state on expec-

tation values implies correction terms, which in an adiabatic approximation (combined with

a semiclassical one) can be solved for in terms of higher time derivatives. The quantum de-

grees of freedom are then removed from direct view, analogous to integrating out variables

in a path integral. Although the quantum equations are local, given by differential equations

of finite order, the effective system in which infinitely many degrees of freedom have been

expressed by higher time derivatives becomes non-local.

A. General properties

Our analysis has revealed several general properties of the expansions considered.

First, some coefficients of moments vanish at all orders in one of the expansions, irrespec-

tive of the harmonic state perturbed around. For instance, as already mentioned, Ga,n
0,i = 0

for odd n. This observation simplifies some computations of moments relevant for corrected

equations of motion. The interesting moments that appear in quantum corrections, how-

ever, satisfy equations that become progressively more involved as the orders increase. The

methods employed here can be extended to higher orders, but a general solution seems out

of reach.
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Secondly, while coefficients of explicit solutions for moments are usually complicated, the

relationship between the adiabatic and derivative order is evident from the general form

of equations (16). Going to higher adiabatic orders requires the use of time derivatives of

lower-order coefficients, starting with zeroth adiabatic order in which coefficients depend on

q. In this way, higher and higher time derivatives enter solutions as seen explicitly in the

preceding section.

Thirdly, as in our explicit examples (19), (25) and (30), odd adiabatic orders mainly

change moments Ga,n with odd a (correlations), while even adiabatic orders lead to correc-

tions in moments with even a.

B. Higher time derivatives in quantum cosmology

Our results apply to all quantum systems, but are especially relevant for quantum gravity

and cosmology. In these settings, canonical techniques are often crucial or at least applied

widely, and it has remained unclear if and how higher time derivatives should result. The

present article shows this unambiguously and provides a systematic procedure for their

computation. As an example for the importance of higher time derivatives, we may look

at loop quantum cosmology [8, 10]. In this setting, one would generically expect effective

equations with higher time derivatives, as a result of higher-curvature corrections. (We

are dealing here with quantizations of finite-dimensional systems, and must therefore leave

unaddressed the intriguing possibility that strong quantum corrections may lead to signature

change from space-time to a 4-dimensional quantum version of Euclidean space [11–13]. The

question of how the “evolution” of states and quantum back-reaction can be formulated to

compute quantum effects in timeless Euclidean space requires further detailed study. But

quantum effective equations should still be non-local and require higher derivatives, including

spatial ones.)

However, higher derivative terms or the more general moment-dependent corrections as in

(11) have not yet been computed in all cases; adiabatic regimes may even be non-existing.

(After all, non-perturbative quantum gravity may lack a ground state with slowly evolv-

ing moments.) Instead, for a first impression of implications of quantum effects one often

ignored quantum back-reaction altogether, considering only quantum-geometry corrections

in homogeneous models which are easier to implement by simple modifications of classical
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equations. A prominent one is the so-called holonomy modification, by which the Hubble

term H2 = (ȧ/a)2 in the Friedmann equation is replaced by a periodic function such as

sin(ℓH)2/ℓ2 with a length parameter ℓ (which could be the Planck length); see e.g. [14, 15].

This modification is motivated by a property in the full theory of loop quantum gravity

[16, 17], according to which only holonomies but not the gravitational connection can be rep-

resented as operators. A heuristic interpretation often encountered, states that higher-order

terms in an expansion of sin(ℓH)2/ℓ2 = H2(1 − 1
3
ℓ2H2 + O((ℓH)4)) are related to higher-

curvature terms. However, this interpretation overlooks the fact that higher-curvature terms

also provide higher time derivatives, which are not included in most studies (and have not

yet been computed). But if the higher-derivative part of curvature corrections is ignored,

one cannot consider isolated higher powers of spatial curvature components as a reliable

expansion. Generically, there is no reason to assume that a term of H2 is more important

than, say, Ḣ, both of which contribute to the space-time curvature scalar. Expansions be-

come inconsistent when only one type of terms is kept and, perhaps even more damningly,

general covariance is put in jeopardy.

With holonomy corrections, the whole series expansion of sin2(ℓH)/ℓ2 by ℓH is used, but

not a single higher time derivative. Such an approximation cannot be consistent unless one

can show that there are no higher time derivatives whatsoever. There is indeed a harmonic

system in loop quantum cosmology free of quantum back-reaction [6], given by a spatially flat

isotropic model with a free, massless scalar. In this model, holonomy corrections correctly

describe quantum evolution. If one departs from this model just slightly, when matter

remains kinetic dominated and anisotropies and inhomogeneity are small, quantum back-

reaction does arise [18, 19] but may be assumed weak; holonomy corrections can still be

reliable. In all other cases, however, correct physical conclusions can be drawn only when

all quantum corrections have been estimated and the relevant ones computed. For instance,

when there is a phase of slow-roll inflation, the potential dominates and one must expect

effective equations based on the assumption of kinetic domination to break down. The

presence of higher-derivative terms means that holonomy corrections on their own are not

reliable, but it also suggests interesting relationships with early-universe models based on

higher-curvature or non-local derivative terms, especially regarding the singularity issue [20–

22]. There is still much work to be done to apply the complete effective methods to quantum

cosmology. At the very least, the present article serves to clarify the role of higher-derivative
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corrections.

C. The Role of Adiabaticity

The use of the adiabatic approximation as the key ingredient to arrive at higher time

derivatives implies that not all quantum regimes may be amenable to a higher-derivative

description. The validity of the adiabatic approximation is an assumption, which can be

tested self-consistently but need not always be valid. We had to use equations of different

orders to determine all coefficients, and depending on the given quantum dynamics, not

all these equations may be mutually consistent, for instance if anharmonic constructions

are attempted for fully squeezed, correlated harmonic coherent states, contradicting the

condition Ga,n
0,0 = 0 derived here for odd a and even n. Moreover, the final solutions may

be mathematically consistent, but could violate the uncertainty relation. If they do, there

would be no state corresponding to the moment solutions. (See [23] for examples in quantum

cosmology where these problems occur.) Solutions for moments describe a dynamical state,

and not all states may allow moments to evolve adiabatically. Here, we have expanded

around the ground state, which one can reasonably expect to evolve slowly. In other, more

excited states, the condition may not be met. Unfortunately, since adiabaticity is a state-

dependent property, it is not possible to give general estimates referring just to the constants

at hand and the potential. A single model may allow states which evolve adiabatically and

others that do not. In the canonical formalism, it is therefore the initial values chosen for

the moments that determine whether the approximation can be used, but in general there

is no simple a-priori condition that one could directly evaluate.

If the adiabatic approximation does not apply, there are still effective equations, and

they can be expanded in a semiclassical approximation. However, it is then no longer

possible to solve for the moments in terms of expectation values, and no higher-derivative

effective equations exist. One would rather work with a higher-dimensional effective system,

a dynamical system in which the expectation values together with all moments relevant to a

given order in h̄ are kept as in (11) and (12). The non-locality of the quantum system is then

realized by the infinite number of moments if all orders are included. To any finite order

in the moments, such a system can still be solved approximately, most often by numerical

means, and evaluated for physical information; see e.g. [9, 24] for examples including a rather
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large number of moments. Effective equations in terms of moments, explicitly exhibiting

the true quantum degrees of freedom, are therefore more general than higher-derivative

effective equations, but higher-derivative equations, if they exist, can show some features

more directly.
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