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ABSTRACT

We argue that if the UV cutoff of an effective field theory with many low energy degrees if
freedom is of the order, or below, the scale of the stretched horizon in a black hole background,
which in turn is significantly lower than the Planck scale, the black hole radiance rate may
not be enhanced by the emission of all the light IR modes. Instead, there may be additional
suppressions hidden in the UV completion of the field theory, which really control which light
modes can be emitted by the black hole. It could turn out that many degrees of freedom
cannot be efficiently emitted by the black hole, and so the radiance rate may be much smaller
than its estimate based on the counting of the light IR degrees of freedom. If we apply this
argument to the RS2 brane world, it implies that the emission rates of the low energy CFT
modes will be dramatically suppressed: its UV completion is given by the bulk gravity on
AdS5×S5, and the only bulk modes that could be emitted by a black hole are the 4D s-waves
of bulk modes with small 5D momentum, or equivalently, small 4D masses. Further, their
emission is suppressed by bulk warping, which lowers the radiation rate much below the
IR estimate, yielding a radiation flux ∼ (TBHL)

2Lhawking ∼ (TBH/MP l)
2NLhawking, where

Lhawking is the Hawking radiation rate of a single light species. This follows directly from
low CFT cutoff µ ∼ L−1 ≪ MP l, a large number of modes N ≫ 1 and the fact that 4D
gravity in RS2 is induced, M2

P l ≃ Nµ2.

1kaloper@physics.ucdavis.edu
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1 Introduction

One of the greatest surprises in our understanding of black holes came when Hawking showed
that they are thermal objects, emitting quantum radiation at a universal rate controlled by
the black hole mass [1]. This confirmed Bekenstein’s argument [2] that a black hole is a
statistical system with an entropy given by its area. Further development of black hole
thermodynamics led to many puzzles and confusions. The effort to resolve them led to the
holographic principle [3], which posits that if quantum gravity is unitary, black hole degrees
of freedom must be packed on the horizon area, rather that inside the black hole’s volume.

Formulating these ideas in effective field theory is complicated by the divergences which
appear when field theory states are brought to black hole horizons. If one insists on trying to
describe near-horizon quantum states within field theory, one must regulate the divergences.
A simple regulator is a stiff cutoff as in the brick wall method [4]. Better yet, one can
use the concept of the stretched horizon [5], which has similar effects while preserving local
covariance. With it in place, cutting out the divergent, ‘trans-planckian’ region near the
horizon, the field theory quantities are insulated from the black hole horizon divergences. The
location of the stretched horizon, however, should be picked carefully, in order to reproduce
the information content of a black hole accessible to field theory probes.

In ‘simple’ examples of quantum field theories, with a few degrees of freedom, weak
couplings outside of a black hole, and the IR modes unchanged all the way to the Planck
scale, the stretched horizon is a timelike surface ‘hovering’ just outside of the event horizon,
at a Planckian proper distance ∼ ℓP l from it [5]. It is there where the thermodynamical
entropy in the infalling ‘vacuum’ state equals the Bekenstein-Hawking entropy of a black
hole. On this surface the blueshifted black hole temperature is of the order of the Planck
mass MP l, a natural cutoff of the quantum field theory describing a black hole. Clearly, this
is much higher than the black hole temperature measured at infnity. Thus one may take
this to be the ‘physical’ hot surface of a black hole from where the hot Hawking quanta
originate, and eventually propagate out to infinity while getting redshifted down to fit the
black body spectrum with temperature TBH ∼ M2

P l/M seen by a distant observer, where
M2

P l = 1/ℓ2P l = (8πGN)
−1. The stretched horizon is the Hawking ‘radiator’, in effect coarse

graining the detailed physical mechanisms yielding the radiance.
When one considers a field theory outside of a black hole with N ≫ 1 degrees of freedom

the story is more complicated. Guided by the equivalence principle, one may guess that
since all species exterior to the black hole gravitate in the same way, thermalizing with one
means thermalizing with all. Even if the field theory is strongly coupled, it is still subject to
standard thermodynamics [6], and as long as its modes are light they can carry out radiation,
as much as grey body factors permit. Since the modes originate near the horizon, to be sure
if they are created one would need to push such an equilibrated state inward to the (fixed)
Planckian distance from the black hole. But with many modes, this is a no-go: the naive
state’s entropy would have overshot the Bekenstein-Hawking entropy by a large factor, <∼ N .
So using the stretched horizon far from the black hole, one will obtain the correct scaling of
the entropy with the horizon area. But one cannot be sure just how many of these modes
will be emitted, because one may be missing any suppression (or enhancement!) processes
in the excised region, where classical geometry is still well defined.
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The point is that one must be careful with extrapolating the notion of ‘thermalization’
of a quantum field theory with the black hole. The caveat is that while near the black hole
all the modes will be thermally excited, not all may be able to flee far from it. This shows
up already in weakly coupled quantum field theories with few species and Planckian cutoff.
In this case, the thermal state of a black hole is coded by picking the quantum state of the
field theory to be the infalling vacuum, in order to ensure the regularity of the event horizon
after quantum backreaction is included. This state is defined by the boundary conditions
for the mode functions at the horizon. In terms of the ‘out’ modes this state turns out
to be occupied with excitations of all modes that follow the thermal distribution near the
horizon. However, not all these modes (for example, excitations with arbitrarily large spin)
can be efficiently emitted to infinity. Most of them are prevented from escaping by the
centrifugal barrier, proportional to their spin, which reduces the emissivity by inducing a
large gray body factor. Similarly, if there are modes heavier than the black hole temperature
at infinity, while they are excited near the horizon, they cannot escape because of the mass
barrier, unless their kinetic energy exceeds their gravitational potential energy in the black
hole background. Since all this occurs at, or well below the UV cutoff, we can completely
consistently determine the black hole radiance rate using the field theory below the cutoff.
However, if the UV cutoff is low, and the stretched horizon far, while the stretched horizon
may correctly reproduce black hole entropy, the theory there and farther from the black
hole may not be able to resolve any effects that may alter the radiance that happen inside
between the stretched horizon and the black hole. Shedding some new light on this issue is
the central point of this paper.

In what follows we will argue that to deduce the correct radiation rate from a black hole
whose exterior supports an effective field theory with a low UV cutoff and many species of
light modes at low energies, we may need to consider the UV completion of the field theory.
Specifically, if the stretched horizon is parametrically much farther than the Planck distance
ℓP l from the event horizon, and if it is above, or close to the UV cutoff1 one should first
UV-complete the field theory (close) to the Planck scale, and move it inward, beyond the
stretched horizon set by the IR contents. This will not change the field theory entropy count
of the modes excited by the black hole. But it may turn out that most of the UV modes
cannot be efficiently emitted by a black hole, so that the naive radiance rate estimated by
including all the IR degrees of freedom may be drastically reduced. This argument should
be useful for approaching the problem of Hawking radiance in models which contain lots of
composite particles in the IR, and in the framework of induced gravity [8]. The situation
where the stretched horizon is well below the UV cutoff which in turn is below the Planck
scale is ambiguous, and we won’t have much to say about it in detail, although we will
suggest an example to further test what happens in this case.

An example where the stretched horizon determined by the counting of the many light
modes of a low energy effective field theory is comparable to the vacuum UV cutoff of the
low energy theory is the RS2 brane world [9]. The IR field theory is a SU(N ) super-YM
CFT in strong coupling regime, with many degrees of freedom in the large N limit, N ∼ N 2.
It is cut off at a scale µ ∼ L−1, where L is the AdS5 radius, and it couples to 4D gravity

1Which is therefore also much below the Planck scale.
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[10, 11], which is however induced, having the 4D Planck scale given by M2
P l ∼ Nµ2 [12].

The entropy matching, taking all the N degrees of freedom of the CFT to be thermalized
with a black hole sitting on the RS2 brane [13, 14], requires that the multispecies stretched
horizon is at the distance ∼

√
NℓP l ∼ L from the event horizon, which is to say, precisely at

the CFT cutoff. So the CFT at this distance from the hole is much hotter than at infinity,

with the temperature given by the CFT cutoff T = T0/
√

g00(rS) ∼ (
√
NℓP l)

−1 ∼ µ. Closer
to the horizon, where the Hawking radiation originates, the CFT doesn’t even exist. To see
how much energy is radiated to infinity, we can use the UV completion to go beyond the
cutoff µ ∼ L−1. The UV completion of RS2 above the cutoff L−1 is the weakly coupled
bulk gravity (actually, strictly speaking, full string theory on AdS5 × S5, in weak coupling
limit), and it exists close to the horizon. In this description, the only bulk modes that could
be emitted by a black hole are the s-waves of normalizable bulk zero modes with small 4D
masses (which are constant on S5). The probability of emitting these modes is suppressed
by bulk warping. Perturbatively, they are competing with the RS2 volcano potential. The
volcano suppresses the emission rate much below the IR estimate, yielding a radiation flux
∼ (TBHL)

2Lhawking ∼ (TBH/MP l)
2NLhawking, where Lhawking is the Hawking radiation rate

of a single species. This is analogous to what occurs for black holes in flat large dimensions
[15]: there the centrifugal barrier induces grey body factors for bulk modes which lower
the radiation rate much below the 4D IR estimates [16]. Here, it is the bulk potential
barrier induced by warping that yields the extra suppression. In consequence, by energy
conservation, the emission rates of the low energy CFT modes will be very suppressed.

If the flat space UV cutoff is much higher than the temperature on the stretched horizon,
the description is more ambiguous. On the one hand, perturbative field theory arguments
suggest that IR theory ought to remain reliable, and its low energy modes should emerge on
the stretched horizon even if it does not extend all the way down to the fundamental Planck
scale. So if the number of IR modes below the cutoff is still very large, a black hole might
emit many more modes, if they all couple to gravity universally and do not suffer additional
suppressions. On the other hand, this case is very different from the previous situation
where the UV cutoff of the effective field theory is low. One may argue [17] that with many
species present the flat space cutoff is incorrect [17] since it ignores strong gravitational
effects2 which are known to dominate in the UV [18], and one needs to include their effects
when renormalizing the theory in a black hole background, which may lower the UV cutoff.
We can’t say much about this, except to point out that this could be studied in a setup
which is a hybrid between an RS2 braneworld and a negative DGP-like term localized on the
brane, with a large coefficient. In this note we will not address this in detail, leaving further
exploration for the future.

2 A Review of Black Hole Radiance

Let us start by briefly reviewing the derivation of Hawking radiation from a black hole.
Following [1], perhaps the simplest setup to consider is the dynamical black hole geometry,
where the black hole forms in a collapse of a null shell. This is an approximation to a realistic

2These effects are not related to the strong coupling effects in the field theory.
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black hole formation from collapse of a cloud of matter. The calculation involves setting up
the classical background, and then treating quantum field theory on it using perturbation
theory in the interaction picture. The Hamiltonian and the mode functions governing the
system will all jump across the shell, whereas the quantum state which the system occupied
before the transition, i.e. the flat space vacuum, will remain the same3. It will, however,
not be the eigenstate of the new Hamiltonian, and this is precisely why Hawking radiation
arises. Note, that the transition of the quantum state from the non-radiating vacuum to a
radiation-filled state is continuous, albeit extremely rapid.

Minkowski

Schwarzschild

Intermediate !at space

Singularity

Infalling shell

H

I
+

I
0

I
−

J
+

J
−

v
0

v
H

Figure 1: Causal diagram of a black hole formed by a burst of radiation along v0

The background geometry is described by a variant of the Vaidya metric,

ds2 = −
(

1− r0(v)

r

)

dv2 + 2dvdr + r2dΩ2 , (1)

3As long as the theory used to describe it remains under calculational control, ie this all occurs below
the field theory cutoff.
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where r0(v) = r0θ(v − v0), θ is the step function, r0 = 2GNM is the horizon of the final
black hole, and v0 is the ingoing null lightcone corresponding to the imploding shell world-
volume. The coordinate v is the outgoing null coordinate, related to the standard time by
the transformation vM = t + r in the flat regions, and vS = t + r + r0 ln

(

r/r0 − 1
)

in the
Schwarzschild region. Accordingly, we can also define the ingoing null coordinate u which
measures time along an ingoing null ray v = const. by uM = t − r in the flat regions and
uS = t−r−r0 ln

(

r/r0−1
)

in the Schwarzschild region. The causal diagram of this geometry
is given in Figure 1. The region of spacetime inside the shell at v0 is just the Minkowski
space, however in the part above the past lightcone vH it is divided into two causally sep-
arated regions by the black hole event horizon. The inside is trapped, while the outside is
normal, like its parent Minkowski region in the past. The location of the boundary lightcone
vH is given by the first instant of the emergence of the event horizon, which is dynamical in
the intermediate region, and starts at zero radius at the time t = vH , growing to r = r0 at
the time t0 = v0 − r0. Since the horizon itself is a null surface, and it starts with zero size,
its location in the intermediate flat region is determined by the equation t = r+vH , yielding
t0 = r0 + vH at v0. Combining these equations gives vH = v0 − 2r0. Lastly, since flat and
Schwarzschild regions are matched along the imploding null shell at v0 with a nonzero stress
energy T µ

ν ∝ r0δ(v − v0), and since the matching conditions require that the spheres on
either side of the null shell have equal areas, the u coordinate jumps across the shell. This
follows from vM − uM = 2r and vS − uS = 2r + 2r0 ln

(

r/r0 − 1
)

. Imposing that the area is
the same on either side of v0 yields

uS = uM − 2r0 ln(
vH − uM

2r0
) . (2)

The difference is the boost factor taking into account the presence of the horizon in the
intermediate flat region, and allows one to match together the Minkowski and Schwarzschild
charts in the atlas of Figure 1. The coordinates uM and uS can be extended up above vH
and down below v0, respectively, and matched together using this formula. The boost is
controlled by vH , set by the time when the horizon first arises. Afterwards, the constant
time surfaces are all affixed to the intersection of H and vH surfaces in the Figure 1, bending
upward and never crossing the horizon H nor the past lightcone vH .

Let us now see how the black hole is modeled in field theory. Consider a weakly coupled
field theory in this background, for example a minimally coupled massless scalar field. Its
field equation, ∇2Φ = 0, can be expanded in the eigenmodes of the asymptotic symmetries
of the geometry, namely rotational group and time translation generators. So, substituting
φ = e∓iωtYlm(φ, θ)ϕω(r)/r, and introducing the tortoise coordinate r∗ = r + r0 ln

(

r/r0 − 1
)

,
the radial modes solve the equations

ϕ′′
ω +

(

ω2 − l(l + 1)

r2

)

ϕω = 0 , in Minkowski ,

ϕ̈ω +
(

ω2 − l(l + 1)

r2
(1− r0

r
)− r0

r3
(1− r0

r
)
)

ϕω = 0 , in Schwarzschild . (3)

The primes are derivatives with respect to r, while the dots are derivatives with respect to
the tortoise coordinate r∗. These equations show that generic modes have different support

5



near and far from the black hole, thanks to the centrifugal barrier ∝ l(l+1), which suppresses
very strongly the wavefunction of l 6= 0 far from the black hole. Thus the dominant channel
for black hole radiance must be the s-wave, l = 0 [16]. This mode is still suppressed on the
way out of the black hole by the potential barrier VB = r0

r3
(1 − r0/r), but this suppression

is much weaker than the one from the centrifugal barrier. The l 6= 0 modes serve as the
reservoir of black hole entropy and energy, which can only escape when the local interactions
convert it into s-waves.

To determine the Hawking spectrum to the leading order one can work in perturbation
theory, first ignoring the barriers altogether, and determining the energy flux in two steps.
The first step is to find the particle contents of the quantum state near the black hole, to
the far left of the potential barrier in the tortoise coordinate. In this limit, the black hole
is approximated by the Rindler geometry, and so the particles that are in the thermal bath
near it can be referred to as the Unruh radiation [19]. The second step is to find what
fraction of this near-horizon heat can escape to infinity through the barrier VB where it can
be harnessed away. This is the ‘actual’ Hawking radiation, which carries energy and entropy
out of the black hole.

Let us start with determining the Unruh radiation of the s-wave. In this case one can
approximate (3) with

ϕ′′
ω + ω2ϕω = 0 , in Minkowski ,

ϕ̈ω + ω2ϕω = 0 , in Schwarzschild . (4)

The mode functions Φω = ϕω/r are, after restoring the time dependence, and using null
coordinates v and u,

Φω(r) =
1

r

{

Ae−iωuM +Be−iωvM , in Minkowski ,
Āe−iωuS + B̄e−iωvS , in Schwarzschild .

(5)

The “in” modes, defining the Fock space of the initial Minkowski region, are positive fre-
quency ingoing and outgoing modes, Ae−iωuM/r and Be−iωvM /r, respectively. The “out”
modes, which define the Fock space of an exterior observer on J +, and the near-horizon
region H , and therefore reside on t = const. ≫ vH slices in the Schwarzschild chart are
Āe−iωuS/r and B̄e−iωvS/r. The “in” and “out” modes are nontrivially related, because
of the blueshifts in the geometry due to the infalling shell at v0. To match them, note
first that an outgoing positive frequency “out” mode in the intermediate flat region is
Ā
r
e−iωuS = Ā

r

(

vH−uM

2r0

)2ir0ω
e−iωuM after substituting (2). At times t < vH , since the “out”

modes should evolve from completely regular initial data, we remove the singularity in the
mode functions at r = 0 by adding the ingoing mode to Φ“out”

ω outgoing, with the support in
only the initial Minkowski region. This means, we impose reflective boundary conditions at
r = 0. So, the regular continuation of the outgoing “out” positive frequency mode is [20]

Φ“out”
ω outgoing =

Ā

r

[(vH − uM
2r0

)2ir0ω
e−iωuM −

(vH − v

2r0

)2ir0ω
e−iωvθ(vH − v)

]

. (6)

Here we dropped the subscript on v since it doesn’t jump across the shell v0. Substitut-
ing uM = t − r and v = t + r here, taking v < vH , we find that in the limit r → 0, the
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mode reduces to Φ“out”
ω outgoing → 2iω( t+r0

2r0
)2ir0ωe−iωt−2r0ωπ, and it is nonsingular. We can

similarly extend the formula for the “out” ingoing modes. Finally, we pick the normal-
ization constants Ā = 1/[2ω(2π)3]−1/2 to satisfy the standard mode orthogonality relations,
〈Φ“out”

ω outgoing,Φ
“out”
ω′ outgoing〉 = δ(ω−ω′), and analogous ones for other modes, in the “in” and

“out” zones. The bottomline is that the regular outgoing “out” modes must have nonzero
overlap with ingoing “in” modes, as is clear from the presence of the second term in (6).
However these cross terms involve both positive and negative frequencies. This follows from
the power law prefactor, which enforces the mixing between frequencies of different signs.

These results in fact directly apply to the l 6= 0 modes as well. It is clear from (3)
that in the Schwarzschild region, these modes obey the same equation as s-waves near the
horizon, since the centrifugal barrier is negligible because of the redshift factor ∝ (1− r0/r)
in (3). The centrifugal barrier in the Minkowski region cannot be neglected near the ori-
gin, but its role there is to merely prevent the Minkowski region radial wavefunctions from
blowing up, replacing the radial modes by J√

l(l+1)+1/4
(ωr)/

√
ωr Bessel functions. However,

the Schwarzschild radial modes are completely unaffected by this, and still need to be regu-
lated once they are pulled back to the Minkowski region, by the addition of a continuation
of the Schwarzschild region ingoing mode, just like the s-waves in (6). Because the Bessel
functions J√

l(l+1)+1/4
(ωr)/

√
ωr, representing Minkowski region radial modes, reduce to pre-

cisely the usual flat space ingoing modes as r → ∞, where we compute the mode overlaps
〈Φ“out”

ω outgoing,Φ
“in”
ω′ outgoing〉, the Minkowski region short distance modification is insignificant

and the l 6= 0 modes will behave exactly as the s-waves, up to an irrelevant phase.
Next, let us consider the quantum state of the system (1). Since the system is prepared

as an initially infinite section of a flat space, we can take the quantum state inside the shell
to be the “in” vacuum |0in〉. This state is defined as the state annihilated by all the positive
frequency “in” operators, i.e. Φ̂“in”

ω>0 |0in〉 = 0. These operators are the Fourier transforms

of the field Φ, satisfying Φ̂“in”
ω>0 = 〈Φ“in”

ω>0 outgoing,ingoing ,Φ〉. The “in” outgoing and ingoing
wavefunctions, which play the role of the Fourier kernel, are given by e−iωuM/[2ω(2π)3]1/2

and e−iωv/[2ω(2π)3]1/2, respectively. As this state evolves in time, propagating from one
t = const. slice to another, as depicted in Figure 2, in the interaction picture, it is not
altered by the imploding shell. However, at late times t ≫ vH , the field operators are all
evolved to Φ̂“out”

ω . As we noted above, these are nontrivial mixtures of Φ̂“in”
ω , by virtue of

Eq. (6) and related formulas for ingoing modes. These formulas enable one to compute the
mixing, by projecting Φ̂“out”

ω onto Φ̂“in”
ω using (6), and the definition of the inner product on

J −, which is the complete Cauchy surface of the “in” region. In this way one avoids having
to deal directly with the subtleties of the horizon and the complications from curvature in
the future region. Using [20]

〈Ψ,Φ〉 = i
∫

dvr2dΩ
[

Ψ∗(∂vΦ)− (∂vΨ
∗)Φ

]

, (7)

and writing mode expansion Φ“out”
ω a =

∫

ω′,b

{

αab(ω, ω
′)Φ“in”

ω′ b + βab(ω, ω
′)Φ“in”

ω′ b
∗
}

, where a, b

designate outgoing (o) and ingoing (i) modes, and
∫

designates a summation over discrete
parameters and integration over continuous ones, we can evaluate the α and β coefficients.
The completeness and orthogonality of the “in” modes then implies that the “in” operators
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Figure 2: Near-horizon heat

evolve to “out” operators according to

Φ̂“in”
ω′ b =

∫

ω,a

{

αab(ω, ω
′)Φ̂“out”

ω a + βab
∗(ω, ω′)Φ̂“out”

ω a
†
}

. (8)

Now, imposing the condition that the “out” modes are also a complete set of modes, as well
as orthogonal4 we can invert (8) to find

Φ̂“out”
ω a =

∫

ω′,b

{

αab
∗(ω, ω′)Φ̂“in”

ω′ b − βab
∗(ω, ω′) Φ̂“in”

ω′ b
†
}

. (9)

Using this expansion, one can compute the expectation value of the occupation number
operator N“out”

a =
∫

ω Φ
“out”
ω a

†Φ“out”
ω a in the state |0in〉. Since 〈N“out”

a 〉 = ∫

ω ||Φ“out”
ω a|0in〉||2 =

∫

ωN
“out”
a (ω), from (9) and the definition of |0in〉 one finds N“out”

a (ω) =
∫

ω′,b |βab(ω, ω′)|2.
4This means, that the map between “in” and “out” regions is perturbatively unitary, and that we have

∫

ω,a

(

αab(ω, ω
′)αac

∗(ω, ω′′)− βab(ω, ω
′)βac

∗(ω, ω′′)
)

= δbcδ(ω
′ − ω′′) ,

∫

ω,a

(

αab(ω, ω
′)βac

∗(ω, ω′′)− αab(ω, ω
′)βac

∗(ω, ω′′)
)

= δbcδ(ω
′ − ω′′) .

and their transposes with respect to the matrix indices a, b, c.

8



The black hole radiance at J + is given by the expectation value of the N“out”
outgoing. Setting

a = o, using (7) and the mode expansion, dropping the u-dependent pieces in the limit
u → −∞ (which means, taking the modes to J − and using decoupling, or more formally,
the Riemann-Lebesgue lemma), the coefficients determining the overlap of the “out” outgoing
modes with the “in” modes are, in terms of the variable x = vH − v,

αo,i(ω, ω
′) = − 1

2π

√

ω

ω′

e−i(ω−ω′)vH

(2r0)2ir0ω
′

∫ ∞

0
dxe−iωxx2ir0ω

′

, (10)

and βo,i(ω, ω
′) = iαo,i(−ω, ω′). To regulate the integral, one shifts the frequencies by ±iω →

±iω − ǫ, to ensure that the interactions are shut off in the infinite future and past. Once
this is done, (10) can be evaluated in terms of Γ-function as [20]

αo,i(ω, ω
′) = − 1

2π

√

ω

ω′

e−i(ω−ω′)vH

(2r0)2ir0ω
′

Γ(1 + 2ir0ω
′)

(ǫ+ iω)1+2ir0ω′
. (11)

From this it immediately follows that βo,i(ω, ω
′) = −ie−2πr0ω′−2iωvHαo,i(ω, ω

′), where one
uses ln(ǫ+ iω) = ln(ǫ− iω) + iπ for the correct analytical continuation, that avoids branch
changing. Using a sum rule that follows from footnote 2, setting ω′′ = ω′ and integrating
the transpose of the first of the equations in footnote 2, one obtains

∫

ω,ω′,b

(

|αab(ω, ω
′)|2 −

|βab(ω, ω′)|2
)

= 1. Substituting βo,i(ω, ω
′) = −ie−2πr0ω′−2iωvHαo,i(ω, ω

′) in this formula yields
∫

ω,ω′,i |βo,i(ω, ω′)|2 = ∫

ω
1

e4πr0ω−1
, which implies that in the near-horizon limit, the “in” vacuum

|0in〉 in the outgoing regime is a state with particles in it, following the black body distribution

N“out”
outgoing(ω) =

1

eω/TBH − 1
, (12)

with the black hole temperature TBH = (4πr0)
−1 [1, 19]. This is depicted in Figure 2. As we

noted, this applies to any and all angular momenta in the mode expansion of ∇2Φ = 0. This
would remain true even if the scalar field were massive. In the Schwarzschild region, the
mass term would appear as an extra contribution in the radial equation ∝ m2(1 − r0/r)φω,
which is clearly negligible as r → r0. In other words, a quantum field theory near the horizon
becomes ultrarelativistic, and locally the asymptotic mass terms become irrelevant. Thus
all the degrees of freedom thermalize with the black hole near the horizon.

Once we have determined the heat near horizon, in the state which started as the infalling
Minkowski vacuum, we can find what of it channels the black hole away. Not all of this heat
can escape from near the horizon to infinity, as depicted in Figure 3. The near-horizon heat
is squeezed in the region of space close to the future event horizon of the black hole, and to
escape it must pass out of the potential barrier at r ≃ r0. Of all the modes, only the s-wave
is relatively unsuppressed, since the barrier separating it from infinity is the lowest. The
l 6= 0 modes are confined close to the black hole by the rapidly growing grey-body factors,
which have been computed using black hole absorption by [22, 23] (for a review, see [20]).
The total black hole luminosity, which controls the black hole mass loss rate, is

Lhawking =
∞
∑

l=0

2l + 1

2π
Γω,l

∫ ∞

0
dω

h̄ω

eω/TBH − 1
, (13)
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Figure 3: Black hole heat

and, using the grey-body factors [20], one finds that the main component of the escaping
radiance outside of the barrier is the s-wave, i.e. a single mode, carrying out around 90% of
black hole radiance. If in addition the field is massive, even the s-wave will be prevented from
escaping by the mass barrier [21]. Only the high frequency modes, with sufficient energy,
can escape5, meaning that the emission of modes with masses larger than the black hole
temperature is exponentially suppressed.

5This can be readily seen from considering radial geodesic equation, (dr/dλ)2 = E2 − m2(1 − r0/r),
implying that all ‘particles’ with energies E < m cannot escape to infinity, but will fall back into the black
hole after a finite excursion away from it [21].
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3 Where Entropy Roams

Since the black hole emits thermal radiation, it must have entropy. It was conjectured by
Bekenstein [2] that black hole’s entropy is given by its area in Planck units, S = 1

4
M2

P lA,
even before Hawking’s discovery of black hole radiation. The presence of Hawking radiation
confirms it easily, using the second law of thermodynamics: entropy density in the outgoing
thermal radiation in the rest frame of a distant observer is S ∼ T 3

BH , and the entropy
transferred out per unit time is Ṡ ∼ T 3

BHA. Hence the total entropy lost by the radiating
black hole is S ∼ τBH Ṡ ∼M2

P lA, where τBH ∼M/(T 4
BHA) is the Hawking black hole lifetime.

In the simple field theory model, this entropy should count the number of modes in the heat
bath near the black hole horizon. These are represented by all the l = 0 and l 6= 0 modes in
the |0in〉 state, following the distribution (12).

To reproduce the entropy scaling with the area, when the exterior field theory is Lorentz
invariant, and without mass gap so that the state is thermal over the full range of frequencies,
we can integrate over the average number of particles of all spins in it, which is S ∼ T 3. Here
T is the black hole temperature measured by a local observer residing at some r = const

outside of black hole, including the blueshift factor, T = TBH/
√

g00(r). The warping of the
spatial surfaces t = const due to the black hole gravity must also be included since it sets
the proper volume in which the entropy is stored. The covariant spatial volume element
is dV =

√
grrdrr

2dΩ = 4π
√
grrdrr

2 where spherical symmetry allows us to ignore angular
integrations. Hence the entropy in the state |0in〉 on spatial surfaces t = const ≫ vH is,
using grr = g−1

00 = (1− r0/r)
−1,

S ∼
∫

dV S ∼ T 3
BH

∫

dr
r4

(r − r0)2
. (14)

However: this is divergent both in the UV and in the IR, and needs to be regulated.
The IR cutoff is straightforward, setting it at a distance rIR ∼ r0, where the integral (14)
is ∼ T 3

BHr
3
0 ∼ O(1). The UV cutoff is subtler. The way to pick it is to regulate the

divergences in (14) such that the resulting finite integral matches the Bekenstein-Hawking
entropy formula, S ∼ M2

P lA. This is the definition of the stretched horizon of [5], and
quantitatively agrees with the definition of the brick wall regulator of [4]. So, integrate (14)
to some distance rUV , where S(rUV ) ∼M2

P lA; since |r∗ − r0| ≪ r0, the leading divergence is

S ∼ T 3
BH

∫

rUV

dr
r4

(r − r0)2
∼ r0
rUV − r0

, (15)

using TBH ∼ 1/r0 and ignoring O(1) factors. Then picking rUV ≃ r0 + (M2
P lr0)

−1 ensures
that (15) scales as the area in Planck units. Since the proper distance is ℓ =

∫

dr
√
grr, this

means that the stretched horizon is a timelike surface at the proper distance ℓ ≃ ∫ rUV

r0
dr√

1−r0/r

from the horizon, or at
ℓSH ≃ ℓP l . (16)

At this surface, the blueshifted black hole temperature, measured by the accelerated observer

ℓSH away from the horizon, is TSH = TBH/
√

1− r0/rUV ≃MP l, using the above formula for
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rUV . So an effective quantum field theory in the state |0in〉, with most excitations in a heat
bath at the temperature measured at infinity TBH , is very hot locally with the Planckian
temperature measured on the radiating surface ℓSH . The escaping radiation redshifts to the
asymptotic temperature TBH at infinity as it works its way out of the black hole’s potential
well. Defined in this way, the stretched horizon is very close to the black hole horizon, well
inside the centrifugal barrier VBH in Eq. (3), which is peaked at r = 3r0/2.

This is a consistent low energy effective field theory representation of the dynamical black
hole as viewed by outside observers. For example, in ’t Hooft’s original brick wall calculation
[4], the black hole entropy is given in terms of the free energy as S = −∂F/∂TBH , where

F = −1

π

∫ ∞

0
dω

∫ rIR

rUV

dr

1− r0/r

∫ lmax(ω)

0

dl(2l + 1)

eω/TBH − 1

√

ω2 − (1− r0
r
)
l(l + 1)

r2
, (17)

where lmax(ω) is defined as the largest angular momentum for which the discriminant of the
square root is still positive. Using new variable y = l(l + 1)(r − r0)/r

3, one immediately
finds the dominant contributions to F , scaling as6 F ≃ −T 4

BH

∫ rIR
rUV

dr r4

(r−r0)2
, which yields

precisely our heuristic formula (15). All the modes, l = 0 and l 6= 0 contribute here, since
this is the total free energy at a given time, rather than the energy (and entropy) that goes
out. This is further corroborated by the covariant computation of [27]. In fact, the picture
which emerges from [27] is that the entropy estimate (15), that formally diverges as the
cutoff is lifted, has the same divergence as the Planck scale, such that when the Planck scale
is additively renormalized entropy remains finite. The regulated model of this black hole
geometry is depicted in Figure 4.

Effectively, the spacetime sliver between the Planckian stretched horizon and the true
event horizon is excised, ending on a hot surface where all local processes occur at near-
Planckian energies. This region removed is rendered irrelevant by the Planck scale renor-
malization. Indeed, if one takes the quantum field theory cutoff at the Planck scale and
regulates it with a Lorentz-invariant regulator, one finds that the divergence in (15) has
precisely the same leading order behavior as the one-loop counterterm renormalizing the
Planck scale in flat space field theory [27]. Dropping higher frequencies and their entropy
contributions simply means that their (infinite) contribution to the entropy is precisely com-
pensated away by the (infinite) renormalization of Planck scale. Moreover, their omission
does not change the radiance rate because on shell these modes would have a huge spin, and
so are extremely strongly suppressed by the centrifugal barrier. Clearly the key for deducing
this, and determining the radiation rates with the Planck cutoff is that the state they are
in is |0in〉. This follows from Lorentz symmetry and the existence of the decoupling limit.
In fact, this result is quite robust: more detailed investigations suggest that the low energy
properties of the black hole radiance and entropic contents remain largely independent from
the ‘trans-planckian’ effects that are modeled by the rigid cutoff [28], as long as they are

computed in the state |0in〉, even if one considers UV corrections to the field theory which
violate Lorentz symmetry but do not introduce explicit instabilities [28]. The ‘cost’ of this
picture is that the microphysical details of black hole entropy accounting are delegated to the

6A key feature of this calculation is that the spectrum is Planckian over the whole range of frequencies
between the IR and UV cutoffs.
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Figure 4: Cutoffs and quantum states

UV effects which are not under direct calculational control in the low energy theory below
the cutoff, which however ‘knows” the correct result thanks to the divergences controlled by
the symmetry. Traced back in time, all the Hawking quanta reaching the future null infinity
J + and taking away black hole’s mass and entropy originate from somewhere in there. While
the process of their creation is obscured from effective field theory by the stretched horizon,
the accounting of modes is properly replicated, since in this case the only obstruction they
encounter on the way out are centrifugal and mass barriers, well below the cutoff.

4 And Then There Were Many

When the field theory has a large number of modes in the IR the story becomes more
complicated, since describing how black hole entropy is stored and radiated is exacerbated
by the presence of many modes (and possibly their interactions) [7]. Nevertheless, we would
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expect the theory to obey the standard laws of thermodynamics in the IR. Even if the field
theory modes are strongly coupled, their thermodynamic potentials, and specifically internal
energy and entropy, should scale with the temperature in the usual way, even if the numerical
coefficients in these relations may be corrected by the interactions. If the theory is heated
up to some finite temperature, all the modes which are light at that temperature will be
excited, and their frequency distribution ought to follow a black body spectrum.

In a black hole background, as long as gravity is universal, and all the IR modes are
accessible to it, this suggests that all the light IR modes will be thermally excited, and so
contribute to the black hole entropy, and perhaps even radiance. Based on this simple set
of assumptions, to estimate entropy one could use Eqs. (14) and (15), with a prefactor of N
counting all the light fields in the IR. The leading divergence is

S ∼ N
r0

rUV − r0
. (18)

If a flat space UV cutoff of the theory is high, say at the Planck scale, and we try to use it in
(18) by taking the stretched horizon at ℓSH ≃ ℓP l from the event horizon, this would scale as
S ∼ NM2

P lA, overshooting the black hole entropy by a factor of N . This is the naive species
problem [7]: many distinguishable light modes in the theory can yield much more entropy
storage than given by the black hole area.

The error in estimating entropy by S ∼ NM2
P lA is in ignoring gravity. The entropy

counting based on (18) pushed all the way to Planck scale completely ignores gravitational
interactions of field theory modes, which in fact dominate in the UV [18]. The point is to
estimate just what the cutoff should be for using the flat space field theory to describe a
black hole. This ‘geometric’ cutoff is again given by the stretched horizon, which as before
is defined as the distance at which S(rUV ) ∼ M2

P lA, with S given in (18). Combining these
two equations yields rUV ≃ r0 + N(M2

P lr0)
−1, which is significantly farther from the event

horizon than rUV for a single species. The proper distance between the multispecies stretched
horizon and the event horizon is now

ℓSH ≃
√
NℓP l . (19)

This means, that the low energy field theory description of the black hole state |0in〉, taken
to be a thermal state of all the light IR modes, can be trusted only down to the distance√
NℓP l from the horizon. The graphic description of this situation is given in Figure 5. So,

even though the geometry seems to be perfectly well defined all the way to the horizon,
the field theory defined by the low energy Lagrangian with many light species cannot be
used to follow the presumed multispecies black hole thermal state into the region beyond
the multispecies stretched horizon. This suffices to reproduce the black hole entropy. But,
any effects that can influence the radiation coming out from the horizon, which may occur
in the region of geometry between the (near) horizon and the multispecies stretched horizon
remain completely hidden.

This situation is very uncomfortable. To define the thermal black hole state in the first
place, and so to determine the populations of modes, both thermalized, and radiating to
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infinity7 in the dynamical black hole setting (1) we have taken the theory all the way to the
horizon in the “in” vacuum. We have done it using the flat space field theory before the
horizon formed, having no obstructions from neither the blueshifts nor the entropy counting
issues. The features of this state could be verified by an “out” observer receiving signals
which originated from slices t < vH , just before the horizon appeared. Since the local
blueshifts render all the low energy scales irrelevant in the “out” sector, the shell implosion
forming the horizon only effects a Bogoliubov transformation on the various momentum
modes to the leading order, rendering the “in” vacuum into the thermal state in the “out”
region. With many species, and the cutoff of the “out” region set up by the multispecies
stretched horizon, this is not obvious any more: one cannot directly follow time evolution
of the “in” vacuum all the way to just before the horizon forms using the multispecies IR

7We stress that this is not the same, as we have seen in the case of angular momentum decomposition of
a scalar field.

15



theory even in principle since the cutoffs jump on some of the t = const slices, as indicated
on Figure 5. One will know entropy, assuming that the state |0in〉 is thermal, but will not
be able to verify the detailed interactions in this state beyond a certain time. The danger is
that giving up the field theory description of the (trans) Planckian region close to the black
hole undercuts the whole reasoning for having a thermal bath of quanta near the black hole,
and makes the choice of the exterior quantum state of the black hole suspect. Alternatively,
one may not be able to determine the backreaction of the field theory in the state |0in〉, and
may not be able to guarantee regularity of the horizon. As a consequence, one can’t deduce
the rate of energy loss from the black hole, since one doesn’t have the full description of the
theory near it.

If the UV cutoff of the low energy field theory is below the scale ℓ−1
SH , the whole point

may be moot, since one can’t directly use the low energy theory above such a low cutoff.
An example would be trying to describe radiance of a black hole of an arbitrary mass
solely in terms of pions and hadrons of some large-N QCD-like theory. If the black hole
is very large and therefore cold, one could estimate the radiance rate by assuming 1) that
the low energy theory remains in the thermal vacuum outside of the black hole even at
energies much above the cutoff, which is not checkable in terms of pion and hadron mode
functions, and 2) that the only grey body suppressions come from the usual centrifugal and
mass barriers, which are at distances farther from both the stretched horizon and the UV
cutoff of the low energy theory, and that there aren’t any additional effects altering radiance
rates between the stretched horizon and the (lower) UV cutoff. With this in place, one can
take into account that at low energies the quark-gluon plasma undergoes a confining phase
transition, implying that only QCD singlets escape to infinity8. With these assumptions one
will obtain the correct radiance in terms of pions of hadrons; but one can’t be sure that the
assumptions are precisely correct, since it may happen that at high energies above the cutoff
(but below the Planck scale) the field theory interactions alter the radiance rate, yielding
extra suppression. For a very small black hole, with the temperature above the confining
phase transition this is not even viable because pions and hadrons do not exist anywhere in
the space around it, and one would simply not be able to determine any grey body factors
whatsoever. However, using the quark- and gluon-like states one would see that those are
subject to the centrifugal and mass barriers, now much closer to the black hole – above the
confinement scale – and check if there are any further suppressions from near-horizon field
theory dynamics in the background geometry. This would settle any lingering doubt about
there being any further suppressions of radiance from any dynamics below the scale of the
stretched horizon and above the UV cutoff of the low energy theory of pions and hadrons9.

If, on the other hand, the flat space UV cutoff of the theory is above the scale MP l/
√
N

this problem is harder, because the gravitational corrections to the low energy action may
become crucially important near the cutoff. One needs a way of systematically including

8In [29], similar arguments were used to claim that black holes in RS2 braneworlds will not radiate only
the few CFT singlets. We believe the real reasons for the suppression of CFT Hawking radiation are more
involved, as we will argue in what follows.

9In fact there are claims that standard QCD interactions near black hole generate extra suppressions of
Hawking radiance of hadrons [24, 25]; however [26] show that such extra suppressions are absent using QCD
dynamics above the confinement scale.

16



(possibly nonperturbative) gravitational effects in the field-theoretic description of the black
hole. Arguments that the theory is fixed by a single UV scale are ambiguous in perturbation
theory. The perturbative renormalization of Planck scale and entropy show [27] that the
leading order divergences are the same, and can be subtracted away simultaneously, with
the same counterterm. But this is not the same as demanding that the renormalized Planck
scale is fixed by the finite contribution from the one-loop effects, which is a much stronger
requirement. Nevertheless, the latter idea is appealing, and it is tempting to argue that the
low energy field theory with gravitational corrections included really does not have as high
a cutoff as without gravity, but actually ends at MP l/

√
N [8, 17].

Once one declares that the multispecies field theory must have a cutoff set by its stretched
horizon, µ ∼ MP l/

√
N , in essence stating that gravity is induced [8, 12], and therefore

‘natural’ , interesting possibilities for resolution open up. The main point is that when
the theory is pushed up to the scale µ, not only does the IR limit of the low energy field
theory cease to be valid, but also the gravitational sector can soften up, with higher-order
gravitational corrections becoming important. Yet, following the bottom-up approach, and
simply extrapolating the IR theory, if it remains weakly coupled in perturbation theory
at this scale, one still may not be a able say much. However, if one knows what the UV
completion actually is, one may just use it above the perturbative cutoff of the IR theory
and push it to the black hole horizon, to see what really happens.

5 Black Holes in the RS2 Braneworld

The RS2 braneworld model is an example of how the UV completion, going beyond the
cutoff of the IR CFT, fully resolves the species problem, and allows one to determine the
Hawking radiance rate unambiguously. In RS2, the low energy quantum field theory is an
SU(N ) super-Yang-Mills CFT in strong coupling and large N limit, with many degrees of
freedom N ∼ N 2. It is however cut off at a scale µ ∼ L−1, where L is the AdS5 radius.
This is where the Planck brane sits, inducing 4D gravity. Below the cutoff, the low energy
CFT couples to 4D gravity [10, 11], whose 4D Planck scale MP l, the cutoff µ ∼ L−1 and
the number of degrees of freedom N are related by M2

P l ∼ Nµ2 = N/L2 [12]. Above the
cutoff, one can define the UV completion of RS2 by using its gravity dual in 5D at distances
shorter than L (and resolving the Planck brane). Since the dual theory is weakly coupled
bulk gravity (actually, weakly coupled string theory, strictly speaking) on AdS5 × S5, it
remains valid above the cutoff µ ∼ L−1 with the only ‘difference’ that the bulk modes at
scales above the cutoff µ do not experience bulk warping. Instead, at these scales and for
high frequency modes, the bulk background behaves as a single flat extra dimension of size
∼ L. The propagating modes arrange into Kaluza-Klein sectors controlled by their behavior
on the sphere S5. Zero modes on S5 are massless, while the modes that vary over S5 become
massive in the 5D bulk, with their masses multiples of µ = L−1. On top of it, in addition to
the zero-mode graviton, the theory may also couple to any (few) modes that might come in
with the (resolved) cutoff brane (which are irrelevant for the issue of the black hole radiance
into the CFT sector). The bulk description of the theory is weakly coupled and remains valid
all the way to the bulk Planck scale, ℓ5 =M−1

5 , beyond which one should use the full string
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theory in 10D [10, 11]. Here, M5 is related to N , MP l and the cutoff µ = L−1 according to
N =M2

P lL
2 =M3

5L
3, so that M3

5 =M2
P l/L.

Consider now a black hole in this setup, in an asymptotically flat space. From the
bulk viewpoint, the black hole is highly asymmetrical, with the 4D horizon set by its mass,
r0 = 2GNM , and its bulk extent warped down to rbulk ∼ L ln(r0/L). The black hole is
not stationary in the bulk, being accelerated toward the (removed) AdS5 boundary, carried
along by the (tensional) brane. The brane geometry is asymptotically flat. According to
Maldacena AdS/CFT duality [30], one knows that the solutions of the classical bulk gravity
equations describing the boundary geometry correspond to the configuration in the dual
strongly coupled 4D theory which include all planar diagram corrections on top of the
classical background. Specifically, they should also include Hawking radiation of all the
modes available to the black hole, because of the universality of 4D gravity [13, 14].

The key issue is, which modes are available to the black hole to radiate away, and at which
rates? Given that the CFT remains gapless all the way to infinity, with no confinement, one
may think that all the N degrees of freedom of the CFT can be radiated by a black hole
sitting on the RS2 brane. This is supported by the computation of the corrections to the
Newtonian potential at large distances between two probe particles placed on the brane,
yielding

∆V ∼ −GNmML2/r3 ≃ N

M2
P lr

2
VN , (20)

with N ≃M2
P lL

2 ≃ M3
5L

3, both from the bulk [9, 31, 32] and the dual 4D CFT point of view
[11, 33]. From the 4D point of view the corrections arise as the graviton vacuum polarization
diagrams with the CFT in the loop, with the insertion of 〈TµνTλσ〉. This precisely counts
the number of CFT modes [11], independently of the UV cutoff at µ ∼ L−1. There is no
Yukawa suppression in this formula to indicate that any of the modes are suppressed by
their incipient 4D masses. However, this formula also shows that the rate at which the CFT
modes transfer momentum to generate the force is significantly weaker, yielding a potential
that drops off as 1/r3 rather than the stiffer potential 1/r coming from the hard zero-mode
graviton. This gives a clue, that the low energy CFT modes are not very good for transferring
energy-momentum in 4D scattering processes.

What happens in a black hole background? It would be well-nigh impossible to compute
the Hawking radiance in the same way as in weakly coupled theory as in our review above,
because of strong couplings. Further, since the low energy CFT has a low cutoff, we wouldn’t
even know how to define the ‘infalling’ vacuum of the theory at energies above the cutoff.
However, one does expect that the theory follows standard laws of thermodynamics with all
the states available to the black hole thermally excited, strong couplings or not. One may
expect corrections to the coefficients appearing in the definition of thermodynamic potentials
as the functions of extensive parameters, but overall parametric dependence should remain
the same. Yet, given the many IR species, one knows that the regime of validity of the CFT
description outside of black hole is limited by the multispecies stretched horizon.

So let us for a moment assume that the calculated IR corrections to the Newtonian poten-
tial imply that all the CFT modes in the IR are accessible to the black hole. The total entropy
in the black hole quantum state |0in〉 would have been S ∼ NT 3

BH

∫

rUV
drr4/(r − r0)

2 ∼
Nr0/(rUV − r0), as we disucussed in Eqs. (14), (15) and (18) above, with the stretched
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horizon is at the distance
ℓSH ∼

√
NℓP l = L = µ−1 , (21)

from the event horizon, which is precisely at the RS2 CFT cutoff. At this distance from
the black hole, the local temperature of the CFT in thermally excited state set by the black

hole, in the units of the distant observer, is T = T0/
√

g00(rS) ∼ (
√
NℓP l)

−1 = µ, following

from (1) and the scaling (21). Closer to the black hole we cannot use the IR CFT; it doesn’t
exist. Moreover, since at the stretched horizon the temperature ∼ µ is in fact the blueshifted
Hawking temperature at infinity, and since most of the Hawking radiation at infinity arrives
from the energy bin around it’s temperature, we couldn’t even be sure the spectrum would
be exactly thermal if we aren’t able to say what happens with the modes with energies much
higher than µ at the stretched horizon. Many of the modes needed to take the energy to
infinity simply aren’t there. So to make certain what happens in the sliver between the
Planckian and the multispecies stretched horizon, another description of the quantum field
theory is needed. There, we can use the UV completion of the RS2 setup.

Black hole

Regime of the 
UV completion

Planck brane

CFT cuto! ~ 1/L

Figure 6: Diving near the black hole horizon in RS2

Closer to the black hole the theory reduces to weakly coupled bulk gravity on AdS5×S5

with the extra normalizable 4D graviton zero mode. The bulk background behaves as a
single flat extra dimension of size ∼ L. Because we wish to describe large black holes on the
RS2 brane, with the 4D event horizon r0 = 2GNM ≫ L, the horizon in the bulk extends
to rbulk ≃ L ln(r0/L) > L, which we can take to be significantly larger than the AdS radius.
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Thus we can treat the theory as a 4D one with towers of KK modes, with, in general, gapped
continuum spectra. The bulk fields are classified by their behavior on S5. All the fields which
vary over S5 are massive in the 5D, with the mass gap set by µ = L−1. In the effective 4D
language, these fields come as continuum spectra with mass gap also set by L−1, because
the size of the effective fifth dimension is also L (see Figure 6; there we could have depicted
the bulk stretched horizon around the black hole, but it is irrelevant for the argument and
we will ignore it because it is small, and the description is effectively 4D anyway), and with
the continuum variable parameterized by the bulk momentum. None of these modes will be
emitted as Hawking radiance because they are too heavy and large black holes are too cold,
with TBH ∼ 1/r0 ≪ L−1.

That leaves only the zero modes on S5 as the degrees of freedom possibly accessible to
black hole to radiate away. They are massless in 5D, but may be gapped continua in the
effective 4D theory, if they have 5D momentum. If their bulk momenta are above the CFT
cutoff µ = L−1, they are again too heavy to be emitted by the large black holes. On the other
hand, those with 5D momentum below the black hole temperature TBH could in principle
be emitted. But: these modes are heavily suppressed in the region of space surrounding the
black hole at the proper distance L from the horizon!

A simple way to understand how this suppression works is to introduce a regulator brane
in the IR, at some very large proper distance in the bulk, R ≫ L. So long as the regulator
is much farther in the bulk than the bulk extent of the black hole horizon, it is completely
irrelevant for the black hole. While it gaps the bulk spectra, the mass gap it induces is
mgap ∼ L−1e−R/L, and if the IR brane is far down the AdS-throat, TBH ≫ mgap, and so this
does not introduce any significant suppressions to the radiance10. The modes which could
be emitted are 4D s-waves with bulk momenta, or therefore effective 4D masses11 m which
are smaller than TBH . Then, since the masses of light states are m ∼ nmgap [34], the number
of the states lighter than the black hole temperature per a bulk field can be huge,

Nlight ≃
TBH

mgap
≃ TBHLe

R/L . (22)

In the continuum limit R→ ∞ this number saturates at N <∼ M2
P lL

2. So a large fraction of
the low energy CFT spectrum is in principle available to be radiated away.

However, the light modes are suppressed by the bulk potential barrier, i.e. the volcano
of RS2. Their radial behavior is controlled by the solutions of the Schrödinger equation12

d2ψ

dz2
+ (m2 − κ

(z + L)2
)ψ = σδ(z)ψ , (23)

with appropriate boundary conditions on the UV brane at z = 0 and the IR brane at
zIR = LeR/L, with zIR being the conformal distance in the bulk (see, eg [34] for details). The

10This is in contrast to how the regulator brane in the IR was used in [29], where the black hole’s horizon
in the bulk extended beyond the regulator. In our case the regulator brane is merely a spectator.

11Near the black hole we can take the space to be locally flat, with p2
4
= p2

5
= m2, due to blueshift.

12Here as noted above m2 is the eigenvalue of the 4D Klein-Gordon operator ∇2

4, from the assumption
that we can think of the black hole locally as a section of a warped Schwarzschild string; while this is not
quite true, it will serve our purpose.
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parameter κ depends on the specific details of the field theory sector in which ψ originates,
such as spin, bulk mass etc, and needs to obey 1 + 4κ ≥ 0, to ensure the absence of
instabilities [35]. We can easily understand the behavior of these wavefunctions without
solving the equation. For light modes m≪ L−1, the potential is only relevant in the region
z ∼ m−1 around the UV brane. Farther away, it plays no role, and the mode propagates as
a free wave out to the IR brane at zIR = LeR/L. Thus, the mass gap and the wavefunction
normalization are controlled by zIR, being z

−1
IR ≪ r−1

0 and 1/
√
zIR, respectively. On the other

hand, the potential suppresses the wavefunction near the UV brane. To find the suppression,
note from (23) that the wavefunction ψ depends on m and z only through the combination
m(z + L). Near z = 0, for masses m < TBH ≪ L−1, we can neglect m2 in (23), to find that
the solutions behave as

ψ = {[m(z + L)]p+ +O(1)(mL)γ [m(z + L)]p−}/√zIR (24)

where γ is related to the powers p± = (1 ±
√
1 + 4κ)/2, being γ = p+ − p−, or, for the

spin-2 case with a bound state, p+ = 5/2, p− = −3/2 and γ = 2. Hence in the region of
space at distances L from the horizon of the black hole, these wavefunctions have very little
support. They are ψ ≃ (mL)p+/

√
zIR or, in the case of bulk gravitons, ψ ≃ (mL)1/2/

√
zIR

[34]. The probability of having these states near the black hole, in the ‘box’ of size L near
the UV brane (as depicted in Figure 6) is ∼ L|ψ|2 <∼ (mL)2pL/zIR, where p = p+, or 1/2
for gravitons. Further, among all of the 4D modes of these states, only the s-waves can
contribute to black hole radiance. Thus the total contribution of these states to Hawking
radiation from the black hole cannot exceed

Nlight × L|ψ|2 <∼ (TBHL)
2p+1 , (25)

and since 2p+1 is at least 2+
√
1 + 4κ ≥ 2, the lowest value of the power in (25) is nonzero.

This means that the total outgoing radiation flux from the black hole is

LBH ∼ (TBHL)
2Lhawking ∼ (

TBH

MP l

)2NLhawking , (26)

where Lhawking is the radiance rate for a single hard species of particle. Because TBHL < 1,
it follows the total contribution of the light modes to Hawking radiation isn’t even O(1),
let alone the full number of IR states N13. The suppression is a consequence of the bulk
warping and the potential barrier it induces14. Note, that any dependence on the regulator
brane cancelled out in (25), and so this persists even when CFT is completely gapless.

Let us clarify a subtlety in this discussion. We have been working in the UV regime,
based on bulk gravity on AdS5 × S5 which is the one valid microscopic description of the
black hole state inside the box of size L around it. We have combined the bulk mode
suppressions determined by warping inside this box with the standard grey body factors

13In the limit of small black holes, r0 <∼ L, these formulas do not apply. For these black holes, bulk warping
is negligible, and the enhanced spatial rotation symmetry implies that the emission is suppressed by the 5D
centrifugal barrier as explained in [16].

14That bulk geometry may be suppressing the radiation has been stressed by Rob Myers; we thank him
for sharing his insights.
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induced by the centrifugal barrier at distances O(1)r0 from the black hole, to argue that the
total suppression of the radiance is large. At the barrier, we could have already resorted to
the effective CFT description in the IR. Yet, since the CFT and the dual bulk description
are completely equivalent below the cutoff, and since the theory looks completely 4D at
distances ≫ L, we can continue to use the bulk description near and over the centrifugal
barrier because it is the picture which allows us to get close to the black hole. Once past the
barrier, we can translate the results into the CFT language, by using energy conservation,
and determine the outgoing CFT flux of Eq. (26). The principal new element of this
calculation is that besides the centrifugal and mass barriers, which for a large black hole are
much below the cutoff, there is an additional suppression above the cutoff scale, which is
hard to note directly with the low energy CFT, especially at high energies where the CFT
doesn’t even exist.

At the same time, black hole entropy as computed by the external observer comes out
right using the low energy CFT up to the multspecies stretched horizon at

√
NℓP l = L.

From the bulk point of view, the bulk modes contribute en masse to black hole entropy,
and once very close to the horizon, one needs to resort to full 5D bulk gravity, with the 5D
stretched horizon at ℓ5, to add them up. With this, the factor of N is absorbed into the
renormalization of the 4D Planck scale,M2

P l ∼ Nµ2, and so the entropy scales as in Eq. (15).
Indeed, since the black hole’s horizon in the bulk does not extend past rbulk ∼ L ln(r0/L),
thanks to the warping of the bulk AdS geometry most of the horizon area is inside the
‘box’ of the size of L near the UV brane (see Fig. 6). The black hole area computed
using 5D is Abulk ∼ r20L. Using 5D Bekenstein-Hawking entropy formula in this region
gives SBH ∼ AbulkM

3
5 ∼ r20LM

3
5 . However since M2

P l ∼ M3
5L, this precisely implies that

SBH ∼ r20M
2
P l ∼ A4DM

2
P l, which means that the bulk modes produce the same answer for

black hole’s entropy as the low energy CFT. This argument is very similar to the points
made in [16] in the context of small black holes in ADD. A rather surprising consequence
which follows from it, is that the RS2 black holes are in a sense never large, regardless of
how far their horizon goes along the brane.

The suppression of black hole radiation rate of CFT modes follows from the combination
of the low CFT cutoff µ ∼ L−1 ≪ MP l, a large number of modes N ≫ 1, and a weakly
coupled bulk dual UV completion, with a built-in covariant mechanism for suppressing most
Hawking quanta consisting of the centrifugal, mass, and bulk barriers. The suppression is
stronger than the advocated suppressions from strong coupling effect [29, 36, 37]. The direct
estimates of black hole radiance using low energy 4D CFT below the cutoff are just too naive,
being complicated by both the strong coupling and, crucially, low cutoff which obscures the
bulk barrier suppression. The strong coupling of the IR CFT, however, does play a role. It
is essential for facilitating the existence of the weakly coupled bulk dual, which turns out to
be a reliable probe of the black hole geometry all the way down to the horizon. It implies
that the real field theory cutoff which one encounters in the black hole radiance description
is in fact the string scale ∼ ℓ5, beyond which one needs to use full 10D string theory rather
than bulk gravity on AdS5×S5 to obtain microscopic description of black hole radiation. In
this way, the theory automatically resolves the species problem, naturally supplanting the
low energy limits for the UV extensions that can be systematically connected to the regime
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of full quantum gravity15. This resolution is a feature of the strong coupling in field theory,
which facilitates the existence of the weakly coupled dual, and has nothing to do with strong
gravitational couplings at high energies which will occur near any black hole horizon. For
these effects one really needs to understand what happens at the Planck scale, but they will
in general not have any consequences for low energy Hawking radiance as long as the low
energy theory is a meaningful Lorentz-invariant quantum field theory, as we discussed at
the end of Section 3. The issues discussed here are connected to the UV cutoff, and strong
coupling, in field theory, and their location relative to MP l, and not about what happens to
gravity at the Planck scale.

Are these conclusions universal? One may wonder if it might be possible to simulta-
neously resolve the species problem without suppressing black hole radiation rates. As we
saw, while the CFT picture of RS2 with a large number of CFT modes in the IR appeared
intriguing, it didn’t yield accelerated black hole decay due to the suppressions calculable
in the weakly coupled bulk dual. The bulk dual, on the other hand, was the right setup
because of the low CFT cutoff. If, on the other hand, there were a theory where the UV
cutoff of the quantum field theory with many degrees of freedom (and many distinguishable
s-wave modes) were much higher, significantly above the stretched horizon cutoff coming
from the interplay with the gravitational sector, and where the theory didn’t produce large
suppressions of radiation rates, black hole decay might be faster. Since the multispecies
stretched horizon is always at ℓSH ∼

√
NℓP l, and the local temperature of the black hole

thermal state on it is T = TBH/
√
g00 ∼ 1/ℓSH, requiring the field theory cutoff to be much

higher, ℓSH µ ≫ 1, implies that the 4D renormalized Planck mass MP l ren ∋
√
Nµ is much

lower than
√
Nµ. It should receive large negative contributions from some sectors of the

theory:
M2

P l ren = Nµ2 −M2 . (27)

In such a theory, the multispecies stretched horizon would satisfy ℓSH ∼
√

N/(Nµ2 −M2),
and so we could have

ℓSH µ ∼
( µ2

µ2 −M2/N

)1/2 ≫ 1 , (28)

provided that the negative contribution M2 is sufficiently large. A relatively simple frame-
work to model such a behavior classically could be a variant of the DGP brane-induced
gravity [38] with AdS bulk and negative brane-localized graviton terms, extending the setup
of [39]. If some bulk modes were less suppressed near the brane, such a setup might give a
way of enhancing black hole decay, that could be studied using the methods of bulk gravity.
On the other hand, if such a framework turned out to be pathological, one could find further
clues for learning how gravity affects UV behavior of field theories. Either way, it would be
interesting to check it, and come up with more such examples.

15With the disappointing, but sobering consequence that the problem of black hole information retrieval
remains as elusive as ever.
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6 Summary

To summarize, the main conclusion of this paper is that knowing a low energy effective field
theory only may not suffice to describe Hawking radiation from a black hole. One may
need the UV completion of a low energy theory to really understand what happens. The
reason is that the IR theory may have states which are composites of some of the UV modes
which a black hole cannot efficiently radiate, because of suppressions based on their internal
structure16. Thus low energy theory may be blind to additional suppressions of black hole
radiation rates generated by processes which operate above the UV cutoff of the low energy
effective field theory, but below the Planck scale.

This implies that black holes in RS2 braneworlds will not radiate the CFT modes at the
same rate as the hard brane modes. The radiation rates of CFT are strongly suppressed,
being at most comparable to the rates of many fewer hard modes for very hot black holes.
The point is that at distances closer than L ∼

√
NℓP l low energy CFT doesn’t even exist.

Instead, since the CFT is strongly coupled, one can use its bulk dual, which can be formulated
using AdS/CFT correspondence, that remains well behaved very close to the black hole.
It shows that most bulk modes are not emitted because of the large gray body factors
induced by the centrifugal, mass and bulk volcano barriers. This actually agrees with the
perturbative calculations of long range forces due to the CFT corrections [31], where all
N CFT modes contribute, but much more weakly than the hard zero mode graviton. The
strong coupling does play a role in the argument, albeit an indirect one, giving a way of
defining the bulk dual. While solving bulk equations does include quantum corrections [13],
the radiative losses are very suppressed and they do not appear at the same level as the
quantum corrections which maintain staticity. This is the correct physical interpretation of
the numerical results obtained in [37], rather than imagining ambiguities in the quantum
state of a strongly coupled CFT in a black hole background. It still remains to understand
just what the corrections found numerically actually are (see [41] for some new progress in
this direction). It would also be interesting to see how robust these conclusions are in other
frameworks, where gravity is not induced.
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