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Canonical methods can be used to construct effective actions from deformed covariance algebras,
as implied by quantum-geometry corrections of loop quantum gravity. To this end, classical con-
structions are extended systematically to effective constraints of canonical quantum gravity and
applied to model systems as well as general metrics, with the following conclusions: (i) Dispersion
relations of matter and gravitational waves are deformed in related ways, ensuring a consistent
realization of causality. (ii) Inverse-triad corrections modify the classical action in a way clearly
distinguishable from curvature effects. In particular, these corrections can be significantly larger
than often expected for standard quantum-gravity phenomena. (iii) Finally, holonomy corrections
in high-curvature regimes do not signal the evolution from collapse to expansion in a “bounce,” but
rather the emergence of the universe from Euclidean space at high density. This new version of
signature-change cosmology suggests a natural way of posing initial conditions, and a solution to
the entropy problem.

PACS numbers: 04.60.Pp

I. INTRODUCTION

A major consequence expected for quantum gravity is
the emergence of non-classical space-time structures such
as discrete or non-commutative ones. Any such modifi-
cation by quantum properties deforms the standard no-
tion of covariance and thus gives rise to possible new
actions and interaction terms. Developments in this di-
rection are of interest for a fundamental understanding
of space and time, and also for potential observations
of quantum gravity: Unexpected structures may give
rise to new effects, or magnify others. One example is
early-universe cosmology. Assuming the classical space-
time structure with the usual notion of covariance re-
sults in higher-curvature terms in an effective action, and
only small quantum corrections are possible, suppressed
by factors of ℓP/ℓH of the Planck length by the Hub-
ble distance. Non-classical space-time structures, on the
other hand, can sometimes circumvent such limitations
and magnify expected effects compared to what standard
higher-curvature terms would deliver (as realized explic-
itly in [1, 2]).
However, relaxing conditions on covariance in a con-

sistent way is not a straightforward task. Space-time
properties such as discreteness or non-commutativity are
often obtained at some kind of kinematical quantum level
far removed from direct space-time analysis. One may,
for instance, look at operators that quantize geometrical
quantities such as distances or areas, or analyze the be-
havior of test particles or, mathematically, test functions
on quantum space-time. These concepts are not directly
related to the dynamics of space-time itself, and so it
is initially not clear what form of deformed covariance
principle could be used to formulate dynamics on such
modified space-times and to find the possible correction
terms analogous to higher-curvature effective actions.
Fortunately, an abstract but powerful substitute ex-

ists in canonical formulations: Any generally covariant
theory in four space-time dimensions has a gauge alge-

bra of four local generators per space-time point, which
serve as constraints on suitable initial values and gener-
ate space-time transformations on phase-space functions
by canonical transformations. If quantization leads one
to modified expressions for these generators, covariance
is realized — albeit perhaps deformed — if the genera-
tors still obey an algebra of the classical dimension. From
the perspective of general gauge theory, the same num-
ber of spurious degrees of freedom is then removed by
the constraints as classically, and all equations of motion
derived for the system are guaranteed to be consistent.
The theory is anomaly-free.
More specifically, in generally covariant theories there

are three smeared constraints per point labeled by spatial
vector fields, the diffeomorphism constraint D[N i] de-
pending on an arbitrary shift vector N i, and a fourth one
labeled by a function, the Hamiltonian constraint H [N ]
depending on the lapse N . Classically, these phase-space
functions obey the hypersurface-deformation algebra [85]

{D[N i], D[M j]} = D[LMjN i] (1)

{H [N ], D[N j]} = H [LNjN ] (2)

{H [N1], H [N2]} = D[gij(N1∂jN2 −N2∂jN1)] (3)

with the spatial metric gij(x). (In this article we denote
the metric on a spatial 3-manifold in space-time by gij(x),
and by πij(x) its conjugate momentum, using for the
sake of easier comparison the notation of the articles [3,
4] which we will follow closely in some parts. For an
overview of canonical methods, the reader is referred to
[5].)
Gauge transformations δF = {F,H [N ] +D[N i]} of a

phase-space function F then agree with the changes im-
plied by infinitesimal deformations of the spatial hyper-
surfaces in space-time. In a passive picture, this gauge
transformation agrees with a coordinate change along a
space-time vector field ξµ with components given in terms
of the spatial fields N and N i (see e.g. [6]). The whole
hypersurface-deformation algebra presents a large exten-
sion of the local Poincaré algebra, which is recovered for



2

linear N and N i in a local coordinate patch [7]. A gen-
eral property of the algebra is that it is largely insensitive
to the dynamics of the underlying covariant theory: all
higher-curvature theories have constraints obeying the
same algebra; see e.g. [8] for an explicit calculation. This
uniqueness statement can be reversed if the derivative or-
der of one’s theory is constrained to be at most two in the
equations of motion, in which case the form of the action
(up to the values of Newton’s and the cosmological con-
stant) can uniquely be recovered from the hypersurface-
deformation algebra [3, 4]. Mimicking the usual tensorial
arguments to fix the terms of the Einstein–Hilbert action,
the dynamics, to the lowest order of derivatives, is thus
uniquely determined by the algebra of constraints.
The algebra itself is rather rigid as well, making it dif-

ficult to implement new covariance principles and correc-
tion terms other than higher-derivative ones. A new re-
sult of recent years, however, is that loop quantum grav-
ity, if it can be consistent at all, gives rise to modified
hypersurface-deformation algebras. With different kinds
of quantum corrections characteristic of the theory, this
has been seen for perturbative inhomogeneity [9–11], in
2 + 1 dimensions [12, 13] and in spherically symmetric
models [14–16]. Different physical consequences for cos-
mology [1, 17, 18] and for properties of black holes [19–21]
have resulted. As a common form of the modified con-
straint algebra, one can write

{H(β)[N1], H(β)[N2]} = D[βgij(N1∂jN2−N2∂jN1)] (4)

in terms of a phase-space function β[gij , π
ij ] determined

by the quantum corrections considered. Poisson brack-
ets in (1) involving the diffeomorphism constraint remain
unmodified (except in the case of [10] which has been su-
perseded by [11]).
That a closed algebra still arises is far from trivial,

and shows that general relativity, at least in the models
considered, can be deformed consistently. The systems
obtained correspond to a more general form of space-time
covariance than usually taken into account [86]. In this
article, we will assume an algebra of the form (4) and an-
alyze what the possible consequences for action principles
are. With action principles at hand, the interpretation of
deformed constraint algebras will become more intuitive.
Moreover, they provide manifestly covariant (in the de-
formed sense) formulations of the underlying models of
loop quantum gravity from which the quantum correc-
tions have been extracted.
The conclusions we will be able to derive are surpris-

ingly rich: (i) We will obtain a clear separation of some
corrections from others. In particular, inverse-triad cor-
rections in loop quantum gravity will play a much more
characteristic role than holonomy corrections of the same
theory, or higher-curvature corrections of general form.
(ii) The dynamics of loop quantum gravity near a space-
like classical singularity takes on a specific form in which
spatial derivatives become subdominant. A scenario sim-
ilar to but more generic than the BKL picture follows.
(iii) Loop quantum gravity will be seen to give rise to

signature change in strong-curvature regimes. This new
feature of the theory, overlooked so far in minisuperspace
models, gives rise to new and improved cosmological sce-
narios.

II. OVERVIEW OF DEFORMED CONSTRAINT

ALGEBRAS IN LOOP QUANTUM GRAVITY

Canonically, the quantum effects of interacting gravi-
tational theories, often expressed by higher-curvature ef-
fective actions, are derived from quantum back-reaction
[22]: While expectation values of semiclassical states fol-
low nearly the classical trajectories, additional state pa-
rameters such as fluctuations and other moments influ-
ence the quantum trajectory. Coupled equations of mo-
tion for expectation values and the moments can, in some
regimes of adiabatic nature, be reformulated as the usual
equations of low-energy effective actions [23].
Obviously, these effects should play a large role for

quantum gravity and cosmology. But in addition to the
ubiquitous quantum back-reaction (or corrections from
loop diagrams in perturbative terms), there are charac-
teristic quantum corrections expected for loop quantum
gravity, providing two distinct quantum-geometry effects:
(i) higher powers of spatial curvature components (in-
trinsic and extrinsic) stemming from the appearance of
holonomies of the Ashtekar–Barbero connection instead
of direct connection components in quantized constraints
[24, 25], and (ii) natural cut-off functions of divergences
of factors containing inverse components of the densitized
triad, arising from spatial discreteness [25, 26]. The first
type of quantum-geometry corrections is usually referred
to as “holonomy corrections,” the second as “inverse-
triad corrections” (or, in the context of nearly isotropic
cosmology, “inverse-volume corrections”). Both can be
expanded as series of corrections by components of spa-
tial tensors in the constraints, not by scalar invariants of
space-time tensors as one is used to from covariant effec-
tive actions. Neither the reconstruction of an action prin-
ciple from the constraints nor properties of covariance are
obvious in such a situation, and the only systematic way
to determine such features is an analysis of the constraint
algebra. As shown in several model systems so far, the
hypersurface-deformation algebra is generically deformed
by quantum-geometry. In particular, corrections cannot
be written purely as higher-curvature terms added to the
Einstein–Hilbert action, as often expected for quantum
gravity. One of the main questions to be addressed in this
article is what actions and covariance properties could be
realized instead [87].
In this section we summarize the models investigated

so far for their properties of deformations of the con-
straint algebra, split into the two types of quantum-
geometry corrections. (Quantum back-reaction has not
yet been analyzed to completion in this context, but the
procedure would follow [23, 27, 28].) The set of models
in which consistent deformations have been achieved is
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quite diverse, but the general form of β appears to be
insensitive to model specifications. The constraint alge-
bra therefore displays universal implications for covariant
space-time structure.

A. Inverse-triad corrections

In loop quantum gravity, space-time geometry is de-
scribed by canonical fields AI

i and Ei
I , a connection re-

lated to curvature and the densitized triad, instead of the
spatial metric gij and its momentum πij . These fields
have advantages for a background independent quantiza-
tion because they can be smeared without reference to an
auxiliary metric structure: The connection is integrated
along curves e in space to obtain holonomies he(A) =
P exp(

∫

e τIA
I
i ė

idλ), and the densitized triad, dual to a

2-form, is integrated to fluxes FS(E) =
∫

S
τIEi

Inid
2y

through surfaces S in space. Here, τI = 1
2 iσI are genera-

tors of su(2), related to the Pauli matrices. The canoni-

cal structure {AI
i (x), E

j
J (y)} = 8πγGδji δ

I
Jδ(x, y) with the

Barbero–Immirzi parameter γ [29, 30] provides a regular
relation for {he(A), FS(E)} free of delta functions [88].
Holonomies and fluxes are promoted to basic operators

of the resulting quantum theory, and they represent the
canonical fields in all composite operators such as Hamil-
tonians. Both types of basic operators imply some form
of non-locality because they are integrated rather than
pointlike fields. Using holonomies for connection com-
ponents, moreover, implies that there are higher-order
corrections when the exponential is expanded, compared
with classical expression which are usually polynomials
of degree at most two in the connection. Fluxes also
give rise to corrections in addition to their non-locality:
They are quantized to operators with discrete spectra,
containing zero as an eigenvalue. Such operators are not
invertible, and yet an inverse of the densitized triad (or its
determinant) is needed to quantize matter Hamiltonians
(usually in the kinetic part) and the Hamiltonian con-
straint. Well-defined operators with inverse densitized
triad components as their classical limit do exist [25], but
they have strong quantum corrections for small values of
the fluxes. Correction functions, obtained from expecta-
tion values of inverse-triad operators [31], then primarily
depend on the fluxes, or on the densitized triad and the
spatial metric. In non-Abelian situations, there can also
be some dependence on the connection via higher-order
terms [32].
Inverse-triad corrections cannot easily be formulated

consistently in homogeneous models, where the rescal-
ing freedom of the scale factor under changes of co-
ordinates may be broken unless one properly refers to
underlying discreteness scales. However, with some
inhomogeneous input consistent formulations exist [2,
18, 33] and show the importance of these quantum-
geometry corrections. Quantization of the dynamics
can proceed only if a substitute for the non-existing in-
verse of an elementary flux F̂ is found, which accord-

ing to [25] is possible by using Poisson-bracket iden-
tities. If we write schematically [89] |F |q−1sgn(F ) =
(8πGγδq)−1i exp(iδA){exp(−iδA), |F |q} with a connec-
tion component A, we have an inverse of F on the left-
hand side for q < 1 while the right-hand side can be
quantized without requiring an inverse of F if q > 0.
The Poisson bracket can straightforwardly be quantized:
There is an operator F̂ whose positive power |F̂ |q can
easily be taken via the spectral decomposition. While
loop quantum gravity does not provide an operator for A,
it does have well-defined quantizations of “holonomies”
h = exp(iδA). Finally, we turn the Poisson bracket into
a commutator divided by i~, and achieve to quantize
|F |q−1sgn(F ) in spite of the non-existence of an inverse

of F̂ .
The resulting operator is well-defined and has an in-

verse power of F as its classical limit, approached on the
part of the spectrum of F̂ with large eigenvalues. There
are quantization ambiguities which prevent one from
finding a unique correction function [34, 35]. The typical
form, however, follows from algebraic properties and re-

sults in ̂|F |q−1sgnF =
(

|F̂ +∆F |q − |F̂ −∆F |q
)

/2q∆F

with a Planckian ∆F ≈ ℓ2P = ~G. Such corrections with

a tiny Planck area may seem small, but 〈F̂ 〉 as a funda-
mental flux or area of a discrete state is typically Planck-
ian as well. For small flux values, characteristic quantum
corrections result [36], constituting inverse-triad correc-
tions. We collect inverse-triad effects in a correction func-
tion

ᾱ(F ) = |F |1−qsgnF · 〈 ̂|F |q−1sgnF 〉F (5)

= |F |1−qsgnF
|F +∆F |q − |F −∆F |q

2q∆F
+moments

up to F̂ -fluctuations and higher moments, using an ex-
pectation value in a state peaked at flux F .

1. Cosmology

The most general class of models shown so far
to have a consistently deformed constraint algebra is
the one of perturbative inhomogeneity around spatially
flat Friedmann–Robertson–Walker models [9], including
inverse-triad corrections. In this case, β = ᾱ2 in (4)
with the background function ᾱ of inverse-triad correc-
tions depends on the scale factor a. These corrections,
as in the full theory, arise because loop quantum cosmol-
ogy [37–39] quantizes the scale factor, or rather its square
|p| = a2 equipped with a sign for spatial orientation, to an
operator p̂ with discrete, equally spaced spectrum. The
spectrum contains zero as an eigenvalue, and therefore p̂
has no densely defined inverse.
Apart from their formal derivation, inverse-triad cor-

rections in cosmology are characterized by cut-off ef-
fects of classically diverging quantities such as a−1. For
degenerate geometries, or near the big-bang singular-
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ity of isotropic models, discreteness effects lead to non-
divergent quantities when shift-operators exp(iδA) in-
stead of differential operators −i~∂/∂F are used in the
commutators of inverse-triad operators. For fluxes in
isotropic space-times, we write F = ℓ20a

2 with the coordi-
nate size ℓ0 of elementary plaquettes in a regular-lattice
discrete state (choosing F to be positive without loss of
generality). The cut-off behavior is clearly visible from
properties of the ratio

ᾱ(ℓ20a
2)

a2(1−q)
=

|ℓ20a2 +∆F |q − |ℓ20a2 −∆F |q
2q∆F

(6)

which approaches zero (instead of infinity) for a → 0,
and asymptotes to the classical expression 1/a2(1−q) for

a ≫ a∗ well above a characteristic scale a∗ =
√
∆F/ℓ0.

The latter depends on the discreteness behavior of an
underlying state, which is responsible for the quantum
correction and the implicit cut-off of divergences associ-
ated with 1/a2(1−q). Regarding the scaling behavior of
a and a∗, the background behavior of inverse-triad cor-
rections, as derived in [31, 36], has been made consistent
in inhomogeneous settings in [2, 33]. (The precise form
of ᾱ as a function of phase-space variables will not be
important in this article.)
For perturbative inhomogeneities in spatially flat

isotropic models, a consistent deformation (4) results at
least if ᾱ is close to one [9]. Once it is ensured that the
algebra of constraints closes, several consistency condi-
tions for the correction functions arise. The background
behavior of ᾱ appearing in the gravitational part of the
Hamiltonian constraint remains unrestricted, but anal-
ogous correction functions in possible matter contribu-
tions must be related to it and are no longer completely
arbitrary. The case of a scalar field will be discussed in
more detail below, Section VC. Moreover, in the per-
turbative terms by inhomogeneous perturbations of the
phase-space fields, there are additional corrections called
“counterterms” which are completely fixed by the con-
sistency requirements. They can be understood as de-
termining the dependence of ᾱ on inhomogeneities going

beyond the background behavior which is more straight-
forward to compute directly from expectation values of
inverse-triad operators. Some counterterms also contain
additional spatial derivatives compared to the classical
terms, which can be interpreted as contributions from
a derivative expansion of non-local inverse-triad effects,
making use of surface integrations of the densitized triad,
or flux operators, in inhomogeneous settings.

2. Spherical Symmetry

A second class of models in which inverse-triad cor-
rections have been included consistently, this time non-
perturbatively, is spherically symmetric models. Sev-
eral different cases have been investigated: Poisson
Sigma Models [14] (see [40–43] for the classical models)
and different versions of Lemâıtre–Tolman–Bondi models
[16, 44]. In these models, it is noteworthy that non-trivial
quantum corrections are possible even without any de-
formation of the constraint algebra, a property which we
will discuss in more detail later.

We quote the corrected constraints in terms of triad
variables rather than the metric gij because one of the
triad components is directly responsible for the correc-
tions. (In the full theory, by comparison, it is primarily
det g which gives rise to inverse-triad corrections. Be-
cause det g equals the squared determinant of the den-
sitized triad, in the general case it will make no differ-
ence what variables we use.) As spherically symmetric
phase space variables, with radial coordinate x (not nec-
essarily the area radius) and azimuth angle ϕ, we then
have the radial component Ex and angular component
Eϕ of the densitized triad together with the radial com-
ponent Kx and angular component Kϕ of extrinsic cur-
vature [45, 46]. The metric is related to Ex and Eϕ by
gxx = (Eϕ)2/|Ex| and gϕϕ = |Ex| sinϑ. Consistent de-
formations of the Hamiltonian constraint (with unmodi-
fied diffeomorphism constraint) have the form

HQ
grav[N ] = − 1

2G

∫

dxN

[

α|Ex|− 1
2K2

ϕE
ϕ + 2ᾱKϕKx|Ex| 12 + α|Ex|− 1

2Eϕ − αΓ|Ex|− 1
2Γ2

ϕE
ϕ + 2ᾱΓΓ

′
ϕ|Ex| 12

]

(7)

with correction functions α, ᾱ, αΓ and ᾱΓ. In the second
line, Γϕ = −(Ex)′/2Eϕ is the angular component of the
spin connection.
The four correction functions are not independent but

must satisfy [16]

(ᾱαΓ − αᾱΓ)(E
x)′ + 2(ᾱ′ᾱΓ − ᾱᾱ′

Γ)E
x = 0 (8)

for the Poisson bracket of two Hamiltonian constraints to
be anomaly-free. If the two terms in this equation vanish

separately, a case studied in [16], they imply αΓ ∝ α and
ᾱΓ ∝ ᾱ for a closed constraint algebra. For correction
functions defined such that they approach the classical
value one for large arguments, αΓ = α and ᾱΓ = ᾱ.

From the Poisson bracket {H [N ], D[Nx]}, the only re-
striction is that both correction functions depend only
on the radial triad component Ex, not on Eϕ. (This
fact is easily understandable from transformation prop-
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erties of the components: Ex is a scalar in the radial
manifold while Eϕ is a scalar density [45].) Only the
functions ᾱ and ᾱΓ appear in the deformed constraint
algebra (4) via β = ᾱᾱΓ, not α or αΓ. By changing
only α and αΓ, one can modify the spherically symmet-
ric constraints while keeping their derivative order and
the constraint algebra unchanged: In spherical symme-
try, the classical dynamics does not follow uniquely from
the hypersurface-deformation algebra.

3. 2 + 1 gravity

In spherically symmetric models and for perturbative
inhomogeneities around isotropic models, consistent de-
formations of the hypersurface-deformation algebra have
been found by computing Poisson brackets of effective
constraints, obtained by amending the classical con-
straints by correction functions. In 2 + 1-dimensional
models, there are detailed calculations [13] of partially
off-shell constraint algebras even at an operator level.
The results confirm the general form of consistent defor-
mations seen with effective constraints.

B. Holonomy corrections

In spherically symmetric models, also a limited version
of holonomy corrections has been implemented consis-
tently, those that involve only the scalar component Kϕ

of extrinsic curvature but not the component Kx of den-
sity weight one [15]. One can therefore consistently sub-
stitute −iδ−1 exp(iδKϕ) for Kϕ, but there is no known
consistent way to use exp(i

∫

eKxdx) for Kx. Accord-
ingly, no spatial integration or discretization is required
to ensure the existing forms of consistent correction func-
tions to be scalar and to keep the {H,D}-part of the
constraint algebra unmodified. This type of correction
thus does not lead to non-locality, as holonomy correc-
tions usually do owing to the spatial integrations involved
in their definition. In this case, the form of the defor-
mation is similar to the one obtained for inverse-triad
corrections, with a Poisson bracket (4) for a correction
function now depending on extrinsic curvature instead of
the densitized triad.

If we parameterize the Hamiltonian constraint as

HQ
grav[N ] = − 1

2G

∫

dxN

(

α|Ex|− 1
2Eϕf1(Kϕ,Kx)+2ᾱ|Ex| 12 f2(Kϕ,Kx)+α|Ex|− 1

2Eϕ−αΓ|Ex|− 1
2Γ2

ϕE
ϕ+2ᾱΓΓ

′
ϕ|Ex| 12

)

including inverse-triad corrections as well as holonomy
corrections via two new functions f1 and f2, anomaly
freedom can be realized if f1 = F 2

1 and f2 = KxF2 pro-
vided that F2 = F1(∂F1/∂Kϕ)α/αΓ [15]. If F1 is inde-
pendent of Ex, or at least depends on this triad vari-
able in a way different from inverse-triad corrections, we
obtain that αΓ = α and also ᾱΓ = ᾱ must be real-
ized, restricting the set of solutions of (8). Combina-
tions of different corrections therefore can reduce the
freedom of choices seen for just a single type. If we
take F1 = (δγ)−1 sin(γδKϕ), as often done for holon-
omy corrections, we see that F2 = (2γδ)−1 sin(2γδKϕ).
The algebraic deformation is then given by β(Ex,Kϕ) =
ᾱᾱΓ∂F2/∂Kϕ. For the example provided, this means
β(Kϕ) = cos(2δKϕ) if we include only holonomy correc-
tions. Note that β can be negative for holonomy cor-
rections, unlike for inverse-triad corrections. In particu-
lar, disregarding inverse-triad corrections, we can write
β = ∂F2/∂Kϕ = 1

2∂
2f1/∂K

2
ϕ. At curvatures for which

f1 is at a maximum, β < 0.

A more general case of holonomy corrections, includ-
ing even discretization and non-locality, has been imple-
mented consistently in 2 + 1-dimensional gravity with a
non-vanishing cosmological constant [12]. (A vanishing
cosmological constant in 2+1 dimensions does not require
deformations of the constraint algebra, which is much
simpler in this case.) As with inverse-triad corrections

in 2 + 1 dimensions, also these calculations have been
performed at an operator level. Similarly to the spheri-
cally symmetric case, the correction function is given by
the trace of a holonomy used to write the Hamiltonian
constraint in loop variables.

For some perturbative models around Friedmann–
Robertson–Walker backgrounds, holonomy corrections
have been included consistently, too. This is the case
for tensor [47], vector [10], and scalar modes [11]. A new
feature in [10], which did not show up in any other case
of consistent deformations of (1) so far, is that the Pois-
son bracket {H,D} could be consistently modified (even
if D itself remains classical). However, this possibility
has been ruled out by more restricted consistent defor-
mations of scalar modes [11]. Also here, the correction
function is of the form cos(2δc) with the isotropic connec-
tion component c. It is similar to the correction function
for holonomy corrections in spherical symmetry, and also
becomes negative for large curvatures, with δc ∼ π/2.
Implications will be discussed later. As in spherical sym-
metry, no non-locality effects have yet been implemented
for holonomy corrections in nearly isotropic cosmology.
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C. Discretization

Effective constraints of loop quantum gravity in inho-
mogeneous situations naturally include discretization (or
a derivative expansion of spatially discretized terms) be-
cause the basic variables, holonomies and fluxes, are de-
fined as spatial integrations of non-scalar quantities. Also
spatial derivatives in Hamiltonians must be replaced suit-
ably by finite differences. Modelling classical constraints
with these variables to ensure the correct classical limit
of the resulting theory then requires one to refer to the
field values at different points even for classically local ex-
pressions. For this type of corrections, independently of
holonomy corrections, no consistently deformed algebra
has been formulated explicitly, but work on consistent
discretizations exists [48–50] and indicates that deforma-
tions should occur also here.

III. HYPERSURFACE DEFORMATIONS

The meaning of the hypersurface-deformation algebra
has been discussed in detail in the classic references [3]
and [4]. Nevertheless, it is useful to go through some of
the arguments once again with a fresh perspective sug-
gested by the deformed algebras found recently and sum-
marized in the preceding section.

A. Spatial diffeomorphisms

Most (but not all) deformations found so far in
loop quantum gravity leave the spatial part of the
hypersurface-deformation algebra intact, which will also
be one of our assumptions in this article. There are sev-
eral reasons for this assumption: First, spatial diffeo-
morphisms can be implemented directly in loop quan-
tum gravity by moving graphs in the spatial manifold
used to set up the canonical formulation. This action is
the same as the one on classical fields, and so one would
not expect corrections to the diffeomorphism constraint
at an effective level. If one just assumes that the part
of the constraint algebra associated with a vector field
δN i generates relabellings xi 7→ xi+ δN i of points in the
spatial manifold, any field on space must automatically
change by the Lie derivative along δN i. Since spaces in
a very general sense are described mathematically by la-
belling their elements in some way, while physics should
be insensitive to how the labels are chosen, it is natu-
ral to expect a relabelling symmetry to be present at an
effective level, even if the fundamental spatial structure
may become discrete or non-commutative. From the rela-
tion {F,D[δN i]} = LδNiF and the usual expressions for
Lie derivatives of the fundamental fields, one can then
uniquely derive the phase-space expression that the dif-
feomorphism constraint must take [3]. In particular, it is
always linear in the momenta of the fields, a consequence

which we will make use of later on. For the fields consid-
ered here, this implies Dscalar[N

i] =
∫

d3xN ipφφ|i for a

scalar field and Dgrav[N
i] = −2

∫

d3xN iπi
j
|j for gravity

in ADM variables.
Once the diffeomorphism constraint is determined, it

must obviously satisfy the spatial part (1) of the classical
constraint algebra as well as (2), as long as the corrected
H(β)[N ] remains a scalar. The latter assumption (that
H(β)[N ] be a spatial scalar) appears safe, too, because of
the nature of effective constraints as integrated function-
als on a spatial manifold. In what follows, we will make
use not only of the assumption that the spatial part of
the hypersurface-deformation algebra remains unmodi-
fied, but also of several further consequences regarding
the form of the diffeomorphism constraint. Most im-
portantly, the diffeomorphism constraint appears on the
right-hand side of (4); thus, the expression it takes will in-
fluence the Hamiltonian constraint determined from the
constraint algebra.

B. Transversal deformations

The modification by β in (4) occurs for the commu-
tator of two transversal deformations of spatial hyper-
surfaces along their normal vectors, by two different and
position-dependent amounts N1 and N2. This part of
the deformation algebra is distinguished from the spatial
part not only in that it is of dynamical content, owing
to the presence of the Hamiltonian constraint and mat-
ter Hamiltonians. Also, the use of the normal vector
to point the deformation normally implies a dependence
on the space-time metric gµν , containing phase-space de-
grees of freedom. The algebra, as a consequence, acquires
structure functions rather than just structure constants
as suffice for the part of spatial deformations. Implica-
tions of structure functions for canonical quantization,
mainly negative ones owing to additional difficulties in
commutator relationships, are well known; in the present
context they are, perhaps more positively so thanks to
interesting implications, realized as a general source of
possible deformations by quantum corrections.
Unlike the spatial part of the deformation algebra,

which directly shows its relation to infinitesimal defor-
mations by the presence of the Lie derivative, relating
the {H,H} part of the algebra to transversal deforma-
tions is not so obvious. As indicated by the algebra, we
consider two transversal deformations by lapse functions
N1 and N2, done in a row but in the two different possi-
ble orders. Starting with an initial hypersurface Sin, we
obtain two intermediate ones, S1 by deforming Sin by N1

along the normal and S2 by deforming Sin by N2 along
the normal. From those two intermediate hypersurfaces,

we obtain two final hypersurfaces, S
(1)
fin by deforming S1

by N2 along the new normal of S1 and S
(2)
fin by deforming

S2 by N1 along the new normal of S2. Comparing the
two final hypersurfaces should then yield a commutator
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of deformations according to (3). In the process of com-
puting the normals of Sin, S1 and S2, the metric tensor
must be used. We will not fix the signature σ = ±1
of the metric for our calculations in order to be able to
incorporate possible sign changes due to quantum correc-
tions, as suggested by holonomy corrections where β can
turn negative. (For Lorentzian signature with σ = −1,
we choose the time part of the metric to carry the minus
sign.)
For simplicity, and without loss of generality, we

choose space-time coordinates such that Sin is given by
a constant-time slice, Sin: y

i 7→ (tin, y
i) with some spa-

tial embedding coordinates yi. The general expression
for the future-pointing unit normal to a hypersurface
yi 7→ xµ(yi),

nµ = σ
g
µµ′

ǫµ′νλκ∂y1xν∂y2xλ∂y3xκ

|| · || (9)

(with || · || denoting the norm of the numerator) then

simplifies to nµ
in = σgµ0/

√

|g00|.

The intermediate hypersurfaces, with infinitesimal
transversal deformations, are obtained as

S1: y
i 7→ xµ(yi) +N1(y

i)nµ
in = (tin, y

i) +
σN1(y

i)gµ0(yi)
√

|g00|

S2: y
i 7→ xµ(yi) +N2(y

i)nµ
in = (tin, y

i) +
σN2(y

i)gµ0(yi)
√

|g00|
.

From these expressions, we obtain the new normals by
the general formula (9), expanded to first order in the
lapse functions for infinitesimal deformations:

nµ
1 = σ

g
µ0

√

|g00|
+

(

−σgµi +
g
µ0
g
i0

|g00|

)

∂iN1 +N1X +O(N2
1 ) = σ

g
µ0

√

|g00|
− σgµi∂iN1 +N1X +O(N2

1 )

nµ
2 = σ

g
µ0

√

|g00|
+

(

−σgµi +
g
µ0
g
i0

|g00|

)

∂iN2 +N2X +O(N2
2 ) = σ

g
µ0

√

|g00|
− σgµi∂iN2 +N2X +O(N2

2 )

with the spatial metric gµν = g
µν − σnµ

inn
ν
in on the initial slice. The coefficient X denotes a combination of metric

components and their derivatives; the precise form will not be important because these terms, depending on N1 and
N2 but not on their derivatives, will drop out of the final commutator results. The two final hypersurfaces are then
parameterized as

S
(1)
fin : y

i 7→ xµ(yi) +N1(y
i)nµ

in +N2(y
i)nµ

1

= (tin, y
i) + σN1(y

i)
g
µ0

√

|g00|
+ σN2(y

i)

(

g
µ0

√

|g00|
− gµi∂iN1(y

i)

)

+N1N2X +O(N2
1 )

S
(2)
fin : y

i 7→ xµ(yi) +N2(y
i)nµ

in +N1(y
i)nµ

2

= (tin, y
i) + σN2(y

i)
g
µ0

√

|g00|
+ σN1(y

i)

(

g
µ0

√

|g00|
− gµi∂iN2(y

i)

)

+N2N1X +O(N2
2 ) .

With these expressions it is easy to notice that, writing

S
(1)
fin : y

i 7→ xµfin,1(y
i), we have

S
(2)
fin : y

i 7→ xµfin,2(y
i) = xµfin,1(y

i) + δSµ(yi)

with

δSµ(yi) = −σgµi(N1∂iN2 −N2∂iN1) . (10)

To leading order in the lapse functions, δSµ(yi) (depend-
ing only on spatial metric components gµi) is orthogonal
to the normal vector and thus amounts to an infinitesi-
mal spatial diffeomorphism along the hypersurface. The
spatial deformation δSµ in (10) is obtained from the com-
mutator of two normal deformations, and it reproduces

the normal part of the algebra (3) for σ = −1. A change
of sign in the structure function is equivalent to signature
change. (Formally, this implication of signature change
can also be seen by replacing N with iN .)
So far we have assumed the classical manifold struc-

ture and geometry in order to compute the normal vec-
tors. The deformed algebra (4) can be achieved formally
by using βgµν instead of the inverse metric gµν . For
inverse-triad corrections, such a modification would be
expected because it affects all inverse components of the
metric in Hamiltonians. Nevertheless, the appearance of
the correction function in the constraint algebra must
have a more general origin than just modifying any ap-
pearance of the inverse metric because a deformation of
the same form is obtained for some versions of holonomy
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corrections. The latter do not affect inverse-metric com-
ponents but rather appearances of extrinsic curvature
or the Ashtekar–Barbero connection. However, only the
spatial metric appears in the structure functions of the
constraint algebra; deformations, therefore, cannot be re-
duced to simply applying the usual corrections of loop
quantum gravity to the structure functions. Such a pro-
cedure would be questionable, anyway, because the struc-
ture functions are not quantized but rather arise from the
algebra satisfied by effective quantum constraints, with
corrections following in a more indirect way.

IV. CONSTRAINTS AND SPACE-TIME

STRUCTURE

Quantum-geometry corrections change the
hypersurface-deformation algebra and accordingly
the space-time structure: Normal deformations of
spatial slices then behave differently from the classical
case. Corresponding actions cannot be covariant in the
usual sense, but they are still covariant in a deformed
sense, under an algebra of the type (4). In the absence of
a corresponding space-time tensor calculus, it is difficult
to imagine the form of actions covariant with respect
to the new space-time structures. But fortunately, such
actions can be systematically derived from the constraint
algebra, or regained in the language of [3, 4].
In this and the following section we will go in some

detail through the steps outlined in [3], focusing our dis-
cussion on those that use assumptions no longer valid
if the classical space-time structure cannot be taken for
granted. According to the form of the deformed con-
straint algebra used here, and as a rather general conse-
quence of canonical quantum gravity, the spatial struc-
ture on the one hand and the structure of hypersurface
deformations within space-time, on the other, will play
rather different roles. The algebraic effects considered
here are thus truly dynamical and do not arise at the
kinematical level of spatial manifolds.

A. Locality

Once the spatial structure is fixed, the next object
to consider is the change of the spatial metric under a
normal deformation of a spatial slice. Classically, this
deformation is given by the extrinsic-curvature tensor,
{gij(x), H [δN ]} = 2Kij(x)δN , and it plays an impor-
tant role in [3] in helping to show that the Hamiltonian
constraint must be a local expression in the momentum:
Identifying

δH [δN ]

δπij(x)
= {gij(x), H [δN ]} = 2Kij(x)δN(x) (11)

implies that H [δN ] must be local in the momentum
πij(x) without any dependence on πij -derivatives. The

specific form of Kij as extrinsic curvature does not mat-
ter for this conclusion, but it is important that it is a
local function, and that no derivatives of δN appear on
the right-hand side.

In the presence of deformed space-time structures, we
cannot safely assume that transversal metric deforma-
tions are given in terms of extrinsic curvature. For the
explicit examples of deformed constraint algebras, it is
known that the relationship between momentum vari-
ables and extrinsic curvature deviates from the classical
one; see e.g. the discussion in [16]. It should then be
possible for the change of the metric under a transversal
deformation, while still being related to the momentum
of the metric, to have a modified relationship with ex-
trinsic curvature. In the absence of a geometrical inter-
pretation of the change of the metric, one can compute it
only by using the canonical formula {gij(x), H [δN ]}; but
then, one piece of independent information is lost and we
cannot derive locality properties of the Hamiltonian con-
straint. If H [δN ] is local in the momentum, {gij , H [δN ]}
is local and vice versa, but there is no independent gen-
eral statement that could determine whether locality is
realized.

Instead, we will make use of the following line of ar-
guments: We know that the classical constraint must
be local without spatial derivatives of πij , and in most
cases the form of corrections expected from loop quantum
gravity tells us what locality properties new terms have.
Most of them are indeed non-local, for instance those
arising from the use of holonomies as exponentiated line
integrals of a connection related to extrinsic curvature,
or inverse-triad corrections depending on fluxes through
extended surfaces. In derivative expansions, whole series
of spatial derivatives of πij or gij will result. The form of
the corrections and their impact on effective constraints
can thus be used to decide whether local or non-local
constraints should be expected. The arguments put for-
ward to regain the form of the constraint will then have
to be adapted, depending on the locality properties real-
ized. In most cases, effective equations include a deriva-
tive expansion, approximating non-local features locally.
We can then assume a local Hamiltonian constraint, but,
in contrast to the classical case, must take into account
additional derivatives, for instance of Kij .

Similar considerations can be applied to the question
of whether the matter Hamiltonian must be local in the
momentum. Here, the assumptions made in [3] appear
safer in the context of deformed algebras than those
for the corresponding gravitational terms. Instead of
looking at transversal deformations of the spatial met-
ric, we look at transversal deformations of the matter
field, assumed to be a scalar to be specific. The rela-
tion {φ(x), H [δN ]} = V (x)δN then replaces the gravita-
tional relation involving extrinsic curvature, with V (x)
interpreted as the velocity of the scalar field. In con-
trast to the gravitational part, there are some quantum
corrections in matter Hamiltonians that, while changing
the specific expression for V (x), leave its local nature
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intact [90]. Thus, in some cases we can assume the mat-
ter Hamiltonian to be local in the momentum even in
the presence of corrections making the gravitational part
non-local without a derivative expansion. This difference
between gravitational and matter Hamiltonians may play
an important role for the interplay of different contribu-
tions to the constraints ensuring that the algebra closes.

B. Gravity and matter

There is a useful argument showing that the gravity
and matter parts of the constraints D[N i] = Dgrav[N

i]+
Dmatter[N

i] and H [N ] = Hgrav[N ] + Hmatter[N ] must
satisfy the hypersurface-deformation algebra separately,
provided that matter Hamiltonians do not depend on
the gravitational momentum πij(x) and the gravitational
constraint does not contain spatial derivatives of πij(x).
In this case,

{H [N1], H [N2]} = {Hgrav[N1], Hgrav[N2]} (12)

+{Hmatter[N1], Hmatter[N2]} .

The assumption is realized classically for a scalar field,
for instance, and so one can consider its simpler algebraic
regaining procedure independently of the gravitational
part. With quantum corrections, however, the assump-
tion can be violated easily, depending on the type of the
correction. Matter fields are usually introduced in loop
quantum gravity via the values they take at the vertices
of a spin network. Spatial derivatives as they occur in the
Hamiltonians must be discretized and replaced by finite
differences of the values at neighboring vertices before
they can be quantized. Depending on how the differenc-
ing is done, one may have to refer to the gravitational
connection, making the matter constraint dependent on
the gravitational momentum. Another source of such a
dependence may be counterterms as introduced in [9],
required to close the constraint algebra. An extra mo-
mentum dependence can be avoided for a scalar field, but
there may be reasons to prefer more complicated quanti-
zations.
Coming back to the results found in the preceding

subsection on locality, we can see a potential obstruc-
tion to the existence of consistent deformations of the
classical constraint algebra. There are corrections ex-
pected from loop quantum gravity, most notably holon-
omy corrections, which are non-local in the connection
and thus make the gravitational part of the Hamiltonian
constraint non-local in the gravitational momentum. A
scalar Hamiltonian in the presence of the same correc-
tions, on the other hand, remains local in its momentum.
If the gravitational part and the matter part are to sat-
isfy the same deformed algebra for consistency, the mis-
match of locality properties could be seen as an obstacle
to the existence of a consistent deformation: The func-
tion β of (4) would be non-local in one contribution and
local in another one, preventing one from adding up the

constraint contributions to a consistent whole. However,
the situation is not obviously inconsistent because the
same property giving rise to the mismatch, non-locality
and the presence of derivatives of πij , also violates the as-
sumptions that led one to conclude that gravity and mat-
ter satisfy the hypersurface-deformation algebra indepen-
dently. Non-locality, in a derivative expansion of holon-
omy corrections in effective constraints, makes the grav-
itational constraint depend on spatial derivatives of the
momentum πij(x), such that cross-terms between gravity
and matter in (12) no longer cancel. It is reassuring that
properties of non-locality thus restore the a-priori pos-
sibility of consistency, but the necessary appearance of
gravity-matter cross-terms makes the explicit construc-
tion of consistent deformations for non-local momentum-
dependent corrections more difficult than for local ones.
As recalled in Sec. II B, results in spherical symmetry are
indeed much easier to find in local versions of the correc-
tions. Also for perturbative inhomogeneities as in [11]
one so far assumes a local, pointwise form of holonomy
corrections. The manipulations required for non-local
modifications to be consistent appear to be rather com-
plicated, a fact which may explain the difficulties found
in constructing consistent deformations corresponding to
the non-local holonomy or discreteness corrections. (On
the other hand, tying matter terms more closely to grav-
itational ones rather than having them algebraically sep-
arated as in (12) may be of interest in the context of
unification.)

V. ALGEBRAICALLY REGAINING

HAMILTONIANS

With these preparatory discussions, we can now begin
to enter details of regaining Hamiltonians from deformed
constraint algebras. There are several interesting appli-
cations and generalizations of the methods of [3], which
we develop in different cases.

A. Spherical symmetry

Before looking at the general theory, it is instructive to
specialize the calculations to spherical symmetry. Some
steps will simplify, and it will be interesting to compare
the differences in uniqueness for different degrees of sym-
metry. As already noted in Sec. II A 2, in spherical sym-
metry the classical dynamics does not follow uniquely
from the algebra.
For the sake of easier comparison with calculations of

modified constraints motivated by loop quantum gravity,
we will present equations in this subsection for triad vari-
ables. A spherically symmetric spatial densitized triad
has two components Ex and Eϕ, for the radial coordinate
x and one angular coordinate ϕ, which determine the spa-
tial metric by gxx = (Eϕ)2/|Ex| and gϕϕ = sin2 ϑ|Ex|.
We will assume Ex > 0 to avoid some sign factors.
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Instead of working with spatial curvature tensors, in
this context it turns out to be useful to refer to the
angular spin-connection component and its spatial and
functional derivatives,

Γϕ = − (Ex)′

2Eϕ
(13)

Γ′
ϕ = − (Ex)′′

2Eϕ
+

(Ex)′(Eϕ)′

2(Eϕ)2
(14)

δΓϕ(y)

δEx(x)
= − 1

2Eϕ(y)
δ′(y, x) (15)

δΓϕ(y)

δEϕ(x)
=

(Ex)′(y)

2(Eϕ(y))2
δ(y, x) (16)

δΓ′
ϕ(y)

δEx(x)
= − 1

2Eϕ(y)
δ′′(y, x) +

(Eϕ)′(y)

2(Eϕ(y))2
δ′(y, x)(17)

δΓ′
ϕ(y)

δEϕ(x)
=

(Ex)′′(y)

2(Eϕ(y))2
δ(y, x) +

(Ex)′(y)

2(Eϕ(y))2
δ′(y, x)(18)

− (Ex)′(y)(Eϕ)′(y)

(Eϕ(y))3
δ(y, x) . (19)

(The radial component of the spin connection does not
have any gauge-invariant contribution [45].)

Momenta of the densitized triad are classically given
by extrinsic-curvature components Kx and Kϕ with
{Kx(x), E

x(y)} = 2Gδ(x, y) and {Kϕ(x), E
ϕ(y)} =

Gδ(x, y). With these properties, the commutator rela-
tionship (4) to exploit here reads

{H(x), H(y)} = G

∫

d3z

(

2
δH(x)

δKx(z)

δH(y)

δEx(z)
− 2

δH(y)

δKx(z)

δH(x)

δEx(z)
+

δH(x)

δKϕ(z)

δH(y)

δEϕ(z)
− δH(y)

δKϕ(z)

δH(x)

δEϕ(z)

)

= β
Ex(x)

(Eϕ(x))2
D(x)δ′(x, y)− (x↔ y) (20)

with the local diffeomorphism constraint

D(x) =
1

2G
(2EϕK ′

ϕ −Kx(E
x)′) . (21)

With a modified Hamiltonian, Kx and Kϕ may no longer
be components of extrinsic curvature. However, they are
still canonically conjugate to Ex andEϕ, and we continue
to use the same letters for momentum variables.
For now, we will be looking only for constraints with

quadratic “kinetic” term in momenta and no non-locality
or spatial derivatives of K,

H = 00H + 11HKxKϕ + 20HKxKx + 02HKϕKϕ (22)

(without linear terms, assuming time reversal symme-
try), and have linear functional derivatives

G
δH(x)

δKx(z)
= (A1(x)Kx(x) +B1(x)Kϕ(x)) δ(x, z)(23)

G
δH(x)

δKϕ(z)
= (A2(x)Kx(x) +B2(x)Kϕ(x)) δ(x, z) .(24)

We then identify 11HG = A2 = B1,
02HG = B2/2,

20HG = A1/2, which may all depend on the triad com-
ponents. The Poisson bracket of two Hamiltonian con-
straints becomes

{H(x), H(y)} =
δH(y)

δEx(x)
(2A1Kx(x) + 2B1Kϕ(x)) +

δH(y)

δEϕ(x)
(A2Kx(x) +B2Kϕ(x)) − (x↔ y)

= β
Ex(x)

G(Eϕ(x))2

(

Eϕ(x)K ′
ϕ(x)−

1

2
Kx(x)(E

x)′(x)

)

δ′(x, y)− (x↔ y) . (25)

We evaluate its implications by comparing coefficients of Kx and Kϕ. In this section, we will assume that β does
not depend on Kx or Kϕ, thus considering the case of inverse-triad corrections.
For Kx = 0, Kϕ = 0, the equation is automatically satisfied. For the first-order coefficients in Kx, we operate with

δ/δKx and then set Kx = 0, Kϕ = 0:
(

2
δ 00H(y)

δEx(x)
A1(x) +

δ 00H(y)

δEϕ(x)
A2(x)

)

δ(x, z)− (x↔ y) = −βE
x(x)(Ex)′(x)

2G(Eϕ(x))2
δ′(x, y)δ(x, z)− (x↔ y) . (26)

For functional derivatives of 00H by Ex and Eϕ, we must know the general triad-dependent terms possible. In addition
to a direct dependence on the fields, 00H can depend on the triad via spatial curvature which, in turn, depends on the
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spin connection and its derivatives. We thus have to expect a dependence on Ex, Eϕ, Γϕ and Γ′
ϕ. Higher derivatives

are not included because here, as in (22), we expand only to second order in momenta and derivatives.
We then have the chain rule

δ 00H(y)

δEx(x)
=
∂ 00H(y)

∂Γϕ(y)

δΓϕ(y)

δEx(x)
+
∂ 00H(y)

∂Γ′
ϕ(y)

δΓ′
ϕ(y)

δEx(x)
+
∂ 00H(y)

∂Ex(y)

δEx(y)

δEx(x)
(27)

and a similar relation for δ 00H(y)/δEϕ(x) to rewrite
(26). We substitute our expressions (16)–(19) for
δΓϕ(y)/δE

x(x) and so on, multiply with test functions
a(x), b(y), and c(z), and integrate over x, y, and z.
We state the result obtained after several integrations
by parts:

∫

dy

[

− (a′cA1)
b

Eϕ

∂ 00H

∂Γϕ
+ (a′cA1)

b(Eϕ)′

(Eϕ)2
∂ 00H

∂Γ′
ϕ

+(a′cA2)
b(Ex)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+ 2(a′cA1)b

(

1

Eϕ

∂ 00H

∂Γ′
ϕ

)′

(28)

+(a′′cA1)
b

Eϕ

∂ 00H

∂Γ′
ϕ

− βEx(Ex)′

2G(Eϕ)2
a′cb

]

− (a ↔ b) = 0 .

(Several terms that cancel in the antisymmetrization
with respect to a and b have not been written explicitly.)
Collecting the coefficients of c(a′′b−b′′a) and c(a′b−b′a),
respectively, we get

A1

Eϕ

∂ 00H

∂Γ′
ϕ

= 0 , (29)

−A1

Eϕ

∂ 00H

∂Γϕ
+
A1(E

ϕ)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+
A2(E

x)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+

(

1

Eϕ

∂ 00H

∂Γ′
ϕ

)′

2A1 −
βEx(Ex)′

2G(Eϕ)2
= 0 . (30)

Going back to (25) to look at the first order in Kϕ (and zeroth in Kx), and performing similar operations, we get

∫

dy

[

− (a′cB1)
b

Eϕ

∂ 00H

∂Γϕ
+ (a′cB1)

b(Eϕ)′

(Eϕ)2
∂ 00H

∂Γ′
ϕ

+ (a′cB2)
b(Ex)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+ 2(a′cB1)b

(

1

Eϕ

∂ 00H

∂Γ′
ϕ

)′

+(a′′cB1)
b

Eϕ

∂ 00H

∂Γ′
ϕ

− a′′bc
ᾱ2Ex

Eϕ
− a′bc

(

βEx

GEϕ

)′]

− (a↔ b) = 0 . (31)

Collecting the coefficients of c(a′′b− b′′a) and c(a′b− b′a), respectively, results in

B1

Eϕ

∂ 00H

∂Γ′
ϕ

− βEx

GEϕ
= 0 (32)

−B1

Eϕ

∂ 00H

∂Γϕ
+
B1(E

ϕ)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+
B2(E

x)′

2(Eϕ)2
∂ 00H

∂Γ′
ϕ

+

(

1

Eϕ

∂ 00H

∂Γ′
ϕ

)′

2B1 −
(

βEx

GEϕ

)′

= 0 . (33)

Equation (32) implies that δ 00H/δΓ′
ϕ cannot be zero.

With this condition, we find A1 = 0 from (29),

A2 =
βEx

G

(

∂ 00H

∂Γ′
ϕ

)−1

= B1 (34)

from (30) and (32), and

−B1

Eϕ

∂ 00H

∂Γϕ
+
∂ 00H

∂Γ′
ϕ

(

B1(E
ϕ)′

(Eϕ)2
+
B2(E

x)′

2(Eϕ)2

)

+2B1

(

1

Eϕ

∂ 00H

∂Γ′
ϕ

)′

=
1

G

(

βEx

Eϕ

)′

. (35)

This tells us that

G
B1

Eϕ

∂ 00H

∂Γϕ
=

(

B2

B1

Ex

2Eϕ
+1

)

β(Ex)′

Eϕ
+
Ex

Eϕ

(

β′−2
B′

1

B1
β

)

.

(36)
To solve these equations, we introduce a function b1 such
that B1 = −

√

|β|b1
√
Ex = A2. The factors are chosen

so as to cancel several terms in (36):

β(Ex)′

Eϕ
+
Ex

Eϕ
(β′ − 2βB′

1/B1) = −2β
Ex

Eϕ

b′1
b1
.

For the correct density weights in the first term in
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(36), B2 must be proportional to Eϕ. (The other fac-
tors B1 and Ex are scalar and cannot change the den-
sity weight.) With another free function b2, we write

B2 = −b1b2
√

|β|Eϕ/
√
Ex, with factors other than Eϕ

chosen for later convenience. The coefficients A1, A2, B1

and B2 determine the form of momentum contributions
to the Hamiltonian constraint:

11H =
B1

G
= −

√

|β|Exb1
G

(37)

20H =
A1

2G
= 0 (38)

02H =
B2

2G
= −b1b2

√

|β| Eϕ

2G
√
Ex

. (39)

With these solutions, we obtain ∂ 00H/∂Γ′
ϕ =

−sgn(β)
√

|β|Ex/Gb1 from (36) and ∂ 00H/∂Γϕ =

sgn(β)
√

|β|(b2 − 4(db1/dE
x)(Ex/b1))E

ϕΓϕ/(Gb1
√
Ex)

from (34), or integrated,

00H = − sgn(β)
√

|β|
G

(√
Ex

b1
Γ′
ϕ − 1

b1

(

b2
2

− 2Ex

b1

db1
dEx

)

Eϕ

√
Ex

Γ2
ϕ

)

+ f(Ex)Eϕ . (40)

Comparing with the general form (7), we read off

ᾱ =
√

|β|b1 , α =
√

|β|b1b2 ,

ᾱΓ = sgn(β)

√

|β|
b1

, αΓ = sgn(β)

√

|β|
b1

(

b2 − 4
d log b1
d logEx

)

.

With these relationships, the correction functions can
easily be seen to satisfy the condition (8) as well as
β = ᾱᾱΓ.
Modifications to the spherically symmetric dynamics

are not entirely determined by the constraint algebra,
consistent with the results of [16, 44]. The function b1 is
related to the ratio of ᾱ to ᾱΓ, and b2 determines how
α differs from ᾱ. The Ex-dependence of 00H in (40)
(which may include a cosmological-constant term) is not
fully determined because Ex is a scalar with no density
weight and can, for the purpose of the constraint alge-
bra, be inserted rather freely in the constraints. In this
feature we can see why the full dynamics is more unique
than the spherically symmetric one: Without symme-
try, there is less freedom in the choice of spatial tensors
with the correct transformation properties. Indeed, as
we will see later, spatial transformation properties play
an important role for the regaining procedure. Without
spherical symmetry Γ′

ϕ and Γ2
ϕ would be part of the same

contribution (3)R, which cannot be split apart by differ-
ent correction functions if the spatial structure of geom-
etry remains unmodified. The case of α = ᾱ (b2 = 1)
and αΓ = ᾱΓ (b1 constant and therefore b1 = 1 for it to
approach one at large fluxes) is then preferred, with all
corrections determined by the algebraic deformation β.

B. Legendre transform

Instead of having to assume δH/δπij (or δH/δKx and
δH/δKϕ in spherical symmetry with triad variables) to
be linear in the momenta, it is more general to treat
δH/δπij(x) =: vij(x) as a new independent variable in

place of πij , and then expand by this newly defined
vij . This change amounts to a Legendre transformation
from (gij , π

ij) with Hamiltonian H to (gij , vij) with La-
grangian L = πijvij − H , as proposed in [3]. We then
have the equations

H = πijvij − L (41)

δH

δgij(x′)

∣

∣

∣

∣

πij(x)

= − δL

δgij(x′)

∣

∣

∣

∣

vij(x)

. (42)

There are now two differences to [3]. First, our vij here
need not be geometrical extrinsic curvature because of
modifications to space-time geometry. We simply define
a new independent variable vij = (δN)−1{gij , H [δN ]},
which we interpret as the rate of change of the metric,
eventually providing time derivatives in an effective ac-
tion. Secondly, we cannot always assume that the Hamil-
tonian is local and free of derivatives of πij , which would
imply that partial derivatives could be used to compute
vij .
Using vij , we write the Poisson bracket of two smeared

Hamiltonian constraints as

{H [N ], H [M ]} =

∫

d3x
δH [N ]

δgij(x)
vij(x)M(x) − (N ↔M)

= −
∫

d3x

∫

d3y
δL(y)

δgij(x)
vij(x)N(y)M(x)

−(N ↔M)

=

∫

d3xβDi(x)(NM|i −MN|i) (43)

with the local diffeomorphism constraint Di. Taking
functional derivatives by N andM , we arrive at the func-
tional equation

δL(x)

δgij(x′)
vij(x

′) + βDi(x)δ|i(x, x
′)− (x↔ x′) = 0 (44)

for L(x), which can be solved once an expression for the
diffeomorphism constraint Di is inserted. With Di linear
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in the momenta, a fact which remains true in the cases
of deformed constraint algebras considered here, and mo-
menta related to functional derivatives of L by vij , a lin-
ear equation for L is obtained. The importance of this
consequence of the Legendre transform has been stressed
in [3].
If gravity and matter split into independent con-

strained systems, as realized for matter constraints inde-
pendent of the gravitational momentum and in the ab-
sence of derivatives of πij(x) in Hgrav, equation (44) can
be derived in an analogous form for the matter part, just
using canonical matter variables and the matter diffeo-
morphism constraint. Because the following calculations,
integrating the functional differential equation, are eas-
ier for scalar matter, we will first consider this case as an
illustration of the general procedure. As we will see, the
Lagrangian viewpoint provides a new interpretation of
conditions of anomaly freedom found earlier for inverse-
triad corrections of a scalar field.

C. Scalar matter

With the classical spatial structure, the Lagrangian
density of a scalar field φ must be of the form L =√
det gL(φ, V, ψ) where V = (δN)−1{φ,H [δN ]} is the

normal scalar velocity introduced before and ψ =
gijφ|iφ|j is the only remaining scalar that can be formed
from φ and its derivatives up to a total derivative order
of at most two. Higher derivatives do not appear classi-
cally for equations of motion of second order, but they
can easily be introduced by quantum effects. Higher spa-
tial derivatives, in particular, are a natural consequence
of discretization in loop quantum gravity, which in ef-
fective form combined with a derivative expansion will
give rise to derivative terms of arbitrary orders. Higher
time derivatives, on the other hand, follow from quantum
back-reaction. The following considerations for matter
assume the absence of higher-order derivatives, as real-
ized for instance for inverse-triad corrections and some
forms of holonomy corrections.
With the canonical variables of a scalar field and its

diffeomorphism constraint Di = pϕφ
|i, equation (44),

adapted to a scalar field, assumes the form

δL(x)

δφ(x′)
V (x′) + β

∂L(x)

∂V (x)
φ|i(x)δ|i(x, x

′)− (x↔ x′) = 0 .

(45)
As in [3], we write

δL(x)

δφ(x′)
=
∂L(x)

∂φ(x)

δφ(x)

δφ(x′)
+ 2

∂L(x)

∂ψ(x)
φ|i(x)δ)|i(x, x

′

and conclude, taking into account the additional factor
of β, that

Ai := φ|i
(

β
∂L

∂V
+ 2V

∂L

∂ψ

)

satisfies the equation Ai(x)δ|i(x, x
′) − (x ↔ x′) = 0,

shown in [3] to imply Ai = 0. Thus,

β
∂L

∂V
+ 2V

∂L

∂ψ
= 0

and L must be of the form L(φ, ψ − V 2/β).
This is a concrete indication that the deformed

hypersurface-deformation algebra implies a modification
of the usual covariance and of the dispersion relation of
fields: The kinetic term of scalar Lagrangians does not
depend on ψ − V 2 = g

µνφ|µφ|ν in space-time terms, but

has its time derivatives in ψ− V 2/β rescaled by the cor-
rection function β. Nevertheless, the system is covariant
and consistent, albeit with a deformed notion of covari-
ance as per the constraint algebra (4). The dependence
of the Lagrangian on the potential remains unrestricted,
leaving the form of some counterterms as introduced in
[9] more open.
It is illustrative to compare this form of the kinetic

term with the one obtained for the matter Hamiltonian
in a consistent deformation [9]. One begins with a matter
Hamiltonian density of the form

H = ν
p2φ

2
√
det g

+
1

2
σ
√

det gψ +
√

det gW (φ)

with metric factors corrected by inverse-triad corrections
ν and σ, and some potential W (φ). The corresponding
Lagrangian density, with V = νpφ/

√
det g, takes the form

L =
√

det g

(

V 2

2ν
− σψ

2
−W (φ)

)

= −
√

det g
σ

2

(

ψ − V 2

β

)

−
√

det gW (φ) (46)

with the kinetic dependence as derived above, provided
that β = νσ. This condition, as derived in [9] for lin-
ear inhomogeneities around isotropic models, is exactly
one of the requirements for anomaly freedom to ensure
a closed constraint algebra of the form (4) for inverse-
triad corrections with β = ᾱ2 from the gravitational con-
straint. The Lagrangian view clearly shows how this
condition of anomaly cancellation is necessary to en-
sure a (deformed) covariant kinetic term in the action.
With the same corrections in d’Alembertians, propaga-
tion speeds of massless matter and gravitational waves
naturally agree, as explicitly shown for electromagentic
waves in [47].
From the new derivation of corrected scalar La-

grangians in this paper, we must expect corrections in
matter terms also if β results from holonomy corrections,
provided they can be consistently implemented. Explicit
examples for holonomy modifications required in matter
terms have already been found in [11, 51]. However, in
a scalar Hamiltonian quantized by the methods of loop
quantum gravity [26] we do not expect holonomy correc-
tions. Consistent formulations of holonomy corrections
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in the presence of matter therefore seem to encounter
stronger difficulties than inverse-triad corrections. An-
other peculiar feature can be seen by recalling that β for
holonomy corrections can turn negative. The modified
d’Alembertian ψ− V 2/β then becomes one of Euclidean
signature, or a 4-dimensional Laplacian, and fields no
longer propagate. Also this property can explicitly be
seen in the wave equations of [11] (but not in [51] where
a gauge-fixing has veiled this effect). We will discuss fur-
ther consequences of this new form of signature change
in Sec. VIC.

D. Gravitational part

As in the case of scalar matter, we begin our discus-
sion of the gravitational part by inserting the explicit ex-
pression of the diffeomorphism constraint in the general

equation (44): In particular,

βDi(x)δ|i(x, x
′) = −2βπij

|j (x)δ|i(x, x
′) . (47)

We then proceed as in the example of spherical symme-
try: We multiply this expression by two test functions
a(x) and b(x′) and integrate over x and x′, observing that
some terms symmetric in a and b cancel. After several
steps, integrating by parts, discarding total derivatives
and using the symmetry of πij , we arrive at

∫

dx
[

2πij(x)β|j(x)
(

a(x)b|i(x) − a|i(x)b(x)
)

+2πij(x)β
(

a(x)b|ij(x)− a|ij(x)b(x)
)]

from the right-hand side of (47). Functional derivatives
with respect to a(y) and b(z) give

∫

dx
[

2πij(x)β|j(x)
(

δ(x, y)δ|i(x, z)− δ|i(x, y)δ(x, z)
)

+ 2πij(x)β
(

δ(x, y)δ|ij(x, z)− δ|ij(x, y)δ(x, z)
)]

= 2πij(y)β|j(y)δ|i(y, z) + 2πij(y)β(y)δ|ij(y, z)− (y ↔ z) = 2
∂L(y)

∂vij(y)
β|j(y)δ|i(y, z) + 2

∂L(y)

∂vij(y)
β(y)δ|ij(y, z)− (y ↔ z)

if no spatial derivatives of vij appear in the corrections
and the Lagrangian, such that πij(y) = δL/δvij(y) =
∂L(y)/∂vij(y). In combination with (44), we have

δL(x)

δgij(x′)
vij(x

′) + 2β|j(x)
∂L(x)

∂vij(x)
δ|i(x, x

′) (48)

+2β
∂L(x)

∂vij(x)
δ|ij(x, x

′)− (x↔ x′) = 0 .

In cases of derivative expansions of non-local terms in
vij , we use

δL(x)

δgij(x′)
vij(x

′)δ(x, x′) + 2β|j(x)
δL(x)

δvij(x′)
δ|i(x, x

′)

+2β
δL(x)

δvij(x′)
δ|ij(x, x

′)− (x↔ x′) = 0 (49)

and write

δL(x)

δvij(x′)
=

∂L(x)

∂vij(x′)
δ(x, x′) +

∂L(x)

∂vij|k(x′)
δ|k(x, x

′) + · · ·

(50)

1. Expansion

In spherical symmetry, it turned out to be useful to
consider expansion coefficients by the momenta Kx and
Kϕ. As the next crucial step in solving the functional

equation, we expand both L and β as series in powers of
the normal change of the metric, vij :

L =

∞
∑

n=0

Li1j1...injn [gkl]vi1j1(x) . . . vinjn(x) (51)

β =

∞
∑

n=0

βi1j1...injn [gkl]vi1j1(x) . . . vinjn(x) (52)

assuming for now local functions without spatial deriva-
tives. (See Sec. VD4 for non-locality.) The expansion of
β allows us to deal with inverse-triad corrections and lo-
cal holonomy corrections at the same time. Holonomy
corrections will then not appear as periodic functions
such as sin(δKϕ)/δ for Kϕ in spherical symmetry, but as
perturbative terms of a power series in Kϕ. Such an ex-
pansion is more consistent with the perturbative nature
of these higher-order corrections, which are expected in
a similar form from higher-curvature terms or quantum
back-reaction. Including all terms in a power series of
sin(δKφ/δ), even tiny ones at high orders, but ignoring
quantum back-reaction would not be consistent. An ex-
pansion also makes it more clear how terms of higher
order in vij can be combined with higher spatial deriva-
tives of the metric.
We insert these expansions into (48) and first set

vij(x) = 0 to obtain

2Lij(x)β∅
|j(x)δ|i(x, x

′) + 2Lij(x)β∅(x)δ|ij(x, x
′)

−(x↔ x′) = 0 . (53)
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We multiply by test functions a(x) and b(x′) and inte-
grate over x and x′, drop total divergences and terms
that vanish due to the symmetry of indices of Lij(x),
cancel some other terms and are left with

∫

dxLij
|j (x)β

∅(a|ib− ab|i) = 0 . (54)

Since a, b, a|i and b|i can be chosen independently, we

conclude that Lij
|j (x)β

∅ = 0. Note that β∅ 6= 0 generi-

cally, so that we have

Lij
|j (x) = 0 . (55)

We return to equation (48), do a functional differenti-
ation with respect to vkl(z) and then set vij(x) to zero
everywhere. With the notation

δklab(x, z) =
1

2
(δkaδ

l
b + δlaδ

k
b ) δ(x, z) (56)

we have

δL∅(x)

δgkl(x′)
δ(x′, z) + 4Lijab(x)β∅

|jδ|i(x, x
′)δklab(x, z) + 2Lij(x)δ|i(x, x

′)
(

βab
|j δ

kl
ab(x, z) + βabδklab|j(x, z)

)

+4Lijabδklab(x, z)δ|ij(x, x
′) + 2Lij(x)βabδklabδ|ij(x, x

′)− (x↔ x′) (57)

= −δL
∅(x′)

δgkl(x)
δ(x, z) +

(

4Lijkl(x)β∅
|j + 2Lij(x)βkl

|j

)

δ|i(x, x
′)δ(x, z) + 2Lij(x)βklδ|j(x, z)δ|i(x, x

′)

+
(

2Lij(x)βkl + 4Lijkl(x)β∅
)

δ|ij(x, x
′)δ(x, z)− (x↔ x′) = 0 . (58)

We use

2Lij(x)βklδ|j(x, z)δ|i(x, x
′) =

(

2Lij(x)βklδ(x, z)δ|i(x, x
′)
)

|j
− 2Lij

|j (x)β
klδ(x, z)δ|i(x, x

′)

− 2Lij(x)βkl
|j δ(x, z)δ|i(x, x

′)− 2Lij(x)βklδ(x, z)δ|ij(x, x
′) , (59)

drop the total divergence term in (59), and insert Lij
|j (x) = 0 from (55):

(

−δL
∅(x′)

δgkl(x)
+ 4Lijkl(x)β∅

|jδ|i(x, x
′) + 4Lijklβ∅δ|ij(x, x

′)

)

δ(x, z)− (x↔ x′) = 0. (60)

This equation can be solved as in [3] where β∅ = 1: define

Aij(x, x′) =
δL∅(x)

δgij(x′)
− 4Lijkl(x′)

(

β∅
|l(x

′)δ|k(x
′, x) + β∅(x′)δ|kl(x

′, x)
)

(61)

and rewrite (60) as

Aij(x, x′)δ(x′, z)−Aij(x′, x)δ(x, z) = 0 . (62)

Integrating over x′, we find Aij(x, x′′) = F ij(x)δ(x, x′′)
with F ij(x) =

∫

d3x′Aij(x′, x), a function of only one
variable, and thus

δL∅(x)

δgij(x′)
= F ij(x)δ(x, x′) (63)

+4Lijkl(x′)
(

β∅
|l(x

′)δ|k(x
′, x) + β∅(x′)δ|kl(x

′, x)
)

.

2. Coefficients

As a spatial scalar density, L∅ can depend on the met-
ric and its spatial derivatives only via the metric itself
and suitable contractions of products of the spatial Rie-
mann tensor. To second order in spatial derivatives,

L∅(x) = L∅(gij(x),
(3)Rij(x)) , (64)

a fact, used in [3], that remains true in the deformed case
with our assumption that the spatial part of the algebra
stays classical. Define

ϕij =
∂L∅(gkl,

(3)Rkl)

∂gij
Φij =

∂L∅(gkl,
(3)Rkl)

∂ (3)Rij
(65)
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and write

δL∅ =

(

ϕij +
1

2
(3)Ri

kl
jΦkl +

1

4
(3)Ri

kΦ
kj + (3)Rj

kΦ
ki

)

δgij

+
1

4

(

Φikgjl +Φilgjk +Φjkgil +Φjlgik − 2Φijgkl − 2Φklgij
)

δgij|kl . (66)

From (63), we also have

δL∅ = δgij

(

F ij + 4Lijkl
|lk β

∅ + 4Lijkl
|l β∅

|k

)

δgij|k

(

8Lijkl
|l β∅ + 4Lijklβ∅

|l

)

+ δgij|kl

(

4Lijklβ∅
)

. (67)

Comparing the various coefficients, we get

Lijklβ∅ =
1

16

(

Φikgjl +Φilgjk +Φjkgil +Φjlgik − 2Φijgkl − 2Φklgij
)

(68)

2Lijkl
|l β∅ + Lijklβ∅

|l = 0 (69)

F ij + 4Lijkl
|lk β

∅ + 4Lijkl
|l β∅

|k = ϕij +
1

2
(3)Ri

kl
jΦkl +

1

4
(3)Ri

kΦ
kj +

1

4
(3)Rj

kΦ
ki . (70)

Thus, 0 = 2Lijkl
|l β∅ + Lijklβ∅

|l = −β∅
|lL

ijkl + 2(Lijklβ∅)|l. We compute each term using (68), and write

0 = −
β∅
|l

16β∅

(

Φikgjl +Φilgjk +Φjkgil +Φjlgik − 2Φijgkl − 2Φklgij
)

+
1

8

(

Φik|j + gjkΦil
|l +Φjk|i + gikΦjl

|l − 2Φij|k − 2Φkl
|l g

ij
)

. (71)

We contract this with gij , use δ
i
i = 3, and denote Φi

i as Φ:

β∅
|l

8β∅

(

Φkl +Φgkl
)

− 1

4

(

Φkl
|l +Φij|kgij

)

= 0 . (72)

Note that Φij|kgij = Φ|k = (Φgkl)|l. With Φkl +Φgkl denoted as Φ̄kl,

0 =
β∅
|l

8β∅
Φ̄kl − 1

4
Φ̄kl

|l =
1

4

√

|β∅|
(

β∅
|lsgn(β

∅)

2|β∅| 32
Φ̄kl − |β∅|− 1

2 Φ̄kl
|l

)

= −1

4

√

|β∅|
(

|β∅|− 1
2 Φ̄kl

)

|l
. (73)

Again maintaining our assumption of an unmodified
spatial structure, the only covariantly constant 2-tensors
constructed from the metric and its derivatives up to sec-
ond order are the metric itself and the spatial Einstein
tensor. Noting the density weight one of Φ̄kl, inherited
from L∅, we conclude that

Φ̄kl

√

|β∅|
= A

√

det g

(

(3)Rkl − 1

2
(3)Rgkl

)

+B
√

det ggkl

(74)

where A and B are constants. This gives

Φkl = A
√

|β∅| det g
(

(3)Rkl − 3

8
(3)Rgkl

)

+
B

4

√

|β∅| det ggkl .
(75)

Inserting this into (71), we find, after cancelling terms,
that

A
√

|β∅| det g
8

[

(3)Rikgjl + (3)Rilgjk + (3)Rjkgli + (3)Rjlgik − 2 (3)Rijgkl − 2 (3)Rklgij

−3

8
(3)R

(

2gikgjl + 2gjkgil − 4gijgkl
)

]

|l

= 0 .
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For this to be satisfied for general metrics, we must set A = 0. Writing B = 1
4πG ,

Φkl =
1

16πG

√

|β∅| det ggkl . (76)

Then, from (68)

Lijkl =
1

162πGβ∅

(

√

|β∅| det ggikgjl +
√

|β∅| det ggilgjk +
√

|β∅| det ggjkgil

+
√

|β∅| det ggjlgik − 2
√

|β∅| det ggijgkl − 2
√

|β∅| det ggklgij
)

=

√
det gsgnβ∅

64πG
√

|β∅|

(

gi(kgl)j − gijgkl
)

. (77)

We also have

∂L∅(gkl,
(3)Rkl)

∂ (3)Rij
= Φij =

1

16πG

√

|β∅| det ggij (78)

from the definition (65). We integrate this to get

L∅ =
1

16πG

√

det g

(

√

|β∅| (3)R+ f(g)

)

(79)

where, for a scalar density, f(g) = −2λ must be a con-
stant, the cosmological constant. (The previous equa-
tions do not determine f(g) because it would follow from
ϕij according to (65), which by (70) is related to the free
function F ij .)
Combining (77) and (79), the regained Lagrangian up

to second order is

L =

√
det g

16πG

(

sgnβ∅

√

|β∅|
vijv

ij − viiv
j
j

4
+
√

|β∅| (3)R− 2λ

)

.

(80)
For β∅ = 1, the classical Lagrangian is recovered with
vij = 2Kij related to extrinsic curvature. But already to
second order in derivatives, loop quantum gravity implies
corrections to the Lagrangian from inverse-triad correc-
tions with β∅ 6= 1, a property that cannot be mimicked
by any form of higher-curvature effective actions. Also
holonomy corrections cannot provide a similar modifica-
tion because they always come with higher powers of vij .
Inverse-triad corrections can thus easily be distinguished
from other quantum effects. (Holonomy corrections can
provide similar modifications if the vij expansion is re-
summed; see Sec. VIC 1.)
The correction function β∅[gij ] relevant for these cor-

rections must be scalar, which is not possible classically
if only the metric can be used. For this reason, the full
dynamics is more unique than the spherically symmetric
one, where Ex is a scalar metric component without a
density weight in the reduced model. In an effective for-
mulation of quantum gravity, additional quantities be-
come available that explicitly refer to properties of an

underlying state, such as the discreteness scale in loop
quantum gravity. It is then possible to construct non-
trivial scalars of density weight zero by referring to the
metric and state parameters, such as elementary fluxes
[9].

Compared with the results in spherical symmetry, the
full effective action is more unique, as already discussed.
Other properties of the corrections are, however, very
similar: The correction function β features in the same
way in the curvature potential. Also the kinetic term is
corrected in the same way, if we only note that a factor

of
√

|β∅| was obtained in spherical symmetry, where we
used momenta Kx and Kϕ instead of the normal change
vij of the metric. If we substitute the normal changes
δH/δKx and δH/δKϕ for Kx and Kϕ in spherical sym-

metry, we also obtain a kinetic term divided by
√

|β∅|.
The sign of β∅ appears in different places in our expres-
sions for spherical symmetry and the full theory, but
the relative sign between the curvature and the kinetic
terms is the same. The absolute placement of the sign
is ambiguous because in the derivations it first appears
in derivatives, for instance when we introduce B1 after
(35), or in (73).

3. Higher orders

To second order, Φkl determines both Lijkl from (68)
and ∂L∅/∂ (3)Rij from (65), ensuring that time deriva-
tives of gij and spatial Ricci contributions are combined
to space-time covariant curvature terms. The same in-
terplay is repeated for higher orders in the v-expansion,
although with an increasing number of terms.

For the next order, as an example, we start again from
(48) and gather all terms which are quadratic in vij(x)
and its derivatives.
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δLab(x)

δgij(x′)
vab(x)vij(x

′) + 6Labcdijvab(x)vcd(x)β
∅
|jδ|i(x, x

′) + 4Labij(x)vab(x)
(

βefvef (x)
)

|j
δ|i(x, x

′)

+2Lij(x)
(

βcdefvcd(x)vef (x)
)

|j
δ|i(x, x

′) + 6Labcdijvab(x)vcd(x)β
∅δ|ij(x, x

′) + 4Labijvab(x)β
cdvcd(x)δ|ij(x, x

′)

+2Lij(x)βcdef vcd(x)vef (x)δ|ij(x, x
′)− (x↔ x′) . (81)

We multiply this by two test functions, a(x) and b(x′) and integrate over x and x′. After integrating by parts,
discarding total divergences, removing terms that disappear due to the symmetry and anti-symmetry of various
indices, and using (55), we arrive at

∫

dxdx′
(

δLab(x)

δgij(x′)
− δLij(x′)

δgab(x)

)

vab(x)vij(x
′)a(x)b(x′)−

∫

dx
(

6Labcdijvab(x)vcd(x)
)

|j
β∅
(

a(x)b|i(x)− a|i(x)b(x)
)

−
∫

dx
(

4Labijvab(x)
)

|j
βcdvcd(x)

(

a(x)b|i(x) − a|i(x)b(x)
)

= 0 . (82)

Since vab(x), vab|j(x), a(x), b(x), a|i(x) and b|i(x) can all
be varied independently, we arrive at the following three
conditions: First, setting

(

a(x)b|i(x) − a|i(x)b(x)
)

= 0,
we get

(

δLab(x)

δgij(x′)
− δLij(x′)

δgab(x)

)

vab(x)vij(x
′)a(x)b(x′) = 0 .

(83)
Following the arguments in [3], we see that this eventually
implies

δLab(x)

δgij(x′)
− δLij(x′)

δgab(x)
= 0. (84)

This equation restricts the form of terms linear in vij
in the action, which are absent anyway if the theory is
time-reversal invariant. Then setting vab|j(x) = 0,

6Labcdij
|j β∅ + 4Lijab

|j βcd = 0 . (85)

And finally:

12Labcdijβ∅ + 4Labijβcd = 0. (86)

We relabel indices, multiply (86) with β∅
|j and use (69)

to rewrite it.

12Lijklmnβ∅β∅
|j + 4Lijklβmnβ∅

|j

= 12Lijklmnβ∅β∅
|j − 8Lijkl

|j βmnβ∅

= 12Lijklmnβ∅β∅
|j − 8Lmnij

|j βklβ∅ = 0 . (87)

(We use Lijklmn = Lijmnkl, referring to the definition

in (51).) Using (85), we can write 24Lijklmn
|l (β∅)2 +

24Lijklmnβ∅β∅
|l = 0. Generically, β∅ 6= 0, and so we have

(

Lijklmnβ∅
)

|l
= 0 solved by the classical covariantly con-

stant quantities with the corresponding index structure,
divided by β∅.

The third order in vij will therefore have terms with

a factor of 1/β∅ times corresponding orders possible for
higher-curvature actions, while the quadratic order had

a factor of 1/
√

|β∅|, and the zeroth order a factor of
√

|β∅|. The same pattern is repeated at higher orders in
the v-expansion: To order n in vij , we have terms as in

higher-curvature actions but multiplied with |β∅|(1−n)/2.
To see this, we notice that Eq. (48), when expanded by
powers of vij , has a first term which contains expansion
coefficients of Lij··· two orders lower than the rest, which
are all multiplied with β∅. If we use the equation to
derive the L-coefficients by recurrence, we solve for a co-
efficient two orders higher by dividing by β∅. Starting

with zeroth order in vij of magnitude
√

|β∅| in the pref-
actor, the quoted orders follow. (If the corrected theory
is not time-reversal invariant and odd orders appear in
the v-expansion, the same powers of |β∅| per order are
obtained.)

4. Non-locality

So far, we have assumed only a local dependence on vij ,
with no spatial derivatives of vij that would otherwise
be implied by a derivative expansion. In the classical
case, locality follows from the relation of vij to extrinsic
curvature, but it can easily be violated by some of the
correction functions in quantum gravity.

In an effective action, non-locality usually makes it-
self noticeable in a derivative expansion of the fields.
The basic equation (44) is valid also for non-local the-
ories, without explicit terms with spatial derivatives of
vij . However, (48) must be replaced by (49), and the
general expansions (51) and (52) must also include terms
with spatial derivatives of vij . We now define
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L(x) =
∞
∑

n=0

∞
∑

N1,...,Nn=0

L(i1,j1,k
(1)
1 ,...,k

(N1)
1 ),...,(in,jn,k

(1)
n ,...,k(Nn)

n )[gij ]vi1j1|k(1)
1 ···k

(N1)
1

· · · v
injn|k

(1)
n ···k

(Nn)
n

(88)

β =
∞
∑

n=0

∞
∑

N1,...,Nn=0

β(i1,j1,k
(1)
1 ,...,k

(N1)
1 ),...,(in,jn,k

(1)
n ,...,k(Nn)

n )[gij ]vi1j1|k(1)
1 ···k

(N1)
1

· · · v
injn|k

(1)
n ···k

(Nn)
n

. (89)

Derivative terms in the expansion of β then require new
terms in the Lagrangian that contain spatial derivatives.
Going through the recurrence, an order n in the v-
expansion again receives a coefficient of |β∅|(1−n)/2.
In this context, we can distinguish between two ex-

pansions of the action, one by powers of vij and its spa-
tial derivatives as in (88), and one by the total order
of derivatives. The total order of derivatives is the cru-
cial one for a comparison with higher-curvature terms
in an effective action, which come arranged by the or-
der of time and space derivatives. With vij related to
the normal change of the metric, it counts as a deriva-

tive (by time) of order one. A term of v
i1j1|k

(1)
1 ···k

(N1)
1

counts as a derivative of order 1 + N1, and there-
fore a general expansion term in (88) with coefficient

L(i1,j1,k
(1)
1 ,...,k

(N1)
1 ),...,(in,jn,k

(1)
n ,...,k(Nn)

n ) counts as a deriva-
tive of order

∑n
i=1(1 +Ni) = n+

∑n
i=1Ni. Terms of the

same v-order n, that is with the same number of factors
of vij or its spatial derivatives, have different derivative
orders of at least n. If we reorganize the expansion by
derivative orders N , keeping track of β∅-factors that de-
pend only on the v-order, we obtain effective-action terms
of the schematic form

|β∅|(1−N)/2vN + |β∅|(2−N)/2(vN−1g′+ vN−2v′)+ |β∅|(3−N)/2
(

vN−2(g′′ + (g′)2) + vN−3(v′′ + v′g′) + vN−4(v′)2
)

+ · · · .

The highest power of 1/
√

|β∅| for a given derivative order
is always obtained for the term vN free of spatial deriva-
tives. For small β∅, time derivatives in a derivative or
curvature expansion are dominant.

VI. APPLICATIONS AND CONCLUSIONS

One of the main results of this paper, of general im-
portance for loop quantum gravity, follows from the ef-
fective action (80), valid to second order in extrinsic
curvature. Although we did allow for holonomy and
higher-curvature corrections as well, only inverse-triad
corrections are active at this order. This result is an in-
dependent confirmation, in addition to [1, 2, 18], that
inverse-triad corrections can be much more significant
than higher-curvature and holonomy corrections, both of
which occur only at higher orders in vij and are of the
tiny size ℓ2P/ℓ

2
H throughout most of nearly isotropic cos-

mology with the Hubble distance ℓH. Our calculations
show, for the first time, how different quantum effects
in loop quantum gravity without any symmetry assump-
tions can be included all at once, but still show their
own characteristic consequences. The complete correc-
tion function β in the constraint algebra may contain
contributions from both inverse-triad and holonomy cor-
rections, including non-local effects, but it is only the
v-independent part β∅ which appears at second order of
the effective action. This coefficient is affected by inverse-

triad corrections, which therefore present the most im-
portant modification of the classical dynamics unless cur-
vature is extremely large. Holonomy corrections, on the
other hand, modify terms of higher order in vij ; they
mix with higher-curvature terms and can rarely be used
in isolation. Moreover, U(1) calculations of inverse-triad
correction functions are reliable because non-Abelian fea-
tures would change merely the higher-v behavior.

The clear separation of some of the corrections allows
us to discuss their cosmological consequences in very gen-
eral terms.

A. Enhanced BKL scenario and the absence of

singularities in consistent loop quantum gravity

All vij -terms in the effective action (80), to all orders,

have at least one additional factor of 1/β∅ compared
with the spatial curvature term at zeroth order (or a fac-

tor of 1/
√

|β∅| if there are linear terms in vij , breaking
time-reversal invariance). At higher orders, as shown in
Secs. VD3 and VD4, vij -terms free of spatial derivatives

have at least an additional factor of 1/
√

|β∅| compared
to spatial-derivative terms of the same derivative order.
When β∅ is very small, all spatial derivatives and curva-
ture potentials are suppressed compared with the normal
change of the metric in vij = N−1{gij , H [N ]}. Inverse-
triad corrections, computed in Abelian models [32], im-
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ply that β∅ approaches zero for vanishing components of
the densitized triad, right at classical singularities. As we
approach such a singularity, quantum corrections become
stronger, which could altogether stop the evolution down
to smaller volumes. If this is the case, the singularity
is resolved. However, such “bounces” have been difficult
to generalize beyond the simple models in which they
can be realized explicitly (see also Sec. VIC below), and
therefore it is not guaranteed that vanishing components
of the densitized triad can always be avoided. However,
if such small values are approached, inverse-triad cor-
rections become significant and suppress spatial deriva-
tives. The evolution then follows a nearly homogeneous
behavior of Bianchi-I type, for which singularity resolu-
tion in loop quantum cosmology can be shown in general
terms by quantum hyperbolicity [52–55], based on prop-
erties of difference equations for wave functions. Even
without symmetry assumptions and without restricting
the class of quantum corrections included, the dynamics
of loop quantum gravity is singularity-free. The same
mechanism is hereby shown to apply in symmetric mod-
els [52, 54, 56, 57] and the full theory.
The concrete mechanism is reminiscent of the BKL sce-

nario [58] in that spatial derivatives are suppressed and
the dynamics becomes almost homogeneous near singu-
larities. The present scenario, however, is much more
general. We need not rely on details of the evolution be-
cause it is terms in the effective action itself that show
the suppression. Moreover, the arguments are easily seen
to be independent on what gauge, or spatial slicing in
the classical setting, is chosen, because they make use
of a consistent and anomaly-free theory exhibiting gen-
eral covariance (in a deformed sense). Spatial terms are
suppressed even in the {H,H}-algebra itself. This fea-
ture is also responsible for the covariance of the mecha-
nism: if β is very small, normal deformations of hyper-
surfaces, governed by {H,H} as in (4), do not generate
spatial displacements from D. With the suppression by
small β, normal deformations form a subalgebra of the
full hypersurface-deformation algebra and can be consid-
ered in separation, eliminating the need of homogeneity
assumptions.

B. Dispersion relations and causality

Our results show how consistent deformations of the
type (4), for which several examples have been found
in models of loop quantum gravity as recalled in Sec-
tion II, affect the form of action principles reconstructed
from them. From this perspective, the universal modifi-
cation — irrespective of the precise form of the correction
function β — is that a new coefficient β rescales time
derivatives relative to spatial derivatives in matter terms
as well as gravitational ones. The usual d’Alembertian
� = −∂2t +gij∂i∂j is replaced by�β := −β−1∂2t +g

ij∂i∂j .
Dispersion relations and propagation speeds are then
modified in a compatible way for matter and gravity, as

shown explicitly in the special cases considered in [47].
(Counterterms in perturbative realizations of consistency
lead to interesting new effects for non-propagating modes
[17, 18].) In particular, while β 6= 1 implies that speeds
of massless modes differ from the classical speed of light,
they all propagate at the same speed as light in space-
time according to deformed relativity. All massless ex-
citations propagate with the velocity

√
β times the clas-

sical speed of light for β > 0. If β < 0, which is possi-
ble for holonomy corrections, the d’Alembertian changes
to a Euclidean-signature Laplacian, and all propagation
ceases.

C. Signature change

Holonomy corrections cannot easily be analyzed in gen-
eral terms because their mixing with higher-curvature
corrections requires the latter to be derived in detail,
too. In loop quantum gravity, however, the derivation of
higher-curvature terms or their analog in quantum back-
reaction remains incomplete. But there is one general
property of holonomy corrections realized when they are
large and near their maximum value. When this is the
case, we must be careful with the v-expansions used. One
consequence, fortunately, can be seen very generally.

1. The high-density regime in models of loop quantum

gravity

In existing consistent examples, holonomy correc-
tions always have the following form: A connection or
extrinsic-curvature component in the classical Hamilto-
nian constraint is replaced by a bounded and periodic
function of the same component (possibly depending also
on the triad). For instance, in spherical symmetry we
can consistently replace Kϕ by δ−1 sin(δKϕ) with some
parameter δ [15], and in isotropic models we can re-
place the isotropic connection component c by δ−1 sin(δc)
[11]. The parameter δ may depend on triad components
Ex or a if lattice-refinement is realized [59, 60]. When
these bounded functions take their maximum value, at
δKϕ = π/2 or δc = π/2, holonomy corrections are large
and the Hamiltonian constraint ensures that we are at
high energy densities if matter is present. As recalled in
Sec. II, in the constraint algebra we obtain a deforma-
tion with correction function β(Kϕ) = cos(2δKϕ) and
β(c) = cos(2δc), respectively.
These functions are negative when sin(δc)/δ is near its

maximum as a function of c, continuing with the example
of nearly isotropic cosmology. More precisely, a modified
Hamiltonian constraint of the form

− 3

8πGγ2δ2
sin2(δc)

√

|p|+Hmatter = H , (90)

as commonly used in isotropic loop quantum cosmology,
implies, using {c, p} = 8πγG/3, Hamiltonian equations
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ṗ = {p,H} = (γδ)−1 sin(2δc)
√

|p| and

ċ = − sin2(δc)

2γδ2
√

|p|
− c sin(2δc)

γδ
√

|p|
d log δ

d log p
+

2 sin2 δc

γδ2
√

|p|
d log δ

d log p

+
8

3
πγG

∂Hmatter

∂p
.

(With ∂Hmatter/∂p = 3
2a∂Hmatter/∂a

3 = − 3
2aP , the

usual pressure contribution −4πGP to acceleration fol-
lows.) We can combine these two equations to compute
the acceleration of the scale factor,

ä = − cos(2δc)
sin2 δc

2γ2δ2
√

|p|
− 2 sin4 δc

γ2δ2
√

|p|
d log δ

d log p

−4πG cos(2δc)aP . (91)

To distinguish different types of inflation, it is also useful
to rewrite the acceleration equation as an equation for
the derivative of the Hubble parameter H:

Ḣ =
ä

a
−
(

ȧ

a

)2

= − cos(2δc)
3 sin2 δc

2γ2δ2|p| (92)

− sin4 δc

γ2δ2|p|

(

1 + 2
d log δ

d log p

)

− 4πG cos(2δc)P .

If we assume a power-law form δ(p) = |p|x with −1/2 <
x < 0 generically [59, 60], the gravitational contributions
to ä are positive, implying inflation from quantum geom-
etry, if sin2 δc > (2(1− 2x))−1 (sin2 δc > 1/4 or δc > π/6
for the limiting case x = −1/2 considered in [61]). We

have super-inflation with Ḣ > 0 if sin2 δc > 3/(4(1− x))
(sin2 δc > 1/2 or δc > π/4 for x = −1/2). In terms of
densities, according to the modified constraint equation
(90) showing that the energy density ρ is proportional
to sin2(δc), we have the maximum density ρmax when
sin2 δc = 1, inflation for ρ > ρmax/(2(1− 2x)) and super-
inflation for ρ > 3ρmax/(4(1− x)). (For x 6= −1/2, ρmax

depends on the dynamical discreteness scale aδ.) Dur-
ing super-inflation, we always have cos(2δc) < 0, and for
x = −1/2, the super-inflationary regime sin2(δc) > 1/2
is exactly the one with cos(2δc) = 1 − 2 sin2(δc) < 0.
Our remarks about spherical symmetry in Sec. II B show
that we generically have β < 0 at high curvature: We
saw that β < 0 at the maximum of the first holonomy
correction function f1, which in the cosmological con-
text would correspond to the maximum of sin2(δc) in
the Friedmann equation. No matter what form f1 has,
depending on quantization ambiguities, at its maximum
we always have negative β.
Classically, there can be acceleration only with nega-

tive pressure of a suitable size. But with holonomy cor-
rections, the trigonometrical factors can turn the sign
of Ḣ, providing matter-independent acceleration from
quantum geometry. The correction function β contains
the same factor of cos(2δc) that appears in the accel-
eration equation. We have a negative correction func-
tion throughout the regime where holonomy effects make

Ḣ positive, which is in the purported super-inflationary
regime. When Ḣ is turned positive by holonomy ef-
fects, we therefore do not have space-time but rather (de-
formed) Euclidean space, with the derivatives of a taken
by spacelike rather than timelike coordinates. There is
no evolution in Euclidean space, and no super-inflation
even if derivatives of H are positive. (For x < 0, there is
still a weak form of power-law inflation at the beginning
of the Lorentzian expansion phase. However, the phase
is too brief, with only a small number of e-foldings, for
the usual consequences of inflation to be realized.)
It is of interest to see what an effective action for this

Euclidean chunk of space may look like. In our derivation
of effective actions, applied to such a regime of large cur-
vature, we can no longer expand the correction function
β in Kϕ or c when δKϕ or δc is near π/2, but we can
expand them in 2δK̄ϕ := 2δKϕ − π or 2δc̄ := 2δc − π,
writing cos(2δKϕ) = cos(2δK̄ϕ + π) = − cos(2δK̄ϕ) or
cos(2δc) = cos(2δc̄ + π) = − cos(2δc̄). The new coeffi-
cients δK̄ϕ or δc̄ are small near maximum density, and
we can expand the correction function as well as the La-
grangian by their powers. (For cosmological perturba-
tions around spatially flat isotropic models, we would
expand in v̄ij := vij − 1

2δ
−1πδij .) Resumming higher-

curvature terms by making use of the small barred quan-
tities, we obtain effective actions as before. The main
consequence of holonomy corrections then appears even
at leading order in the expansion, for β∅ in the new ex-
pansion takes the value β∅ = −1. At the point of max-
imum density, where δK̄ϕ = 0 or δc̄ = 0 and therefore

β = β∅ = −1, the gravitational action becomes classical,
albeit of Euclidean signature. (From Sec. II B, argued in
spherically symmetric models, we recall that β turning
negative is a general feature near the maximum density
of holonomy-modified systems, independently of quanti-
zation holonomies.)

2. Euclidean space instead of holonomy-induced

super-inflation

Negative β∅, in all models studied consistently so far,
are a necessary consequence of holonomy modifications in
the high-density phases in which they may resolve singu-
larities. With negative β∅, however, the dispersion rela-
tion is positive definite and the hypersurface-deformation
algebra is of Euclidean signature, as seen in Sec. III B.
These consequences are consistent with a formal trans-
formation from positive to negative β in (4) by the re-
placements of N or t by iN or it, respectively. With
a Euclidean action, the initial/boundary-value problem
changes its form significantly and propagation in time no
longer exists. Loop quantum gravity, in this way, pro-
vides a concrete mechanism for signature change.
In loop quantum cosmology, going through the Planck

regime near the big bang does therefore not at all corre-
spond to a bounce, as minisuperspace models are some-
times interpreted as suggesting [62]. The big bang is
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rather a transition from Euclidean 4-dimensional space
to Lorentzian space-time which only appears dynamical
in the homogeneous background. This observation shows
some of the pitfalls and unexpected subtleties of minisu-
perspace models. We are also reminded that we have
to be careful with gauge-fixings or deparameterization,
which do not determine the constraint algebra and can-
not show the consequences seen here (see e.g. [51]). One
example for difficulties with deparameterization of cos-
mological evolution is realized in models with a positive
cosmological constant [63]. The range of internal time
provided by a free, massless scalar φ does not match with
the range of proper time τ of observers, with τ diverging
at large volume while φ changes in a finite range. Ex-
tending the internal-time evolution to all values of φ is
then unphysical because no observer could see the ex-
tended space-time solution. The Euclidean phase found
here provides another example, requiring us to bound
the range of internal time φ also at small volume in loop
quantum cosmology. Classically, we know the space-time
structure and all we need to ensure for a good internal
time is that its rate of change dφ/dτ does not become
zero. With a deformed notion of space-time structure,
the derivatives in background equations of motion may
not refer to time at all, and therefore φ cannot be called
an internal “time” even if it keeps changing with the
background coordinates. We can start our internal time
φ only when space-time turns Lorentzian [91].

In addition to these cautionary remarks for some sce-
narios in loop quantum cosmology, the new picture of
signature change also provides larger unity among the
different scenarios for singularity resolution. The main
mechanism [52] is based on properties of the underlying
difference equations that appear with a loop quantization
[64], with difference operators on minisuperspace. The
resulting recurrence scheme of the wave function depend-
ing on an integer geometrical quantity, taking both signs
thanks to orientation, allows one to evolve uniquely from
one side of the classical singularity in minisuperspace to
the other. With unique evolution, the singularity is re-
solved in this picture of quantum hyperbolicity making
use of geometrical internal time. A scenario of less gener-
ality is realized for deparameterizable models sourced by
a scalar field when its energy is almost all kinetic. Here,
using the scalar as internal time, the minisuperspace evo-
lution is non-singular with a minimum volume achieved
at high density.

These pictures look inconsistent at first sight, with the
oriented volume used as unbounded recurrence variable
in the first one, but bouncing back from a small value
in the second one. With the results of this paper we see
that what is inconsistent is not the role of volume in the
recurrence, but rather the interpretation of evolution as
a smooth bounce. In both cases, a collapsing branch of
shrinking volume is connected to an expanding branch
of growing volume by a non-classical space-time region.
In the first picture, based on a recurrence analysis of
discrete wave equations, the non-classical part is mod-

eled as a tunneling process of the wave function through
small volume, while it becomes a Euclidean chunk of 4-
dimensional space in the second picture. This scenario
not only unifies different mechanisms of singularity reso-
lution in loop quantum cosmology, it also shows an inter-
esting and unexpected overlap with the tunneling aspects
of [65] and the postulated signature change of [66].

3. The question of cosmological initial values

We arrive at several new possibilities for cosmolog-
ical model building: Initial values can be posed only
in the Lorentzian regime. Holonomy-induced super-
inflation, as it appears in the background evolution in
loop quantum cosmology at high density, is not realized;
the corresponding background piece is not part of space-
time but rather corresponds to a Euclidean chunk of 4-
dimensional space. (Super-inflation from inverse-triad
corrections [67, 68] has a positive β and could happen
in the space-time part.) While the background equa-
tions, taken on their own, might be interpreted as imply-
ing super-inflationary evolution, they fail to provide any
insight into the correct initial/boundary-value problem.
Only an extension at least to perturbative inhomogene-
ity, without gauge fixing or deparameterization so as to
have access to the off-shell constraint algebra, can pro-
vide this important input, and it shows the Euclidean
nature. With the corresponding boundary-value instead
of initial-value problem, even the background equations
can no longer be interpreted as evolution equations in
time.
The Euclidean nature of high-density regimes with

holonomy corrections have several unanticipated conse-
quences for initial values in cosmology. One cannot use
this phase to evolve or generate structure, or to pose
initial conditions within it, such as at the bounce of
maximum density. Models making use of the super-
inflationary phase to supply initial values, even if only
for the background equations as suggested for instance
in [69], are not consistent with quantum geometry. It be-
comes, however, very natural to pose initial values right
at the boundary of Euclidean space, cutting off super-
inflation. This procedure would be similar to the usual
choice of initial values or an intial vacuum state before
slow-roll inflation, but providing stronger justification of
the choice.
There are several advantages. First, we can pose well-

defined initial values in a non-singular regime. Classi-
cally, if we go back as far as possible to pose initial
conditions close to what can be considered the begin-
ning, we end up at the big-bang singularity. If there is
a bounce [70], we end up far back at large volume in
the preceding collapse branch. In the deformed solutions
with holonomy corrections of loop quantum gravity, we
end up at the non-singular beginning of the Lorentzian
branch, a clearly distinguished and non-singular moment
in time. Secondly, methods of Euclidean quantum grav-
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ity may be used to shed light on what initial conditions
one should expect. These initial conditions would not
be transferred from the collapse phase bordering the Eu-
clidean chunk at its other end: In Euclidean 4-space we
must choose boundary conditions for a well-posed formu-
lation of partial differential equations for inhomogeneity.
This boundary includes the initial-value slice of the ex-
panding branch of the universe model and the final-value
surface of the collapsing branch. Field values on these
surfaces can be specified independently and freely for
a complete set of Euclidean boundary conditions. We
could, for instance, evolve the collapsing branch from
its initial data to obtain field values at one piece of the
Euclidean boundary. Boundary conditions will then be
completed by choosing values on the rest, including the
initial-data surface of the expanding branch. Therefore,
the final values of the collapse do not determine initial
values for expansion. There is no deterministic evolution
across the Euclidean high-density phase [92]. Rather,
the scenario describes a beginningless beginning, with a
concrete physical realization of a distinguished initial-
value surface. Although our scenario has cyclic features
in that it combines collapsing and expanding branches,
connected by Euclidean space not causally but at least as
manifolds, we do not encounter the entropy problem. En-
tropy, like anything else, will simply not be transmitted
through the Euclidean piece.

D. Additional modifications

Non-local corrections are possible in our formalism,
extended from [3], but have not yet been realized ex-
plicitly in effective actions. We have identified addi-
tional difficulties which may prevent simple realizations
of consistent deformations: gravity and matter terms in
the constraints can no longer satisfy the hypersurface-
deformation algebra independently. Instead, there must
be delicate cancellations between matter and gravity
Poisson brackets so as to ensure that the total constraints
satisfy a consistently deformed algebra.
In addition to non-locality, modifications to the spatial

part of the constraint algebra would prevent the steps
followed here from going through. From the perspective
of effective constraints, modifications to the spatial part
may not seem likely because these constraints are formu-
lated for fields on some manifold, which may not obey

the classical geometry but nevertheless is a collection of
points labeled, for the formulation of physical theories,
by coordinates. The choice of coordinates cannot matter
for the physics, and so there must be relabelling invari-
ance. Such an invariance, in turn, leads very generally to
the spatial part of the constraint algebra just based on
properties of the Lie derivative [3].

Also from the point of view of full loop quantum grav-
ity, modifications to the part of the constraint algebra in-
volving the diffeomorphism constraint may not be called
for. This constraint, unlike the Hamiltonian constraint,
is implemented directly by its action on subsets in space
(points or graphs) without any regularization or modi-
fication required to quantize it consistently. The final
verdict on this question has not arrived, however, as
shown by recent attempts to construct diffeomorphism
constraint operators amenable to a closed operator alge-
bras for the constraints [71].

The constraint algebra opens the way to specific re-
sults for space-time geometry in loop quantum gravity,
extending some minisuperspace results to more general
situations. A crucial open issue remains: deriving con-
sistent deformations in more general terms than available
now. Our results here do not provide new cases of consis-
tent deformations, because we must assume consistency
in order to employ our algebra. But the new methods
do show how different terms in a consistently modified
Hamiltonian constraint must be related to one another,
as seen in conditions for dispersion relations and in the
relations of vn-terms to spatial metric derivatives. Thus,
our methods help in finding new consistent models. But
even for existing ones, the effective actions obtained pro-
vide new insights and several unexpected cosmological
consequences.
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[82] P. A. Höhn, E. Kubalova, and A. Tsobanjan,
arXiv:1111.5193.

[83] M. Bojowald, Nature Physics 3, 523 (2007).
[84] M. Bojowald, Proc. Roy. Soc. A 464, 2135 (2008),

arXiv:0710.4919.
[85] In addition to D[N i] and H [N ], there are primary con-

straints given by the momenta of the non-dynamical N
and N i. Their algebra just mimics the canonical struc-
ture, not space-time structure, and can thus be ignored
for the purposes of this article.

[86] Such deformations are similar in spirit to doubly special
relativity [72–75], but the two different concepts are not
straightforwardly related: Doubly special relativity de-
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