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Inspiraling supermassive black hole binary systems with high orbital eccentricity are important
sources for space-based gravitational wave (GW) observatories like the Laser Interferometer Space
Antenna (LISA). Eccentricity adds orbital harmonics to the Fourier-transform of the GW signal and
relativistic pericenter precession leads to a three-way splitting of each harmonic peak. We study
the parameter estimation accuracy for such waveforms with different initial eccentricity using the
Fisher matrix method and a Monte Carlo sampling of the initial binary orientation. The eccentricity
improves the parameter estimation by breaking degeneracies between different parameters. In par-
ticular, we find that the source localization precision improves significantly for higher mass binaries
due to eccentricity. The typical sky position errors are ∼ 1 deg for a nonspinning, 107 M⊙ equal
mass binary at redshift z = 1, if the initial eccentricity one year before merger is e0 ∼ 0.6. Pericenter
precession does not affect the source localization accuracy significantly, but it does further improve
the mass and eccentricity estimation accuracy systematically by a factor of 3–10 for masses between
106 and 107 M⊙ for e0 ∼ 0.3.

PACS numbers: 04.30.Db, 04.80.Nn, 97.60.Lf

I. INTRODUCTION

The inspiral and merger of compact binary systems of
black holes are important sources of gravitational waves
(GWs) for the proposed space-based GW missions such
as the Laser Interferometer Space Antenna (LISA) [1]
or the European New Gravitational Wave Observatory
(NGO/eLISA) [2]. The detectable frequency band for
these instruments will be around 10−4−10−1Hz [3] which
corresponds to the inspiral of two (104 − 107)M⊙ black
holes. As the sources detected by LISA/NGO will be
loud with a large signal-to-noise ratio in general, an ideal
method for parameter extraction is matched filtering [4].
An effective matched filtering requires an accurate

model of the emitted GWs. In this technique the de-
tected signal output is cross correlated with theoretical
waveform templates. In particular, matched filtering is
sensitive to the phase information of the waveform, and a
high correlation between the signal and template allows
one to make predictions on the source parameters [5, 6].
Many previous studies in the literature adopted wave-

forms generated by binaries on circular orbits (see [7–19]
for LISA parameter estimation). This is due to the ex-
pectation that the orbit of the binary circularizes due to
the emission of GWs [20, 21].
Nevertheless, there are a number of reasons to expect

that at least some LISA sources may be eccentric. If the
binary is embedded in a gaseous disk, it can remain ec-
centric until the final year of the inspiral [22–25]. The
interaction of the supermassive black hole (SMBH) bi-
nary with a population of stars also increases the eccen-
tricity [26–28]. The eccentricity can also be excited by
the Kozai mechanism and relativistic orbital resonances
in hierarchial triples [29–33] or by a triaxial potential

[34, 35], and may be typical for extreme mass ratio inspi-
rals [36, 37]. Further, black hole binaries in dense galactic
nuclei formed by GW emission during close encounters
remain very eccentric until merger [38, 39]. Population
synthesis and binary evolutionary models show that a
fraction of stellar compact object binaries may also be ec-
centric for ground based (Advanced LIGO/VIRGO and
Einstein Telescope) and space-based detectors such as
DECIGO [40].

Including eccentricity in the waveformmay be essential
for the detection of inspiraling eccentric binaries with
matched filtering and to avoid a systematic bias in the
parameter estimation [41]. Using circular templates to
detect waveforms with eccentricities e0 >∼ 0.1, leads to a
significant loss of signal-to-noise ratio for ground-based
detectors such as LIGO and VIRGO [42, 43]. A similar
conclusion was reached for eccentric massive black hole
binaries detected with LISA [44]. The orbital evolution
and waveforms have been developed to first and second
post-Newtonian (PN) order, including spin-orbit, spin-
spin contributions for eccentric orbits [45–50].

To assess the astrophysical impact of planned GW in-
struments, it is essential to estimate the expected param-
eter measurement precision of typical GW sources. This
may be done by injecting a simulated GW signal into
synthetic detector noise and carrying out a Monte Carlo
Markov Chain (MCMC) based matched filtering search
for a parametrized template model to recover the poste-
rior distribution function (PDF) of the estimated source
parameters [51]. Porter and Sesana [44] investigated the
case of low (100M⊙) and high (104M⊙) mass black hole
binaries on eccentric orbits using non-spinning, restricted
2PN waveforms. They concluded that eccentricity can
significantly bias the recovered parameters of the source
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for LISA if circular templates are used even if the eccen-
tricity is as small as e ∼ 10−4. More recently, Key and
Cornish [52] extended that study by using an effective
1.5PN waveform for inspiraling eccentric SMBHs (with
m ∼ (105−107)M⊙) taking into account eccentricity and
spin effects in the template model. They found that the
eccentricity measurement errors are of order ∆e ∼ 10−3

for a range of mass ratios and a particular choice of an-
gular parameters.

Since the parameter space is large, 17 dimensional for
an eccentric spinning binary, state of the art MCMC cal-
culations are numerically too expensive to explore the full
range of source parameters. However, for large signal to
noise ratio (SNR), the PDF may be well approximated
by an ellipsoid, and the parameter measurement errors
can be estimated very efficiently using the Fisher matrix
method [5, 41]. Using this method, it has been shown
that different source inclinations and sky locations lead
to a wide range of parameter measurement errors sub-
tending many orders of magnitude [9–11, 14, 53]. In this
study, we carry out a Fisher matrix analysis to investi-
gate the possible range of parameter estimation errors for
eccentric binaries.

Only a few of studies have investigated the LISA
parameter estimation accuracy for eccentric inspiraling
sources using the Fisher matrix method (c.f. [8–14, 53]
for circular inspirals). Barack and Cutler [54] investi-
gated the LISA errors for highly eccentric stellar mass
compact objects inspiraling into a SMBH. They found
that the influence of eccentricities on ∆M/M ∼ 10−4

(error of the chirp mass), ∆e0 ∼ 10−4 (error of initial
eccentricity) and ∆ΩS ∼ 10−4 (angular resolution error)
is not substantial, the error estimates do not differ much
from those obtained for circular orbits [8]. However, they
assumed only an arbitrarily chosen, single set of orienta-
tions, which may not be representative of the typical er-
rors. Yunes et al. [55] provided ready-to-use analytic ex-
pressions for the Fourier waveform of moderately eccen-
tric sources. They have shown that eccentricity increases
the detectable mass range of GW detectors toward higher
masses by enhancing the orbital harmonics [12, 13]. Yagi
and Tanaka [56] investigated the LISA errors for vari-
ous alternative theories of gravity for spinning, small-
eccentricity inspiraling SMBH binaries (e0 ∼ 0.01 at 1
yr before merger), using restricted 2PN waveforms, ne-
glecting higher orbital harmonics and apsidal precession
in the waveform. They have found that the eccentric-
ity and the spin-orbit interaction reduces the parameter
errors by an order of magnitude for spinning SMBHs in
massive graviton theories, but not in Brans-Dicke-type
theories.

Neither of the previous systematic Fisher matrix stud-
ies of parameter errors included the effects of relativis-
tic pericenter precession for eccentric sources. However,
precession effects introduce an additional feature in the
waveform, and have the potential to break the degeneracy
between parameter errors [18]. In particular, spin-orbit

precession has been shown to improve the source local-
ization precision substantially during the last day of the
inspiral [9, 11, 14]. Similarly, GR pericenter precession
may also be expected to improve the LISA parameter
measurement accuracy. In fact, since pericenter preces-
sion enters at a lower PN order, this improvement could
take place well before the binary reaches merger. Lo-
calizing the source before merger could be used to pro-
vide triggers for electromagnetic (EM) facilities to search
for the EM counterpart [19]. A coincident GW and EM
observation of the same source could have far reaching
astrophysical implications [16, 17, 19, 57]
In the present paper, we carry out a systematic pa-

rameter estimation study for inspiraling SMBH bina-
ries, taking into account both orbital eccentricity and
the relativistic pericenter precession effect. We account
for the evolution of the semimajor axis and eccentricity
in our waveforms to leading order due to GW emission
[42, 54, 58, 59], but neglect higher order PN contribu-
tions and spin effects. We compute the waveform in the
frequency-domain using the stationary phase approxima-
tion (SPA, see [55, 60–63]), and derive the signal-to-noise-
ratio (SNR) and the Fisher information matrix using a
Fourier-Bessel analysis for the parameter estimation of
eccentric sources. To explore the possible range of pa-
rameter errors, we generate a Monte Carlo sample of bi-
naries with random orientations and vary the masses and
initial eccentricities systematically over a wide range rel-
evant for LISA. We calculate the parameter errors for the
standard three-arm LISA/NGO configuration as well as
for a descoped detector configuration, where one of the
two independent interferometers is removed.
In Sec. II we summarize the basic formulae describing

eccentric waveforms in the leading, quadrupole approxi-
mation using a Fourier-Bessel decomposition. In Sec. III,
we derive the frequency-domain waveforms and the LISA
detector response. After a brief introduction of param-
eter estimation using the Fisher matrix method in Sec.
IV, we present results for specific systems in Sec. V. We
summarize our conclusions in Sec VI. Some details of the
calculations are described in Appendix A and B.
We use geometrical units G = c = 1.

II. TIME DEPENDENT ECCENTRIC

WAVEFORMS

To leading order, the waveform emitted by a binary
moving on a Keplerian orbit can be computed by the
quadrupole approximation. In this approach the observer
(i.e. the interferometric detector) is assumed to be far
from the source and higher order contributions, e.g. the
effects of the spins and higher multipole moments, are
neglected, but the orbit is corrected for the effect of peri-
center precession. For such precessing Keplerian orbits,
the eccentric waveforms are given in Ref. [58]. We have
rewritten the leading order quadrupole tensor and trans-
formed to the transverse-traceless gauge, which gives
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h×(φ) = − µm cosΘ

a(1− e2)DL

[
(5e sinφ+ 4 sin 2φ+ e sin 3φ) cos 2γ

−
(
5e cosφ+ 4 cos 2φ+ e cos 3φ+ 2e2

)
sin 2γ

]
, (1)

h+(φ) = −µm
(
1 + cos2 Θ

)

a(1− e2)DL

[(
5e

2
cosφ+ 2 cos 2φ+

e

2
cos 3φ+ e2

)
cos 2γ

+

(
5e

2
sinφ+ 2 sin 2φ+

e

2
sin 3φ

)
sin 2γ +

(
e cosφ+ e2

) sin2 Θ

1 + cos2 Θ

]
. (2)

Here φ is the true anomaly, which describes the azimuthal
angle from pericenter along the orbit as shown in Fig. 1,
γ is the azimuthal angle of pericenter relative to the coor-
dinate system x-axis in the orbital plane, e is the orbital
eccentricity, a is the semimajor axis, DL is the lumi-
nosity distance, Θ is the inclination (the angle between
the orbital plane and the line of sight to the observer),
and m = m1 + m2, µ = m1m2/m are the total and
reduced masses (Fig.1). Using the well-known Fourier-
Bessel decomposition, the polarization states can be ex-
pressed as a sum of harmonics of the orbital frequency
[61]

h̃×(t) = −h cosΘ
∑

n

[
B−

n sinΦt
n+ +B+

n sinΦt
n−

]
, (3)

h̃+(t) = −h
2

∑

n

[
sin2 ΘAn cosΦ

t
n

+
(
1 + cos2 Θ

) (
B+

n cosΦt
n− −B−

n cosΦt
n+

)]
.(4)

Here h = 4µm(aDL)
−1 is the amplitude, B±

n =
(Sn ± Cn) /2 and An are linear combinations of the
Bessel-functions of the first-kind (Jn(ne)) and their
derivatives,

Sn = −2
(
1− e2

)1/2

e
n−1J ′

n(ne) +
2
(
1− e2

)3/2

e2
nJn(ne) ,

Cn = −2− e2

e2
Jn(ne) +

2
(
1− e2

)

e
J ′
n(ne) ,

An = Jn(ne) , (5)

where a prime denotes the derivative, i.e. J ′
n(ne) ≡

n [Jn−1(ne) + Jn+1(ne)] /2. The phase functions in
Eqs. (3–4) are

Φt
n = nl , (6)

Φt
n± = nl ± 2γ , (7)

where l is the mean anomaly which is defined by the
Kepler equation

l = ξ − e sin ξ = 2πν(t− t0) . (8)

In the Kepler equation ξ is the eccentric anomaly and
ν = T−1 is the Keplerian orbital frequency (here T =
2πm−1/2a3/2 is the Newtonian radial orbital period) and
t0 is the time of pericenter passage (thereafter we set

t0 = 0). Equations (6–7) show that the phase splits into
a triplet due to the pericenter position γ. If the pericen-
ter precesses, a triplet of frequencies appear in Fourier
space for each harmonic [61, 62]. Note that Eq. (8) is
approximately valid during an orbit as long as v/c ≪ 1
and ν = constant, but this equation requires modifica-
tions on large timescales where the binary inspirals (see
Eqs. 12–13 below) or at small separations where the 1PN
treatment breaks down.
Pericenter precession leads to a time-dependent angle

of pericenter, which may be written as γ(t) = γ0 + γ(t)
where γ0 is the initial angle of pericenter (Fig. 1).
Henceforth we adopt pericenter precession from the clas-
sical relativistic motion and assume the adiabatic evolu-
tion of the orbital parameters. These effects are averaged
over one radial oscillation period, i.e. 〈γ̇〉 = ∆γ/T , where
∆γ = 6πm[a(1 − e2)]−1 is the angle of precession for an
eccentric orbit governed by the geodesic equation of the
Schwarzschild geometry (see e.g. [64]). In the following
we shall drop 〈〉 for the average quantities, so we write

γ̇ =
3m3/2

a5/2(1− e2)
=

3m2/3 (2πν)5/3

(1− e2)
. (9)

The 2.5PN leading order adiabatic evolution of the or-
bital parameters due to gravitational radiation averaged
over one radial period are [21]

ν̇ =
48M5/3(2πν)11/3

5π(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (10)

ė = −304M5/3(2πν)8/3

15(1− e2)5/2
e

(
1 +

121

304
e2
)
, (11)

where M = µ3/5m2/5 is the chirp mass (we used Kepler’s

third law, i.e. ν = (2π)−1m1/2a−3/2).
For an inspiraling system, the phase functions are

Φt
n = 2πn

∫ t

−∞ ν(t′)dt′ and Φt
n± = Φn ± 2γ0 ±

2
∫ t

−∞ γ̇(t′)dt′, Eqs. (6), (7), are generalized as (here the

”t” index is suppressed in Φt
n,Φ

t
n±)

Φn = 2πn

∫ ν(t)

−∞

ν

ν̇
dν , (12)

Φn± = Φn ± 2γ0 ± 2

∫ ν(t)

−∞

γ̇

ν̇
dν , (13)
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FIG. 1. The geometry of an eccentric orbit. The coordinate
system (x, y, z) is defined by the initial orbit, where the x-axis
points in the direction of the pericenter and the z-axis is par-
allel to the orbital angular momentum vector. In the reduced
Kepler problem the body with mass µ = m1m2/m is orbit-
ing the central mass m = m1 +m2, the separation vector is
r = a0(1− e20)/(1+ e0 cos φ) where e0 is the orbital eccentric-

ity, a0 = m1/3(2πν0)
2/3 (here ν0 is the orbital frequency) is

the semimajor axis, φ is the true anomaly is the angle between
pericenter and the separation vector) and γ0 is the pericenter
position. The Kepler equation determines the evolution of the
time parameter: ξ − e0 sin ξ = 2πν0(t− t0) where ξ is the ec-

centric anomaly (tan ξ/2 =
√

(1− e0)/(1 + e0) tanφ/2). The
adiabatic evolution of the eccentric orbit is driven by the peri-
center precession (1PN effect) and the inspiral (2.5PN effect)
of the compact binary due to gravitational radiation.

Q

m

g
f

r

m x

y

z h+,×

DL

e,n

g0

e ,n00

Φn± are phase functions which arise due to pericenter
precession. Note that here one must incorporate the
evolution in the eccentricity by solving Eqs. (10–11), i.e.
ν̇ ≡ ν̇(ν) = ν̇[ν, e(ν)], and similarly for γ̇ (see Eq. (36)
below).

III. FOURIER TRANSFORMATION OF THE

ECCENTRIC INSPIRAL WAVEFORM

The sensitivity of a GW detector is usually given in
Fourier-space. Thus, to estimate the detection signal to
noise ratio and measurement accuracy, we construct the
Fourier transform of the waveform as

h(f) =

∞∫

−∞

h̃(t)e2πitfdt , (14)

where f is the Fourier frequency. These integrals can-
not be evaluated analytically without further assump-
tions. However, since the orbital parameters (a, e) evolve
very slowly relative to the GW phase, the stationary

phase approximation (SPA) can be utilized [62] (Ap-
pendix B). We account for the adiabatic time evolution
during the inspiral in the Fourier-transformed waveform
h(f) using Eqs. (12–13) and the SPA. In this approxi-
mation the Fourier transformation of the waveform be-
comes a discrete sum over the harmonics of orbital fre-
quency, fn = nν. When the pericenter precession is taken
into account, each harmonic fn, is split into a triplet
f ≡(fn, fn±) and therefore the waveform consists of the
sum over these triplets of Fourier frequencies:

h×(f) = −h0
2

∑

n

cosΘ
[
B−

n Λ+e
i(Ψn++π/4)

+B+
n Λ−e

i(Ψn−+π/4)
]
, (15)

h+(f) = −h0
4

∑

n

[
sin2 ΘAnΛe

i(Ψn−π/4)

+
(
1 + cos2 Θ

) (
B+

n Λ−e
i(Ψn−−π/4)

−B−
n Λ+e

i(Ψn+−π/4)
)]

, (16)

where fn = nν, fn± = nν± γ̇
π ; h0 = 4M5/3 (2πν)

2/3
/DL

is the amplitude corresponding to the orbital frequency;
Ψn = 2πftn − Φn, Ψn± = 2πftn± − Φn± are phase
functions (where tn, tn± are the time parameters of the
SPA, see Appendix B). We have introduced the notation

Λ± = (nν̇ ± γ̈/π)−1/2 and Λ = (nν̇)−1/2. The phases Ψn

and Ψn± depend on the corresponding Fourier frequen-
cies fn, fn±, respectively.
We recall that for circular orbits (i.e. e→ 0) the wave-

forms in Eqs. (15) and (16) simplify as

h◦×(f) = −2

√
5

96

M5/6f−7/6

π2/3DL
cosΘeiΨ

+
◦ , (17)

h◦+(f) = −
√

5

96

M5/6f−7/6

π2/3DL

(
1 + cos2 Θ

)
eiΨ

−
◦ , (18)

where f = 2ν is the (circular) Fourier frequency and
Ψ±

◦ = 2πftc −Φc ± π/4 + (3/4) (8πMf)−5/3 is the well-
known phase function.

A. LISA detector response

With its three arms LISA represents a pair of two or-
thogonal arm detectors, I and II, producing two linearly
independent signals. The frequency domain waveforms
are

hI,II(f) =

√
3

2

[
F I,II
× h× (f) + F I,II

+ h+ (f)
]
, (19)

with the antenna-beam pattern functions

F I
× =

1+µ2
S

2 cos 2φS sin 2ψS + µS sin 2φS cos 2ψS ,(20)

F I
+ =

1+µ2
S

2 cos 2φS cos 2ψS − µS sin 2φS sin 2ψS ,(21)
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where µS,L = cos θS,L with (θS , φS) being spherical an-
gels of the source in the detector-based coordinate sys-
tem. The angle ψS is the polarization angle that can be
expressed by the position of the detector and the orbital
plane [8]. The other antenna-beam pattern functions are
F II
+,× = F I

+,×(φS − π/4). The quantities θS , φS and ψS

are time dependent because the LISA constellation moves
around the Sun and these explicit time evolutions are [8]

µS = µ̄S

2 −
√
3λ̄S

2 cos φ̄tS , (22)

φS = α1(t) +
π
12 + arctan

√
3µ̄S+λ̄S cos φ̄t

S

2λ̄S sin φ̄t

S

, (23)

ψS = arctan
µ̄L−

√
3λ̄L cos φ̄t

L
−cosΘ(µ̄S−

√
3λ̄S cos φ̄t

S)
2K ,(24)

where λ̄S,L = sin θ̄S,L, µ̄S,L = cos θ̄S,L and φ̄tS,L =

φ̄(t) − φ̄S,L, with θ̄S , φ̄S being the spherical angles
of the source’s position. The angles θ̄L, φ̄L corre-
spond to the direction of orbital angular momentum
in the barycenter frame [8]. In Eqs. (22-24) Θ =
arccos

[
µ̄Lµ̄S + λ̄Lλ̄S cos(φ̄L − φ̄S)

]
is the inclination (in

Eqs. (3), (4)) and the explicit time dependence are
α1(t) = 2πt/T − π/12 + α0, φ̄(t) = φ̄0 + 2πt/T , and

K = λ̄Lλ̄S

2 sin(φ̄L − φ̄S)

−
√
3
2 cos φ̄(t)

(
µ̄LλS sin φ̄S − µ̄Sλ̄L sin φ̄L

)

−
√
3
2 sin φ̄(t)

(
µ̄S λ̄L cos φ̄L − µ̄Lλ̄S cos φ̄S

)
.(25)

We note that θ̄L, φ̄L are generally not constants for spin-
ning binaries due to spin-orbit effects, but we neglect
these effects here.
We carry out the analysis for the single-detector case

(I only) and the full two-detector configuration (I + II).
In practice, the measured signal in Eq. (19) is trun-

cated at a minimum and maximum frequency corre-
sponding to the start of the observation and the last sta-
ble orbit for each harmonic, respectively (see Sec. V. A.
below).

IV. PARAMETER ESTIMATION

In this section we review the basics of Bayesian param-
eter estimation. The measured signal s̃(t) is made up of

the GW h̃(t) and the noise ñ(t)

s̃(t) = h̃(t) + ñ(t) . (26)

We assume that the noise is stationary, Gaussian, and
statistically independent at different frequencies. Then
each Fourier component has a Gaussian probability dis-
tribution and the different Fourier components of the
noise are ”uncorrelated”, i.e.,

p(n = n0) ∝ e−(n0|n0)
2

, (27)

〈n(f)n∗(f ′)〉 = 1
2δ(f − f ′)S(f) . (28)

In Eqs. (27), (28) p(n) is the probability for the noise,
the inner product is defined by

(g | k) = 4ℜ
∫ ∞

0

g(f)k∗(f)

S(f)
df , (29)

the k∗ is denotes complex conjugation and S(f) is the
one sided spectral noise density. The definition of the
signal-to-noise ratio (SNR) of h is

ρ2 = (h | h) = 4ℜ
∞∫

0

h(f)h∗(f)

S(f)
df . (30)

The waveform h(f) depends on the parameters λa which
characterize the source. For large SNR, the errors ∆λa

have the Gaussian probability distribution

p(∆λc) = p0e
−Γab∆λa∆λb/2 . (31)

where p0 is the normalization factor and Γab is the Fisher
information matrix defined by

Γab = (∂ah | ∂bh) = 4ℜ
∞∫

0

∂ah(f)∂bh
∗(f)

S(f)
df , (32)

with ∂a = ∂/∂λa. The inverse of the Fisher matrix
is approximately the Σab variance-covariance matrix for
ρ ≫ 1, which gives the accuracy of each parameter and
defined by Σab = (Γab)

−1 =
〈
∆λa∆λb

〉
. The root-mean-

square errors of the parameters λa are ∆λa =
√
Σaa.

For example, the error of the sky position solid angle
is

∆ΩS = 2π

√(
∆µS∆φS

)2 −
〈
∆µS∆φS

〉2
. (33)

The source localization sky area is an ellipse with
semiminor and major axes (aS , bS) given by Eq. (4.12)
in Ref. [11]. The SNR and Fisher matrix for the LISA
configuration are

ρ2 = ρ2I + ρ2II ,

Γab = Γ
I
ab + Γ

II
ab . (34)

where the I, II subscripts distinguish the hI , hII wave-
forms in Eq. (19).

V. MEASURING ECCENTRIC INSPIRALING

SMBH BINARIES

We focus on comparable–mass SMBH binaries in the
range (104 − 107)M⊙ which correspond to the measured
frequency range

(
10−4 − 10−1

)
Hz. For initial configura-

tions one year before merger, we assume that the binary
has e0 orbital eccentricity and γ0 pericenter position. The
10-dimensional parameter space is

λa = {lnDL, lnM, tc,Φc, φ̄S , µ̄S , φ̄L, µ̄L, e0, γ0}
In the circular case e0 and γ0 do not appear. Note that
only one mass parameter, the chirp mass M enters the
leading-order waveform. Our assumptions are:
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– To examine the effects of eccentricity and pericenter
precession, we neglect higher order post-Newtonian
(beyond 1PN orders and spins), we only use the
heuristic pericenter precession in phase described
above.

– In all cases take tc = Φc = γ0 = 0 (we use the
α0, φ̄0 = 0 choice, as in [8]).

– We assume that the observation time is one year
before the merger, more precisely, before the New-

tonian last stable orbit (LSO) which is defined by
[54]

νNLSO =
1

2πm

(
1− e2LSO

6 + 2eLSO

)3/2

, (35)

where eLSO is the final eccentricity at the last sta-
ble orbit (ν(eLSO) = νLSO).

– For the nth orbital harmonic, the limits of inte-
gration are taken to be νmax = νLSO and νmin =
max{ν0, fc/n} where ν0 is the frequency one-year
before the LSO and fc = 0.03mHz is the cut-off
frequency of the LISA detector.

– We assume that luminosity distance to the source
is DL = 6.4Gpc corresponding to a cosmological
redshift z = 1, and use the comoving masses as free
parameters, mz

i = (1 + z)mi [9]. We do not take
into account the Doppler phase due to the varying
light travel during the LISA orbit around the Sun.

– We parametrize the evolution of the orbital fre-
quency with the instantaneous eccentricity follow-
ing [38] (Appendix A).

ν(e) = ν0
σ(e)

σ(e0)
(36)

where ν0 and e0 are the initial orbital frequency
and eccentricity and σ(e) follows from Ref. [21].

– We truncate the harmonics at nmax where 99% of
the signal power corresponds to [38]

nmax =

∣∣∣∣∣5
(1 + e0)

1/2

(1− e0)
3/2

∣∣∣∣∣ . (37)

Here nmax = {9, 24} for e0 = {0.3, 0.6}, respec-
tively.

– We analyzed 104 SMBH binaries where the angular
variables were chosen randomly, i.e. for φ̄S , φ̄L
in the range (0, 2π) and for θ̄S , θ̄L in the range
(−π/2, π/2).

The computation of SNR and the Fisher matrix with
the above general definition Eq. (14) is numerically ex-
pensive for a large set of binaries. We resort to the SPA

waveform. The SNR and the Fisher information matrix
consist of three terms for each orbital harmonic which
correspond to (fn, fn±), respectively,

ρ̂2 =
∑

n

(
ρ̂2n + ρ̂2n+ + ρ̂2n−

)
(38)

Γ̂ab =
∑

n

(
Γ̂
n
ab + Γ̂

n+
ab + Γ̂

n−
ab

)
(39)

where we have introduced the notations ρ̂2n,n+,n− =

(hn,n+,n− | hn,n+,n−), Γ̂
n,n+,n−
ab = (∂ahn,n+,n− |

∂bhn,n+,n−) and hn,n+,n− = h(fn,n+,n−). Here we ne-
glect the cross terms between different harmonics n, n+,
and n−, in ρ̂ and Γ̂ab. We used the LISA sensitivity
curve generator [65]. In the SPA, we can change integra-
tion variables from fn ,fn± to e.

ρ̂2n = 4ℜ
emax∫

emin

hn(e)h
∗
n(e)

S [nν(e)]

ndν

de
de , (40)

Γ̂
n
ab = 4ℜ

emax∫

emin

∂ahn(e)∂bh
∗
n(e)

S [nν(e)]

ndν

de
de , (41)

where dν/de and ν(e) are given by Eqs. (A1), (A3) and
emax = eLSO, emin = min{ec(n), e0} (here ec(n) corre-
sponds to fc/n where fc = 0.03mHz is the cut-off fre-
quency for the LISA detector).
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FIG. 2. (color online) Smooth probability density function of
SNR for various initial eccentricities e0 = 0.15, 0.3, 0.45, 0.6
and masses

(

106 − 106
)

M⊙. The eccentricity dependence of
SNR is almost negligible.

VI. RESULTS AND DISCUSSION

We find that the LISA parameter estimation accuracy
depends sensitively on the initial eccentricity and peri-
center precession and we also examined the distribution
of parameter errors for a wide range of initial binary
parameters and masses. The four angular parameters
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TABLE I. The initial and final frequencies (ν0 and ν1 = νLSO) for various initial eccentricities (e0) and comoving masses
(m1–m2 and redshift is z = 1) for a one-year inspiral before LSO We used the shorthand notation e1 = eLSO for the final
eccentricity. We have completed with dimensionless semimajor axis r̄ = a/m at initial (r̄0) and final points (r̄1).

SMBH [M⊙] e0 = 0 e0 = 0.3 e0 = 0.6

107 − 107
ν0 = 3.47µHz, r̄0 = 37.84

ν1 = 54.96µHz, r̄1 = 6.00

ν0 = 3.05µHz, r̄0 = 41.21

ν1 = 54.47µHz, r̄1 = 6.04

e1 = 0.017

ν0 = 1.92µHz, r̄0 = 56.17

ν1 = 53.78µHz, r̄1 = 6.09

e1 = 0.039

106 − 106
ν0 = 14.64µHz, r̄0 = 67.23

ν1 = 549.59µHz, r̄1 = 6.00

ν0 = 12.88µHz, r̄0 = 73.28

ν1 = 547.75µHz, r̄1 = 6.01

e1 = 0.007

ν0 = 8.09µHz, r̄0 = 99.87

ν1 = 545.22µHz, r̄1 = 6.03

e1 = 0.015

105 − 105
ν0 = 61.73µHz, r̄0 = 119.64

ν1 = 5495.90µHz, r̄1 = 6.00

ν0 = 54.31µHz, r̄0 = 130.30

ν1 = 5488.93µHz, r̄1 = 6.01

e1 = 0.003

ν0 = 34.13µHz, r̄0 = 177.59

ν1 = 5479.18µHz, r̄1 = 6.01

e1 = 0.006

104 − 104
ν0 = 260.30µHz, r̄0 = 212.75

ν1 = 54959µHz, r̄1 = 6.00

ν0 = 229.02µHz, r̄0 = 231.72

ν1 = 54934µHz, r̄1 = 6.00

e1 = 0.001

ν0 = 143.94µHz, r̄0 = 315.80

ν1 = 54896µHz, r̄1 = 6.01

e1 = 0.002
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FIG. 3. (color online) Smooth probability density function of
SNR for various equal-mass binaries (for initial eccentricities
e0 = 0.3). The SNR is O(102) order for low-mass binaries
(

104 − 104
)

M⊙. In the other cases the SNR is O(103) order

(φ̄S , µ̄S , φ̄L, µ̄L) are chosen randomly in a Monte Carlo
sampling, and the cosmological redshift and luminosity
distance are fixed at z = 1 and DL = 6.4Gpc. Fig-
ures 5-10 show the histograms of the expected measure-
ment errors of the binary parameters for the chirp mass
∆M/M, initial eccentricity ∆e0, and angular resolution
∆ΩS for equal-mass binaries with 106 or 107M⊙ each.
Our parametrization of the orbit is singular at e0 = 0. To
get around this, we use e0 = 10−6 for circular orbits. We
have presented three representative cases for the initial
eccentricity: a nearly circular orbit with e0 = 10−6 (see
Table II and Fig. 4), and orbits with medium e0 = 0.3
and high e0 = 0.6 eccentricities. Our computations cor-
respond to a one-year inspiral before LSO. The initial
and final orbital frequencies (ν0 and νLSO) vary for the

three kinds of initial eccentricities and different equal-
mass SMBH binaries as shown in Table I. If increasing
initial eccentricity e0, the initial frequency ν0 decreases
one year before LSO, while the final frequency νLSO does
not change significantly due to the fact that eLSO is close
to zero.

Representative values are shown in Table II for equal-
mass SMBHs for a fixed set of angular configurations
(φ̄S = 4.642, µ̄S = −0.3185, φ̄L = 4.724 and µ̄L =
−0.3455). The table shows that accounting for the eccen-
tricity in the waveform improves some of the parameter
errors such as the errors of the angular resolution ∆ΩS ,
initial eccentricity ∆e0 and the chirp mass ∆M/M for
higher-mass SMBH binaries (106 − 107)M⊙. For lower
masses, i.e. (104 − 105)M⊙, the eccentricity and preces-
sion have no essential effects on parameter estimation.
For masses 104M⊙ the high eccentricity has no signifi-
cant effect on the parameters ∆M/M and ∆ΩS . How-
ever, the initial eccentricity errors (∆e0) are improved for
smaller masses typically by factors of 3–10 and they are
greatly improved for larger initial eccentricities by orders
of magnitude. Similarly, the source localization angu-
lar resolution ∆ΩS decreases with increasing eccentricity
and masses. However, pericenter precession does improve
the parameter errors for higher-mass SMBHs. It can be
seen that the eccentricity, compared to the circular or-
bit case, does improve the error of luminosity distance
∆DL/DL , but there is no essential change between the
high and medium eccentricities and the inclusion of the
pericenter precession. The error of tc is not affected by
the eccentricity and pericenter precession. It is interest-
ing to note that there are degeneracies (∆Φc,∆γ0 > 1)
for errors of Φc and γ0 in the nearly circular case, which
can be explained by the fact that our parametrization
of the orbit is singular at e0 = 0. For eccentric orbits
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FIG. 4. (color online) Distribution of the major (top) and
minor (bottom) axes (aS, bS) of the sky position error ellipse
(∆ΩS = πaSbS) for various eccentric binaries with equal mass
(here the pericenter precession is neglected). The two panels
correspond to 1-year observation of

(

107 − 107
)

M⊙ black hole
binaries at z = 1 (DL = 6.4Gpc) with LISA (2 detector). The
angular resolution is improved for high-mass binaries.

(medium and high initial eccentricities) this degeneracy
disappears (the errors of tc, Φc and γ0 are not presented
in Table II).

Figures 2 and 3 show the distribution of the SNR
for different binary orientations, for various eccentricities
and masses. The SNR is similar for equal-mass binaries
with 105M⊙ ≤M ≤ 107M⊙, but significantly smaller for
104M⊙ SMBH or less. Remarkably, the SNR does not
change significantly with the initial eccentricity, which
is consistent with previous studies for small eccentrici-
ties [55]. This shows that the systematic improvement of
the parameter estimation accuracy for eccentric sources
is due to the breaking of correlations between different
parameter errors instead of an overall change in the SNR.

Figures 4 shows the distribution of the major/minor

axes of the sky position error ellipse for the nearly cir-
cular, medium and high initial eccentricity orbits. The
shape of the error ellipse is important in coordinating
GW observations with telescopes [11, 19]. It can be seen
that the error of the major/minor axes is improved for
highly eccentric binaries.
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FIG. 5. (color online) Estimated distribution of the chirp
mass errors in the precessing and non-precessing cases for
the total (I + II , top) and single (I , bottom) detectors.
The results are shown for medium (e0 = 0.3) and high
(e0 = 0.6) initial eccentricities and higher-mass SMBH bi-
naries

(

106 − 106
)

M⊙. For precessing sources the e0 = 0.6
case is omitted in both figures due to the high degree overlap
with the e0 = 0.3 case.

Figures 5 and 6 show that the chirp mass errors
are greatly improved for a larger initial eccentricity for
106M⊙ and 107M⊙ equal-mass SMBH binaries (see also
[13]). Furthermore, the chirp mass measurement errors
are improved by an additional factor 2–5 due to pericen-
ter precession for relatively massive 107M⊙ binaries, but
not for 106M⊙ binaries. The typical chirp mass error is
about 10−5 for 107M⊙, and 10−4 for 106M⊙ binaries.
Figures 7 and 8 show that the initial eccentricity errors
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FIG. 6. (color online) Same as Fig. 5 but for masses
(

107 − 107
)

M⊙.

are also improved for a high eccentricity, the initial eccen-
tricity parameter can be measured with high accuracy;
∆e0 is about 10−5 − 10−4 for 107M⊙, and 10−4 − 10−3

for 106M⊙ binaries. Pericenter precession improves the
eccentricity errors by a factor of 10 for 107M⊙ and by a
factor 2–3 for 106M⊙.
Figure 9 and 10 show that the typical source sky lo-

calization accuracy for equal-mass binaries for binaries
at z = 1 ranges between 10−4 − 10−2 steradians. Con-
sistent with previous studies [12, 13], we find that the
errors improve for higher initial eccentricities (e0 = 0.6),
compared to the cases of moderate to small initial ec-
centricities (e0 = 0.3) for equal-mass 107M⊙ binaries.
The error ∆ΩS in the total two-detector case is about
one order of magnitude better than for a single detector
[8]. For high initial eccentricities, the angular resolution
of the total detector case is improved more compared to
the single detector case for 107M⊙ binaries (see Fig.10).
In contrast to the chirp mass and the eccentricity errors,
the angular localization capabilities are not improved for
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FIG. 7. (color online) Estimated distribution of the initial ec-
centricity errors in the precessing and non-precessing cases
for the total (I + II , top) and single (I , bottom) detec-
tors. The results are shown for medium (e0 = 0.3) and high
(e0 = 0.6) initial eccentricities and higher-mass SMBH bina-
ries

(
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)

M⊙.

eccentric equal-mass 106M⊙ binaries but they are im-
proved for 107M⊙ binaries. Figure 9 and 10 clearly show
that pericenter precession does not affect the sky position
error for either mass choice.

A possible explanation for the qualitatively different
improvement of the sky position and mass-eccentricity
errors is that the sky position is a slow parameter, as
opposed to fast parameters like the chirp mass and ec-
centricity [18]. The slow parameters are determined by
the slow orbital modulation of the signal by the detector’s
motion around the Sun while the fast parameters also de-
pend on the orbital phase. The correlations between the
slow parameters become large during the last week before
merger when the signal-to-noise ratio increases, which
prohibits the rapid improvement of the slow parameters’
marginalized errors. Pericenter precession does not vary
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FIG. 8. (color online) Same as Fig. 7 but for masses
(
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)

M⊙.

the binary inclination, and cannot effectively break the
correlation between slow parameters. However, pericen-
ter precession splits the GW frequency into a triplet for
each harmonic which can break degeneracies for the fast
parameters and efficiently improve their measurement er-
rors.

VII. CONCLUSIONS

We carried out an extensive study of parameter esti-
mation for eccentric binaries with arbitrary orbital eccen-
tricity. We computed the waveforms in frequency domain
by a new method optimized for taking into account ec-
centricity, by changing the integration variable for the
waveforms from the orbital frequency ν(e) to the eccen-
tricity variable e [38]. This results in an improvement of
numerical precision as compared to standard approaches
in frequency domain, where a Taylor series expansion of
the orbital frequency ν(e) (among others) in the eccen-
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FIG. 9. (color online) Estimated distribution of the angular
resolution ∆ΩS in the precessing case for the total (I + II ,
top) and single (I , bottom) detectors. The results are shown
for medium (e0 = 0.3) and high (e0 = 0.6) initial eccentricities
and higher-mass SMBH binaries

(
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M⊙. The curves
for the non-precessing e0 = 0.3 and e0 = 0.6 cases are omitted
in both figures since they are close and very similar to the
curves for the precessing ones.

tricity e is needed [55]. Our method is well suited for
computing the Fisher matrix and the signal-to-noise ra-
tio. Our parameter space is 10 dimensional, consisting of
4 angles, the chirp mass, the luminosity distance, coales-
cence time and phase, initial eccentricity and pericenter
position (compare Fig. 1). The first 8 parameters are
standard for circular orbits too.

We have examined the LISA parameter estimation er-
rors for GWs emitted by eccentric inspiraling SMBH
binaries including the effects of pericenter precession.
Based on a large set of simulated binary waveforms, we
found that there is about one order of magnitude im-
provement compared to circular waveforms in LISA’s an-
gular resolution for highly eccentric sources (e.g. e0 =
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FIG. 10. (color online) Estimated distribution of the an-
gular resolution ∆ΩS in the precessing and non-precessing
cases for the total (I + II , top) and single (I , bottom) detec-
tors. The results are shown for medium (e0 = 0.3) and high
(e0 = 0.6) initial eccentricities and higher-mass SMBH bina-
ries
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M⊙. For non-precessing sources the e0 = 0.6
case is omitted in both figures since it is close and very similar
to the curve for the e0 = 0.6 precessing case.

0.6) for relatively high SMBH masses ∼ 107M⊙. There is
however, a much smaller effect for lower mass binaries in
the range (104−105)M⊙. This improves the prospects for
identifying the electromagnetic counterparts [17, 19] of
relatively high mass eccentric SMBH mergers with LISA.
Similar conclusions have been reached in Refs. [12, 13].
However, we found that pericenter precession does not
further improve the sky localization accuracy of the
source, although it may further improve the measure-
ment errors of mass and eccentricity parameters.

It is important to note that the angular resolution is
significantly affected by the number of detectors, see Figs.
9–10. However, nearly the same parameter estimation ac-
curacy can be obtained for the single and total detector

configurations for (106−106)M⊙ binaries for fast param-
eters [18] like the chirp mass and eccentricity (Figs. 5 and
7). The second detector systematically reduces the errors
of these parameters for higher masses (107 − 107)M⊙.
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Appendix A: Orbital evolution and waveform

According to Eqs. (10) and (11), the equation

dν

de
= −18ν

19

1 + 73
24e

2 + 37
96e

4

e(1− e2)
(
1 + 121

304e
2
) , (A1)

can be solved as

ν(e) = C0e
−18/19

(
1− e2

)3/2
(
1 +

121

304
e2
)−1305/2299

,

(A2)

where C0 = ν0e
18/19
0

(
1 + 121

304e
2
0

)1305/2299 (
1− e20

)−3/2
is

the integration constant that has been chosen to set the
initial condition ν(e0) = ν0 for the initial values e0 and
ν0. Then Eq. (A2) is

ν(e) = ν0
σ(e)

σ(e0)
, (A3)

where σ(e) = e−18/19
(
1− e2

)3/2 (
1 + 121

304e
2
)−1305/2299

.
From Eqs. (10) and (11) one can compute the evolution

of the time and phase functions (t−tc =
∫ e

0
de′

ė(e′) , Φ−Φc =

2π
∫ e

0
ν(e′)
ė(e′) de) in terms of eccentricity as, see Eqs. (11)

and (A3),

t− tc = − 15

304M5/3

(
σ(e0)

2πν0

)8/3

It(e) (A4)

Φ− Φc = − 15

304M5/3

(
σ(e0)

2πν0

)5/3

Iφ(e) , (A5)

where the It and Iφ integrals are

It(e) =

e∫

0

xα
(
1− δx2

)−β

(1− x2)3/2
dx , (A6)

Iφ(e) =

e∫

0

xα̃

(1− δx2)
β̃
dx , (A7)
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TABLE II. Parameter estimation errors for equal-mass SMBH binaries. The initial eccentricities e0 are 10−6 (nearly circular),
0.3 and 0.6., the luminosity distance is DL = 6.4Gpc (z = 1), and the angular parameters are φL = 4.724, µL = −0.3455 ,
φS = 4.642 and µS = −0.3185.

SMBH
(M⊙)

e0/precession SNR ∆DL/DL

(×10−2)

∆M/M
(×10−6)

∆e0
(×10−6)

∆Ω
(×10−6)

107 − 107

e0 = 10−6, no prec.

e0 = 10−6, incl. prec.

e0 = 0.3, no prec.

e0 = 0.3, incl. prec.

e0 = 0.6, no prec.

e0 = 0.6, incl. prec.

1119

2002

1116

1984

1146

1984

837

538

96.2

42.9

31.6

17.3

105

9.14

67.7

9.42

17.4

4.95

1794

1311

222

34.7

6.91

2.14

193

77.9

3.32

0.893

2.16

0.689

106 − 106

e0 = 10−6, no prec.

e0 = 10−6, incl. prec.

e0 = 0.3, no prec.

e0 = 0.3, incl. prec.

e0 = 0.6, no prec.

e0 = 0.6, incl. prec.

1171

1704

1176

1701

1200

1712

192

168

30.6

26.0

10.3

8.29

3.09

1.19

3.99

1.51

3.17

1.56

1562

1363

7.53

3.32

1.18

0.917

13.5

9.33

2.00

1.00

1.84

0.871

105 − 105

e0 = 10−6, no prec.

e0 = 10−6, incl. prec.

e0 = 0.3, no prec.

e0 = 0.3, incl. prec.

e0 = 0.6, no prec.

e0 = 0.6, incl. prec.

1924

2183

1925

2184

1920

2188

314

296

33.4

26.6

14.3

12.0

1.03

0.958

1.30

1.16

1.04

1.23

2595

2365

2.74

3.54

0.435

0.831

30.6

25.6

0.848

0.553

0.678

0.520

104 − 104

e0 = 10−6, no prec.

e0 = 10−6, incl. prec.

e0 = 0.3, no prec.

e0 = 0.3, incl. prec.

e0 = 0.6, no prec.

e0 = 0.6, incl. prec.

306

314

310

318

333

341

746

697

71.2

62.9

30.0

27.3

0.628

1.93

0.847

1.80

0.539

0.925

4605

4433

1.60

4.68

0.193

0.356

239

189

30.3

29.0

28.3

27.4

with the constants α = 29/19, β = −1181/2299, δ =

−121/304, α̃ = 11/19 and β̃ = 124/2299. The integrals
in Eqs. (A6) and (A7) can be evaluated with the Appell
functions which generalize the hypergeometric functions
[66, 67]

It(e) =
19e48/19

48
F1

(
α+ 1

2
, β,

3

2
,
α+ 3

2
; δe2, e2

)
,(A8)

Iφ(e) =
19e30/19

30
2F1

(
α̃+ 1

2
, β̃,

α̃+ 3

2
; δe2

)
. (A9)

To compute the time (∆T ) and phase (∆Φ) difference the
binary spends between the initial and final eccentricities
e0 and e1 during its evolution, Eqs. (A4) and (A5) are
used,

∆T =
15

304M5/3

(
σ(e0)

2πν0

)8/3

[It(e0)− It(e1)] ,(A10)

∆Φ =
15

304M5/3

(
σ(e0)

2πν0

)5/3

[Iφ(e0)− Iφ(e1)] .(A11)

Figures 11 and 12 show the evolution of time and phase
for various initial eccentricities and fixed one-year inspi-
raling time before the LSO and 106M⊙ equal-mass bina-
ries. It can bee seen that the eccentricity changes signifi-
cantly near the coalescence and the accumulated number
of orbit is decreasing for high initial eccentricity.

Appendix B: Stationary Phase Approximation

Consider the waveform h(t) = A(t) cosΦ(t) with

Ȧ(t)/A(t) ≪ Φ̇(t) and Φ̈(t) ≪ Φ̇(t)2, see e.g. [5], with
its Fourier transform as

F [A(t) cosΦ(t)] =

∞∫

−∞

A(t)
eiΦ(t) + e−iΦ(t)

2
e2πitfdt .

(B1)

To evaluate the Fourier integral one can use the
stationary phase approximation (SPA). For an arbi-
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
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e0

t-
t c
H1

07 sL

FIG. 11. The evolution of the eccentricity as a function of
time (as ”lifetime” for the fixed one-year inspiraling time).
The eccentricity changes significantly near the coalescence.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

e0

F
-
F

c
H1

03 ra
dL

FIG. 12. The evolution of the eccentricity in terms of the
phase function for the fixed one-year inspiraling time.

trary function of the time, Ψ(t),
∞∫
−∞

A(t)eiΨ(t)dt ≃

A(T )
√
2π/Ψ̈(T )ei(Ψ(T )+sign[Ψ̈(T )]π/4) where the saddle

point T satisfies Ψ̇(T ) = 0. In Eq. (B1) the eiΦ(t) terms
have no contributions to the saddle point T . Moreover,
Ψ(t) = 2πtf − Φ(t) and the stationary phase condition

(Ψ̇(T ) = 0) implies that f = Φ̇(T )/(2π). This provides
a relation between the Fourier and orbital frequencies.
Carrying out this exercise for an eccentric waveform con-
sisting of many widely separated GW harmonics, the cor-
responding Fourier frequencies are respectively fn = nν
and fn± = nν ± γ̇/π for the terms due to pericenter pre-
cession. For circular orbits the only nonvanishing term
has frequency f = 2ν. Therefore the Fourier transform
of harmonic functions with SPA are

F [A(t) sinΦ(t)] = A[f(T )]
2

√
2π

|Ψ̈[f(T )]|e
i(Ψ[f(T )]+π

4 ) ,(B2)

F [A(t) cosΦ(t)] = A[f(T )]
2

√
2π

|Ψ̈[f(T )]|e
i(Ψ[f(T )]−π

4 ) ,(B3)

where Ψ [f(T )] = 2πf(T )t [ν(T )]−Φ [ν(T )] is the phase
function and t [ν(T )], Φ [ν(T )] are derived from radiation
reaction by Eqs. (A4) and (A5).
Following [62] the phase functions for eccentric com-

pact binaries are

Ψn = 2πft− Φn , (B4)

Ψn± = 2πft− Φn± , (B5)

where the functions Φn,Φn± are defined by Eqs. (12)
and (13) and the first time derivatives are expressed as

Ψ̇n = 2πf − 2πnν , (B6)

Ψ̇n± = 2πf − 2πnν ∓ 2γ̇ . (B7)

There are three saddle points tn, tn± following from the

stationary phase conditions Ψ̇n(tn) = 0 and Ψ̇n±(tn±) =
0. It follows that there are three Fourier frequencies for
each harmonic of the orbital frequency (denoted by fn,
fn±). The second time derivatives of the Ψn and Ψn±
phase functions are

Ψ̈n = −2πnν̇ , (B8)

Ψ̈n± = −2πnν̇ ∓ 2γ̈ , (B9)

where γ̈ is the time derivative of γ̇ induced by gravita-
tional radiation, see Eqs. (10) and (11). Then the phase
functions of the waveforms, Eqs. (15) and (16), can be
expressed in terms of the time corresponding to the sta-
tionary phase and the acceleration of the pericenter pre-
cession, formally

Ψn(fn) = 2πfntn(fn)− Φn(fn) , (B10)

Ψn±(fn±) = 2πfn±tn±(fn±)− Φn±(fn±) . (B11)
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