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Abstract

We show that higher spin systems specific to cosmological spaces are
subject to the same problems as models with Poincaré limits. In
particular, we analyse partially massless (PM) spin 2 and find that
both its gravitational coupling and nonlinear extensions suffer from
the usual [background- and self-coupling] difficulties: Consistent free
field propagation does not extend beyond background Einstein ge-
ometries. Then, using conformal Weyl gravity (CG), which consists
of relative ghost PM and graviton excitations, we find that avoiding
graviton-ghosts restricts CG-generated PM self-couplings to the usual,
safe, Noether current cubic ones.
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1 Introduction

The consistency difficulties of massless and massive higher spin fields in d = 4
are by now well-explored, both regarding their coupling to gravity and other
fields as well as possible self-interactions. Our aim here is to investigate
these problems for partially massless (PM) theories [1, 2], which have the
novel feature that their (anti) de Sitter ((A)dS) higher spin representations
have no direct Poincaré counterparts. For this we employ Weyl—conformal—
gravity (CG) as a tool. Even though CG is physically unacceptable (being
fourth derivative order, its physical excitations are relatively ghost-like) it
can be safely used when one of its two, graviton and PM [3], components can
be fixed, while studying the other [4].

We will begin by reviewing PM and then show that it precisely char-
acterizes CG solutions that are not conformally Einstein spaces. We then
explain, using recent mathematical tools, how CG can be safely exploited for
our consistency analyses of PM. The first question:

what are the most general geometrical fixed backgrounds in which PM

consistently propagates?

can then be answered–they are essentially restricted to Einstein spaces. The
second consistency question:

can one define a self-interacting version of the free field, even in

Einstein vacuum?

will then be addressed, yielding a minor triumph as well: only the usual cubic,
abelian Noether current-field coupling is generated via CG. We conclude with
speculations regarding PM’s possible cosmological and formal uses.

2 Review of PM and its CG embedding

The PM tensor field ϕµν dynamics are defined in any Einstein background
by the action

= −
∫ √−g

[
1
2

(
∇ρϕµν

)2 −
(
∇νϕµν

)2
+∇µϕ∇νϕµν − 1

2

(
∇µϕ

)2
(1)

+ϕµνWρµνσϕ
ρσ + 2Λ

3

[(
ϕµν

)2 − 1
4
ϕ2

]]
, ϕ := ϕρ

ρ , (2)
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and field equations

∆ϕµν − 2∇(µ ∇ρ ϕν)ρ + gµν ∇ρ ∇σ ϕρσ +∇µ∇ν ϕ− gµν ∆ϕ

− 2Wρµνσ ϕ
ρσ − 4

3
Λ (ϕµν − 1

4
gµνϕ) = 0 ,

where Wµνρσ is the Weyl tensor. This system is invariant under a double
derivative gauge transformation

δϕµν =
(
∇µ∂ν +

Λ
3
gµν

)
α(x) , (3)

which is the tuned sum of a metric fluctuation diffeomorphism (with param-
eter ∂µα(x)) and a conformal transformation. This system is a hybridization
of strictly massless and normal massive, Fierz-Pauli, spin 2. Indeed, there are
three varieties of spin 2 excitations in dS: massive, massless and PM [1, 2].
In dS, PM propagates lightlike, positive energy (inside the maximally accessi-
ble intrinsic horizon), helicity ±2,±1 excitations in a unitary representation
of the isometry group [5, 7, 6, 8]. This degree of freedom (DoF) count relies
on the gauge invariance (3) and the divergence constraint ∇µϕµν = ∇νϕ
implied by integrability of (1).

Interactions of PM in four dimensions are particularly interesting because
it is rigidly SO(4, 2) conformally invariant [9], just like its vector Maxwell
counterpart. In fact, PM can be coupled to charged matter fields [10] (see
also [11]). [Forming non-abelian multiplets is still an open problem.] Instead,
we will be concerned with its self interactions, whose cubic vertices were first
given in [12] using a Stückelberg approach.1

Since Weyl transformations underlie PM’s invariances (see (3)), CG is
a natural tool for studying its interactions. While CG always has six exci-
tations, the detailed spectra are background-dependent. About flat space,
it has two massless tensors and a photon with the same signature as one of
them [15], while in constant curvature backgrounds there is still a (cosmolog-
ical) graviton, but now the (tensor+photon) combination becomes the PM
mode with helicities (±2,±1). In each case, the two sets of modes are rela-
tively ghost-like. The relative sign between PM’s helicities depends on that
of Λ: In AdS, one can truncate the solution space to just the unitary, mass-
less graviton [3, 16, 17] (for related analysis of higher derivative theories

1A general calculus of higher derivative PM cubic vertices was developed in [13]. Also,
it has recently been suggested that a PM limit of putative massive gravity theories could
be a candidate for an interacting PM theory [14].
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see [18, 19]). The dS story is the more interesting one because we can trun-
cate, leaving either mode unitary; keeping the unitary PM mode, is the
relevant case here.

The CG action is

S[g] = 1
8

∫ √
−g W µνρσ Wµνρσ = 1

4

∫ √
−g

(
Rµν Rµν − 1

3
R2

)
, (4)

and its field equation is the vanishing of the Bach tensor,

Bµν := −∆Pµν +∇ρ ∇(µ Pν)ρ +Wρµνσ P
ρσ , Pµν :=

1

2
(Rµν −

1

6
gµνR) .

The Schouten tensor Pµν measures the difference between Riemann and Weyl
tensors, Rµνρσ −Wµνρσ = gµρPνσ − gνρPµσ + gνσPµρ − gµσPνρ, and is a main-
stay of conformal models in all dimensions: its variation is a pure (double)
gradient,

δgµν = 2αgµν ⇒ δPµν = −∇µ ∂ν α .

The Bach tensor Bµν is, of course, invariant under this rescaling. For our
purposes, it is more convenient to work with the cosmological Schouten ten-
sor,

ϕµν := −Pµν +
Λ
6
gµν , (5)

in terms of which Bµν reads

Bµν(g, ϕ) = ∆ϕµν − 2∇(µ∇ρ ϕν)ρ + gµν ∇ρ ∇σ ϕρσ +∇µ ∇ν ϕ− gµν ∆ϕ

− 2Wρµνσ ϕ
ρσ − 4

3
Λ (ϕµν − 1

4
gµνϕ) + O

(
ϕ2

)
. (6)

Consider now configurations such that the metric is close to an Einstein one
with cosmological constant Λ (it is important to note that the set of Bach
flat, but non-Einstein metrics is non-empty, see [20]). Then, by (5), ϕµν is
a small excitation and its field equation (6) is precisely the PM one in this
background, the Schouten tensor’s Weyl transformation implying the PM
gauge invariance (3). We have now recovered CG’s (linearized) PM subsector
by holding the metric constant (or in other words, setting the metric to a
non-dynamical background field). This key fact motivates our use of CG
as a probe of PM for two basic higher spin questions: How general are the
geometries in which it can propagate consistently? Does CG provide a useful
starting-point for studying possible self-interactions of PM?
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We next answer the first question: we use CG to generate a list of in-
creasingly general metrics, from dS to Einstein to Bach, and show that there
is indeed a natural barrier–one that is much closer to Einstein than, as one
might reasonably conjecture, to Bach.

3 PM in a background

It has been established that there exist Weyl invariant field equations en-
joying a double derivative gauge invariance in Bach-flat backgrounds [22].
This result suggests that Bach-flat is the most general background support-
ing consistent (linear) PM propagation. In detail, the operator from scalars
to trace-free symmetric tensors,

Pµν := ∇{µ ∂ν} + P{µν} ,

permits a factorization of the Bach tensor as

Bµν = M
ρσ
µν Pρσ , (7)

M
ρσ
µν := δρ{µδ

σ
ν}∆− δρ{µ∇

σ ∇ν} −
1
3
δρ{µ∇ν}∇

σ −W ρ
µν

σ .

We observe that M
ρσ
µν gives the non-linear answer to the question posed in

the Introduction: characterizing Bach-flat metrics that are not conformally
Einstein (the latter are characterized in [23] and [24]). We see that those
require the range of Pµν to intersect the kernel of Mµν ; the operator Mµν is
also conformally invariant and maps trace-free symmetric tensors to trace-
free symmetric tensors. Physically, it implies that the field equation

M
ρσ
µν ϕ̃ρσ = ∆ ϕ̃µν −∇σ ∇{µ ϕ̃ν}σ − 1

3
∇{µ∇σ ϕ̃ν}σ −W ρ

µν
σ ϕ̃ρσ = 0 , (8)

for a trace-free symmetric tensor ϕ̃µν =: ϕ{µν} = ϕµν − 1
4
gµνϕ, enjoys the

double derivative gauge invariance (and associated double derivative Bianchi
identity)

δϕ̃µν = Pµνα =
(
∇{µ∇ν} + P̃µν

)
α ,

in Bach-flat backgrounds. This was the motivation for our original conjecture
that PM fields could propagate in them. We now proceed to disprove it and
give necessary consistency conditions for PM-compatible backgrounds.

The Bach tensor, since it arises from a metric variational principle, is
necessarily divergence-free, ∇µ

M
ρσ
µν Pρσ = 0. However, it is neither true
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that ∇µ
M

ρσ
µν = 0, nor even that ∇µ

M
ρσ
µν = O(∇) (rather this operator is

cubic in derivatives). But consistent PM propagation relies on a divergence
constraint2; for a PM field equation (derived from an action) this requirement
is precisely expressed by the condition ∇µ

M
ρσ
µν = O(∇).

The failure of the field equation (8) to imply an appropriate divergence
constraint does not yet rule out PM fields interacting with backgrounds more
general than Einstein spaces, because we may still enlarge the space of field
equation and gauge operators, M ρσ

µν and Pµν respectively, by relaxing their
trace-free and conformal invariance properties. To test this, we make the
following generalization

M
′ρσ
µν = G

ρσ
µν −

(
δρ(µ δ

σ
ν) − gµν g

ρσ
)
P+ α1 δ

ρ
(µ P̃

σ
ν) + α2

(
gµν P̃

ρσ + P̃µν g
ρσ
)
,

P
′
µν = ∇µ ∂ν +

1
2
P gµν + β P̃µν ,

where the cosmological Einstein operator

G
ρσ
µν :=

(
δρ(µδ

σ
ν) − gµνg

ρσ
)(
∆− P

)
− 2∇(µ∇ρδσν) +∇(µ∇ν)g

ρσ + gµν∇ρ∇σ

− 2W ρ
µν

σ − 8 P̃ρ
{µδ

σ
ν} −

3
2
gµνP gρσ , (9)

is identically conserved,
∇µ

G
ρσ
µν = 0 ,

in Einstein backgrounds. The equation of motion of cosmological Einstein
gravity linearized about an Einstein metric is Gρσ

µν ϕρσ = 0.
The above ansatz is the most general one obeying the following require-

ments:

1. The operators M
′ρσ
µν and P

′
µν are second order in ∇ or derivatives on

the metric gµν .

2. The operator M ′ρσ
µν is self-adjoint, to ensure the existence of an action

principle.

3. The divergence ∇µ
M

′ρσ
µν is an operator no more than linear in ∇ so

that solutions of M ′ρσ
µν ϕµν = 0 obey a first order constraint.

2The DoF count for PM starts with ten off-shell fields ϕµν , minus four DoF thanks
to the divergence constraint ∇µϕµν = ∇νϕ, minus two further DoF by the scalar gauge
invariance, yielding a total of four on-shell excitations.
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4. The operator product M ′ρσ
µνP

′
ρσ vanishes when gµν is an Einstein met-

ric; this fixes their leading terms to be operators corresponding to the
linear PM equation of motion (6) and its double derivative gauge in-
variance (3). The remaining freedom in the ansatz therefore depends

only on the trace-free Schouten tensor P̃µν , since that quantity vanishes
for Einstein metrics.

It remains to compute the product M
′ρσ
µν P

′
ρσ. The result can be ar-

ranged as an expansion in the gradient operator ∇. By construction, terms
of order ∇4 and ∇3 necessarily vanish. Prefactors of the terms order ∇2

only involve P̃µν which we are now assuming to be non-vanishing, since we
wish to investigate metrics that are not Einstein: we must choose the con-
stants (α1, α2, β) accordingly and find

α1 = 4 + 2β , α2 = −β .

The analysis of terms order ∇ and lower is more complicated. First we
consider the trace gµνM ′ρσ

µνP
′
ρσ at order ∇ and find 3β(∇ρP)∇ρ. There are

two possibilities, either β = 0 or the background metric has constant scalar
curvature. Since the latter would rule out the PM conjecture in question,
we choose β = 0. We then find gµνM ′ρσ

µνP
′
ρσ = −3(∆P), which requires the

scalar curvature to be harmonic, and hence also rules out the conjecture.
Having excluded Bach-flat backgrounds, we may still investigate whether

some condition stronger than Bach-flat, but still less stringent than Ein-
stein, could yield consistent propagation. The terms remaining at order ∇
in M

′ρσ
µνP

′
ρσ are

βgµν(∇ρP)∇ρ − (β − 2)(∇(µP)∇ν) + 2(β − 1)(∇ρPµν)∇ρ − 2β(∇(µPν)ρ)∇ρ ;

clearly no choice of β removes all of them. Instead, we can restrict the
background, one option being to Ricci-symmetric spaces, defined by ∇ρPµν

= 0. This condition is weaker than Einstein, but need not imply Bach-flat.
However, even then we must cancel all terms in M

′ρσ
µνP

′
ρσ of order ∇0. In

general backgrounds these are

−β Bµν + 2β2
P
ρ
(µPν)ρ −

1
2
(β − 1)(β + 3)PPµν − 1

2
(β − 2)∇µ∂νP

+ gµν
[
1
2
(β − 2)∆P− β(β + 1)PρσP

ρσ + 1
8
(β + 2)(3β − 2)P2

]
.

Even for a Ricci-symmetric space (where the derivative terms drop), no choice
of β removes all remaining terms quadratic in the Schouten tensor and its
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trace. [We see no strong physical motivation to single out backgrounds with
covariantly constant Einstein tensor subject to a further quadratic curvature
constraint.] This last detour reassures us that no interesting, at best slightly
more general than Einstein, backgrounds are allowed.

4 PM self-interaction?

We emphasize at the outset that the aim of this section is to study putative
self-interacting extensions of PM solely within the context of the CG frame-
work. That is, our results—which will face the usual stringent limitations
on such extensions—strictly apply only to this framework, although they are
suggestive, and the allowed nonlinearities are quite efficiently generated. We
will need a version of the CG action that is more useful for our purposes,
in which the PM field is clearly isolated. This is accomplished by CG’s
“Ostrogradsky” second order formulation [21],

S[g, ϕ] = −
∫ √

−g
[
Λ
6
(R− 2Λ) + ϕµν Γ µν + ϕµν ϕµν − ϕ2

]
,

where Γµν := Gµν + Λ gµν is the cosmological Einstein tensor. Upon com-
pleting the square, we see that the auxiliary field becomes the cosmological
Schouten tensor (5). To analyze the spectrum of the theory about an Ein-
stein background ḡµν with cosmological constant Λ, we linearize in metric
perturbations hµν = gµν − ḡµν . Keeping terms quadratic in fluctuations and
making the field redefinition

hµν → hµν +
6
Λ
ϕµν , (10)

yields the action (the metrics appearing in G and F are set to ḡµν)

S(2)[h, ϕ] = −1
4

∫ √
−ḡ

[
Λ
6
hµν

G
ρσ
µνhρσ − 6

Λ
ϕµν

(
G

ρσ
µν − 2

3
ΛF

ρσ
µν

)
ϕρσ

]
. (11)

Here −G
ρσ
µν hρσ/2 is the linearized cosmological Einstein tensor defined in (9)

and all indices are moved by ḡµν . The Pauli–Fierz (PF) mass operator is
defined as F ρσ

µν := δρµ δ
σ
ν − gµν g

ρσ, so the PM field equation is

(
G

ρσ
µν − 2

3
ΛF

ρσ
µν

)
ϕρσ = 0 .
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Thus, the first term of (11) is linearized Einstein–Hilbert, while the terms
with round brackets (the sum of the linearized gravity kinetic term and a
Pauli–Fierz mass term tuned to the PM value m2 = 2Λ/3) give the PM
theory, all in an Einstein background. Hence the model describes the “differ-
ence” of massless and PM excitations. Moreover, integrating out (at linear
level) the field ϕµν appearing before the field redefinition (10), gives the
fourth order equation

B
ρσ
µν hρσ = 0 , where B

ρσ
µν := G

αβ
µν F

−1γδ
αβ G

ρσ
γδ − 2

3
ΛG

ρσ
µν ,

for the original metric fluctuations. Indeed, Bρσ
µν hρσ is the Bach tensor lin-

earized about an Einstein background.
The relative sign of the two parts of the linearized action (11) reflects

the unavoidable relative ghost structure. In particular, states with ϕµν = 0
constitute a unitary, massless spin s = 2 spectrum. When the cosmological
constant is positive (dS), states with hµν = 0 correspond to a unitary PM
spectrum. We now proceed to study the latter truncation; a key step is to
understand the model’s gauge structure. At linear level, the graviton hµν

enjoys a linearized diffeomorphism symmetry3 δhµν = ∇µ ξν + ∇ν ξµ while
the PM field ϕµν transforms according to the double derivative scalar varia-
tion (3); at linear level each field is inert under the other’s transformations.
In fact, the PM gauge symmetry is inherited from the Weyl symmetry of CG.
The full non-linear action (4) is invariant under both gauge transformations,

δgµν = ∇µ ξν +∇ν ξµ + 2α gµν ,

δϕµν = Lξ ϕµν +
(
∇µ ∂ν +

Λ
3
gµν

)
α . (12)

The metric transformation is now a sum of diffeomorphism and Weyl trans-
formations as is the ϕµν transformation: Lξ is the Lie derivative along the
vector field ξ and the Weyl term follows from the transformation of the
Schouten tensor (2).

3As an aside, we observe that the derivation of the linear PM model from Weyl invari-
ant CG theory gives a novel proof of the SO(4, 2) conformal invariance of PM excitations.
(In fact, conformal invariance was the original rationale behind the PM model [1], and is
enjoyed by all maximal depth, four-dimensional PM theories of generic spin [9].) In detail,
whenever a field is coupled to the metric, maintaining Weyl invariance, then setting the
metric to a background yields an action that enjoys any conformal isometries as symme-
tries. Thus the non-linear model generated by setting the metric in (4) to a background is
guaranteed to enjoy this symmetry; since it holds order by order in ϕ, it is also a symmetry
of linearized PM.
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Without incurring the ghost problem of CG, we may search for some
combination of fields that, when held to an appropriate background, yields a
consistent truncation to a self-interacting PM model.4 We must now find the
proper combination of fields to set to a background that yields the desired
decoupling. At linear level, the answer to this requirement is given by the
field redefinition (10). There, the choice for the metric fluctuations hµν = 0 is
respected by PM gauge transformations. This substitution in the linearized
action (11) yields the free PM action in an Einstein background. Therefore
we begin by positing a candidate for a non-linear version of the field redefini-
tion (10) (that mixes gµν and ϕµν) such that a consistent PM theory results
from holding the redefined metric to a suitable fixed value:

{
gµν → gµν +

6
Λ
ϕµν

ϕµν → ϕµν .
(13)

[We could have allowed for further redefinitions of both fields, by adding (to
each) initially arbitrary functions starting at second order, so as to preserve
the linear choice (10), but in fact this would only affect quartic corrections,
and we will, for good reason, stop at cubic order.] With this field redefini-
tion, the CG action (4) reduces to that of a “matter” field ϕµν coupled to a
(dynamical) metric:

S[g, ϕ] =

∫ √
−g

[
− Λ

6
(R− 2Λ) + 6

Λ
L PM(ϕ,∇ϕ)

]
,

where L PM is the candidate PM Lagrangian. Its ϕµν dependence is highly
non-linear, with self-interactions coming from re-expressing all the original
metric dependence of the action (4) in terms of the shifted combination gµν+
6
Λ
ϕµν . After making this expansion, we set gµν to any Einstein metric with

cosmological constant Λ. This leaves us with the PM candidate

S PM[ϕ] =
6
Λ

∫ √
−g L PM(ϕ,∇ϕ) ,

4Indeed, the converse version of this procedure can be applied to produce cosmological
gravity from CG for the full, non-linear theory: Examining the gauge transformations (12),
we see that the PM background ϕµν = 0 is preserved by diffeomorphisms but not Weyl
transformations. Hence, setting ϕµν = 0 yields a diffeomorphism invariant theory; per-
forming this substitution in the action (4) gives cosmological Einstein gravity.
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to be computed as an expansion in ϕµν :

L PM = 1
4
ϕµν

(
G

ρσ
µν − 2

3
ΛF

ρσ
µν

)
ϕρσ +

∞∑

n=3

L
(n)

PM .

The absence of a term linear in ϕµν follows from the linearized analysis and
relies on the fact that gµν is now an Einstein metric.

Before presenting our explicit cubic vertices, let us show that there is no
fully non-linear truncation of CG to an interacting PM theory. (This neither
annuls consistency of the cubic vertices with respect to linearized gauge trans-
formations, nor rules out any other ultimate theory of self-interacting PM
fields.) To determine whether a truncation that takes gµν to be a fixed Ein-
stein background is consistent, we must study the gauge invariances of the
theory. The precise form of the underlying CG gauge transformations in
terms of the redefined fields (13) is:

δgµν = Lξgµν − 6
Λ

[
∇µ ∂ν +

6
Λ
[(g + 6

Λ
ϕ)−1]ρσ γρµν ∂σ

]
α ,

δϕµν = Lξ ϕµν +
[
∇µ ∂ν +

Λ
3
gµν +

6
Λ
[(g + 6

Λ
ϕ)−1]ρσ γρµν ∂σ + 2ϕµν

]
α .

Here we have denoted the Christoffel symbols of ϕµν , covariantized with
respect to gµν , by

γρµν := 1
2
(∇µϕνρ +∇νϕµρ −∇ρϕµν) .

Firstly observe that at leading order in ϕ, the choice of diffeomorphism pa-
rameter ξµ = 3 ∂µα/Λ cancels the Lie derivative term Lξgµν = ∇µ ξν +∇ν ξµ
against the double gradient of the scalar parameter α in the metric variation.
This is just a restatement of our linear result that the dynamical metric can
be decoupled (at that order), leaving linear PM. Consistency of the non-linear
truncation requires that there exist a choice of ξ achieving this cancellation
to all orders. This would determine the higher order terms in the variation
of ϕ, leaving the PM action S PM[ϕ] invariant. To establish a no-go result,
we need only show that already no choice of ξ achieves this cancellation for
the next-to-leading order terms in ϕ in the metric variation. Focussing on
the γρ

µν∂ρα part of δgµν that is linear in ϕ , we immediately see that it can
never be written as ∇(µXν), for any Xν even on PM-shell. This establishes
our claimed no-go result for truncating CG to a PM theory beyond linear
order.
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Finally, we compute the cubic vertices, which, being guaranteed invari-
ant under leading PM gauge transformations δϕµν =

(
∇µ∂ν +

Λ
3
gµν

)
α, are

candidate vertices for a putative non-linear self-interacting PM theory. The
form of n-th order Lagrangian of the PM field determined by the field redef-
inition (13) can be obtained from the following correspondence,

(Λ
6
)n+1√−g L

(n+2)

PM
= n+1

(n+2)!
ϕµν δ

n+1
g|ϕ

[√
−g Gµν

]
(14)

+ Λ
6

1
n!
δng|ϕ

[√
−g gµνgρσ

]
(ϕµρ ϕνσ − ϕµν ϕρσ) .

Here δng|ϕ signifies taking the n-th variation with respect to the metric and
then replacing δgµν by ϕµν ; the result is of order n in ϕµν . In the first
line, we have used the fact that the first metric variation of the cosmological
Einstein–Hilbert action produces the cosmological Einstein tensor Gµν , which
allows (n+2) variations of that term to be combined with (n+1) variations
of the coupling of the cosmological Einstein tensor to the PM field in (4). If
we evaluate the above interaction Lagrangians explicitly then, since they are
given in terms of multiple variations of the Ricci tensor, the generic outcome
for L PM is a two-derivative self-coupling of ϕµν , a curvature coupling and a
potential for ϕµν . We also note that multiplying the original CG action (4) by
the dimension-free combination Λ−1κ−2 of the cosmological and gravitational
constants, and redefining the PM field ϕ → Λ κϕ gives, schematically, the
canonically normalized action

S ∼ 1

κ2

∫
(R− 2Λ) +

∫ [
(∇ϕ)2 + Λϕ2

]
+

∞∑

n=3

κn−2
[
ϕn−2∇ϕ∇ϕ+ Λϕn

]
.

Now, let us focus on computing the cubic part L
(3)
PM in (14). Note that

since we work on an Einstein background, we may set Gµν = 0 (when it is not
varied); also, since we only quote the vertex up to a possible field redefinition,
at this order we may use the linear PM field equation, which can be written
as5 δg|ϕGµν +

Λ
3

(
ϕµν − gµνϕ

)
= 0 . Moreover, since the vertex is cubic in ϕµν ,

we may write

6
Λ
T µν :=

1

3

1√−g

δS(3)
PM

δϕµν

, S(3)

PM
= 6

Λ

∫ √
−g ϕµν T

µν .

5Notice that the cubic vertex, therefore, schematically takes the form

S(3)

PM = δg|ϕS
(2)

PM +

∫
ϕ3 ,

where S
(2)

PM is the leading order PM action and ϕ3 denotes cubic potential terms in ϕµν .
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By construction, S(3)

PM is invariant under the linear order PM gauge transfor-
mation (3) modulo the linear field equations. This guarantees that Tµν obeys
the Noether identity

(∇µ∇ν + Λ
3
gµν) Tµν ≈ 0 , (15)

in an Einstein background; here ≈ denotes equality modulo the linear PM
field equations.

It remains to explicitly compute Tµν . In fact, the cubic vertex given
by (14) at n = 1 is easily computed by hand. For the Noether form of the
vertex, a computer aided computation [25] gives

Tµν ≈ ϕρσ ∇ρ∇σϕµν +
1
2
ϕµν ∆ϕ− 4

3
ϕρσ ∇(µ|∇ρϕσ|ν) − ϕρ

(µ ∇ν)∇ρϕ

+ 2
3
ϕρσ ∇µ∇νϕρσ +

1
6
ϕ∇µ∇νϕ+ 1

6
gµν (ϕ

ρσ ∇ρ∇σϕ− ϕ∆ϕ)

+∇ρϕ (3
2
∇ρϕµν − 2

3
∇(µϕν)ρ)− 1

3
∇ρϕσ

µ∇ρϕσν −∇ρϕσ
(µ| ∇σϕ|ν)ρ

+ 2
3
∇(µ|ϕ

ρσ ∇ρ|ϕν)σ +
1
6
∇µϕ

ρσ ∇νϕρσ − 1
3
∇µϕ∇νϕ

− gµν (
5
12
∇ρϕστ ∇ρϕστ − 1

2
∇ρϕστ ∇σϕρτ +

1
12
∇ρϕ∇ρϕ)

−Λ ( 1
18
ϕϕµν +

5
9
ϕρ

µ ϕνρ) + Λ gµν (
11
36
ϕρσ ϕρσ − 1

36
ϕ2)

− 2
3
W ρτ

(µ
σϕν)τ ϕρσ − 2

3
W ρ

(µν)
σϕτ

ρ ϕτσ − 1
3
gµν W

ρτκσϕρσ ϕτκ .

As a check, we verified that this Tµν obeys the Noether identity (15) for
constant curvature backgrounds (vanishing Weyl tensor).

As stated at the start of this Section, our cubic results were obtained
entirely within the CG framework. However, their consistency is indepen-
dent of their origin, since they are of course disjoint from any higher-order
problems. Indeed, the vertex S

(3)
PM was constructed by a Stückelberg method

in [12], where it was also shown that two-derivative PM self-interactions exist
only for d = 4, which dovetails perfectly with their CG origin uncovered here.
These results also fit with the recent work of [13] where all consistent cubic in-
teractions (not necessarily two-derivative ones) involving PM fields of generic
spin were considered. There it was shown that for generic dimensions there
are only two PM self-couplings involving at most four and six derivatives re-
spectively. However, precisely in four dimensions, the Gauß-Bonnet identity
reduces the maximal four-derivative coupling to a two-derivative one.6

6In fact, for constant curvature backgrounds, the Cotton-like tensor [10]

Fµν
ρ := ∇µϕν

ρ −∇νϕµ
ρ
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5 Conclusions

We have used d = 4 conformal Weyl gravity as a tool to explore the extent of
the usual higher spin constraints on PM self-and gravitational- couplings. We
concluded that these obstructions were indeed present here as well: first, no
backgrounds more general than Einstein were permitted for PM’s propaga-
tion. Then, we exploited the truncation of CG to PM in a fixed geometry to
find what ghost-free self-couplings, if any, might be permitted within the CG
framework. Although relative ghost-like graviton modes could be removed
at linear order leaving (consistent) linear PM, in contrast to the PM trun-
cation of CG to cosmological gravity [3], the gauge structure of CG does
not allow the graviton truncation to continue to higher orders. An old prob-
lem (one that already occurs in similar attempts at extending other higher-
spin) has struck again: despite the possibility of a lowest order invariant
cubic self-interaction (expressed as the coupling of the quadratic Noether
current maintaining the initial Abelian invariance to the field amplitude),
self-coupling inconsistencies set in at quartic order. CG underlies cosmolog-
ical Einstein gravity but it does not truncate to a non-linear “PM general
relativity”. Despite the results achieved here, we should emphasize that they
merely begin to reflect CG’s potential to explore (A)dS models’ physical
content in a direct way. The underlying CG technology is clearly capable of
yielding far more insight.

No-go theorems are notorious for their loopholes. Spin (2,3/2)-gravity
and supergravity theories circumvent just such higher-spin pitfalls [26] while
for (towers of) massive higher spins, string theory provides presumably con-
sistent interactions; infinite towers of massless higher spins can also be writ-
ten in (A)dS backgrounds [27]. Nonetheless, our results relying on CG as
the underpinning of PM self-interactions seem quite robust; they agree with
the claim of [12] that it is impossible to proceed beyond cubic order for the
two-derivative PM theory.

One interesting feature of CG is that the PM field can be consistently
turned off, leaving cosmological Einstein gravity (at least classically). In

is invariant under PM gauge transformations (3). (Strictly this version of the Cotton
tensor is not the metric one, because the PM field is not the Schouten tensor, although in
the underlying CG setting this is in fact the case.) Therefore any quartic derivative order,
cubic vertex of type

∫
(∇F )FF is PM invariant. In four dimensions, it should be possible

to employ the Gauß–Bonnet identity to write this as a manifestly invariant cubic vertex
quadratic in derivatives.
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other words, without additional matter couplings, choosing initial conditions
such that ϕµν is zero at some initial time, it will remain trivial while the
metric gµν can realize any Einstein solution [3]. This suggests the converse
truncation: a situation where the PM field ϕµν is not strictly zero but rather
nearly zero in some arbitrarily large time interval ti ≪ tf . Cosmology would
then have approximate Einstein behavior for that epoch, while in the re-
gion t ≪ ti or t ≫ tf , non-Einstein solutions could emerge. (The con-
sequences for cosmological expansion with a partially conserved symmetric
two index boundary operator were also considered in [28].) CG could then
be used to generate transitions from a dS inflationary behavior of the cosmic
scale factor to one controlled by PM modes. Ghosts and loss of stability at
early and late times may even be a useful/acceptable feature in this scenario.

A separate speculation is that gravity-like, or even self-interacting PM-
like models for higher s > 2, might be achievable by studying higher-spin
versions of CG. Indeed, interacting conformally invariant higher-spin models
that can be viewed as analogs of CG do exist [29, 30]. Perhaps a higher spin
version of our approach could could be fruitfully applied to them.
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