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Asymptotic frame selection for binary black hole spacetimes: Post-Newtonian limit

E. Ochsner∗ and R. O’Shaughnessy†

Center for Gravitation and Cosmology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA

One way to select a preferred frame from gravitational radiation is via the principal axes of〈
L(aLb)

〉
, an average of the action of rotation group generators on the Weyl tensor at asymptotic

infinity. In this paper we evaluate this time-domain average for a quasicircular binary using ap-
proximate (post-Newtonian) waveforms. For nonprecessing unequal-mass binaries, we show the
dominant eigenvector of this tensor lies along the orbital angular momentum. For precessing bina-
ries, this frame is not generally aligned with either the orbital or total angular momentum, working
to leading order in the spins. The difference between these two quantities grows with time, as the
binary approaches the end of the inspiral and both precession and higher harmonics become more
significant.

I. INTRODUCTION

Ground-based gravitational wave detectors like LIGO
and Virgo are currently undergoing upgrades which will
increase their sensitivity by about an order of magnitude.
The upgraded instruments are very likely to detect the
gravitational-wave signature of merging binary compact
objects [1]. In general, all aspects of these signals will be
significantly modulated by each compact object’s spin:
misaligned spins break symmetry in the orbital plane,
generally leading to strong modulations in the inspiral
[2], merger, and ringdown. In the early stages, these
modulations are well-approximated by post-Newtonian
(PN) methods to describe radiation from an adiabatic,
quasicircular inspiral, slowly rotating and modulated as
the orbital plane precesses [2–7]. At late times, numer-
ical relativity simulations of mergers can predict grav-
itational radiation (currently for moderate mass ratios
q <∼ 6 : 1 and spin magnitudes |a| <∼ 0.9). A well-chosen
static or time-evolving frame makes it easier to compare
different numerical relativity simulations to one another
and to analytic waveform models. This can also facilitate
the development of hybrid analytic-numerical waveforms
valid for precessing binaries.

At least two methods to construct a preferred frame
have been proposed: Schmidt et al. [8] propose choos-
ing a frame such that the instantaneous (l,m) = (2, 2)
emission is maximized, while O’Shaughnessy et al. [9]
propose constructing a preferred frame from the action
of the rotation group on asymptotic emission over all ori-
entations. It was later pointed out in [10] that both of
these methods, as described in the original works, only
specify a preferred axis and not a preferred frame, be-
cause of the freedom to rotate about the preferred axis.
Ref. [10] then provided a minimal rotation condition
which could fix the rotational freedom of either method
and fully specify a preferred frame. They go on to point
out similarities in the two methods for finding a preferred
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frame and noted that the method of [8] is, in a sense, a
restriction of the method of [9]. However, they also point
out some differences in the two approaches. For exam-
ple, the O’Shaughnessy et al. method behaves as a ten-
sor under rotations and can be solved analytically, while
the Schmidt et al. method is non-tensorial and must be
solved for numerically.

In this work we derive simple, analytic expressions
from which one can obtain the preferred frame (in the
sense of [9]) for the gravitational strain (h) or Weyl tensor
(ψ4), and their restrictions onto constant-l subspaces, for
a generic, precessing binary. These analytic expressions
can facilitate a better understanding of how the preferred
frames evolve. For example, we find that the spin de-
pendence enters through particular symmetric and anti-
symmetric spin combinations. We also identify terms in
our expression that determine if, for what parameters,
and how strongly the preferred frame will exhibit nuta-
tion.

Another key point of this work is to highlight that
there are differences among the preferred frames obtained
by different methods. We illustrate this by plotting the
O’Shaughnessy et al. preferred directions, the orbital
angular momentum1 L̂, and the normal to the instanta-
neous orbital plane (the “Newtonian” orbital angular mo-

mentum) L̂N , for two different precessing binaries. While
all of these directions are close to one another early in
the inspiral, the differences grow in time and can be-
come significant during the late inspiral. It is not clear
that there is a single, universally best frame. To obtain
the best possible hybrid numerical-analytic waveforms,
model builders may need to carefully consider the which
preferred frame is used and consider multiple possiblities.

1 As noted in [8], the Schmidt et al. preferred direction tracks

rather closely to L̂, which we can use as a surrogate for their
preferred direction.

mailto:evano@gravity.phys.uwm.edu
mailto:oshaughn@gravity.phys.uwm.edu


2

II. PREFERRED ORIENTATIONS AND
QUASICIRCULAR ORBITS

We explore gravitational wave emission from adiabatic,
quasicircular binary inspirals. These orbits can be pa-
rameterized by the two component masses m1,m2; com-
ponent spins S1,S2; orbital separation vector r; and re-
duced orbital velocity v = ∂tr. Following the notation
of [6], we perform our post-Newtonian expansions using
dimensionless mass and spin variables:

η ≡ m1m2

(m1 +m2)
(1)

δ ≡ m1 −m2

m1 +m2
(2)

χ± =
1

2

(
S1/m

2
1 ± S2/m

2
2

)
(3)

S = χ− + δχ+ (4)

=
1

M

(
S1

m1
− S2

m2

)
We note that S is essentially a dimensionless version
of the spin variable ∆ from [3], as they are related
by −M2 S = ∆. To describe the orbit and its orien-
tation, we define the “Newtonian” angular momentum
LN = Mη r × ṙ; the unit separation vector n̂ = r/|r|;
and the unit velocity vector v̂ = v/|v|.

Throughout this paper, we use La to denote the gener-
ator of rotation for spin-weight 2 fields (explicit formulae,
which we will not need, can be found in [11]. The two-
tensor

〈
L(aLb)

〉
is defined as the average over all pos-

sible orientations of a pair of generators acting on the
Weyl scalar, ψ4, which is then symmetrized and normal-
ized. Explicitly, it is defined by the first line of Eq. (5).
Similarly,

{
L(aLb)

}
is defined in the same way, but with

ψ4 → h. Because these tensors can constructed from ro-
tation group generators La, the normalized orientation
averages can be efficiently calculated from spin-weighted
spherical harmonic basis coefficients ψ4lm:

〈
L(aLb)

〉
≡
∫
dΩψ4

∗(t)L(aLb)ψ4(t)∫
dΩ|ψ4|2

(5)

=

∑
lmm′ ψ4

∗
lm′ψ4lm

〈
lm′

∣∣L(aLb)

∣∣ lm〉∫
dΩ|ψ4|2

where in the second line we expand ψ4 =∑
lm ψ4lm(t)Y

(−2)
lm (θ, φ) and perform the angular

integral. In this way, the average tensor
〈
L(aLb)

〉
at

each time t can be calculated algebraically; see the
appendix for explicit formulae. To better understand
this average, we will contrast this expression with a
similar average,

{
L(aLb)

}
, defined by replacing ψ4 → h

in the above expression.
Several general conclusions about the preferred ori-

entations implied by
〈
L(aLb)

〉
follow from the defini-

tion. First and foremost, as gravitational radiation is
quadrupolar and predominantly driven by mass moments

during inspiral, the tensor should be well-approximated
by the corresponding limit implied by instantaneous,
purely quadrupolar emission [9]:〈

L(aLb)

〉
' L̂NaL̂Nb

〈
m2
〉

+

〈
l(l + 1)−m2

〉
2

(n̂an̂b + v̂av̂b) (6)

To the extent that the waveform is dominated by the
leading-order (l, |m|) = (2, 2) modes, this tensor is diago-
nal, with eigenvalues (4, 1, 1). The dominant eigendirec-

tion V̂ of
〈
L(aLb)

〉
is therefore nearly the “Newtonian”

orbital angular momentum. Second, from perturbation
theory, the dominant eigendirection V̂ can be modified
at leading order only through terms of the form LaXb for
some vector X.

A post-Newtonian expansion of
〈
L(aLb)

〉
has addi-

tional convenient structure when
〈
L(aLb)

〉
is restricted

to a constant-l subspace. Specifically, in Eq. (5), we
employ terms in the numerator and denominator from a
single l. Because only terms of constant l enter, such an
average has fixed trace:

Tr
〈
L(aLb)

〉
l

= l(l + 1) (7)

A series expansion of
〈
L(aLb)

〉
l

therefore consists of an

expected zeroth-order term [T (l)], followed by symmetric
tracefree tensors [A(lk)] of increasing order and tightly
constrained symmetry:〈

L(aLb)

〉
l
≡ T (l)

ab +
∑
k=0

A
(lk)
ab vk (8)

T (l)
ab ≡ [l2L̂NaL̂Nb + l/2(n̂an̂b + v̂av̂b)] (9)

We seek to understand what tensors arise in a pertur-
bation expansion and to determine how they impact the
preferred orientation V̂ .

III. ROTATION TENSOR IN THE
POST-NEWTONIAN LIMIT

We employ a post-Newtonian model for the spin-
weighted spherical harmonic modes of either the Weyl
scalar, ψ4, or the strain, h, for a generic precessing bi-
nary to construct the tensor

〈
L(aLb)

〉
or
{
L(aLb)

}
. The

modes hlm are provided in [6] in a specific coordinate
frame, where the z-axis is aligned with J0, the total an-
gular momentum at some initial time. In this frame, the
instantaneous “Newtonian” orbital angular momentum
LN = Mη r × ṙ has the form

LN ≡ ẑ cos(ι) + sin ι(cosαx̂+ sinαŷ) (10)

We find that our expressions for the rotation tensor are
simplest when given in a frame aligned with the Newto-
nian orbital angular momentum in which

n̂ = {cos Φ , sin Φ , 0} (11)

v̂ = {− sin Φ , cos Φ , 0} (12)

L̂N = {0 , 0 , 1} . (13)
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The modes of [6] will be given in this frame simply by
evaluating the general expresions for ι = 0, α = π. We
derive our expressions for

〈
L(aLb)

〉
and

{
L(aLb)

}
in this

frame, but then express them in a frame-independent
matter in terms of the vectors n̂, v̂ and L̂N . Thus,〈
L(aLb)

〉
and

{
L(aLb)

}
can be given in any frame simply

by finding the components of n̂, v̂ and L̂N in that frame.
In the non-precessing case, we find that the PN cor-

rections to
〈
L(aLb)

〉
and

{
L(aLb)

}
(and their restrictions

to constant l subspaces) can always be expressed as lin-
ear combinations of three symmetric, trace-free matri-
ces. These matrices (and their components in the frame

aligned with L̂N ) are:

M
(1)
ab ≡ n̂an̂b + v̂av̂b =

1 0 0
0 1 0
0 0 0

 , (14)

M
(2)
ab ≡ n̂an̂b − v̂av̂b =

cos 2Φ sin 2Φ 0
sin 2Φ − cos 2Φ 0

0 0 0

 , (15)

M
(3)
ab ≡ L̂Na L̂Nb =

0 0 0
0 0 0
0 0 1

 . (16)

These particular combinations of basis vectors of the in-
stantaneous orbital plane serve as “building blocks” .
The tensors

〈
L(aLb)

〉
and

{
L(aLb)

}
can be built as lin-

ear combinations of these matrices (plus combinations of

these matrices with spin vectors and L̂N , see Eqs. 29 and
30). In Sec. IV and Appendix B, we will also see how one
can understand the behavior of the dominant eigendirec-
tion of

〈
L(aLb)

〉
or
{
L(aLb)

}
by decomposing these ten-

sors into a linear combination of these tensors. In par-
ticular, the size of the coefficients in front of each tensor
will tell one how significantly the dominant eigendirec-
tion will deviate from L̂N , and if these deviations will
nutate or vary smoothly.

A. Weyl scalar (ψ4) in the Post-Newtonian
quasistationary limit

To evaluate
〈
L(aLb)

〉
, we convert from the radiated

strain moments hlm provided in [6] to ψlm by taking time
derivatives:

hlm = hlm(Φ(t), v(t), α(t), ι(t),S1(t),S2(t)) (17)

∂thlm =
∂hlm
∂Φ

∂Φ

∂t
+
∂hlm
∂α

∂α

∂t
+
∂hlm
∂ι

∂ι

∂t
(18)

+
∂hlm
∂S1i

Ṡ1,i +
∂hlm
∂S2,i

Ṡ2,i +
∂hlm
∂v

∂v

∂t

ψ4,lm = ∂2
t hlm (19)

and organizing this expression self-consistently in powers
of v.

For non-precessing binaries, all derivatives save Φ̇ and
v̇ are zero. At leading order, Φ̇ = ωorb = v3/M and
v̇ = (32η/5M)v9, with corrections to each of these
known to 3.5PN relative order. Also note that the spin-
independent terms in hlm are known to v6 (3PN) [12, 13]
beyond leading order and the spin-dependent terms to v4

order (2 PN) [6]. Because v̇ is order v6 higher than Φ̇, v̇
can be neglected so long as one is interested in expressions
for ψlm and

〈
L(aLb)

〉
accurate to less than 3PN order. In

particular, we need to consider v̇ only for 3PN-accurate
ψlm for non-spinning binaries.

For precessing binaries, the hlm are known only to
1.5PN order [6], so this is the highest order to which we
can obtain ψlm and

〈
L(aLb)

〉
. Spin effects enter hlm at

1PN and 1.5PN order and Φ̇ at 1.5PN order. We must
also account for the derivatives of hlm with respect to
the spins, because Ṡi ∝ v5 which is 1PN order relative to

Φ̇ [13, 14]. Lastly, we note that
˙̂
LN = ΩLN

× L̂N ∝ v6

(see Eq. (43) below) is 1.5PN order relative to Φ̇. There-
fore, we must also account for derivatives of hlm with
respect to L̂N (or equivalently ι and α, as these angles

describe the orientation of L̂N ). We find that the contri-

butions to
〈
L(aLb)

〉
and

〈
L(aLb)

〉
2

arising from
˙̂
LN can

be written compactly as L̂N(aΥb), where

~Υ =
M

v6
L̂N × ∂tL̂N (20)

=
M

v6

(
ΩLN

− (ΩLN
· L̂N )L̂N

)
.

Note that we have defined Υ to be dimensionless by can-
celing out the v6/M dependence of ΩLN

. This is so that
the relative 1.5PN order of the contribution of this term
to
〈
L(aLb)

〉
is made more apparent in Eqs. (31) and (33).

As we will see in Sec. IV A, this term causes the the pre-
ferred frame defined by ψ4 to move on a narrower cone
than the frame defined by h.

B. Rotation tensor for non-precessing binaries

For a non-precessing binary, the tensors
〈
L(aLb)

〉
and{

L(aLb)

}
have the following frame-independent expres-

sions:
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〈
L(aLb)

〉
= T (2) +

δv3

16
(S · L̂N )

[
M

(3)
ab −

1

2
M

(2)
ab −

1

2
M

(1)
ab

]
+
v2δ2

2688

[
40950M

(3)
ab + 129

1

2
M

(2)
ab + 4129

1

2
M

(1)
ab

]
(21)

{
L(aLb)

}
= T (2) + δv3(S · L̂N )

[
M

(3)
ab −

1

2
M

(2)
ab −

1

2
M

(1)
ab

]
+
v2δ2

168

[
450M

(3)
ab + 39

1

2
M

(2)
ab + 79

1

2
M

(1)
ab

]
(22)

Because gravitational wave emission is predominantly
quadrupolar, these tensors are T (2) at leading order, with
PN corrections starting at 1PN order.

We can also consider these tensors restricted to sub-
sets of modes with constant l, consistently in both the

numerator and denominator of the average. To 1.5PN
order, when we restrict these tensors to the l = 2, 3, 4
subspaces we find

〈
L(aLb)

〉
2

= T (2) +
v2δ2 − 3v3δ(S · L̂N ))

96

(
M

(1)
ab +M

(2)
ab − 2M

(3)
ab

)
(23)

{
L(aLb)

}
2

= T (2) +
v2δ2 − 3v3δ(S · L̂N )

6

(
M

(1)
ab +M

(2)
ab − 2M

(3)
ab

)
(24)〈

L(aLb)

〉
3

= T (3)
ab +

(
303

24 604
+

15 (324 043− 1 944 258η + 2 585 880η2)

302 678 408(1− 4η)
v2

)
M

(2)
ab

+

(
1

24 604
+

15 (1 314 379− 7 886 274η + 11 827 224η2)

302 678 408(1− 4η)
v2

)
(M

(1)
ab − 2M

(3)
ab )

+
v3(χ+ · L̂N )η(1− 3η)

(1− 4η)

19 682 880

37 834 801
(M

(1)
ab − 2M

(3)
ab −

1

203
M

(2)
ab ) (25){

L(aLb)

}
3

= T (3)
ab +

1

304
[M

(1)
ab − 2M

(3)
ab − 33M

(2)
ab ] + v2 15

46 208(1− 4η)

×
[(

(1039− 6234η + 9324η2)
)

(M
(1)
ab − 2M

(3)
ab ) +

(
391− 2346η + 3084η2)M

(2)
ab

)]
+
v3(χ+ · L̂N )η(1− 3η)

(1− 4η)

165

1444
[23(M

(1)
ab − 2M

(3)
ab )−M (2)

ab )] (26)

〈
L(aLb)

〉
4

= T (4)
ab +

(
6

7169
+

23 330 181 573(1− 2η)2δ2

164 462 595 200(1− 3η)2
v2

)
(M

(1)
ab − 2M

(3)
ab )

+

(
448

7169
− 66 851 487(1− 2η)2δ2

32 892 519 040(1− 3η)2
v2

)
M

(2)
ab (27)

{
L(aLb)

}
4

= T (4)
ab +

(
6

449
+

17 982 243(1− 2η)2δ2

40 320 200(1− 3η)2
v2

)
(M

(1)
ab − 2M

(3)
ab )

+

(
112

449
− 141 669(1− 2η)2δ2

8 064 040(1− 3η)2
v2

)
M

(2)
ab . (28)

Note that in all cases these tensors are block diagonal,
with a block corresponding to the orbital plane spanned
by n̂ and v̂ and a block for L̂N . In particular, there are
no off-diagonal terms to couple the contributions along
L̂N to those in the orbital plane. This means that the
dominant eigenvector will remain along L̂N at all times
with an eigenvalue ∼ l2 and there will be two eigenvec-

tors in the orbital plane with eigenvalues l/2. While the
eigenvectors will be constant, the PN corrections will in-
troduce small, time-dependent variations in the eigenval-
ues. In fact, for nonprecessing binaries this direction is
tightly enforced by symmetry and cannot be modified,
for example, by omitted nonlinear memory terms; see
Appendix A for details.
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The tensors extracted from constant-l subspaces can
behave pathologically when multipoles of that order are
strongly suppressed by symmetry. In particular, the
(3, 3) and (3, 1) modes vanish in the equal mass case
where δ = 0. As a result, the expressions for

〈
L(aLb)

〉
3

and
{
L(aLb)

}
3

will diverge in the limit δ → 0 because

they contain a factor (1− 4η) = δ2 in the denominator.

C. Rotation tensor for precessing binaries

In the precessing case, when the spins are not aligned
with the orbital angular momentum, the rotation tensors
are no longer block-diagonal. These off-diagonal terms
depend on the transverse components of spin and mix
contributions in the orbital plane with those along L̂N .
As a result, the eigendirections will vary in time as the

binary precesses and they will not lie along L̂N and in
orbital plane.

As in the non-precessing case, we derive the expressions
for
〈
L(aLb)

〉
and

{
L(aLb)

}
in a frame aligned with the in-

stantaneous L̂N but express them in a frame-independent
way so that they can be used in any frame. As in the
non-precessing case, all of the tensors can be expressed
as linear combinations of a small collection of matrices.
The new matrices needed for the precessing case (and
their components in the frame aligned with the instanta-
neous L̂N ) are:

M (1)
ac ScL̂Nb =

 0 0 Sx
2

0 0
Sy
2

Sx
2
Sy
2 0

 , (29)

M (2)
ac ScL̂Nb =

 0 0 Sx
2 cos 2Φ +

Sy
2 sin 2Φ

0 0 Sx
2 sin 2Φ− Sy2 cos 2Φ

Sx
2 cos 2Φ +

Sy
2 sin 2Φ Sx

2 sin 2Φ− Sy2 cos 2Φ 0

 (30)

and also M
(1)
ac χ+cL̂Nb and M

(2)
ac χ+cL̂Nb, which are the

equivalent to the expressions above, but with the com-
ponents of χ+ replacing those of S.

The
〈
L(aLb)

〉
and

{
L(aLb)

}
tensors and their constant

l restrictions for precessing binaries are given by

〈
L(aLb)

〉prec
=
〈
L(aLb)

〉NP
+ v3

[
M (1)

ac

(
581

96
δ S + 29η χ+

)
c

L̂Nb) +
δ

96
M

(2)
(acScL̂Nb)

]
+ 6 v3 L̂N(aΥb) (31){

L(aLb)

}prec
=
{
L(aLb)

}NP
+ v3

[
M (1)

ac

(
41

6
δ S + 29η χ+

)
c

L̂Nb) −M
(2)
(ac

(
35

6
δ Sc + 21η χ+c

)
L̂Nb)

]
(32)

〈
L(aLb)

〉prec

2
=
〈
L(aLb)

〉NP

2
+ v3

[
M (1)

ac

(
581

96
δ S + 29η χ+

)
c

L̂Nb) +
δ

96
M

(2)
(acScL̂Nb)

]
+ 6 v3 L̂N(aΥb) (33){

L(aLb)

}prec

2
=
{
L(aLb)

}NP

2
+ v3

[
M (1)

ac

(
41

6
δ S + 29η χ+

)
c

L̂Nb) −M
(2)
(ac

(
35

6
δ Sc + 21η χ+c

)
L̂Nb)

]
(34)

〈
L(aLb)

〉prec

3
=
〈
L(aLb)

〉NP

3
− v3 7680(1− 3η)

6151(1− 4η)
M

(1)
(acχ+cL̂Nb) (35)

{
L(aLb)

}prec

3
=
{
L(aLb)

}NP

3
− v3 120(1− 3η)

19(1− 4η)
M

(1)
(acχ+cL̂Nb) (36)〈

L(aLb)

〉prec

4
=
〈
L(aLb)

〉NP

4
(37)〈

L(aLb)

〉prec

4
=
〈
L(aLb)

〉NP

4
(38)

At high multipole order, the accuracy of these ex- pressions is inevitably limited by the accuracy of post-
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Newtonian expansions, which contain terms explicitly
coupling to spins only to modes l ≤ 3 [6, 14]. Hence,
the l = 4 subspace does not have any off-diagonal terms
through 1.5PN order, though it will presumably acquire
such terms at a higher PN order.

By examining Eq. (4.17) of [6], we can understand the
origin of these off-diagonal terms with transverse spins.
It may be surprising that they do not appear until 1.5PN
order, since h22 has such terms already at 1PN order.
However, as explained in Appendix A, these transverse
terms are the result of coupling modes with m values
that differ by 1. As a result, the 1PN transverse spin
terms in h22 must couple with the leading 0.5PN order
term in h21, so that the off block-diagonal contribution
to
{
L(aLb)

}
is 1.5PN order. These terms in h22 and h21

are both proportional to the first harmonic of the orbital
phase, so this orbital scale dependence cancels out and
creates a contribution to

{
L(aLb)

}
of the form of Eq. (29)

(i.e. M
(1)
ac ScL̂Nb for some combination of spins S). There

are also 1.5PN order transverse spin terms in h21 propor-
tional to the second and zeroth harmonic that couple to
the leading order term in h22. These create contribu-

tions to
{
L(aLb)

}
of the form of Eqs. (29) (M

(1)
ac ScL̂Nb )

and (30) (M
(2)
ac ScL̂Nb), respectively.

In a similar manner, h33 and h31 have transverse spin
terms proportional to the second harmonic which couple
to the leading term in h32 and create off-diagonal terms in{
L(aLb)

}
of the form of Eq. (29). These terms are 2.5PN

order, and so they do not appear in Eq. (32). However,
because the leading l = 3 terms are 0.5PN order, and
in computing

{
L(aLb)

}
3

we restrict both the numerator
and the denominator to l = 3, these terms are 1.5PN
relative to the leading order of

{
L(aLb)

}
3

and therefore

appear at that order in Eq. (36). The l = 4 modes do
not have transverse spin terms through 1.5PN order, and
so we do not see any off-diagonal terms in

{
L(aLb)

}
4
.

D. Broken symmetry from precession

For a precessing binary at 1.5PN order,
〈
L(aLb)

〉
no

longer has the Newtonian, orbital, or even total angu-
lar momentum as an eigenvector. The orbital and total
angular momenta are given by the spin-dependent ex-

pressions [3, 15, 16]:

J = L + S1 + S2 (39a)

LN = Mηr× v (39b)

LPN ' LN
7− η

2
v2 (39c)

(LSO)a = M2ηv2εabcεbpq (39d)

× [nbnp(δχ−q + (1− η)χ+q)− vbvpηχ+q]

L = LN + LPN + LSO (39e)

= M2ηv−1L̂N

(
1 +

(
3

2
+
η

6

)
v2

+

(
2δS − 10

3
((1− 2η)χs + δχa)

)
· L̂Nv

3

)
+ M2ηv2 [n̂× (n̂× (3 ((1− 2η)χs + δχa)− δS))

+ v̂ ×
(
v̂ ×

(
−1

2
((1− 2η)χs + δχa) +

δ

2
S
))]

where we have explicitly expanded L to 1.5PN order.
Because the Newtonian angular momentum at leading
order is ∝ v−1, the term LSO in this expansion is v3

beyond leading order.
At and below 1PN order L̂ = L̂N . The 1.5PN or-

der spin-orbit contribution to the orbital angular mo-
mentum, LSO breaks this alignment and introduces a
component in the instantaneous orbital plane that oscil-
lates at twice the orbital frequency. Likewise, the spin-
dependent terms at order v3 in

〈
L(aLb)

〉
and

{
L(aLb)

}
are not block diagonal and time dependent. As we will
show by concrete example in Section IV, these two time-
dependent expressions do not conspire to evolve together:
L is not an eigenvector of either

〈
L(aLb)

〉
,
{
L(aLb)

}
, or

most (but not all) of the tensors produced from constant-l
subspaces. To demonstrate this explicitly, one can labo-
riously evaluate the expressions

Xl
p ≡ εpaq

〈
L(aLb)

〉
l
LbLq (40)

Yl
p ≡ εpaq

〈
L(aLb)

〉
l
JbJq (41)

Zl
p ≡ εpaq

〈
L(aLb)

〉
l
Lb
NL

q
N (42)

An eigenvector Xa of the three-dimensional matrix Aab

necessarily has εabcX
bAcdX

d = λεabcX
bXc = 0. For〈

L(aLb)

〉
and

{
L(aLb)

}
, we find each of these vectors are

nonzero at1.5PN order, once the off-diagonal precession
terms enter.

E. Memory terms

In the calculations above, we use the “ready to use”
waveforms provided by Arun et al. [6]. These expressions
do not include nonlinear memory terms, which enter at
leading PN order and beyond. In terms of the modes
used in this paper, these terms would produce a strain
multipole h20 comparable in magnitude to h22 for non-
precessing binaries [17, 18].
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No complete expression exists in the literature for non-
linear memory for generic spinning systems. Memory
terms depend on the integrated past history of the bi-
nary; they therefore can differ in magnitude, angular de-
pendence, and functional form versus time depending on
how the spins have evolved in the past. That said, we
anticipate our estimate of this particular preferred ori-
entation (i.e., the dominant eigenvector of

〈
L(aLb)

〉
) will

not change significantly when memory is included. For
example, because memory terms cannot modify the re-
flection symmetry for nonprecessing binaries, they like-
wise cannot change the preferred orientation away from
the normal to the orbital plane.

IV. NUMERICAL EVALUATION AND
DISCUSSION OF RESULTS

Our calculations above have demonstrated that V̂
and V̂h, the principal eigendirections of

〈
L(aLb)

〉
and{

L(aLb)

}
, differ from L̂, Ĵ , and and L̂N , with a differ-

ence that grows with time. To illustrate this difference,
we have simulated the evolution of two precessing, inspi-
ralling binaries: a 10 + 1.4M� BH-NS binary where the
black hole has a maximal spin tilted 30◦ relative to the
Newtonian orbital angular momentum at its initial fre-
quency of 40 Hz and a 60 + 30M� BH-BH binary where
both black hole spins are maximal and in the orbital
plane with a 90◦ angle between the two spins at an initial
frequency of 10 Hz. Figs. 1 and 2 plot the trajectories of
L̂N , L̂, Ĵ , V̂ and V̂h for these two binaries.

The equations of motion were numerically integrated
using the lalsimulation2 implementation of the adi-
abatic, spinning Taylor T4 approximation described in
[20]. Specifically, this code evolves the binary phase and
frequency, spin and Newtonian orbital angular momen-

2 The lalsimulation package encapsulates and standardizes sev-
eral waveform generation codes; see the LIGO Algorithms Li-
brary [19] for more details.

tum vectors according to [see, e.g., [2, 20, 21]]:

∂tΦ =
v3

M
(43a)

∂tv = − F
MdE/dv

(43b)

∂tL̂N = ~ΩLN
× L̂N (43c)

∂t~S1 = ~ΩS1
× ~S1 (43d)

∂t~S2 = ~ΩS2 × ~S2 (43e)

~ΩLN
=
v6

M

[
(2 +

3m2

2m1
)
~S1

M2
+ (2 +

3m1

2m2
)
~S2

M2

− 3v

2M2η
[(~S2 · L̂N )~S1 + (~S1 · L̂N )~S2]

]
(43f)

~ΩS1
=
v5

M

[
η(2 +

3m2

2m1
)L̂N + v

~S2 − 3L̂N (~S2 · L̂N )

2M2

]
(43g)

~ΩS2 =
v5

M

[
η(2 +

3m1

2m2
)L̂N + v

~S1 − 3L̂N (~S1 · L̂N )

2M2

]
(43h)

where E and F are the PN-expanded binary energy
and gravitational-wave flux (with spin contributions in-
cluded), respectively. F/(MdE/dv) is then re-expanded
as a polynomial in v, as described in [22]. At each time,
we obtain values for

〈
L(aLb)

〉
and

{
L(aLb)

}
by taking the

dynamical variables computed via Eqs. (43) and plugging
these into Eqs. (31)-(38). We then compute the principal
eigenvectors and eigenvalues of

〈
L(aLb)

〉
and

{
L(aLb)

}
(and their constant-l subspaces), which are used to cre-
ate the plots in this section.

A. Orientations

The trajectories shown in Figures 1 and 2 demonstrate
that, for these two prototype binaries, the four direc-
tions L̂, L̂N , V̂ and V̂h generally do not coincide. Though
these four orientations have very roughly the same fea-
tures – all precess – all four exhibit distinctly different
trends. For example, the Newtonian angular momentum
L̂N (black) precesses smoothly for our analytic model.

The orbital angular momentum L̂ oscillates (nutates)

around L̂N . The preferred orientation V̂ extracted from
the Weyl scalar (blue) also precesses smoothly in our co-

ordinates, tracking with but offset somewhat from L̂N .
Finally, the preferred orientation V̂h extracted from the
strain (red) oscillates between V̂ and L̂N .

As expected from their functional form – a power series
in v – the differences between these four quantities grow
more pronounced as v grows, closer to the merger event.
As a consequence, in the fixed sensitive band of ground-
based detectors, higher-mass sources exhibit more pro-
nounced differences between these four orientations. We
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FIG. 1: Comparing trajectories 1: BH-NS binary:
These panels show the trajectories of L̂N (black), L̂ (green),

Ĵ (cyan), V̂ the principal eigendirection of
〈
L(aLb)

〉
(blue)

and V̂h the principal eigendirection of
{
L(aLb)

}
(red) for a

10 + 1.4M� BH-NS binary where the black hole has maxi-
mal spin tilted 30◦ relative to the Newtonian orbital angular
momentum at an initial frequency of 40 Hz. The frame is
chosen so that the z-axis coincides with the initial value of
Ĵ . The top panel shows the first precessional cycle, which
spans a frequency range of roughly 40 − 47 Hz. The bot-
tom panel shows a very late precessional cycle shortly before
merger would occur, covering a frequency band of 200 − 600
Hz.

cannot reliably extrapolate to the late stages of merger.
However, as suggested by previous studies [23], we expect
substantial differences can accumulate between these ori-
entations.

Among these four orientations, only ~LN and V̂ evolve
smoothly, without exhibiting strong oscillations on the
orbital period. By contrast, the direction V̂h extracted
from the strain oscillates significantly on the orbital pe-
riod. The differing behavior of V̂h and V̂ can be under-
stood entirely from the magnitudes of the terms of the
form of Eq. (29) and Eq. (30) which appear in Eqs. (31)
and (32). Note that the former depend only on the spin
components, and so create smooth perturbations to the
eigenvectors which vary on the precessional time scale.
The latter vary as twice the orbital phase, and so create

FIG. 2: Comparing trajectories 2: BH-BH binary: This
plot is the same as Fig. 1, but for a 60+30M� BH-BH binary
with both spins maximal, perpendicular to the Newtonian
orbital angular momentum and perpendicular to each other
at an initial frequency of 10 Hz. This plot shows the entire
inspiral of the binary, reaching a GW frequency of about 85
Hz at the end.

perturbations that oscillate much more rapidly.

So, by comparing Eqs. (31) and (32) we see that the

coefficients of M
(1)
ab in

〈
L(aLb)

〉
and

{
L(aLb)

}
have very

similar magnitudes, and so offset V̂ and V̂h from L̂N by
similar amounts. However, the coefficient multiplying

M
(2)
ab in

〈
L(aLb)

〉
is always much smaller than the co-

efficient multiplying M
(1)
ab . Therefore, these oscillations

are strongly suppressed and are not apparent in Figures
1 and 2. On the other hand, the coefficient multiply-

ing M
(2)
ab in

{
L(aLb)

}
is nearly as large as the coefficient

multiplying M
(1)
ab . Therefore, the orbital-scale oscilla-

tions are much more significant and creates the distinct
“crown” shape in the trajectory of V̂h in Figures 1 and
2.

Another difference between V̂h and V̂ is the presence
of the L̂N(aΥb) term in Eq. (31) that arises from the time

derivatives of L̂N , where Υ is given by Eq. (21). One can
see that Υ will always point back towards the center of
the precessional cone (Ĵ), so that this term always tends

to shrink the precessional cone of V̂ relative to V̂h. In
particular, in Figs. 1 and 2 we see that the trajectory of V̂
lies just above the oscillations of the trajectory of V̂h and
we have checked that if the L̂N(aΥb) term were removed

V̂ would pass through the center of the oscillations of V̂h.

Let us consider V̂ and V̂h in the equal mass limit
(δ → 0, η → 1/4). From Eqs. (31) and (32) it is clear
the off-diagonal terms will vanish if and only if χ+ = 0,
which means the spins must be equal and opposite. But
in this case the total spin vanishes and the binary does
not precess. On the other hand, in the extreme mass
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FIG. 3: Comparing eigenvalues: The fractional deviation (λ/λ̄−1) in the dominant eigenvalues (where λ̄ is the unperturbed
eigenvalue and λ is the actual eigenvalue) of

〈
L(aLb)

〉
l

(top panels) and
{
L(aLb)

}
l

(bottom panels), for the BH-NS binary orbit
described in Figure 1. The blue curve indicates l = 2; the red dashed curve shows l = 3. For reference, a black solid line is shown
at 0. Left panels: Eigenvalues of

〈
L(aLb)

〉
(top) and

{
L(aLb)

}
(bottom) for the full evolution shown. Right panels: As above,

but limited to a short interval immediately preceding the last simulated post-Newtonian orbit, where the minimum-energy
condition breaks down.

ratio limit (δ → 1, η → 0) the off-diagonal terms will
vanish if and only if S = 0. But this can only happen if
S1/m1 = S2/m2 which would mean that the dimension-
less spin of the larger body must be extremely tiny and
the system will again not precess significantly. In inter-
mediate cases, the off-diagonal terms would vanish only if
the contributions from the χ+ symmetric spin terms and
the S antisymmetric spin terms were carefully tuned to
cancel out. However, one cannot simultaneously cancel

the terms multiplying both M
(1)
ab and M

(2)
ab in Eqs. (31)

and (32). Therefore, we can conclude that for any pre-

cessing binary the dominant eigendirections V̂ and V̂h
cannot coincide with L̂N .

To this point we have described the preferred orienta-
tions V̂ and V̂h associated with

〈
L(aLb)

〉
and

{
L(aLb)

}
,

summing over the contribution from all subspaces. We
can also define the two preferred orientations associated
with the constant-l subspaces of

〈
L(aLb)

〉
and

{
L(aLb)

}
.

One would expect (and Figure 4 confirms) that, because
leading-order quadrupole emission dominates the gravi-
tational wave signal, V̂2 (V̂h2) would be extremely close

to V̂ (V̂h). By contrast, Figure 4 also demonstrates

that V̂h3 ' L̂N . To the PN order considered here,

V̂4 = V̂h4 = L̂N , since
〈
L(aLb)

〉
4

and
{
L(aLb)

}
4

do not
have off-diagonal terms.

B. Eigenvalues

Generally, the eigenvalues of
〈
L(aLb)

〉
are powerful di-

agnostics for gravitational wave signals with multiple har-
monics, particularly in the presence of precession. For
example, to an excellent approximation, the eigenvalues
of any constant-l subspace orientation tensor

〈
L(aLb)

〉
l

are l2/2 and l/2. As noted in [9], the dominant eigen-
value of

〈
L(aLb)

〉
, summing over many constant-l sub-

spaces, scales as
〈
m2
〉

and therefore reflects the relative
impact of higher-order harmonics to the signal. In other
words, a larger dominant eigenvalue corresponds to a
more strongly beamed signal in the time domain, with
more higher-order modes contributing constructively.

To demonstrate the value of these eigenvalues as a di-
agnostic, in Figure 3 we show the relative difference in
the eigenvalues of

〈
L(aLb)

〉
and

{
L(aLb)

}
from the naive

leading-order predictions described above. The PN cor-
rections create rather small perturbations to the eigen-
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FIG. 4: Orientations of subspace eigenvectors: Top
panel : A plot of 1− V̂2 · V̂ (solid blue) and 1− V̂h2 · V̂h (dashed
red) versus time for the BH-BH binary orbit described in Fig-

ure 2. Bottom panel : A plot of 1 − V̂3 · L̂N (solid blue) and

1 − V̂h3 · L̂N (dashed red) versus time for the same BH-BH
binary. The eigenvectors from the l = 2 (l = 3) subspaces
are rather close to the eigenvector of the full rotation tensor
(L̂N ).

values. The PN corrections within the diagonal blocks
corresponding to the orbital plane and the Newtonian
orbital angular momentum, such as those in Eqs. (21) -
(28), can either raise or lower the eigenvalue depending
on their sign. The off-diagonal PN corrections will always
increase the dominant eigenvalue, regardless of their sign.
See Appendix B for details.

The PN corrections of course become largest at late
times, when v increases rapidly, and this is why devia-
tions in the eigenvalues grow rapidly at the end. For the
l = 3 subspace, the PN correction in the L̂N block [i.e.
multiplying M (3) in Eqs. (25) and (26)] is always neg-
ative and hence the dominant eigenvalue is always less
than its leading-order value. For the l = 2 mode, note
that the 1PN and 1.5PN corrections have the opposite
sign. At early times, the 1PN term dominates and tends
to decrease the dominant eigenvalue. Depending on the
values of δ and S, the 1.5PN correction can actually be-
come larger than the 1PN correction and change the sign
of the perturbation to the dominant eigenvalue (as hap-

pens in our BH-NS binary).

As with the trajectory V̂ , the eigenvalue of
〈
L(aLb)

〉
2

and
〈
L(aLb)

〉
3

changes smoothly on the precession and

inspiral timescales. By contrast, like the trajectory V̂h,
the eigenvalues of

{
L(aLb)

}
2

oscillate rapidly on the or-

bital timescale; see the bottom two panels. [At the post-
Newtonian orders available at present, the orientations
and eigenvalues of

{
L(aLb)

}
3

do not oscillate signifi-

cantly.]

V. NUMERICAL EVALUATION AND
SUBTLETIES OF SELF-CONSISTENT

POST-NEWTONIAN EXPANSIONS

The post-Newtonian series converges slowly in powers
of v, itself only between 0.1− 0.5 for our examples. The
details of how PN expressions are truncated or resummed
can quantitatively (though not qualitatively) change the
conclusions described above. Our concern is not aca-
demic: there exist several straightforward alternatives
to this calculation which will cause

〈
L(aLb)

〉
,
{
L(aLb)

}
and the precession equations to effectively differ by un-
known, higher PN order error terms. In this section,
we describe how these subtle issues associated with the
post-Newtonian series can impact our results.

A. Numerical evaluation of preferred orientation
from mode coefficients

To compute
〈
L(aLb)

〉
and

{
L(aLb)

}
, we consistently

expand both the numerator and denominator in a post-
Newtonian series. Such a rational function form would
be a completely reasonable choice to represent the rota-
tion tensors. Instead, for simplicity in the expressions
and their interpretation, we have chosen to re-expand
the rational function as a polynomial via a Taylor series.
The two agree to 1.5PN order, but differ by some un-
known term at 2PN order. This is exactly analogous to
the difference in TaylorT1 and TaylorT4 waveforms de-
scribed in [22], with the rational form corresponding to
TaylorT1 and our polynomial expressions corresponding
to TaylorT4.

Furthermore, a straightforward numerical implemen-
tation to generate

{
L(aLb)

}
will also differ slightly from

the rational and polynomial expressions described above.
This method would employ Arun et al. [6] to compute
hlm, then apply the formulae in Appendix A to com-
pute

{
L(aLb)

}
directly. However, as

{
L(aLb)

}
involves

ratios of products ∝ h2, this direct calculation implicitly
includes many higher-order post-Newtonian terms. For
example, in these products a v3 correction to one hlm
could multiply a v3 correction to another hlm′ to give a
contribution to

〈
L(aLb)

〉
∝ v6 (3PN). This is only a par-

tial PN correction, of course, because if the hlm’s were
complete to 3PN there would be many more terms at v6.
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Because of these subtleties, the values of
〈
L(aLb)

〉
and

{
L(aLb)

}
computed via polynomial, rational func-

tion and direct numerical computation will differ from
one another. While all of the plots in this paper were
computed using the polynomial expressions of Eqs. (31)-
(38), we have checked that the rational and direct numer-
ical computations are quite similar. There are quantita-
tive differences, but not qualitative ones. The differences
among V̂ , V̂h, L̂ and L̂N are quite similar, the trajec-
tory of V̂h still has its distinctive “crown” shape, and our
conclusions are not changed.

B. Orbit-averaging the precession of LN and L

Note that to create the plots in Figures 1 and 2 we have
used an orbit-averaged formula to describe the precession
of L̂N , Eq. (43c). As a result, L̂N moves on a smooth

precession cone and L̂ nutates on an orbital timescale
because of its LSO term. This is in sharp contrast with
Fig. 6 of [8], who find that L̂ varies smoothly, while

L̂N nutates on an orbital timescale. This is because the
authors of [8] used a Hamiltonian formalism which does
not use such orbit averaging.

We emphasize that our expressions for
〈
L(aLb)

〉
and{

L(aLb)

}
in Sec. III do not make any sort of orbit-

averaged approximation. Indeed, the use of a PN expan-
sion for hlm and ψ4lm is the only approximation involved
in deriving these expressions. The orbit-averaging ap-
proximation is applied when integrating the equations of
motion to generate time series for L̂N and the spin vec-
tors to plug into the expressions. Thus, the details of the
plots in Sec. IV may vary depending on if or how orbit
averaging is applied.

Therefore, when constructing PN waveforms or per-
forming further studies to find preferred directions for
precessing binaries, one should carefully consider how the
precession equations handle this orbit averaging. Several
authors have investigated more accurate formulations of
the precession equations which do not assume orbit av-
eraging [3, 21, 24–26]. Given the stringent accuracy re-
quirements needed for parameter estimation, comparison
with numerical simulations and other applications, we ex-
pect that the difference between non-orbit-averaged and
orbit-averaged precession equations could be significant.
Therefore, we recommend future studies incorporate ana-
lytic waveforms with non-orbit-averaged precession equa-
tions to be as accurate as possible.

VI. CONCLUSIONS

Gravitational wave emission from precessing compact
binaries is expected to appear simpler in a suitably-
chosen frame. To leading post-Newtonian order, this
frame should be aligned with the orbital angular mo-
mentum at large separations. Late in the inspiral, many

plausible reference frames exist. In this paper, we have
demonstrated that two choices for that frame (defined by
the prinicipal eigendirection of

〈
L(aLb)

〉
or
{
L(aLb)

}
) do

not agree with each other or with other preferred frames
such as the frame proposed in [8] or the orbital angular
momentum, with differences that become more signifi-
cant later in the inspiral.

The suitability of any of these preferred reference
frames is best judged by whether it facilitates useful in-
sights and calculations. In this paper we demonstrate
the tensors

〈
L(aLb)

〉
and

{
L(aLb)

}
provide a particu-

larly tractable way to extract preferred orientations from
asymptotic radiation. Our approach allows different pre-
ferred orientations to exist at each multipolar order. Pre-
vious papers have demonstrated this method useful in
analyzing numerical relativity simulations [9, 23] Finally,
in the text and appendix we provide methods to evaluate
this average using standard tables of hlm modes.

Our investigations suggest the proposed frames will dif-
fer from one another for any precessing binary, regard-
less of its mass ratio or spin orientation. Furthermore,
we note that in the PN regime the behavior of these pre-
ferred directions can be noticeably affected by the details
of how the PN series is truncated or resummed and also
by the manner in which orbit averaging of the precession
equations is performed. This suggests that precessing PN
models could benefit greatly from using more general pre-
cession equations which do not assume orbit averaging.
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Appendix A: Evaluating the average

For reference, we provide explicit formula that relate
the mode amplitudes ψlm of the Weyl scalar to the
orientation-averaged expression

〈
L(aLb)

〉
. We first cal-

culate two real and two complex quantities:

I2 ≡
1

2
(ψ,L+L+ψ)

=
1

2

∑
lm

clmcl,m+1ψ
∗
l,m+2ψlm (A1)

I1 ≡ (ψ,L+(Lz + 1/2)ψ)

=
∑
lm

clm(m+ 1/2)ψ∗l,m+1ψlm (A2)

I0 ≡
1

2

(
ψ|L2 − L2

z|ψ
)

=
1

2

∑
lm

[l(l + 1)−m2]|ψlm|2 (A3)

Izz ≡ (ψ,LzLzψ) =
∑
lm

m2|ψlm|2 (A4)
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where clm =
√
l(l + 1)−m(m+ 1). In terms of these

expressions, the orientation-averaged tensor is

〈
L(aLb)

〉
=

I0 + Re(I2) ImI2 ReI1
I0 − Re(I2) ImI1

Izz

(A5)

In a frame aligned with L, the orbital angular momen-
tum (∝ ẑ) will be the principal axis of

〈
L(aLb)

〉
if and

only if I1 = 0. The prefactor Clm ≡ clm(m + 1/2) in
the definition of I1 is antisymmetric about m = −1/2 –
that is, under a transformation m → −(m + 1). There-
fore, one way to make I1 = 0 and thus L a prin-
cipal axis of

〈
L(aLb)

〉
occurs if ψ∗lm+1ψlm is symmet-

ric about m = −1/2. For nonprecessing binaries the
strain modes satisfy h∗lm = hl,−m (reflection symmetry
through the xy plane) and evolve in phase with the or-
bit (hlm = eimΨAl,|m| for some real Alm). Therefore, for
each constant-l subspace, term-by-term cancellation oc-
curs in I1, independent of the details of Alm As a concrete

example, we expand out I1 for l = 2 as

I1 = eiΨ[A20A21(C2−1 + C20) +A21A22(C2−2 + C2,1)]

= 0 (A6)

Appendix B: Perturbations of the eigensystems

First, let us consider a non-precessing binary and study〈
L(aLb)

〉
l

in a frame aligned with LN . From Eq. (9), we
see that to leading-order

〈
L(aLb)

〉
l
' T (l) =

l/2 0 0
0 l/2 0
0 0 l2

 , (B1)

and of course the eigenvalues are l2, l/2 and l/2. The
PN corrections are small perturbations to the tensor, so
when we add them in it takes the form

〈
L(aLb)

〉
l

= T (l) + ε1M
(1) + ε2M

(2) + ε3M
(3) =

l/2 + ε1 + ε2 cos 2Φ ε2 sin 2Φ 0
ε2 sin 2Φ l/2 + ε1 − ε2 cos 2Φ 0

0 0 l2 + ε3

 . (B2)

In this case, the eigenvalues become l2 + ε3 and l/2 +
ε1± ε2. So, PN corrections to the diagonal blocks (corre-
sponding to either the orbital plane or the Newtonian or-
bital angular momentum) will linearly perturb the eigen-
values within that block. They do not change the dom-
inant eigenvector. While they do weakly break degener-
acy in the orbital plane, setting two distinct eigenvectors
rotating in the orbital plane, they do so weakly; the space
spanned by these two vectors is still the subspace of the
unperturbed system.

Now let us consider the perturbations from the off-
diagonal terms that are present in precessing binaries.
For simplicity, we will consider the l = 2 case, although
the same argument can be applied to any value of l and
it is straightforward to derive more general expressions.
In this case, in a frame aligned with the instantaneous
L̂N , our perturbed rotation tensor will have the form

〈
L(aLb)

〉
2

=

 1 0 ε1
0 1 ε2
ε1 ε2 4

 . (B3)

The eigenvalues of this system are

1

2
(5 + 3

√
1 +

4

9
(ε21 + ε22)) ' 4 +

ε21 + ε22
3

(B4)

1

2
(5− 3

√
1 +

4

9
(ε21 + ε22)) ' 1 +

ε21 + ε22
3

(B5)

1 (B6)

In particular, we see that the presence of these off-
diagonal terms will always increase the magnitude of the
dominant eigenvalue, regardless of the sign of these per-
turbations. It is also worth noting that the dominant
(unnormalized) eigenvector is given by

V2 =

{
ε1, ε2,

3

2

(
1 +

√
1 +

4

9
(ε21 + ε22)

)}
, (B7)

so that V2x (V2y) is linearly proportional to
〈
L(xLz)

〉
2

(
〈
L(yLz)

〉
2
). This shows quite clearly, for example, the

fact that oscillatory off-diagonal terms such as those of
the form in Eq. (30) are directly responsible for oscilla-
tions in the principal eigendirections.
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