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There is a well-known, intuitive geometric correspondence between high-frequency quasinormal modes of
Schwarzschild black holes and null geodesics that reside on the light-ring (often called spherical photon orbits):
the real part of the mode’s frequency relates to the geodesic’s orbital frequency, and the imaginary part of the
frequency corresponds to the Lyapunov exponent of the orbit. For slowly rotating black holes, the quasinormal-
mode’s real frequency is a linear combination of the orbit’s precessional and orbital frequencies, but the cor-
respondence is otherwise unchanged. In this paper, we find a relationship between the quasinormal-mode fre-
quencies of Kerr black holes of arbitrary (astrophysical) spins and general spherical photon orbits, which is
analogous to the relationship for slowly rotating holes. To derive this result, we first use the WKB approxi-
mation to compute accurate algebraic expressions for large-l quasinormal-mode frequencies. Comparing our
WKB calculation to the leading-order, geometric-optics approximation to scalar-wave propagation in the Kerr
spacetime, we then draw a correspondence between the real parts of the parameters of a quasinormal mode
and the conserved quantities of spherical photon orbits. At next-to-leading order in this comparison, we relate
the imaginary parts of the quasinormal-mode parameters to coefficients that modify the amplitude of the scalar
wave. With this correspondence, we find a geometric interpretation of two features of the quasinormal-mode
spectrum of Kerr black holes: First, for Kerr holes rotating near the maximal rate, a large number of modes have
nearly zero damping; we connect this characteristic to the fact that a large number of spherical photon orbits
approach the horizon in this limit. Second, for black holes of any spins, the frequencies of specific sets of modes
are degenerate; we find that this feature arises when the spherical photon orbits corresponding to these modes
form closed (as opposed to ergodically winding) curves.

PACS numbers: 04.25.-g, 04.30.Nk, 04.70.Bw

I. INTRODUCTION

Quasinormal modes (QNMs) of black-hole spacetimes are
the characteristic modes of linear perturbations of black holes
that satisfy an outgoing boundary condition at infinity and an
ingoing boundary condition at the horizon (they are the natu-
ral, resonant modes of black-hole perturbations). These oscil-
latory and decaying modes are represented by complex char-
acteristic frequencies ω = ωR− iωI , which are typically in-
dexed by three numbers, n, l, and m. The decay rate of the
perturbation increases with the overtone number n, and l and
m are multipolar indexes of the angular eigenfunctions of the
QNM.

A. Overview of quasinormal modes and their geometric
interpretation

Since their discovery, numerically, in the scattering of grav-
itational waves in the Schwarzschild spacetime by Vishvesh-
wara [1], QNMs have been thoroughly studied in a wide range
of spacetimes, and they have found many applications. There
are several reviews [2–6] that summarize the many discover-
ies about QNMs. They describe how QNMs are defined, the
many methods used to calculate QNMs (e.g., estimating them
from time-domain solutions [7], using shooting methods in
frequency-domain calculations [8], approximating them with
inverse-potential approaches [9] and WKB methods [10, 11],
numerically solving for them with continued-fraction tech-
niques [12, 13], and calculating them with confluent Huen
functions [14, 15]), and the ways to quantify the excitation

of QNMs (see, e.g., [16, 17]). They also discuss the prospects
for detecting them in gravitational waves using interferometric
gravitational-wave detectors, such as LIGO [18] and VIRGO
[19], and for inferring astrophysical information from them
(see, e.g., [20, 21] for finding the mass and spin of black
holes using QNMs, [22, 23] for quantifying the excitation of
QNMs in numerical-relativity simulations binary-black-hole
mergers, and [24, 25] for testing the no-hair theorem with
QNMs). There have also been several other recent applica-
tions of QNMs. For example, Zimmerman and Chen [26]
(based on work by Mino and Brink [27]) study extensions to
the usual spectrum of modes generated in generic ringdowns.
Dolan and Ottewill use eikonal methods to approximate the
modal wave function, and they use these functions to study
the Green’s function and to help understand wave propagation
in the Schwarzschild spacetime [28–30].

Although QNMs are well understood and can be calculated
quite precisely, it remains useful to develop intuitive and an-
alytical descriptions of these modes. Analytical insights into
QNMs have come largely from two limits: the high-overtone
limit (n � 1) and the eikonal limit (l � 1). In the high-
overtone limit, the frequencies of a QNM are related to the
surface gravity of the horizon (see e.g., [31, 32] for the numer-
ical discovery for Schwarzschild black holes, [33] for an ana-
lytical proof for Schwarzschild holes, and [34, 35] for proofs
for other spherically symmetric black-hole spacetimes). In
this paper, we focus on the eikonal limit.

An important calculation in the eikonal limit (l � 1) was
performed by Ferrari and Mashhoon [9], who showed that for
a Schwarzschild black hole, the QNM’s frequency (which de-
pends only on a multipolar index l and an overtone index n)
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can be written as

ω ≈ (l +1/2)Ω− iγL(n+1/2) . (1.1)

The quantities Ω and γL are, respectively, the Keplerian fre-
quency of the circular photon orbit and the Lyapunov expo-
nent of the orbit, the latter of which characterizes how quickly
a congruence of null geodesics on the circular photon orbit
increases its cross section under infinitesimal radial perturba-
tions [30, 36]. Equation (1.1) hints at an intriguing physi-
cal description of QNMs, first suggested by Goebel [37]: for
modes with wavelengths much shorter than the background
curvature, the mode behaves as if it were sourced by a pertur-
bation that orbits on and diffuses away from the light ring on
the time scale of the Lyapunov exponent. Thus, photon sur-
faces [38] play an important role in the structure of a space-
time’s QNMs.

Ferrari and Mashhoon [9] also derived an analogous result
to Eq. (1.1) for slowly rotating black holes. They showed for
l & m� 1, the real part of the frequency is given by

Ω≈ ωorb +
m

l +1/2
ωprec , (1.2)

where ωorb is now the Keplerian orbital frequency for the
spherical photon orbit 1 and ωprec is the Lense-Thiring-
precession frequency of the orbit (which arises because of
the slow rotation of the black hole). The term proportional
to ωprec also has a simple geometric-optics interpretation. In-
ertial frames near the high-frequency wave at the light ring
are dragged with respect to inertial frames at infinity, and
this frame dragging causes the perturbation’s orbit to precess
about the spin axis of the black hole with a frequency, ωprec.
If the orbit is inclined at an angle of sin2

θ = m2/l(l +1) (the
ratio of angular momenta L2

z/L2 for quantized waves in flat
space), then the projection of the precessional velocity onto
the orbital plane scales the precessional frequency by a factor
of ∼ m/(l +1/2).

Why the QNM frequency is multiplied by (l + 1/2) is a
feature that we will explain in greater detail in this paper. In-
tuitively, this term arises because the in the high-frequency
limit, any wavefront traveling on null orbits will have an inte-
gral number of oscillations in the θ and φ directions. For the
wave to be periodic and single-valued, there must be m oscil-
lations in the φ direction. For the θ direction, it is a Bohr-
Sommerfeld quantization condition that requires l−|m|+1/2
oscillations in this direction, which implies that there should
be a net spatial frequency of roughly (l+1/2). This increases
the frequency of the radiation seen far from the hole by the
same factor.

From this intuitive argument, we expect that the real part of
the mode should be

ωR = L
(

ωorb +
m
L

ωprec

)
, (1.3)

1 By “spherical photon orbits”, we mean those orbits that remain on a sphere
of constant radius, but do not necessarily close or explore the whole sphere.

where we define L = l +1/2. In this paper, we will show that
an equation of the form of Eq. (1.3) does, in fact, describe the
QNM frequencies of Kerr black holes of arbitrary astrophys-
ical spins (and it recovers the result of Ferrari and Mashhoon
for slowly spinning black holes). As we mention in the next
part of this section, the exact details of the correspondence be-
tween QNMs and photon orbits is richer for rapidly rotating
black holes than for slowly rotating or static black holes.

B. Methods and results of this article

To derive Eq. (1.3) requires that we develop a geometric-
optics interpretation of the QNMs of Kerr black holes with
arbitrary astrophysical spins. Finding the correspondence re-
quires two steps: first, we need to calculate the approximate
frequencies using the WKB method; next, we must articulate
a connection between the mathematics of waves propagating
in the Kerr spacetime in the geometric-optics approximation
and those of the WKB approximation (the first step). Finally,
with the geometric-optics description of QNMs, we can make
a physical interpretation of the spectrum (for example, the de-
generacy or the lack of damping in the extremal limit).

In Sec. II, we describe how we solve the eigenvalue prob-
lem that arises from separating the Teukolsky equation [39] (a
linear partial differential equation that describes the evolution
of scalar, vector, and gravitational perturbations of Kerr black
holes) into two nontrivial linear ordinary differential equa-
tions. The two differential equations, the radial and angular
Teukolsky equations, share two unknown constants—the fre-
quency, ω , and the angular separation constant, Alm—that are
fixed by the boundary conditions that the ordinary differen-
tial equations must satisfy (ingoing at the horizon and outgo-
ing at infinity for the radial equation, and well-behaved at the
poles for the angular equation). The goal of the WKB method
is to compute the frequency and separation constant approxi-
mately.

Although there has been work by Kokkotas [40] and Iyer
and Seidel [41] using WKB methods to compute QNM fre-
quencies of rotating black holes, their results were limited to
slowly rotating black holes, because they performed an ex-
pansion of the angular separation constant, Alm, for small, di-
mensionless spin parameters, a/M, and only applied the WKB
method to the radial Teukolsky equation to solve for the fre-
quency. In a different approach, Dolan developed a matched-
expansion formalism for Kerr black holes of arbitrary spins
that can be applied to compute the frequency of QNMs, but
only for modes with l = |m| and m = 0 [29].

Therefore, it remains an outstanding problem to compute a
WKB approximation to the quasinormal modes of Kerr black
holes of large spins and for any multipolar index m. In Sec. II,
we solve the joint eigenvalue problem of the radial and angular
Teukolsky equations by applying a change of variables to the
angular equation that brings it into the form of a bound-state
problem in quantum mechanics. Applying the WKB method
to the angular equation, we arrive at a Bohr-Sommerfeld con-
dition that constrains the angular constant in terms of the fre-
quency (and the indices l and m). Simultaneously, we can an-



3

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

á

á

á

×

×

×

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

á

á

á

×

×

×

0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

MΩR

M
Ω

I

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

á

á

á

×

×

×

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

á

á

á

×

×

×

0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

MΩR

M
Ω

I

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

ô

ô

ô

ç

ç

ç

0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

MΩR

M
Ω

I

Figure 1: Low-overtone QNM spectrum of three Kerr black holes of different spins with approximate degeneracies in their spectra. From left to
right, we plot the three lowest-overtone QNM excitations for (i) a/M = 0.69 in which (l,m)= ( j,2) are black symbols and (l′,m′)= ( j+1,−2)
are blue symbols, where j = 3, . . . ,9; (ii) a/M = 0.47 in which (l,m) = ( j,3) are magenta symbols and (l′,m′) = ( j+1,−3) are cyan symbols,
where j = 3, . . . ,9; (iii) a/M = 0.35 in which (l,m) = ( j,4) are red symbols and (l′,m′) = ( j+1,−4) are purple symbols, where j = 5, . . . ,10.
For these spin parameters, the mode with positive values of m and ωR (a corotating mode) of index l is approximately degenerate with the
mode with m′ =−m, and ωR (a counterrotating mode) of index l′ = l +1.

alyze the radial equation in the WKB approximation, and the
two equations together define an system of integral equations,
which can be solved for the eigenvalues. When we expand
the Bohr-Sommerfeld condition in a Taylor series in terms of
the numerically small parameter, aω/l, the system of integral
equations reduces to an algebraic system (which, in turn, leads
to a simpler expression for the frequency). The approximate
frequency agrees very well with the result that includes all
powers of aω/l, and, in the eikonal limit, it is accurate to or-
der 1/l for Kerr black holes of arbitrary spins, for modes with
any value of m, and for both the real and the imaginary parts
of the frequency.

To interpret the WKB calculation of Sec. II in the lan-
guage of propagating waves in the geometric-optics limit
within the Kerr spacetime, we analyze waves around a Kerr
black hole in Sec. III using the geometric-optics approxima-
tion and the Hamilton-Jacobi formalism. We confirm that
the leading-order pieces of the WKB frequencies and angu-
lar constants correspond to the conserved quantities of the
leading-order, geodesic behavior of the geometric-optics ap-
proximation (specifically, the real part of ω , the index m, and
the real part of Alm are equivalent to the energy E , the z-
component of the specific angular momentum Lz, and Carter’s
constant Q plus L2

z , respectively). The specific geodesics cor-
responding to a QNM are, in fact, spherical photon orbits. The
next-to-leading-order WKB quantities (the imaginary parts of
ω and Alm) correspond to dispersive, wavelike corrections to
the geodesic motion (they are the Lyapunov exponent and the
product of this exponent with the change in Carter’s constant
with respect to the energy). Table I in Sec. III summarizes this
geometric-optics correspondence.

In Sec. IV, we make several observations about features of
the QNM spectrum of Kerr black holes that have simple ge-
ometric interpretations. First, we find that for extremal Kerr
black holes, a significant fraction of the QNMs have a real
frequency proportional to the angular frequency of the hori-
zon and a decay rate that rapidly falls to zero; we explain this
in terms of a large number of spherical photon orbits that col-
lect on the horizon for extremal Kerr holes. Second, we ex-
pand the WKB expression for the real part of the frequency as
in Eq. (1.3), and we interpret these terms as an orbital and a

precessional frequency of the corresponding spherical photon
orbit. These two frequencies depend on the spin of the black
hole and the value of m/L very weakly for slowly-rotating
black holes, though quite strongly when the spin of the black
hole is nearly extremal. Finally, we use the geometric-optics
interpretation given by Eq. (1.3) to explain a degeneracy in
the QNM spectrum of Kerr black holes, in the eikonal limit,
which also manifests itself, approximately, for small l (see
Fig. 1). The degeneracy occurs when the orbital and pre-
cession frequencies, ωorb and ωprec are rationally related (i.e.,
ωorb/ωprec = p/q for integers p and q) for a hole of a specific
spin parameter, and when the corresponding spherical photon
orbits close. By substituting this result into Eq. (1.3) one can
easily see that modes with multipolar indexes l and m become
degenerate with those of indexes l′ = l + kq and m′ = m− kp
for any non-negative integer k, in the eikonal limit (note that
in Fig. 1, we show an approximate degeneracy for k = 1 and
for three spin parameters, such that q/p = 1/4, 1/6, and 1/8,
respectively.)

C. Organization of the paper

To conclude this introduction, we briefly summarize the or-
ganization of this paper: In Sec. II, we review the Teukol-
sky equations, and we then describe the WKB formalism
that we use to calculate an accurate approximation to the an-
gular eigenvalues Alm = AR

lm + iAI
lm and QNM frequencies

ω = ωR − iωI , in the eikonal limit L � 1 and for holes of
arbitrary spins. We verify the accuracy of our expressions in
Sec. II D by comparing the WKB frequencies to exact, numer-
ically calculated frequencies. In Sec. III, we develop a corre-
spondence between the WKB calculation and mathematics of
wave propagation within the Kerr spacetime in the geometric-
optics limit, using the geometric-optics approximation and
the Hamilton-Jacobi formalism. At leading-order, the QNM
frequencies and angular eigenvalues correspond to the con-
served quantities of motion in the Kerr spacetime for spher-
ical photon orbits; at next-to-leading order in the geometric-
optics approximation, we connect the the decaying behavior
of the QNMs to dispersive behaviors of the waves. Finally, in
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Sec. IV, we interpret aspects of the QNM spectrum geomet-
rically, such as the vanishing of the damping rate for many
modes of extremal black holes, the decomposition of the fre-
quency into orbital and precessional parts, and the degenera-
cies in the QNM frequency spectrum. Finally, in Sec. V, we
conclude. We use geometrized units in which G = c = 1 and
the Einstein summation convention throughout this paper.

II. WKB APPROXIMATION FOR THE
QUASINORMAL-MODE SPECTRUM OF KERR BLACK

HOLES

In this section, we will derive expressions for the frequen-
cies of quasinormal modes of Kerr black holes using the WKB
approximation. We will need to compute the real and imagi-
nary parts to an accuracy of O(1) in terms of l� 1, which im-
plies that we must calculate ωR to leading and next-to-leading
order and ωI to leading order. Here, we will focus on obtain-
ing an analytic approximation to the frequency spectrum, and
we will leave the geometrical interpretation of our results until
the next section.

Before specializing our results to the angular and radial
Teukolsky equations, we will review a basic result about the
WKB expansion that we will use frequently throughout this
paper; a more complete discussion of WKB methods can be
found in [11]. Given a wave equation for ψ(x)

ε
2 d2ψ

dx2 +U(x)ψ = 0 , (2.1)

we will expand the solution as ψ = eS0/ε+S1+εS2+..., where the
leading and next-to-leading action variables are given by

S0 =±i
∫ x√

U(x)dx , (2.2a)

S1 =−
1
4

logU(x) . (2.2b)

The formulas above will be the basis for our analysis of the
radial and angular Teukolsky equations in the next sections.

A. The Teukolsky equations

Teukolsky showed that scalar, vector, and tensor perturba-
tions of the Kerr spacetime all satisfy a single master equation
for scalar variables of spin weight s; moreover, the master
equation can be solved by separation of variables [39]. We
will use u to denote our scalar variable, and we will separate
this scalar wave as

u(t,r,θ ,φ) = e−iωteimφ R(r)uθ (θ) . (2.3)

Then, at the relevant order in l� 1, the angular equation for
uθ (θ) can be written as

1
sinθ

d
dθ

[
sinθ

duθ

dθ

]
+

[
a2

ω
2 cos2

θ − m2

sin2
θ
+Alm

]
uθ = 0 ,

(2.4)

where Alm is the angular eigenvalue of this equation. Fol-
lowing the definition in [42], we use the renormalized radial
function given by ur = ∆s/2

√
r2 +a2R. The equation obeyed

by the radial function ur(r) is

d2ur

dr2
∗
+

K2−∆λ 0
lm

(r2 +a2)2 ur = 0 ,
d

dr∗
≡ ∆

r2 +a2
d
dr

(2.5a)

with

K =−ω(r2 +a2)+am , (2.5b)

λ
0
lm = Alm +a2

ω
2−2amω , (2.5c)

∆ = r2−2Mr+a2 . (2.5d)

Here we have used the facts that ωR ∼ O(l), ωI ∼ O(1),
m ∼ O(l) to drop terms that are of higher orders in the ex-
pansion than those that we treat. Note that the spin s of the
perturbation no longer enters into these equations after ne-
glecting the higher-order terms. The only subtlety here is that
the s-dependent terms 2mscosθ/sin2

θ and s2 cot2 θ diverge
at the poles, θ = 0,π . For non-polar modes it will be shown
in the following section that the wave function asymptotes to
zero near the poles, and therefore these s dependent correc-
tions are not important. For polar modes m = 0, the angular
wave functions do not vanish at the pole, and so it is not as
clear that these terms can be neglected as small. However,
numerical evidence presented in Sec. II D also shows that ne-
glecting the s dependent terms in the angular Teukolsky equa-
tion only contributes a relative error proportional to 1/L2.

B. The angular eigenvalue problem

We will first find an expression for Alm in terms of ω , l, and
m, by analyzing the angular equation in the WKB approxima-
tion. By defining

x = log
(

tan
θ

2

)
(2.6)

and dx = dθ/sinθ , we can write the angular equation as

d2uθ

dx2 +V θ uθ = 0 , (2.7a)

where

V θ = a2
ω

2 cos2
θ sin2

θ −m2 +Alm sin2
θ . (2.7b)

When written in this form, it is clear that, aside from polar
modes where m= 0, uθ must satisfy a boundary condition that
it be 0 as x→ ±∞ (which corresponds to θ → 0,π). In the
special case when m = 0, uθ approaches a constant instead.
Furthermore, the angular equation is now in a form that is
amenable to a WKB analysis (which will be the subject of the
next part).

First, however, we outline how we will perform the calcu-
lation. Because the frequency ω = ωR− iωI is complex, the
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angular eigenvalue Alm, a function of ω , must also be com-
plex. We will write

Alm = AR
lm + iAI

lm , (2.8)

to indicate the split between real and imaginary parts. We will
treat a real-valued ω = ωR in the first part of this section, and,
therefore, a real-valued AR

lm(ωR); we shall account for −iωI
by including it as an additional perturbation in the next part of
this section.

1. Real part of Alm for a real-valued ω

For ωR ∈ R, we will compute the eigenvalues AR
lm(ωR), of

Eq. (2.7a) for standing-wave solutions that satisfy physical
boundary conditions. At the boundary, θ = 0,π (or x = ∓∞)
the potential satisfies V θ = −m2 independent of the value of
AR

lm; this implies that the solutions to Eq. (2.7a) behave like
decaying exponential functions at these points (i.e., the wave
does not propagate). For there to be a region where the so-
lutions oscillate (i.e., where the wave would propagate), Alm
must be sufficiently large to make V θ > 0 in some region. De-
pending on the relative amplitudes of Alm and a2ω2, V θ either
has one maximum at θ = π/2 (when Alm ≥ a2ω2), or two
identical maxima at two locations at symmetrically situated
around θ = π/2 (when Alm < a2ω2). It turns out that the re-
gion where the maximum of V θ > m2 is centered around π/2;
therefore, all solutions fall into the former category rather than
the latter.

The length scale over which the function uθ varies is
1/
√

V θ , and the WKB approximation is valid only if the po-
tential V θ does not vary much at this scale. Therefore, to use
the WKB approximation, we require that∣∣∣∣ 1√

V θ

dV θ

dθ

∣∣∣∣� |V θ | . (2.9)

This condition applies regardless of the sign of V θ . Empiri-
cally, we find this condition to hold for V θ in Eq. (2.7a), ex-
cept around points at which V θ = 0. We will refer to these as
turning points, and they can be found by solving for the zeros
of the potential,

a2
ω

2
R cos2

θ± sin2
θ±−m2 +AR

lm sin2
θ± = 0 , (2.10)

which are given by

sin2
θ± =

2m2

Alm +a2ω2
lm∓

√
(Alm +a2ω2

lm)
2 +4m2

. (2.11)

Using the leading and next-to-leading WKB approximation,
we can write the solution to the wave equation in the propaga-
tive region, x− < x < x+, as

uθ (x) =
a+ei

∫ x
0 dx′
√

V θ (x′)+a−e−i
∫ x

0 dx′
√

V θ (x′)

[V θ (x)]1/4 , (2.12)

where a± are constants that must be fixed by the boundary
conditions that the solution approach zero at θ = 0,π . For
x > x+, we find

uθ (x) =
c+e−

∫ x
x+ dx′
√
−V θ (x′)

[V θ (x)]1/4 , (2.13a)

and x < x−,

uθ (x) =
c−e−

∫ x−
x dx′
√
−V θ (x′)

[V θ (x)]1/4 , (2.13b)

with c± also being constants set by the boundary conditions.
Note that outside of the turning points, we have only allowed
the solution that decays towards x→±∞.

Around the turning points x±, the WKB approximation
breaks down, but uθ can be solved separately by using the
fact that Vθ (x ∼ x±) ∝ x− x±. Solutions obtained in these
regions can be matched to Eqs. (2.12)–(2.13b); the matching
condition leads to the Bohr-Sommerfeld quantization condi-
tion [43]

∫
θ+

θ−
dθ

√
a2ω2

R cos2 θ − m2

sin2
θ
+AR

lm = (L−|m|)π . (2.14)

Here we have defined

L≡ l +
1
2
, (2.15)

which will be used frequently throughout this paper. The lim-
its of the integration are the values of θ where the integrand
vanishes [the turning points of Eq. (2.11)].

If we define

µ ≡ m
L
, αR(a,µ)≡

AR
lm

L2 , ΩR(a,µ)≡
ωR

L
, (2.16)

then all three of these quantities are O(1) in our expansion
in L. From these definitions, we can re-express the limits of
integration as

sin2
θ± =

2µ2

α +a2Ω2∓
√
(α +a2Ω2

R)
2 +4µ2

, (2.17)

and the integral as

∫
θ+

θ−
dθ

√
αR−

µ2

sin2
θ
+a2Ω2 cos2 θ = (1−|µ|)π . (2.18)

For each set of quantities (αR,µ,ΩR), we can express αR
as an implicit function involving elliptic integrals; however, if
we treat aΩR as a small parameter, then the first two terms in
the expansion are

αR ≈ 1− a2Ω2
R

2
(
1−µ

2) . (2.19)

We derive and discuss this approximation in greater detail in
Appendix A. Higher order corrections are on the order of
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(aΩR)
4. For a = 0, we note that this is accurate with a relative

error of O(1/L2), because for a Schwarzschild black hole

ASchw
lm = l(l +1)− s(s+1) . (2.20)

As we will confirm later in Figs. 2 and 4, Eq. (2.19) is an
excellent approximation even for highly spinning black holes.

To understand intuitively why the approximation works so
well, we will focus on corotating modes (i.e., those with posi-
tive and large m, or µ near unity), which have the highest fre-
quencies and, therefore, the largest possible values for aΩR.
For a fixed value of (l,m), ωR is a monotonically increasing
function of a, and

ω
lm
R (a)≤ ω

lm
R (a = M) = mΩ

a=1
H =

m
2M

. (2.21)

In setting this upper bound, we have used the result that the
low-overtone QNM frequencies approach mΩH for m > 0 and
for extremal black holes (first discussed by Detweiler [44],
and discussed further by, e.g. [45, 46]); we have also used ΩH
to denote the horizon frequency of the Kerr black hole,

ΩH =
a

2Mr+
, (2.22)

and r+ to indicate the position of the horizon [note that r+(a=
M) = M]. Normalizing Eq. (2.21) by L, we find

aΩR ≤ (µ/2)(a/M)≤ 1/2 . (2.23)

Even for the upper bound aΩR = 1/2, as can be checked
numerically against Eq. (2.18), the relative accuracy of
Eq. (2.19) is still better than 0.2%.

2. Complex Alm for a complex ω

To solve for the next-to-leading-order corrections to Alm,
we must compute the imaginary part AI

lm. Because ωI � ωR,
when we allow ω = ωR− iωI to be a complex number in the
angular eigenvalue problem (2.4), we can treat the term linear
in ωI as a perturbation to the angular equation. Using the
perturbation theory of eigenvalue equations, we find that

AI
lm =−2a2

ωRωI〈cos2
θ〉 , (2.24)

where

〈cos2
θ〉=

∫
cos2

θ |uθ |2 sinθdθ∫
|uθ |2 sinθdθ

=

∫
θ+

θ−

cos2 θ√
a2ω2

R cos2 θ − m2

sin2 θ
+AR

lm

dθ

∫
θ+

θ−

1√
a2ω2

R cos2 θ − m2

sin2 θ
+AR

lm

dθ

. (2.25)

By taking the derivative of both sides of the Bohr-Sommerfeld
condition (2.14) with respect to the variable z = aωR and by

treating Alm as a function of z, we can rewrite the above ex-
pression as

〈cos2
θ〉= − 1

2z
∂AR

lm(z)
∂ z

∣∣∣∣
z=aωR

. (2.26)

Substituting this expectation value into Eq. (2.24), we find

AI
lm = aωI

[
∂AR

lm(z)
∂ z

]
z=aωR

. (2.27)

Equation (2.27) defines a numerical prescription for comput-
ing Alm = AR

lm + iAI
lm. This approach is quite natural: as ω

becomes complex, Alm is the analytic function whose value
on the real axis is given by AR

lm. The approximate formula
(2.19), therefore, becomes

Alm ≈ L2− a2ω2

2

[
1− m2

L2

]
, (2.28a)

or

α ≈ 1− a2Ω2

2
(
1−µ

2) , (2.28b)

for a complex frequency ω , where we have defined Ω to be
ω/L.

C. The radial eigenvalue problem

Now that we have solved for the angular eigenvalues Alm in
terms of ω , we turn to the radial Teukolsky equation. From
Eq. (2.5a), we see that the radial equation is already in the
form

d2ur

dr2
∗
+V rur = 0 , (2.29a)

if we define

V r(r,ω)=
[ω(r2 +a2)−ma]2−∆

[
Alm(aω)+a2ω2−2maω

]
(r2 +a2)2 .

(2.29b)
Note here that V r is an analytic function of ω , and that it is
real-valued when ω is real.

In general, the WKB approximant for ur is given at leading
order by

ur = b+ei
∫ r∗
√

V r(r′∗)dr′∗ +b−e−i
∫ r∗
√

V r(r′∗)dr′∗ , (2.30)

although in order to obtain a mode which is outgoing at r∗→
+∞ (the same as r→ ∞) and ingoing at r∗ →−∞ (r→ r+),
we must have

ur = b+ei
∫ r∗
√

V r(r′∗)dr′∗ , (2.31a)

for the region containing r→+∞, and

ur = b−e−i
∫ r∗
√

V r(r′∗)dr′∗ , (2.31b)
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for the region containing r∗ → −∞. Intuitively speaking, a
solution to Eq. (2.29a) will satisfy the asymptotic behavior
above if V r ≈ 0 around a point r = r0, and Vr > 0 on both sides.
Then, the WKB expansion (2.30) is valid in the two regions
on both sides of r = r0, and the solution in the vicinity of r0
must be obtained separately by matching to the WKB approx-
imation. The matching will constrain the frequency, thereby
giving a method to determine ω . A detailed calculation of
this procedure has been carried out by Iyer and Will [11] to
high orders in the WKB approximation; the only difference
between our calculation and their result at lower orders comes
from the more complex dependence of V r on ω in our case
(particularly because Alm depends on ω in a more involved
way).

1. Computing ωR

From Iyer and Will [11], the conditions at the leading and
next-to-leading order that must be solved to find ωR are

V r(r0,ωR) =
∂V r

∂ r

∣∣∣∣
(r0,ωR)

= 0 . (2.32)

After a short calculation, these conditions can be expressed as

ΩR =
µa

r2
0 +a2 ±

√
∆(r0)

r2
0 +a2 β (aΩR) , (2.33a)

0 =
∂

∂ r

[
ΩR(r2 +a2)−µa√

∆(r)

]
r=r0

, (2.33b)

where we have defined

β (z) =
√

α(z)+ z2−2µz (2.34a)

≈
√

1+
z2

2
−2µz+

µ2z2

2
. (2.34b)

In deriving Eq. (2.33b), we have used the fact that at r > r+,
(r2 + a2)2/∆ is a monotonically increasing function, and,
therefore the extrema of V r are the same as those of V r(r2 +
a2)2/∆; we then also used the fact that the quantity within the
square brackets in Eq. (2.33b) is always nonzero at points at
which V r = 0.

One method of jointly solving Eqs. (2.33a) and (2.33b)
would be to use Eq. (2.33b) to express ΩR in terms of r0

ΩR =
(M− r0)µa

(r0−3M)r2
0 +(r0 +M)a2 , (2.35)

and then insert this into Eq. (2.33a) to obtain r0; finally ΩR
can be obtained by substituting this r0 back into Eq. (2.35).
If we use the approximate formula (2.34b) in this process, the
equation for r0 becomes a sixth-order polynomial in x= r0/M,
the roots of which can be found efficiently. For convenience,
we write this polynomial here

2x4(x−3)2 +4x2[(1−µ
2)x2−2x−3(1−µ

2)](a/M)2

+(1−µ
2)[(2−µ

2)x2 +2(2+µ
2)x+(2−µ

2)](a/M)4 .
(2.36)

-1.0 -0.5 0.0 0.5 1.0
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Figure 2: Difference in ΩR(a,µ) [Eq. (2.35)] that arises from us-
ing the approximate formula for Alm [Eq. (2.28a)] as opposed to the
exact formula. Here a/M = 0.7, 0.9,0.95, and 0.99 correspond to
black solid, red dashed, blue dotted, and purple long-dashed curves,
respectively. The quantity plotted on the vertical axis has been scaled
by 105.

For each pair (µ,a/M), there are in general two real roots for
x, which correspond to the two possible values of r0/M (and
the two real frequencies with opposite signs).

Note that the procedure above will not work when m = 0
(when both the numerator and denominator of Eq. (2.35) van-
ish). In this case, we can directly require that

(rp−3M)r2
p +(rp +M)a2 = 0 . (2.37)

The solution, rp, can be found in closed form [29, 47]. Insert-
ing it into Eq. (2.33a) and the result can be expressed in terms
of elliptic integrals

ΩR(a,µ = 0) =±1
2

π
√

∆(rp)

(r2
p +a2)EllipE

[
a2∆(rp)

(r2
p +a2)2

] , (2.38)

where EllipE denotes an elliptic integral of the second kind.
Here we have used the subscript p for this special case, be-
cause this mode will turn out to correspond to polar orbits.
Note this formula agrees with the one derived in [29].

We plot in Fig. 2 the relative error in ΩR that comes from
using the approximate expression for Alm [Eq. (2.28a)] rather
than the exact Bohr-Sommerfeld condition. The error is al-
ways less than ∼ 10−4 (we scale the quantity plotted on the
vertical axis by 105), and therefore, we will use the approx-
imate expression for Alm for the remaining calculations in-
volving ΩR throughout this paper. In Fig. 3, we plot ΩR for
a/M = 0, 0.3, 0.5, 0.9, 0.99, and 1 (the flat curve corresponds
to a/M = 0, and those with increasing slopes are the increas-
ing values of a/M). While for low values of a/M below∼ 0.5,
ΩR depends roughly linearly upon µ , for higher values of a/M
(and for µ > 0), ΩR grows more rapidly than linearly. For
a/M = 1, ΩR→ 1/2 when µ → 1, as anticipated.
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Figure 3: Real part of the QNM spectra from the WKB approxi-
mation. Black solid curves show Ω for a/M = 0 (the flat curve)
and a/M = 1 (the curve that increases towards 0.5); red (light gray)
dashed and dotted curves show a/M = 0.3 and 0.5, while blue (dark
gray) dotted and dashed curves show a/M = 0.9 and 0.99.

2. Computing ωI

At leading order, the imaginary part ωI can be calculated
using the same procedure set forth by Iyer and Will [11]. They
find that

ωI =−(n+1/2)

√
2
(

d2V r

dr2∗

)
r0,ωR(

∂V r

∂ω

)
r0,ωR

,

=−(n+1/2)ΩI(a,µ) . (2.39)

In our calculation, we must also take into account that V r also
depends on ω through the angular eigenvalue’s dependence
on ω . If we use the approximate formula for α , we obtain a
reasonably compact expression for ΩI :

ΩI = ∆(r0)

√
4(6r2

0Ω2
R−1)+2a2Ω2

R(3−µ2)

2r4
0ΩR−4aMr0µ +a2r0ΩR[r0(3−µ2)+2M(1+µ2)]+a4ΩR(1−µ2)

. (2.40)

In Fig. 4, we plot the relative error in ΩI from using the
approximate formula for Alm identically to that in Fig. 2 (al-
though here we scale the quantity plotted on the vertical axis
by 104). Because the error is always less than∼ 10−3, we will
use the approximate expression for Alm for computing ΩI in
the remainder of this paper. In [29], an alternate expression for
ωI (for m = 0) was computed by finding an analytic expres-
sion for the Lyapunov exponent (see Sec. III C 2, where we
discuss the exponent’s connection to the QNM’s decay rate);
this expression gives the same result as (2.40) for µ = 0 to a
high accuracy. In Fig. 5, we plot ΩI(a,µ) for several values
of a/M (the same as those in Fig. 3, though not a/M = 0.3).
The curve for a/M = 0 is flat, and those with larger spins have
more rapidly decreasing slopes for increasing values of a/M.
It is interesting to note that in the limit a→ 1, ΩI becomes zero
for values of µ in a finite interval 0.74 . µ ≤ 1 (not only for
µ = 1 does ΩI vanish). We will put forward an explanation
for this phenomenon in Sec. IV, after we make connections
between QNMs and wave propagation in the Kerr spacetime.

The vanishing of the QNM’s decay rate for extremal black
holes has been discussed by many authors in the past. De-
tweiler [44] first showed that modes with l = m had vanishing
decay. Mashhoon [48] extended the work of Goebel [37] to

Kerr-Newman black holes when he calculated the frequency
and Lyapunov exponent of equatorial unstable photon orbits.
He found that for extremal Kerr-Newman holes (which have
M2 = a2 +Q2, with Q the charge of the hole) when a≥M/2,
the Lyapynov exponent vanished, in analogy with the van-
ishing decay for µ & 0.74 discussed above. For QNMs of
a massive scalar field around an extremal Kerr black hole,
Hod [49] found that the modes have vanishing damping when
the mass of the scalar field is smaller than a critical value.
Berti and Kokkotas [50] numerically calculated QNM fre-
quencies for Kerr-Newman black holes using continued frac-
tions, and found good agreement with Mashhoon’s result for
l = m = 2, s = 2 modes (i.e., for extremal holes there was zero
decay). Cardoso [45] explored Detweiler’s calculation of the
decay of extremal modes, and could show that some but not all
modes with m 6= l and m > 0 have vanishing decay rates. Hod
also extended Detweiler’s calculation to m≥ 0 and found that
all such modes have zero decay in the extremal Kerr case [46],
in contrast to our findings. Hod also computed QNM frequen-
cies and decays for eikonal QNMs in the extremal Kerr limit
[51] and found agreement with Mashhoon’s result. In the end,
the particular value of m at which the QNM mode decay rate
for an extremal black hole vanishes is not a settled issue; our
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Figure 4: Difference in ΩI(a,µ) [Eq. (2.39)] from using the approx-
imate formula for Alm [Eq. (2.28a)] rather than the exact formula.
Here a/M = 0.7, 0.9, 0.95, and 0.99 correspond to black solid, red
dashed, blue dotted, and purple long-dashed curves, respectively. We
scale the quantity plotted along the vertical axis by 104 in this figure.
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Figure 5: Imaginary part of the QNM spectrum computed in the
WKB approximation. Black solid curves show ΩI for a/M = 0
(again the flat curve) and a/M = 1 the curve that decreases and heads
to zero. The red dashed curve shows a/M = 0.5, while blue dot-
ted and dashed curves show a/M = 0.9 and 0.99, respectively. For
a/M = 1, modes with µ & 0.74 approach zero (modes that do no
decay), while others still decay.

results here indicate that for L� 1, only some subset of the
m > 0 modes have vanishing decay rates.

D. Accuracy of the WKB approximation

Because we calculated the leading and next-to-leading or-
ders in the WKB approximation to ωR, we expect that the rel-
ative error for increasing L should scale as O(1/L2). For the
imaginary part, we computed only the leading-order expres-
sion, and we would expect that the relative error might scale
as O(1/L). In addition, because at this order of approxima-
tion, we do not account for the spin of the wave, we antici-
pate that the error for the gravitational modes may be larger
than those for scalar modes. In Figs. 6–9, we confirm most of
these expectations, but we find the somewhat unexpected re-
sult that the relative error for the imaginary part also scales as
O(1/L2). In fact, this finding is consistent with Eqs. (52) and
(53) of [29], where the next order contributions are calculated
for the special cases of m = l and m =−l respectively.

In Fig. 6, we compare the WKB approximation to ωR
with numerical computations of the s = 2, gravitational-wave,
quasinormal-mode spectra; specifically, we plot the fractional
error against µ = m/L, for l = 2,3, . . . ,14, and for black holes
of spins a/M = 0.3, 0.5, 0.9, and 0.95. The relative error
clearly converges to O(L2). Even for l = 2, the relative error
tends to be . 30%, and at l ≥ 3 the relative error stays below
∼ 1.5L−2 (this means error is . 10% for l = 3 and higher).

In Fig. 7, we compare the WKB spectra with s = 0 scalar
quasinormal-mode spectra, for the same values of l and the
same black-hole spins. We find a much better agreement. For
all l ≥ 2 modes, the relative error stays below 4× 10−2L−2.
This suggests that coupling between the spin of the wave (i.e.,
its tensor polarization) and the background curvature of the
Kerr black hole is the main source of error in our WKB ap-
proximation.

In Figs. 8 and 9, we perform the same comparisons as in
Figs. 6 and 7 for the imaginary part of frequency. Surprisingly,
we find that for both s = 0 and 2, the relative error in ωI is
O(L−2). For s = 0, the relative error is . 6×10−2L−2, while
for s = 2, the error is . L−2.

With this comparison, we conclude our direct calculation of
the QNM spectrum by WKB techniques. We will discuss ad-
ditional features of the QNM spectrum in Sec. IV, but before
doing so, we will develop a geometric interpretation of our
WKB results. Doing so will help us to develop more intuition
about our WKB expressions.

III. GEOMETRIC OPTICS IN THE KERR SPACETIME

In this section, we first briefly review the formalism of geo-
metric optics, which describes the propagation of waves with
reduced wavelengths λ that are much shorter than the space-
time radius of curvature, R, and the size of the phase front,
L . In the geometric-optics approximation, the phase of the
waves remains constant along null geodesics (rays), while the
amplitude can be expressed in terms of the expansion and con-
traction of the cross-sectional area of bundles of null rays.
We will then specialize the geometric-optics formalism to the
Kerr spacetime, and we will write down the most general form
of propagating waves in the geometric-optics approximation.
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Figure 6: Fractional error, δωR/ωR, of the WKB approximation to the s = 2, gravitational-wave, quasinormal-mode spectrum, multiplied by
L2. The four panels correspond to four different spins which (going clockwise from the top left) are a/M = 0.3, 0.5, 0.95, and 0.9. Errors for
l = 2,3,4 are highlighted as red solid, brown dashed, and pink dotted lines, while the rest (l = 5, . . . ,14) are shown in gray. This shows that
the relative error approaches the O(1/L2) scaling quite quickly.

æ

æ

æ

æ

æ

à

à

à

à

à

à
à

ì

ì

ì

ì
ì

ì
ì

ì
ì

ò

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò

ô
ô

ô
ô

ô
ô

ô
ô

ô
ô

ô
ô

ô

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç ç

á
á

á
á

á
á

á
á

á
á

á
á

á
á á á á

í
í

í
í

í
í

í
í

í
í

í
í

í
í í í í í í

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó ó ó ó ó ó ó ó ó ó ó

õ
õ

õ
õ

õ
õ

õ
õ

õ õ õ õ õ õ õ õ õ õ õ õ õ õ õ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ

à
à

à
à

à
à

à
à

à
à

à
à

à à à à à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì

-1.0 -0.5 0.0 0.5 1.0
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Μ

L
2 H∆Ω

�Ω
L

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì
ì

ì

ò

ò

ò

ò

ò

ò

ò

ò
ò

ò
ò

ô

ô

ô

ô

ô

ô

ô

ô
ô

ô
ô

ô ô

ç

ç

ç

ç

ç

ç

ç

ç
ç

ç
ç

ç
ç ç ç

á

á

á

á

á

á

á
á

á
á

á
á

á
á

á á á

í

í

í

í

í
í

í
í

í
í

í
í

í
í

í
í í í í

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó ó ó ó ó

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ õ õ õ õ õ õ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ æ æ æ æ æ

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à à à à à à à

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì ì ì ì ì ì ì ì ì ì ì

-1.0 -0.5 0.0 0.5 1.0
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Μ

L
2 H∆Ω

�Ω
L

æ

æ

æ

æ

æ

à

à

à

à

à

à
à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ò

ò

ò ò

ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô ô

ô

ç

ç

ç

ç

ç

ç

ç
ç

ç

ç

ç

ç
ç

ç

ç

á

á

á

á

á

á

á
á

á
á

á

á

á
á á

á

á

í

í

í

í

í

í

í

í
í

í
í

í
í

í

í
í í

í

í

ó

ó

ó

ó

ó

ó

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

ó ó ó
ó

ó

õ

õ

õ

õ

õ

õ

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

õ õ
õ

õ
õ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ æ
æ

æ
æ

à

à

à

à

à

à

à

à

à
à

à
à

à
à

à
à

à
à

à
à

à
à à à

à
à

à

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì ì

ì
ì

ì
ì

ì
ì

ì ì ì ì
ì

ì
ì

-1.0 -0.5 0.0 0.5 1.0
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Μ

L
2 H∆Ω

�Ω
L

æ

æ

æ

æ

æ

à

à

à
à à

à à

ì

ì

ì

ì ì ì

ì

ì

ì

ò

ò

ò

ò

ò ò ò
ò

ò

ò

ò

ô

ô

ô

ô

ô
ô ô ô ô

ô

ô ô

ô

ç

ç

ç

ç

ç

ç
ç ç ç ç

ç

ç

ç
ç

ç

á

á

á

á

á

á
á

á á á á
á

á

á
á

á

á

í

í

í

í

í

í
í

í í í í í í

í

í

í í

í

í

ó

ó

ó

ó

ó

ó
ó

ó
ó ó ó ó ó ó

ó

ó

ó
ó ó

ó
ó

õ

õ

õ

õ

õ

õ
õ

õ
õ õ õ õ õ õ õ

õ
õ

õ

õ
õ

õ

õ
õ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ

æ

æ

æ

æ æ
æ

æ
æ

à

à

à

à

à

à

à

à
à

à
à à à à à

à

à
à à

à

à
à

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì
ì ì ì ì

ì

ì
ì ì ì

ì
ì

ì

-1.0 -0.5 0.0 0.5 1.0
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

Μ

L
2 H∆Ω

�Ω
L

Figure 7: Fractional error, δωR/ωR, of the WKB approximation to the s = 0, scalar-wave, quasinormal-mode spectrum, again scaled by L2.
The four panels correspond to the same four spins in Fig. 6. The points shown in the four panels are for values of l in the range l = 2,3, . . . ,14.
Because all values of l nearly lie on the same curve, the relative error has converged at an order O(1/L2) even for very low l. The overall error
is also significantly lower than that for the s = 2 modes.
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Figure 8: Fractional error, δωI/ωI , of the WKB approximation to the s = 2, gravitational-wave, quasinormal-mode spectrum, also scaled by
L2. The panels and the curves are plotted in the same way as in Fig. 6, and the error scales similarly.
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Figure 9: Fractional error, δωI/ωI , of the WKB approximation to the s = 0, scalar-wave, quasinormal-mode spectrum, again multiplied by
L2. The four panels and the points are shown in the same way as in Fig. 7, and there is a similar rapid convergence of the error.



12

Using the Hamilton-Jacobi method, we see that the waves’
motion can be related to the null geodesics in the spacetime.
By applying boundary conditions to the approximate wave,
we obtain expressions for the quasinormal-mode waveforms
and their corresponding complex frequency spectra and angu-
lar separation constants, in the eikonal limit.

A. Geometric optics: general theory

Here we briefly review the geometric-optics approximation
to scalar-wave propagation (see, e.g., Section 22.5 of Ref. [52]
for details). A massless scalar wave u propagating in curved
spacetime satisfies the wave equation

gµν
∇µ ∇ν u = 0 . (3.1)

If we write

u = AeiΦ , (3.2)

then at leading order in λ/L , we have

gµν kµ kν = 0 , kµ ≡ ∂µ Φ , (3.3)

while at next-to-leading order,

2kµ
∂µ logA+∇µ kµ = 0 . (3.4)

Note that Eq. (3.3) also implies that kµ is geodesic,

kµ
∇µ kν = kµ

∇µ ∇ν Φ = kµ
∇ν ∇µ Φ = kµ

∇ν kµ = 0 . (3.5)

Equations (3.2)–(3.5) encode information about the trans-
port of the amplitude A and phase Φ along a null geodesic (or
a ray). The phase should be kept constant, because Eq. (3.3)
states

kµ
∂µ Φ = 0 , (3.6)

while the amplitude is transported along the ray in a manner
that depends upon the propagation of neighboring rays. Be-
cause the 2D area, A , of a small bundle of null rays around
the central ray satisfies the equation

∇µ kµ = kµ
∂µ logA , (3.7)

it is possible to show from Eq. (3.4) that

kµ
∂µ

(
A 1/2A

)
= 0 , (3.8)

which implies A ∝ A −1/2.
The transport equations (3.6) and (3.8) provide a way to

construct a wave solution from a single ray; therefore, any
solution to the wave equation (3.1) in a 4D spacetime re-
gion can be found from a three-parameter family of null rays
(with smoothly varying initial positions and wave vectors) by
assigning smoothly varying initial values of (Φ,A) and then
transporting these values along the rays. (We use the phrase
“smoothly varying” to mean that the values of (Φ,A) must
change on the scale of L � λ .) We note it is often convenient

to divide the three-parameter family of initial positions of the
null rays into two-parameter families of rays with constant ini-
tial values of Φ. The constant-Φ surfaces are the initial phase
fronts, which, upon propagation along the rays, become 3D
phase fronts of the globally defined wave. The more usual 2D
phase fronts, at a given time, are obtained if we take a particu-
lar time slicing of the spacetime and find the 2D cross sections
of the 3D phase fronts in this slicing.

The above formalism describes wave propagation up to
next-to-leading order in L /λ , which will be enough for us to
build a geometric correspondence for both the real frequency,
the decay rate, and the angular separation constant of QNMs
in the Kerr spacetime.

B. Null geodesics in the Kerr spacetime

Now let us review the description of null geodesics in the
Kerr spacetime using the Hamilton-Jacobi formalism. In gen-
eral, the Hamilton-Jacobi equation states

gµν(∂µ S)(∂ν S) = 0 , (3.9)

where S(xµ) is called the principal function. For the Kerr
spacetime, the Hamilton-Jacobi equation can be solved via
separation of variables (see, e.g., [53]), through which the
principal function can be expressed as

S(t,θ ,φ ,r) = Sθ (θ)+Lzφ +Sr(r)−E t , (3.10)

where E and Lz are constants that are conserved because of the
the timelike and axial Killing vectors of the Kerr spacetime.
Physically, E and Lz represent the energy and z-directed spe-
cific angular momentum of the massless scalar particle. The
functions Sr(r) and Sθ (θ) are given by

Sr(r) =
∫ r
√

R(r′)
∆(r′)

dr′, Sθ (θ) =
∫

θ √
Θ(θ ′)dθ

′ ,

(3.11a)

where R(r) and Θ(θ) are given by

R(r) = [E (r2 +a2)−Lza]2−∆[(Lz−aE )2 +Q] , (3.11b)

Θ(θ) = Q− cos2
θ(L2

z/sin2
θ −a2E 2) , (3.11c)

and ∆(r) is given in Eq. (2.5d). The constant Q is the Carter
constant of the trajectory, which is a third conserved quantity
along geodesics in the Kerr spacetime.

The principal function S(xµ ;E ,Lz,Q) contains information
about all null geodesics; equations of motion for individual
null geodesics are given by first choosing a particular set of
(E ,Lz,Q), and then imposing

∂S
∂E

= 0 ,
∂S
∂Lz

= 0 ,
∂S
∂Q

= 0 . (3.12)

These conditions lead to at set of first-order differential equa-
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tions

dt
dλ

=
r2 +a2

∆

[
E (r2 +a2)−Lza

]
−a(aE sin2

θ −Lz) ,

(3.13a)

dφ

dλ
=−

(
aE − Lz

sin2
θ

)
+

a
[
E (r2 +a2)−Lza

]
∆

, (3.13b)

dr
dλ

=
√

R,
dθ

dλ
=
√

Θ , (3.13c)

where we have defined

d
dλ
≡ Σ

d
dζ

, Σ = r2 +a2 cos2
θ , (3.14)

and ζ is an affine parameter along the null geodesics.

C. Correspondence with quasinormal modes

Here we will find connection between the general set of
wave solutions in the previous section, and the particular
solutions that correspond to a quasinormal modes, in the
geometric-optics limit. Specifically, we will look for waves
that propagate outwards at infinity and down the horizon.
With this correspondence, we will be able to make a geometric
interpretation of our WKB results from Sec. II.

1. Leading order: conserved quantities of rays and the real parts
of quasinormal-mode parameters

It is straightforward to note that the Hamilton-Jacobi equa-
tion (3.9) is identical to the leading-order geometric-optics
equations, if we identify the phase, Φ, with the principal func-
tion, S. Therefore, at leading order, we can write

u = eiS = e−iE teiLzφ e±iSθ e±iSr , (3.15)

where we recall that the amplitude A differs from unity only
at next-to-leading order (we will treat it in the next subsec-
tions). Here, we have a chosen set of conserved quantities,
(E ,Q,Lz), to identify the wave we wish to connect with a
quasinormal-mode solution. The region in which the wave
propagates is identical to the region in which geodesics with
these conserved quantities can propagate. In addition, for each
point in this region, there is one (and only one) geodesic pass-
ing through it; that we have ± in front of Sθ and Sr means
only that either propagation direction could be a solution to
the wave equation.

Now we note that u, a scalar wave in the Kerr spacetime,
must separate as in Eq. (2.3). By comparing Eq. (2.3) and
Eq. (3.15), we can immediately identify that

E = ωR . (3.16)

Because E is a real quantity (the conserved energy of the null
geodesic), we see that at leading order, the wave does not de-
cay. Next, we also observe that in order for u to be consistently

defined in the azimuthal direction, Lz (of the null geodesics
that S describes) must be an integer. This allows us to make
the second identification

Lz = m . (3.17)

Comparing Sθ from Eq. (3.11a) and uθ from Eqs. (2.12)
and (2.7b) (focusing on one direction of θ propagation, and
ignoring next-to-leading-order terms), we can also conclude
that

Q = AR
lm−m2 . (3.18)

At this stage, given any set of (E ,Q,Lz), we will be able
to find a wave solution that exists in the region in which the
geodesics travel. Not all such sets of conserved quantities cor-
respond to quasinormal modes, however, because they may
not satisfy the correct boundary conditions of QNMs.

We will first explain the conditions on the radial motion
of the geodesics that will allow these particular geodesics to
correspond to a wave that satisfies outgoing and downgoing
conditions at r∗ → ±∞, respectively. If the radial geodesics
satisfy R > 0 everywhere, then there will be traveling waves
across the entire r∗ axis, which will not satisfy the boundary
conditions; if there are two disconnected regions of traveling
waves, however, waves will scatter off the potential on each
side, and they will also fail to satisfy the boundary conditions.
The only way to satisfy the boundary conditions is to have
a point r0 at which R = 0 and R ′ = 0, in which case there
will be a family of geodesics on each side of r = r0 (with
each member a homoclinic orbit which has r→ r0 on one end)
and a spherical orbit with constant r = r0. The corresponding
wave has zero radial spatial frequency at r = r0, and this fre-
quency increases towards r < r0 and decreases towards r > r0.
Noting that

R =V r (r2 +a2)2
, (3.19)

the condition

R = R ′ = 0 (3.20)

is the same as the condition, Eq. (2.32), which determines ωR
in terms of L and m in the WKB approximation. It is worth
mentioning that although the condition of Eq. (3.20) imposed
on (E ,Q,Lz) can be interpreted most easily as the condition
for a spherical photon orbit, the wave function for the quasi-
normal mode we are considering is not localized around that
orbit. The wave function at leading order, in fact, has a con-
stant magnitude at every location that homoclinic orbits reach
(i.e., the entire r axis). We will derive the amplitude correc-
tions in the next section.

The quantization of the frequency ωR in terms of the multi-
polar indices l and m arises from the quantization of the mo-
tion in the angular directions. For the azimuthal direction, it is
easy to see that for the wave function to be single-valued, we
need to impose Lz = m ∈ Z. For the θ direction, we note that

Θ =V θ sin2
θ , (3.21)
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Table I: Geometric-optics correspondence between the parameters of a quasinormal mode, (ω , Alm, l, and m), and the conserved quantities
along geodesics, (E , Lz, and Q). To establish a correspondence with the next-to-leading-order, geometric-optics approximation, the geodesic
quantities E and Q must be complex.

Wave Quantity Ray Quantity Interpretation

ωR E
Wave frequency is same as energy of null ray

(determined by spherical photon orbit).

m Lz
Azimuthal quantum number corresponds to z angular momentum

(quantized to get standing wave in φ direction).

AR
lm Q+L2

z
Real part of angular eigenvalue related to Carter constant

(quantized to get standing wave in θ direction).

ωI γ =−EI
Wave decay rate is proportional to Lyapunov exponent

of rays neighboring the light sphere.

AI
lm QI

Nonzero because ωI 6= 0
(see Secs. II B 2 and III C 3 for further discussion).

and the θ -quantization condition for the wave, Eq. (2.14), is∫
θ+

θ−

√
Θdθ = (L−|m|)π . (3.22)

This corresponds to the Bohr-Sommerfeld condition for a par-
ticle moving in a potential given by Θ. Consequently, the con-
dition for a standing wave along the θ direction (at leading
order) is equivalent to

Q = Alm(ωRa)−m2

≈ L2−m2− a2ω2
R

2

[
1− m2

L2

]
. (3.23)

In summary, we connected the QNM’s wave function to
the Hamilton-Jacobi principal function of homoclinic null
geodesics (at leading order). These geodesics have the same
energy, Carter constant, and z-component of its angular mo-
mentum as a spherical photon orbit; however only spherical
orbits with quantized Carter constants and z-angular momenta
correspond to quasinormal modes. In Table I, we summarize
our geometric-optics correspondence; so far we have identi-
fied the first three entries on the table. We can find the next two
correspondences by investigating next-to-leading-order geo-
metric optics in the next part.

2. Next-to-leading order: radial amplitude corrections and the
imaginary part of the frequency

We showed in the previous part that the conserved quanti-
ties of a spherical photon orbit, (E ,Q,Lz), correspond sim-
ply to the real parts of the quasinormal-mode parameters,
(ωR,AR

lm,m), which are the leading-order quantities of a quasi-
normal mode. Here, we will show that the behavior of the ho-
moclinic orbits—namely, how the orbits propagate away from
the spherical orbit, and how they move between θ±—reveals
the spatiotemporal variation of the wave (i.e, the decay rate
and the shape of its wave function in space). In Fig. 10, we
plot the trajectory of a particular series of homoclinic orbits

-4 -2 0 2 4
0.0

0.5

1.0

1.5

2.0
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log@Hr-r0L�MD
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Figure 10: Schematic plot of trajectories in the r-θ plane of ho-
moclinic orbits outside of the peak of the potential (specifically for
a black hole with spin a/M = 0.7 and a photon orbit with radius
r0/M = 2.584). The two horizontal grid lines mark the turning
points, θ = θ±; between these turning points, there are two homo-
clinic orbits passing through every point, while at turning points only
one orbit passes through. Vertical grid lines indicate when the value
of parameter λ has changed along the orbit by (an arbitrarily chosen
value) ∆λ = 0.046M. Near the spherical photon orbit, each homo-
clinic orbit undergoes an infinite number of periodic oscillations in
θ while r− r0 is growing exponentially as a function of λ .

on the r-θ plane, to which we will refer at several points in
the discussion below.

With the appropriate values of (E ,Q,Lz), the function u in
Eq. (3.15) solves the wave equation to leading order and satis-
fies the required boundary conditions. To recover the decaying
behavior of quasinormal modes, however, we make correc-
tions to the amplitude of the wave, which appear at next-to-
leading order in the geometric-optics approximation. Because
of symmetry, there should not be any correction to the ampli-
tude in the φ direction, and the correction in the t direction
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should be a simple decay; therefore, we write

u = Aexp(iS) = e−γtAr(r)Aθ (θ)︸ ︷︷ ︸
A(t,r,θ)

e−iE teiLzφ e±iSθ e±iSr .

(3.24)
This general expression contains four possible directions that
the wave could be propagating: the ±θ direction and the ±r
direction (depending on the signs in front of Sr and Sθ ). Be-
cause the boundary conditions require that the waves propa-
gate towards r∗ → +∞ for r > r0 and r∗ → −∞ for r < r0,
the sign in front of Sr should be positive for r > r0 and neg-
ative for r < r0. For θ motion, however, we insist that both
directions (signs) be present, because a quasinormal mode is
a standing wave in the θ direction. Focusing on r > r0, we
write

u = e−γtAr(r)
[
A+

θ
eiSθ +A−

θ
e−iSθ

]
e−iE t+iLzφ+iSr

≡ u++u− . (3.25)

We will next require that both u+ and u− satisfy the wave
equation to next-to-leading order, separately. By explicitly
computing Eq. (3.4) (or A

√
A = const) in the Kerr spacetime,

we find the amplitude satisfies the relation

Σ
d logA

dζ
=−1

2

[
∂r(∆(r)∂rSr)+

1
sinθ

∂θ (sinθ∂θ Sθ )

]
.

(3.26)
Here ζ is an affine parameter along the geodesic specified by
(E ,Q,Lz). If we use the parameter λ defined by d/dλ =
Σd/dζ then we can separate the left-hand side of the equation
as

Σ
d logA

dζ
=

d
dλ

logAr(r)+
d

dλ
logAθ (θ)− γ

dt
dλ

. (3.27)

Because the right-hand side of Eq. (3.13a) for dt/dλ , sep-
arates into a piece that depends only upon r and one that de-
pends only upon θ , we will write Eq. (3.13a) schematically
as

dt
dλ

= ṫ + ˜̇t , (3.28)

where ṫ is only a function of r and ˜̇t is only a function of θ .
Unlike in Eq. (3.13a), we will require that ˜̇t average to zero
when integrating over λ for half a period of motion in the θ

direction (i.e., from θ− to θ+). We can ensure this condition
is satisfied by subtracting an appropriate constant from ˜̇t and
adding it to ṫ. Combining Eqs. (3.26)–(3.28) and performing
a separation of variables, we obtain

√
R

d logAr

dr
− γ ṫ =− R ′

4
√

R
, (3.29a)

√
Θ

d logA±
θ

dθ
∓ γ ˜̇t =− 1

2sinθ
(
√

Θsinθ)′ , (3.29b)

where a prime denotes a derivative with respect to r for func-
tions of r only, and a derivative with respect to θ for functions
of θ only (whether it is a θ or r derivative should be clear

from the context). While it might at first seem possible to add
a constant to the definition of ṫ, and subtract it from ˜̇t and still
have both u+ and u− satisfy the next-to-leading order geomet-
ric optics, because we have already chosen to have ˜̇t average
to zero, ∫

θ+

θ−
γ ˜̇t

dθ√
Θ

=
∫

γ ˜̇tdλ = 0 , (3.30)

this separation is the only way to guarantee that |A±
θ
| match

each other at both ends. We will discuss the angular wave
function in greater detail in the next part of this section.

Let us now turn to the radial equation, from which we will
be able to compute the decay rate. Close to r0, we can expand
R(r) to leading order as

R(r)≈ (r− r0)
2

2
R ′′(r0) . (3.31)

Substituting this result into Eq. (3.29a), we find

d logAr

dr
=

1
r− r0

[
γ ṫ

√
2

R ′′0
− 1

2

]
, (3.32)

where we used the notation R ′′0 ≡R ′′(r0). For Ar to be a func-
tion that scales as Ar ∼ (r− r0)

n around r0 for some integer
n (namely it scales like a well-behaved function), we need to
have

γ =

(
n+

1
2

)√
R ′′0/2

ṫ

= (n+1/2) lim
r→r0

1
r− r0

dr/dλ

〈dt/dλ 〉θ
. (3.33)

To arrive at the second line, we used Eq. (3.31), the fact that
dr/dλ =

√
R, and that ṫ is the part of dt/dλ that does not

vanish when averaging over one cycle of motion in the θ di-
rection; the limit in the expression comes from the fact that the
approximation in Eq. (3.31) becomes more accurate as r→ r0.

The physical interpretation of the rate that multiplies (n+
1/2) is somewhat subtle. Because the θ motion is inde-
pendent from r motion, a bundle of geodesics at the same r
slightly larger than r0, but at different locations in θ , will re-
turn to their respective initial values of θ with a slightly in-
creased value of r after one period of motion in the θ direc-
tion. The area of this bundle increases in the process, and by
Eq. 3.8, the amplitude of the wave must decay; the rate of de-
cay is governed by the quantity that multiplies (n+ 1/2) in
Eq. (3.33).

In addition, as shown in Fig. 10, the homoclinic orbits do
pass through an infinite number of such oscillations near r0,
because the radial motion is indefinitely slower than the θ mo-
tion as r approaches r0. It is clear from Fig. 10 that

1
r− r0

∆r
∆λ

=
∆ log(r− r0)

∆λ
(3.34)

approaches a constant as r → r0. By multiplying the above
equation by the constant value of (∆λ )/(∆t) over one orbit of
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motion in the θ direction,

1
r− r0

∆r
∆t

=
∆ log(r− r0)

∆t
≡ γL (3.35)

also approaches a constant. This is usually defined as the Lya-
punov exponent of one-dimensional motion; here, however,
we emphasize that it is defined only after averaging over entire
cycle of θ motion. By comparing Eq. (3.35) with the second
line of Eq. (3.33), and bearing in mind that the Lyapunov ex-
ponent is defined after averaging over one period of θ motion,
one can write Eq. (3.33) as

γ = (n+ 1
2 )γL . (3.36)

To put Eq. (3.33) into a form that relates more clearly to
Eq. (2.39), we use the conditions on the phase function,

∂S
∂E

= 0 ,
∂S
∂Q

= 0 , (3.37)

which hold for any point on the trajectory of the particle. We
will apply this condition to two points on the particle’s trajec-
tory: one at (t,r,θ ,φ) and the second at (t +∆t,r+∆r,θ ,φ +
∆φ), where ∆t is chosen such that the particle completes a cy-
cle in θ in this time (and it moves to a new location shifted
∆r and ∆φ ). Substituting in the explicit expressions for the
principal function in Eqs. (3.10) and (3.11a), we find

∂

∂E

[∫ r+∆r

r

√
R(r′)

∆(r′)
dr′+∆Sθ

]
= ∆t (3.38a)

∂

∂Q

[∫ r+∆r

r

√
R(r′)

∆(r′)
dr′+∆Sθ

]
= 0 . (3.38b)

where we have defined

∆Sθ ≡ 2
∫

θ+

θ−

√
Θ(θ ′)dθ

′ ≡
∮ √

Θ(θ ′)dθ
′. (3.39)

Because the change ∆r is infinitesimal for r near r0, the in-
tegrand is roughly constant, and the r-dependent part of the
integral becomes the product of the integrand with ∆r. Then,
one can use Eq. (3.31) to write Eqs. (3.38a) and (3.38b) as

1√
2R ′′0 ∆0

∂R

∂E

∆r
r− r0

+
∂∆Sθ

∂E
= ∆t , (3.40a)

1√
2R ′′0 ∆0

∂R

∂Q

∆r
r− r0

+
∂∆Sθ

∂Q
= 0 . (3.40b)

Now, we also note that for a given fixed Lz = m, the angular
Bohr-Sommerfeld condition in Eq. (3.22) makes Q a function
of E through the condition that ∆Sθ = (L− |m|)π . Because
∆Sθ is a function of E , its total derivative with respect to E
must vanish,

∂∆Sθ

∂E
+

∂∆Sθ

∂Q

(
dQ

dE

)
BS

= 0 . (3.41)

Therefore, when we multiply Eq. (3.40b) by (dQ/dE )BS and
add it to Eq. (3.40a), we obtain the condition that

1√
2R ′′0 ∆0

[
∂R

∂E
+

∂R

∂Q

(
dQ

dE

)
BS

]
∆r

r− r0
= ∆t . (3.42)

Combining this fact with the definition of the Lyapunov expo-
nent in Eq. (3.35) and Eq. (3.36), we find that

γ =

(
n+

1
2

) √
2R ′′0 ∆0[

∂R

∂E
+

∂R

∂Q

(
dQ

dE

)
BS

]
r0

, (3.43)

where we recall that the quantities should be evaluated at r0.
Equation (3.43) is equivalent to Eq. (2.39). Note, however,
that in Eq. (3.43) we explicitly highlight the dependence of Q
on E through the term (dQ/dE )BS. There is an analogous
term in Eq. (2.39) from the dependence of Alm on ω in the ex-
pression for the potential V r, which we must take into account
when computing ∂V r/∂ω; however, we did not write it out
explicitly in Eq. (2.39).

Summarizing the physical interpretation of the results in
this subsection, we note that the Lyapunov exponent γL is the
rate at which the cross-sectional area of a bundle of homo-
clinic rays expand, when averaged over one period of motion
in the θ direction in the vicinity of r0. The spatial Killing
symmetry along φ means the extension of the ray bundle re-
mains the same along that direction. This, therefore, allows us
to write

A ∼ eγLt . (3.44)

Correspondingly, the A
√

A = const law requires that

A∼ e−γLt/2 , (3.45)

which agrees with the decay rate of the least-damped QNM.
The higher decay rates given by Eq. (3.33) come from an ef-
fect related to the intrinsic expansion of the area of a phase
front. More specifically, if the amplitude is already nonuni-
form at points with different r− r0 (but same θ ), then shifting
the spatial locations of the nonuniform distribution gives the
appearance of additional decay.

3. Next-to-leading order: angular amplitude corrections and the
imaginary part of Carter’s constant

Having found a relation in Eq. (3.29a) between the imagi-
nary part of the energy, ωI , and the rate of divergence of rays,
we now turn to Eq. (3.29b) to understand the geometric mean-
ing of the complex part of Alm. We recall from Sec. III C 1
that Q = AR

lm−m2, at leading order, for a real Carter constant
Q. Because Alm becomes complex at next to leading order
(and because m remains unchanged), if the correspondence
Q = Alm−m2 holds for a complex Alm, then the Carter con-
stant should also be complex, and its imaginary part should be
equivalent to AI

lm. In this part, we argue that this relationship
holds.
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By integrating Eq. (3.29b), we find that

A±
θ
=

√
1

sinθ
√

Θ
exp
[
±
∫

θ

θ−

γ ˜̇t√
Θ

dθ
′
]
. (3.46)

To interpret this equation, we will assume that the orbit is suf-
ficiently close to r0 that the change in r over the course of
a period of motion in θ is negligible. Under this assumption
(and with the fact that dλ = dθ/

√
Θ) we can write the integral

in the exponent in Eq. (3.46) as∫
θ

θ−

γ ˜̇t√
Θ

dθ
′

=γ

[
[t(θ)− t(θ−)]−

(
∆t
∆λ

)
[λ (θ)−λ (θ−)]

]
, (3.47)

where ∆t/∆λ is the average of dt/dλ over a cycle of θ mo-
tion. We obtain this expression by using the fact that dt/dλ

is equivalent to ˜̇t plus a constant when r (and hence ṫ) does
not change. Because ˜̇t has zero average (by definition) over a
period of θ motion, then when written in the form above, the
constant must be (∆t)/(∆λ ). We can write this average rate of
change in a useful form by noting that, from Eq. (3.13a) and
Eqs. (3.11b),

dt
dλ

=
1

2∆

∂R

∂E
+a2E cos2

θ . (3.48)

Averaging this expression over a cycle of θ motion, noting
that the first term on the right-hand side is independent of θ ,
and using Eq. (3.11b) gives

∆t
∆λ

=
1

2∆

∂R

∂E
+a2E

(∫
θ+

θ−

cos2 θ√
Θ

dθ

)(∫
θ+

θ−

dθ√
Θ

)−1

=
1

2∆

∂R

∂E
+

∂∆Sθ/∂E

2∂∆Sθ/∂Q

=
1

2∆

∂R

∂E
− 1

2

(
dQ

dE

)
BS

. (3.49)

In the last step we have used the Bohr-Sommerfeld condition
(3.41). Also according to Eq. (3.13a) and Eq. (3.13c), we can
find

t(θ)− t(θ−) =
∂

∂E

∫
θ

θ−

√
Θ(θ ′)dθ

′

+
1

2∆

∂R

∂E
(λ (θ)−λ (θ−)) , (3.50a)

λ (θ)−λ (θ−) =2
∂

∂Q

∫
θ

θ−

√
Θ(θ ′)dθ

′ , (3.50b)

where to derive these two equations, we can again use the fact
that dλ = dθ/

√
Θ and the definition of Θ; for the first we also

make use of Eq. (3.48).
Finally, we insert Eqs. (3.50a), (3.50b), and (3.49) into

Eq. (3.47) to find∫
θ

θ−

γ ˜̇t√
Θ

dθ
′ = (−iγ)

[
∂

∂E
+

(
dQ

dE

)
BS

∂

∂Q

]
[iSθ (θ)] .

(3.51)

Substituting Eq. (3.51) into the solution for A±
θ

in Eq. (3.46)
gives that

A±
θ
=

exp
{
(±iγ)

[
∂

∂E +
( dQ

dE

)
BS

∂

∂Q

]
[iSθ (θ)]

}
√

sinθ
√

Θ

. (3.52)

The phase in this equation, however, is precisely the correc-
tion to the leading-order expression for the phase eiSθ (θ) if we
allow E and Q to be complex, where their imaginary parts are
given by

ImE =−γ =−ωI , ImQ =

(
dQ

dE

)
BS

(−γ) . (3.53)

Through next-to-leading order, therefore, the θ portion of the
wave is given by

A+
θ

eiSθ (θ)+A−
θ

e−iSθ (θ) =
eiSθ (θ)+ e−iSθ (θ)√

sinθ
√

Θ

, (3.54)

where E and Q used in Sθ are complex.
In the geometric-optics approximation, therefore, we have

shown that we can account for the amplitude corrections to
the wave by allowing the conserved quantities, E and Q, to
be complex [with their imaginary parts given in Eq. (3.53)].
Furthermore, through the geometric-optics correspondence,
and the definition of AI

lm in Eq. (2.27) we can confirm that
AI

lm = QI ; therefore, the relationship

Q = Alm−m2 , (3.55)

is true for a complex Q and Alm.
In closing, we note that at the same θ , the magnitude of the

two components of the wave in Eq. (3.52) are not equal. More
specifically, the integral involving ˜̇t makes A+ have a larger
amplitude at θ < π/2 and a smaller amplitude at θ > π/2;
A− has the opposite profile. Therefore, the net wave function
remains symmetric about θ = π/2.

IV. FEATURES OF THE SPECTRA OF KERR BLACK
HOLES

In this section, we will use the WKB formula and the
geometric-optics correspondence in the first two sections of
this paper to explain several aspects of the quasinormal-mode
spectrum of Kerr black holes. Specifically, we will explain
the absence of damping for a significant fraction of modes of
extremal Kerr holes. We will also decompose the frequency
into orbital and precessional parts and explain a degeneracy in
the spectra of Kerr holes in terms of a rational relation of these
frequencies when the corresponding photon orbits close.

A. Spherical photon orbits and extremal Kerr black holes

We will first review the properties of spherical photon or-
bits. These orbits can be found by setting R(r) = R ′(r) = 0
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(see, e.g., [53]), and their conserved quantities are fixed by the
radius of the orbit r and the spin of the black hole a to be

Q/E 2 =− r3(r3−6Mr2 +9M2r−4a2M)

a2(r−M)2 , (4.1a)

Lz/E =− r3−3Mr2 +a2r+a2M
a(r−M)

. (4.1b)

We will next discuss additional features of these orbits.
For a given spin parameter a, there is a unique spherical

photon orbit with parameters (E ,Lz,Q) for any radius be-
tween the outermost and innermost photon orbits (the ret-
rograde and prograde equatorial photon orbits). Their radii
(which we denote r1 for prograde and r2 for retrograde orbits)
are given by

r1 = 2M
[

1+ cos
(

2
3

arccos
(
−|a|

M

))]
, (4.2a)

r2 = 2M
[

1+ cos
(

2
3

arccos
(
|a|
M

))]
. (4.2b)

At each r1 ≤ r ≤ r2, the spherical orbit’s inclination angle
reaches a maximum and minimum of θ± (at which Θ = 0).
These angles are given by

cos2
θ± =[

2
√

M∆(2r3−3Mr2 +Ma2)− (r3−3M2r+2Ma2)
]

r

a2(r−M)2 ,

(4.3)

which are equivalent to the turning points of the integral (2.14)
(and, therefore, we use the same symbols for these angles).

Using the geometric-optics correspondence between
(E ,Lz,Q) and (ΩR,µ,α

R
lm), we see that equatorial orbits

at r1 and r2 corresponds to modes with µ = −1 and +1,
respectively, or modes with m = ±l and l � 1 (strictly
speaking, though, µ = m/(l + 1/2) never precisely reaches
±1). We can also relate rp, the real root of Eq. (2.37), to
the polar orbit and modes with m = 0. For orbits between
the equatorial and polar ones, we can use Eqs. (2.33a) and
(2.33b) to obtain a µ between −1 and +1. Then, only those
modes that can be written as m/(l + 1/2) with the allowed
integer values of l and m correspond to a QNM (though the
photon orbits that correspond to QNMs are a dense subset of
all photon orbits).

Note in Fig. 11 that for a ∼ M, a significant fraction of
spherical photon orbits of different inclination angles all have
nearly the same radius, r ≈M. Through the geometric-optics
correspondence, a large fraction of modes (a finite range of
values of µ) relate to this set of modes with r≈M. In Fig. 12,
we explicitly show the relation between modes character-
ized by µ and their corresponding spherical-photon-orbit radii
(normalized by the horizon radius) for several values of a/M
slightly less than unity. The radius exhibits an interesting tran-
sition between two kinds of behaviors: for µ > µ∗ ≈ 0.744,
the value of r is very close to M (the horizon radius for an
extremal Kerr black hole), and for µ < µ∗ the radii increase
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Figure 11: The values of r and cosθ+ of spherical spherical orbits,
for a/M = 0 (black, solid vertical line), 0.5 [red (light gray) dashed
curve], 0.9 [blue (dark gray) dashed curve] and 0.99999 (black, solid
curve). Note that for a = 0, all such orbits have r = 3M, while for
a = M, a significant fraction reside at r = M.
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Figure 12: Radii of corotating spherical photon orbits as a function of
µ , for a/M = 0.9 (black solid line), 0.99 (red dashed curve), 0.9999
(blue dotted line). For extremal Kerr black holes, a nonzero fraction
of all spherical photon orbits are on the horizon.

linearly. The orbits with µ > µ∗ have a range of inclination
angles. Their sinθ± span from 0.731 (at µ∗, the most inclined
orbit) to 1 (at µ = 1, the prograde equatorial orbit).

For the extremal black holes, therefore, a nonzero fraction
of corotating spherical photon orbits appear to coincide with
the horizon in the Boyer-Lindquist coordinate system. Al-
though the proper distance between these orbits will not van-
ish (see [54]), this does not seem to be a coordinate effect,
because there is a definite physical change of the modes for
these values of µ > µ∗. By comparing with Fig. 12 with Fig.
5, we see that these orbits also have ΩI ≈ 0. A vanishing
imaginary part of the frequency corresponds to a vanishing
of the radial Lyapunov exponent for this entire nonzero re-
gion of spherical photon orbits. This, therefore, would lead to
a curious effect for a highly spinning black hole: for pertur-
bations with µ ≥ µ∗, modes do not move away from or into
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the horizon very quickly. If we were to solve an initial-data
problem containing these modes, we would find that they live
for a long time. One subtlety here is that QNMs with low
damping rates are generally difficult to excite: the black hole
excitation factor for a generic Kerr black hole can be proved
to be proportional to ωI (See [30] for Schwarzschild case and
[55] for Kerr; see also [56] for Kerr). In the long run the
exponential factor e−iωI t over the linear factor ωI dominates
and we would eventually see these long-lived perturbations.
Moreover, as these modes are centered around the equatorial
plane, we would see these perturbations escaping roughly near
the equatorial direction. In fact [56] showed that a long-lived
emission in the form of superposed QNMs with zero decay
results from the perturbations of an extremal Kerr black hole;
their work was for l = m modes only, and together with our
eikonal results for generic m can provide a basis for future
studies of zero-decay modes.

B. A mode’s orbital and precessional frequencies

In this part, we will define two frequencies associated with
individual spherical photon orbits (the orbital and precessional
frequencies) and understand their connection to the real part of
the QNM frequency. We begin by noting that because spher-
ical photon orbits have only two independent degrees of free-
dom describing their motion [see, e.g., Eq. (4.1)], the orbit
can be characterized by two frequencies. The first is the θ -
frequency, Ωθ , the frequency at which the particle oscillates
below and above the equatorial plane. During each θ -cycle,
which takes an amount of time given by Tθ = 2π/Ωθ , the par-
ticle also moves in the azimuthal (or φ ) direction. If this angle
is 2π for a corotating orbit (m > 0) or −2π for a counterrotat-
ing orbit (m < 0), then there is no precession (and these sim-
ple, closed orbits have effectively one frequency describing
their motion, as the spherical photon orbits of a Schwarzschild
black hole do). The difference between the ∆φ and ±2π (its
precession-free value) we will denote as the precession angle,

∆φprec ≡ ∆φ −2π sgnm , (4.4)

where sgnm is the sign of m. We can also associate the rate of
change of φprec with a frequency,

Ωprec ≡ ∆φprec/Tθ = ∆φprecΩθ/(2π) . (4.5)

Both Tθ and ∆φprec can be computed from geodesic motion
[see the formulas for Ωθ and ∆φprec in Eq. (4.8)].

It is possible to perform split of the real part of the QNM
into two analogous frequencies. To derive this split, start from
a single ray, along which the phase of the wave must be con-
stant. Also suppose that the ray originates from θ− and ends
at θ+ after traveling only one-half of a cycle of motion in the
θ direction. During this time, the statement that the phase is
unchanged is that

0 =−ωRTθ/2+(L−|m|)π +m∆φ/2 . (4.6)

Using (half of) Eq. (4.4), the real part of the frequency is

ωR = LΩθ (m/L)+mΩprec(m/L) . (4.7)

Note that Ωθ and Ωprec both depend on m/L.
More explicitly, given the orbital parameters (E ,Q,Lz), the

quantities Tθ and ∆φ can be obtained by computing

Tθ =
∂

∂E

∮ √
Θdθ +

1
2∆

∂R

∂E

∮ dθ√
Θ
, (4.8a)

∆φ =− 1
Lz

[
1− ∂

∂ logE

]∮ √
Θdθ +

1
2∆

∂R

∂Lz

∮ dθ√
Θ
,

(4.8b)

(expressions that hold for any spherical photon orbit—not
simply orbits that satisfy the Bohr-Sommerfeld condition) and
the two frequencies are given by

Ωθ = 2π

(
∂

∂E

∮ √
Θdθ +

1
2∆

∂R

∂E

∮ dθ√
Θ

)−1

(4.9a)

Ωprec = Ωθ

∆φ

2π
− (sgnLz)Ωθ . (4.9b)

These can be expressed in terms of (E ,Q,Lz) using elliptic
integrals (as was done in [47]), but we will not carry this out
explicitly.

For very slowly spinning black holes, a short calculation
shows that

Ωθ ≈
1√

27M
=

√
M
r3

0
, (4.10a)

Ωprec ≈
2a

27M2 =
2S
r3

0
, (4.10b)

where r0 is the circular-photon-orbit radius for a
Schwarzschild black hole, r0 = 3M, and S = aM. The
expression for Ωθ is the Keplerian frequency of the spherical
photon orbit, and Ωprec = 2S/r3

0 is the Lense-Thirring pre-
cessional frequency. In the slow-rotation limit, therefore, our
formula recovers Ferrari and Mashhoon’s result Eq. (1.2).

For any value of a, we can normalize Eq. (4.7) by L, and
write

ΩR(a,µ) = Ωθ (a,µ)+µΩprec(a,µ) . (4.11)

In Figs. 13 and 14, we explore the two frequencies in the de-
composition of ΩR by separately plotting Ωθ and Ωprec, for
different values of a.

For small values of a/M, Ωθ and Ωprec are consistent with
the constant values predicted by Eqs. (4.10a) and (4.10b). For
larger values of a/M, Ωθ does not vary much as a function
of µ until a ∼ 0.7M; for spins greater than this value, it is
only for larger values of µ that Ωθ changes significantly by
decreasing from the equivalent values for a = 0. Finally, as
a→ M, Ωθ vanishes for µ ≥ µ∗ ≈ 0.744. The precessional
frequency, Ωprec, on the other hand, monotonically increases
as a function of µ even for small values of a/M; as a→ M,
Ωprec grows to ΩH at µ ∼ µ∗, and stays there for all values of
µ > µ∗. For a∼M and µ > µ∗, there is one additional feature
worth noting: because Ωθ ∼ 0 and Ωφ ∼ ΩH , this gives rise
to the interpretation of the mode as a ray that sticks on the
horizon and corotates with the horizon at its angular frequency
of ΩH ; moreover, there seems to be no restoring force along
the θ direction.
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Figure 13: Orbital frequency, Ωθ , plotted against µ , for a/M = 0.3
[red (light gray) solid curve], 0.7 [blue (dark gray) solid curve], 0.9
(purple dashed line), and 1 (black dotted line). The orbital frequency
vanishes for a significant range of µ for extremal black holes.
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Figure 14: Precessional frequency, Ωφ , versus µ plotted identically
to those curves in Fig. 13 representing the same black-hole spins.
The precessional frequency approaches the horizon frequency, ΩH ,
for a range of values of µ for extremal black holes.

C. Degenerate quasinormal modes and closed spherical
photon orbits

Finally, in this section, we interpret the degeneracy of QNM
frequencies (of which Fig. 1 was an example). Recall that
in that figure, for a/M ≈ 0.7, we found pairs of modes such
as (2,2) and (3,−2), (3,2) and (4,−2), (4,2) and (5,−2),
and so on, all have approximately the same frequency. For
another, lower spin a/M ≈ 0.4, pairs like (3,3) and (4,−3),
(4,3) and (5,−3), et cetera, have approximately the same fre-
quency.

The approximate degeneracy exists because the ratio be-
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Figure 15: A diagram showing the spin parameters, a, and the ratios
of the multipolar indexes m/L, at which the orbital and precessional
frequencies have a ratio of p/q. Although we only perform our nu-
merical calculations at a discrete set of m/L values (shown by the
dots), in the eikonal limit, each set of points for a given ratio of p/q
approaches a continuous curve.

tween Ωθ and Ωprec can be rational, and the photon orbits
close. If for a certain mode of a black hole with spin a, with
m and L, and for integers p and q,

qΩθ

(
a,

m
L

)
= pΩprec

(
a,

m
L

)
, (4.12)

this means that there exists a closed spherical photon orbit that
satisfies the conditions necessary to correspond to a QNM.
Equation (4.12) implies that

LΩθ

(
a,

m
L

)
+mΩprec

(
a,

m
L

)
=(L+ kq)Ωθ

(
a,

m
L

)
+(m− kp)Ωprec

(
a,

m
L

)
. (4.13)

If Ωθ and Ωprec do not change much from µ = m/L to µ ′ =
(m− kp)/(L+ kq) (either because spin is small—and there-
fore Ωθ and Ωprec depend weakly on µ—or because L� kq
and m� kp), then

ω
l,m
R ≈ ω

l+kq,m−kp
R . (4.14)

Because ΩI depends similarly on µ , under the same condi-
tions,

ω
l,m
I ≈ ω

l+kq,m−kp
I ; (4.15)

therefore, the modes are degenerate. It is also clear from
Eq. (4.12) that the degeneracy happens at the same time that
the corresponding orbit is closed. The three series mentioned
at the beginning of the paper correspond to p/q = 4, 6, and 8,
respectively (for k = 1).

1. Slowly spinning black holes

For a/M � 1, when Eqs. (4.10a) and (4.10b) apply, the
condition for degenerate modes becomes

q
√

27
2p

=
a
M
� 1 (4.16)
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Figure 16: For black holes with spins a/M = 0.768, 0.612, and 0.502, the spherical photon orbits with ωorb = 2ωprec, on the left, ωorb = 3ωprec
in the center, and ωorb = 4ωprec on the right, respectively. These orbits correspond to quasinormal modes in the eikonal limit with m/L = 0.5.
The top figures show the photon orbit, the red, solid curve, on its photon sphere (represented by a transparent sphere). The dashed black line is
the equatorial (θ = π/2) plane, which was inserted for reference. The bottom figures are the same photon orbits, but plotted in the φ -θ plane,
instead.

(a statement that holds independent of µ). This implies that
orbits of all inclinations close for these spins.

For these specific spins, the QNM spectrum is completely
degenerate, by which we mean that all modes have the same
decay rate, and all real parts of the frequencies are inte-
ger multiples of only one frequency (similar to those of a
Schwarzschild black hole). Using this approximate formula
to find a for the three instances of degeneracy in Fig. 1, we
find

a4/1 ≈ 0.65M, a6/1 ≈ 0.43M, a8/1 ≈ 0.32M. (4.17)

These are not very far away from spins we found empirically.

2. Generic black holes

For a generic spin parameter a, we will explain degenera-
cies that exist around a mode with L� 1 and |m| � 1. If the
condition in Eq. (4.12) holds for p,q�min(L, |m|), then there
is a range of |k| � min(L, |m|)/max(p,q) in which there is a
degeneracy between all (L+ kq,m− kp) and (L,m). These
modes must be those close to the mode of indices (L,m), be-
cause, strictly speaking, it is only the orbit corresponding to
m/L which is precisely closed.

To find this degeneracy, we will search for spin parameters
a for which Eq. (4.12) holds for any set of indexes (L,m) and
integers (p,q) that satisfy L, |m| � p,q (we generally either
find one or zero solutions). To visualize this degeneracy, for
each pair (p,q), we will mark all possible pairs of (m/L,a)
in a 2D plot; the values of the spins are sufficiently dense for
each value of m/L that they form a smooth curve when plotted

against m/L. Some of these curves are shown in Fig. 15. Be-
cause for a fixed p/q the degenerate spins for a/M . 0.3 are
nearly independent of m/L, Eq. (4.16) should be an accurate
prediction for spins less that that value. As a concrete illus-
tration of the orbits corresponding to these degenerate modes,
we plot closed orbits for m/L = 0.5 and for a/M ≈ 0.5, 0.61,
and 0.77 in Fig. 16. The values of the spins agree quite well
with those predicted in Fig. 15.

V. CONCLUSIONS AND DISCUSSION

In this paper, we extended the results of several earlier
works [9, 29, 40, 41] to compute the quasinormal-mode fre-
quencies and wave functions of a Kerr black hole of arbitrary
astrophysical spins, in the eikonal limit (l� 1). We focused
on developing a greater intuitive understanding of their behav-
ior, but, in the process, we calculated expressions for large-
l quasinormal-mode frequencies that are reasonably accurate
even at low l. Specifically, we applied a WKB analysis to the
system of equations defined by the angular and radial Teukol-
sky equations. Using a Bohr-Sommerfeld condition for the
angular equation, we related the angular separation constant
to the frequency; when we expanded the constraint to lead-
ing order in aω/l, we found an equally accurate and alge-
braically simpler relation between the frequency and angular
eigenvalue. We then used a well-known WKB analysis on the
radial Teukolsky equation to obtain expressions for the QNM
frequencies and the angular separation constants. The accu-
racy of the approximate expressions for the QNM frequency
are observed to be of order O(L−2) even though we had only
expected a O(L−1) convergence for the imaginary part.
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Next, we reviewed that a massless scalar wave in the
leading-order, geometric-optics approximation obeys the
Hamilton-Jacobi equations, which are very similar to the
Teukolsky equations when l � 1. By identifying terms in
the Hamilton-Jacobi equations and Teukolsky equations, we
related the conserved quantities of the Hamilton-Jacobi equa-
tions to the eigenvalues of the separated Teukolsky equations.
Specifically, we confirmed that the energy, angular momen-
tum in the z direction, and Carter constant in the Hamilton-
Jacobi equations correspond to the real frequency, the index
m, and the angular eigenvalue minus m2 in the Teukolsky
equations, respectively. Furthermore, we found that the con-
ditions that define a quasinormal mode in the WKB approxi-
mation are equivalent to the conditions in the geometric-optics
approximation that determine a spherical photon orbit that sat-
isfies an identical Bohr-Sommerfeld quantization condition.

By analyzing the next-to-leading-order, geometric-optics
approximation, we showed that the corrections to the ampli-
tude of the scalar wave correspond to the imaginary parts of
the WKB quantities. Specifically, we saw that the imaginary
part of the frequency is equal to a positive half-integer times
the Lyapunov exponent averaged over a period of motion in
the θ direction. The imaginary part of the angular eigenvalue
is equal to the imaginary part of the Carter constant, which is,
in turn, related to an amplitude correction to geometric-optics
approximation to the angular function for θ .

We then applied these results to study properties of the
QNM spectra of Kerr black holes. We observed that for ex-
tremal Kerr black holes a significant fraction of the QNMs
have nearly zero imaginary part (vanishing damping) and their
corresponding spherical photon orbits are stuck on the hori-
zon (in Boyer-Lindquist coordinates). We plan to study this
unusual feature of extremal Kerr black holes in future work.
In addition, we showed that for Kerr black holes of any spin,
the modes’ frequencies (in the eikonal limit) are a linear com-
bination of the orbital and precession frequencies of the cor-
responding spherical photon orbits. This allows us to study
an intriguing feature of the QNM spectrum: namely, when the
orbital and precession frequencies are rationally related—i.e,
when the spherical photon orbits are closed—then the corre-
sponding quasinormal-mode frequencies are also degenerate.

We hope that the approximate expressions for the
quasinormal-mode frequencies in this paper will prove help-
ful for understanding wave propagation in the Kerr spacetime.
This not unreasonable to suppose, because Dolan and Ottewill
have shown in [28, 30] that to calculate the Green’s func-
tion analytically in the Schwarzschild spacetime, one needs to
know analytical expressions for the frequency of the quasinor-
mal modes (specifically, this comes from the fact that the fre-
quencies of the quasinormal mode are the poles of the Green’s
function in the frequency domain). We, therefore, think that
our approximate formulas could assist with the calculation of
the Green’s function in the Kerr spacetime, in future work.
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Appendix A: The Taylor expanded Bohr-Sommerfeld condition

The Bohr-Sommerfeld constraint (2.14) gives us a way to
evaluate Alm in terms of l, m, and ω; the error in this ap-
proximation scales as 1/l. Because it is an integral equation,
it is not particularly convenient to solve, and it is beneficial
to have an approximate, but algebraic expression for the fre-
quency of a QNM. With the benefit of hindsight, one can
confirm through numerical calculations of exact QNM fre-
quencies performed using Leaver’s method that the parameter
aω/l is numerically a small number for all black hole spins.
We can then expand the angular separation constant, Alm, in
a series in aω/l as Alm = A0

lm +δAlm, where A0
lm satisfies the

equation

∫
θ 0
+

θ 0
−

√
A0

lm−
m2

sin2
θ
= π

(
l +

1
2
−|m|

)
, (A1)

and at leading order, θ 0
+,θ

0
− =±arcsin[m/(l+1/2)]. One can

easily verify that the solution to this equation is the angular
eigenvalue of a Schwarzschild black hole, A0

lm = (l + 1/2)2

(note that we are assuming l � 1). Now we will compute
the lowest-order perturbation in aω/l, which turns out to be
quadratic in this parameter [i.e., (aω/l)2] below:

∫
θ 0
+

θ 0
−

δAlm +a2ω2 cos2 θ√
(l +1/2)2−m2/sin2

θ

dθ = 0 . (A2)

The integration limits θ+,θ− also can be expanded in a se-
ries in aω/l, and the lowest-order terms of this series are given
by θ 0

+,θ
0
−; The perturbation in θ+,θ− would result in some

quartic corrections in aω/l [i.e., (aω/l)4] when we evaluate
the integrals of Eqs. (A2) and (A1), because the integrand is
of order (aω/l)2 and the width of the correction in θ+,θ− are
also of order (aω/l)2. As a result, we will not need it here.
Evaluating the integral in Eq. (A2) is straightforward, and we
find

Alm = A0
lm +δAlm = l(l +1)− a2ω2

2

[
1− m2

l(l +1)

]
(A3)
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Interestingly, the above expression is consistent with the ex-
pansion of Alm for small aω given in [58], even in the eikonal
limit, where aω is large. The reason for this fortuitous agree-
ment is again that for QNMs of Kerr black holes of any spin,
aω/l is small, and the expansion only involves even powers
of this parameter, (aω/l)2. Because the coefficients in the
expansion of aω scale as 1/lk for even powers of (aω)k and
1/lk+1 for odd powers of (aω)k, in the limit of large l, the two

series actually are equivalent in the eikonal limit. In principle,
one can also expand and solve Eq. (2.14) to higher orders in
the parameter aω/l and compare with the expansion in aω in
[58]; we expect that the two series should agree. This would
be useful, because it would effectively let one use the small
aω expansion in the eikonal limit, where the series would, os-
tensibly, not be valid.
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