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Abstract: Slowroll after tunneling is a crucial step in one popular framework of

the multiverse—false vacuum eternal inflation (FVEI). In a landscape with a large

number of fields, we provide a heuristic estimation for its probability. We find that

the chance to slowroll is exponentially suppressed, where the exponent comes from

the number of fields. However, the relative probability to have more e-foldings is only

mildly suppressed as N−α
e with α ∼ 3. Base on these two properties, we show that

the FVEI picture is still self-consistent and may have a strong preference between

different slowroll models.
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1. Introduction

False vacuum eternal inflation [1–23] is currently the most studied model of the

multiverse scenario. On the theoretical front, it is well motivated by the string

landscape [24,25]. On the observational front, if we see negative curvature from the

Planck [26] data, it will become the only preinflationary cosmological model with

real evidence [27–29].

In this model, one or more vacua inflate forever and constantly decay into various

other vacua. Some of the decays lead to bubbles of open universes supporting our ob-

served cosmology. Since the dynamics involves exponentially small or large numbers,

this picture can provide exponentially strong selection rules on which vacuum we live

in. One can check whether these rules are so strong that actually rule out this model

by a direct contradiction with existing observations [5,7,11,12,18,21]. When it does

not, one can try to draw sharp predictions from these rules [5,7,8,12,14,15,18,19,22].

It is well-known that a bubble nucleation itself can only make an empty universe

[30], which is incompatible with the rich structure we observed. It will also make a

curvature dominated open universe as opposed to the flat one we have. The most

well-accepted solution to these two problems is to have a period of slowroll inflation

after the tunneling. It will flatten out the curvature with enough number of e-

foldings, generate perturbations to seed structure, and reheat into thermal particles

of the big-bang cosmology. However, there is no reason why after a vacuum decay,

the state of a bubble universe will go through slowroll inflation. Quantifying the

probability for that to happen can give us further selection rules. Implementing

these new selection rules requires us to recheck for contradictions. For example the

rareness of slowroll inflation favors Boltzmann Brains [11, 31, 32], since they can be

produced in a bubble without slowroll. Also if longer inflation is strongly disfavored,

it will be in conflict with our seemingly ever improving curvature bound.

Using the simplest toy model—standard gradient flow inflation with N canonical

scalar fields, we provide a heuristic estimation for the probability of slowroll inflation

in Sec.2. In Sec.2.1 we show that the regions supporting at least a few e-foldings of

slowroll are exponentially rare, where the exponent comes from N , the number of

fields. On the other hand, in Sec.2.2 the relative probability to have more e-foldings

is shown to be only suppressed by N−α
e , where α remains to be a small number even

when N is large. Although these results mostly agree with numerical searches up

to N = 6 [33], in Sec.2.3 we further include the attractor effect, a multi-field effect

which has not be explicitly addressed before, and confirm their validity at least in

the large Ne limit. In Sec.3 we check these results against the concerns mentioned

in the previous paragraph and find no contradictions.

The selection rules studied here potentially lead to useful predictions. If the

probabilities of all realizations of slowroll inflation are exponentially suppressed, then

the relative probability between two different models has a chance to be exponential,
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too. This means some models are much more favored than others. So, the multiverse

picture may provide a new preference among slowroll models. Just ask the simple

question: which model is more likely to have made our universe?1

Our estimation bases on the näıve assumption that where a tunneling path ends

in the field space has no correlation with whether that point supports slowroll infla-

tion. This is entirely due to our ignorance. Currently there is not enough understand-

ing on multifield tunneling paths to analyze such correlation. In Sec.4 we suggest the

sharpest possible manifestation of the multiverse selection rule for slowroll models—if

certain slowroll model strongly correlates with the local property where a tunneling

path ends, then it does not suffer from the exponential suppression. Thus, if such

model exists, it is the most likely slowroll inflation realized in the multiverse. We

point out a few recent works on multifield tunneling paths that may help us to search

for slowroll models with this property.

2. Probability for Multifield Slowroll Inflation

Our heuristic estimation bases a model ofN scalar fields with a flat field-space metric.

The equations of motion in a homogeneous background are

φ̈i +
ȧ

a
φ̇i = −∂V

∂φi

, (2.1)

(

ȧ

a

)2

=
1

3M2
p

(

φ̇2
i

2
+ V

)

+
1

a2
. (2.2)

Here the curvature is chosen to be negative, as we are interested in the cosmology

of a bubble universe. The initial condition is set by the analytical continuation

of the tunneling Euclidean instanton, φ̇ = a = 0. This is known as the “open

inflation” [36–51]. The instanton also contains the information about the tunneling

path that begins near the parent vacuum. The end point of that tunneling path sets

the initial condition for φ.

It is well-known that slowroll inflation has the overshoot problem [52]—an order

one φ̇ will rush through the region in the field space that is tuned flat to support

slowroll. The open inflation scenario ameliorates such problem [27]. Because ȧ/a

starts as infinity in Eq. (2.1), φ̇ cannot easily reach order one even when the potential

is steep. If the potential is tuned to support slowroll in certain field space region

A, there will be a corresponding “attraction” region B ⊃ A. Potential is generally

steep in B, but the field will still roll down to A before it can acquire an order one

velocity.

1One can try to ask this question in more general ways. For example, including cosmological

scenarios other than slowroll inflation [34], or other UV completions that initiated slowroll inflation

[35]. In this paper, we restrict our attention to the combination of slowroll and tunneling, which is

most conservative—requires only widely accepted results from field theory and semiclassical gravity.
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Although it is possible to start outside B, acquire an order one velocity, and

hope that it happens to slow down and enter a slowroll region at the same time, we

think those cases are relatively less likely. We will focus on the probability that a

tunneling path ends in an attraction region.

In most of the works on slowroll inflation, one would separate the heavy and

light fields and focus only on the “low energy” effective motion. When a tunneling

is involved, some may assume that it also involves the light fields only. We should

emphasize that such assumption is quite inappropriate for our purpose. Tunneling

is a non-perturbative process. Whether a perturbative excitation in one direction is

heavy or light has little to do with the possible tunneling coming that way. With our

currently limited understand on multifield tunneling paths, we should not have any

preference. We will simply assume that the end points have a uniform distribution

per unit field space volume. Since the typically quoted number of 10N vacua on the

landscape comes from at least N dynamical fields, our focus will be on the effect of

this large N . We will estimate the fraction of N dimensional field space volume in

the attraction regions. We shall do this in two steps. First we estimate how popular

the slowroll regions are. Then we will weight each slowroll region with the size of

the corresponding attraction region.

2.1 Exponential Suppression of Slowroll Regions

In principle, we would like to search over the entire landscape and count the number

of regions supporting slowroll inflation. In practice, we need to turn the problem

from a global search into a search over ensembles of random potentials, similar to

many recent works [33, 53–60]. Note that “random” here is still a vague term. For

each parameter that takes a random value, one still needs to choose an appropriate

weight function. Currently no one knows the fundamental guideline for such choice,

so strictly speaking it is arbitrary. However, our goal is just a heuristic estimation

focusing on the role of the number of fields, N . Assuming no field is special from the

global point of view, whether a quantity acquires the power N is an unambiguous

property independent of the weight function.

We treat V as the final effective potential with all corrections taken into ac-

count, and applies no more restrictions other than it being a continuous and smooth

function.2 Technically, our definition of “supporting slowroll” is more specific than

2This is different from the majority of works on inflationary model building. People quite often

focus on potentials with special properties like slightly broken symmetries. From our point of view,

doing so is equivalent to “zooming in” on special sectors of the landscape, but the corresponding

suppression factor on the probability is usually hard to quantify. Our unrestricted and untuned V

is more appropriate to represent the global behavior of the landscape. A slowroll-friendly region

appears by accident—when the random combination of coefficients happens to be right. We can

then quantify the probability for such combinations. Maybe one can take a closer look at each

accidentally slowroll-friendly region and observe an emergent symmetry, but that is quite parallel

to our purpose.
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necessary. We consider only regions supporting the classical slowroll motion along the

gradient flow. Namely we focus on the situations where the φ̈i term can be ignored in

Eq. (2.1) and the φ̇2
i term can be ignored in Eq. (2.2). The corresponding condition

can be expressed as ranges of a few combinations of the random coefficients, which

makes the probability more straightforward to quantify.3

Conditions for the standard gradient flow slowroll inflation can be found in some

recent works [63, 64]. The first slowroll condition requires a small gradient,

ǫ ≡ M2
P (

~∇V )2

2V 2
≪ 1 . (2.3)

This is already a strong sign for an exponential suppression. Since ~∇V is an N

dimensional vector, it hasN components. If there is no particular correlation between

the components, roughly N numbers have to to be simultaneously tuned. Assuming

that V0 is the typical value of V and ν is the typical value of |~∇V |, the probability

to satisfy the first slowroll condition is roughly4

Pfirst ≈ SN−1

∫

√
2ǫV0
MP

0

vN−1dv

νN
∼ ǫN/2

(

V0

νMp

)N

. (2.4)

The idea is that if 0 is not a special value and ν ≫ (
√
2ǫV0/Mp), then the probability

that the value of a vector to be within a small ball is roughly the volume of the ball,

therefore a small number to the Nth power. For the purpose of our estimation, we

only keep those small unitless factors which are related to some physical parameters.

The strong second slowroll condition requires that the projection of second

derivatives along the gradient direction is small.

V̂1 ≡
~∇V

|~∇V |
,

↔
V2 ≡ M2

P (∂i∂jV )

V
,

ξ ≡
√

V̂1·
↔
V2 ·

↔
V2 ·V̂1 ≪ 1 . (2.5)

Here we further require that the classical trajectory is perturbatively stable. Given

{λi} as the eigenvalues of
↔
V2, not only some of the λ2

i needs to be small to guarantee

3There are some alternatives for multifield slowroll inflation [61–63], for which one basically trade

the range of coefficients for other arrangements. It becomes less obvious to quantify the probability.

We will stay within the simplest cases and hope it becomes obvious that for the behavior of large

number of fields, N ∼ 500, our conclusions are generic.
4In principle, we should have also scan through values of V . However since it is a scalar, we

do not find any strong reason that its distribution exhibit interesting properties at large N . So

for simplicity, through out this paper we focus on the tuning of other parameters with the same

inflation scale V0.
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a small projection in Eq. (2.5), but also the non-small ones have to be positive. The

probability includes two factors: first the matrix
↔
V2 needs to be tuned for the above

property, then V̂1 needs to sit mostly in the subspace of the small λi’s. Let λ0 be the

untuned typical value of |λi|, we have

Psecond ∼
N
∑

n=1

CN
n

2N−n

n
∏

i=1

(∫ ξ

−ξ

dλi

λ0

∫ 1

−1

dvi

)

δ



cos θ −

√

√

√

√

n
∑

i=1

v2i



 (2.6)

∫ sin−1

[
√

ξ2−
∑n

i=1
λ2
i
v2
i

λ0

]

0

(sin θ)N−n−1 dθ

∼
N
∑

n=1

CN
n

2N−n

(

2ξ

λ0

)n(
ξ

λ0

)N−n

(2.7)

Our rough estimation starts by summing over n, the number of eigenvalues λi which

have been tuned small. Namely, the number of light fields. For those (N−n) untuned

values we only include the (1/2) factor that makes them positive, and later assume

that they all take the typical value λ0. We treat the tuning of different λi as being

independent with a flat measure. The delta function and the complicate integration

range comes from the orientation of the unit vector V̂1 constrained by Eq. (2.5). vi
stands for the components of V̂1 and θ is the angle between V̂1 and the n dimensional

subspace of the tuned λi. It is no more than a formality and for our purpose we can

roughly simplify it to the last line, where apparently the extra orientation to align V̂1

exactly balances the suppression to tune more λi to be small. This of course depends

sensitively on our choice of measure for the value of λi and should not be learned as

a general lesson. However it is clear enough that we will have an overall suppression

that is again a small number to the Nth power.

Long story short, for multifield slowroll inflation one needs to tune an N dimen-

sional vector and align it with an N dimensional matrix. Both tunings are naturally

suppressed by something to the power N as shown in Eq. (2.4) and (2.7).

Before proceeding to study the relative probability distribution for the number

of e-foldings, we shall make another simplification. For a random matrix
↔
V2, the

eigenvalues actually do not have independent distributions. A common behavior is

the eigenvalue repulsion [58, 65, 66], such that tuning more than one λi to be small

is even harder than in Eq. (2.7). So it seems reasonable to keep only the n = 1 term

in Eq. (2.7).

Psecond ∼
∫ ξ

−ξ

dλ

λ0

∫ sin−1
√

ξ2−λ2√
λ20−λ2

0

cos θ (sin θ)N−2 dθ (2.8)

∼
∫ ξ

−ξ

dλ

λ0

∫ sin−1
√

ξ2−λ2

λ0

0

(sin θ)N−2 dθ
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Also, making the other (N − 1) eigenvalues to be all positive will be harder than

just 2−(N−1). It might provide another suppression factor that depends even more

strongly on N , which goes as e−a(N−1)2 . It is a common factor that does not affect

the relative probability distributions for Ne, so we will not include it here. But later

we will need to consider it when checking for pathologies in Sec.3.

Note that by this choice, the resulting slowroll model will be effectively single-

field. We are just keeping track of the tunings needed to embed it in a multifield

background. In this effectively single field situation, ξ will be roughly equivalent to

the standard second slowroll parameter η. However we will not enforce the observa-

tional constraints on ǫ or ξ. Since in principle this particular point can be anywhere

on an inflationary trajectory, not necessarily within our observable window.

2.2 Power Law Suppression for More E-Foldings

From the previous section, all the required tuning seems to acquire the power N .

Our next step is to include the dependence on Ne, and determine whether or not

such dependence also acquires the power N .

Assume that φ1 is the direction of ~∇V and λ′
1 is tuned small5. Along this

direction, since both the first order and second order terms are small, the third order

term becomes relevant. Without loss of generality, we assume φ1 = 0 at this point

and expand the potential along ~∇V .

V = V0 + c1φ1 + c2φ
2
1 + c3φ

3
1 . (2.9)

The total number of e-foldings supported by this potential is roughly

Ne ∼
V0

M2
p

(3c1c3 − c22)
−1/2 . (2.10)

When c22 > 3c1c3, a local minimum emerges and traps the fields. That situation is

automatically excluded from our calculation. We can also choose both c1 and c3 to

be positive without loss of generality. This number of e-foldings occurs within the

field range

∆φ1 ∼
2
√

3c1c3 − c22
3c3

, (2.11)

and centered at

δφ1 ∼ − c2
3c3

. (2.12)

With these choices, φ1 = 0 is roughly the starting point of an inflation trajectory

from which the field slowly rolls down toward the −φ1 direction. The probability

5The direction 1 and 1′ are not necessary identical, but must be very close as given by the range

of θ in Eq. (2.8)
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distribution for Ne is given by the combination of Eq. (2.4), (2.8), an integral over

the untuned parameter c3, and a delta function of Ne.

P (Ne) =

∫

√
2ǫV0
MP

0

vN−1dv

νN

∫ ξ

−ξ

dλ

λ0

∫ sin−1
√

ξ2−λ2

λ0

0

(sin θ)N−2 dθ

∫

dc3
c̄3

δ

[

Ne −
V0

M2
p

(3c1c3 − c22)
−1/2

]

. (2.13)

Here again, we pick the measure for c3 to be flat for no better reason otherwise. In

order to keep the entire expression unitless, we include c̄3 as the typical value of c3.

Integrating over the delta function turns c3 into a function of Ne, c1 and c2. We then

perform the other two integrals with the following substitutions:

c1 = v , (2.14)

c2 =
V0

2M2
p

(λ cos2 θ + λ0 sin
2 θ) ≈ V0

2M2
p

λ . (2.15)

As before, keeping only ratios of physical parameters, we have

P (Ne) ∼
(√

ǫV0

Mpν

)N−1(
ξ

λ0

)N (
V 2
0

νc̄3M4
pN

3
e

)

. (2.16)

We carefully arrange the factors into three brackets, coming separately from Pfirst,

Psecond, and the integral of c3 with the delta function. Only the last one depends on

Ne.

At the first glance, it should be quite surprising that the dependence on Ne does

not care about the number of fields. It becomes more transparent after thinking

about the corresponding physical interpretation. The first two tunings are to embed

a single field inflation in a multifield theory. They involve N dimensional vectors and

matrices, so they introduce something to the Nth power. After those two quantities

are tuned, we have already picked a direction. Tuning for more e-foldings essentially

concerns this particular direction only, therefore no Nth power involved.

Although this result is the same as in [33], through this interpretation we realize

that it is still premature to conclude. The above calculation only considers the cases

where inflation ends in the standard single-field manner. In other word we implicitly

assumed that slowroll inflation can take advantage of the entire field range given by

Eq. (2.11) and (2.12). That is of course too optimistic. When this model is embedded

in an N dimensional field space, there are other ways for inflation to end. A slightly

different but related perspective: φ3
1 is not the only third order term. At the starting

point it is the only relevant one, but other terms may become important as we move

along the inflation trajectory. For example, consider

V = V0 + c1φ1 + c2φ
2
1 + c3φ

3
1 +

λ0V0

M2
p

φ2
2 + qφ1φ

2
2 . (2.17)

– 7 –



At

φ1 =
−λ0V0

qM2
p

, (2.18)

the φ2 direction is destabilized. We will not have a stable slowroll solution beyond

this point even though it might be still within the combined range of Eq. (2.11)

and (2.12). In other words, multifield inflation can end in ways not captured by the

effective single field model6.

We will not dive into detail mechanisms of how inflation ends in these manners.

It is natural to assume that various ways for these other fields to end inflation have

nothing to do with the tuned parameters in the φ1 direction. We will simply model

these possibilities as a ∆φmax. Namely, even if we start at a point which is tuned

to have effectively single field inflation, after moving along the slowroll trajectory

∆φmax distance away, inflation is no longer supported. Practically, this means that

Eq. (2.13) should include a step function.

P (Ne) =

∫

√
2ǫV0
MP

0

vN−1dv

νN

∫ ξ

−ξ

dλ

λ0

∫ sin−1
√

ξ2−λ2

λ0

0

(sin θ)N−2 dθ (2.19)

∫

dc3 δ

[

Ne −
V0

M2
p

(3c1c3 − c22)
−1/2

]

Θ

(

∆φmax − |δφ1| −
∆φ1

2

)

.

So, there is a chance that this bound on ∆φ forces us to further tune the N dimen-

sional vector and matrix for more e-foldings. For example one may imagine that

longer inflation requires a larger field space distance, thus having a higher risk of

running into ∆φmax.

To evaluate Eq. (2.19), we will again eliminate c3 with the delta function. The

step takes place at

∆φmax = |δφ1|+
∆φ1

2
=

c1

c22 +
V 2
0

N2
eM

4
p

(

|c2|+
V0

NeM2
p

)

. (2.20)

The only way to modify the single field conclusion is when the theta function replaces

some of the integration limit. When

∆φmax < 2Mp

√
2ǫ

ξ
, (2.21)

the replacement always occurs and gives us

P (Ne) ≈
(

V 2
0

νc̄3M4
pN

3
e

)
∫

∆φmaxV0
2M2

p

λ2+4N−2
e

|λ|+4N−1
e

0

vN−2dv

νN−1

∫ ξ

−ξ

(ξ2 − λ2)
N−1

2 dλ

λN
0

. (2.22)

6With untuned parameters, the φ2 direction quickly becomes very tachyonic and will not support

a second stage of hybrid inflation.
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One can just evaluate this integral. For our purpose, it is more intuitive to

analyze it by splitting into two regimes. When |λ| > 2N−1
e , the RHS of Eq. (2.20)

is roughly c1
|c2| ; when |λ| < 2N−1

e , it is roughly
c1NeM2

p

V0
. Thus we have two possible

behavior relatively for long or short inflations,

P (Ne) ≈
(

V 2
0

νc̄3M4
pN

3
e

)

(Ps + Pl) , (2.23)

Ps =

∫
∆φmaxV0
NeM

2
p

0

vN−2dv

νN−1

∫ N−1
e

−N−1
e

(ξ2 − λ2)
N−1

2 dλ

λN
0

, (2.24)

Pl = 2

∫
∆φmaxV0λ

2M2
p

0

vN−2dv

νN−1

∫ ξ

N−1
e

(ξ2 − λ2)
N−1

2 dλ

λN
0

. (2.25)

When Ne . ξ−1, the integration range for Pl does not exist so we indeed get

a suppression of N−N
e from Ps. However, Pl dominates for when Ne & ξ−1 and

it has no extra Ne dependent suppression. The exact behavior of Eq. (2.20) is

not smooth between the two regimes and the choice of ξ is somewhat arbitrary.

So we shall not take the detail behavior of Eq. (2.22) too seriously. However, the

qualitative conclusion is solid. Apparently, tuning for a large number of e-foldings is

not constrained by the field range bound ∆φmax
7. Therefore, if the multifield endings

of inflation are characterized by ∆φmax, then in the large Ne limit, longer inflation is

still only suppressed by a mild power law, N−α
e with α ∼ 3 just like in a single field

model.

2.3 Attraction Region

Finally, we shall include the volume factor from the attraction region. First we

briefly review how it works in single field open inflation [27]. Let 0 > φ > −∆φ be

the inflation region. The number of e-folding is ne if the field starts at φ = 0 and

runs through the entire region. If one starts at −δφ instead, the solution will inflate

for roughly ne
∆φ−δφ
∆φ

e-foldings. The interesting behavior for open inflation is that if

one starts at δφ, where the slope of potential is very steep, it will only overshoot up

to −δφ and also inflate for ne
∆φ−δφ
∆φ

e-foldings. Thus the weighting from the attractor

region works as the following.

Pweighted(Ne) =

∫ ∞

Ne

dne

∫ ∆φ

−∆φ

dδφ P (ne) δ

(

Ne − ne
∆φ − |δφ|

∆φ

)

. (2.26)

In other words, we are not calculating the field space volume of a single region. A

Region that can support exactly Ne efoldings means the field has to start at exactly

7Classically, the potential can be tuned to provide infinite e-foldings in a finite field range. Includ-

ing quantum fluctuations, it would have entered eternal slowroll inflation instead. Our argument

still works in that case.
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one correct point. Regions supporting more efoldings also contribute only Ne if

starting at a particular shell (in the single field case, 2 points). So we get an effective

“volume” by integrating over the shells from different regions.

For multifield models, we shall first dispel a näıve picture that is somewhat

misleading. For example, with 2 fields, some might take the typical potential as

V = VSR(φ1) +
λ0

2M2
p

φ2
2 . (2.27)

If this is the case, φ2 undergoes a damped oscillation which has almost no effect on the

inflationary motion of φ1. In that case, the attraction region will be exponentially

large in the φ2 (in general, orthogonal) directions. This may overcompensate the

rareness of slowroll regions and jeopardize the validity of our entire analysis.

In the above situation, φ1 does not pick up a any extra velocity from a large

displacement in φ2. It clearly should not be taken as the typical situation. Recall

that the third order cross terms like φ1φ
2
2 are not suppressed, so something like

Eq. (2.17) represents our situation more faithfully. It implies that the mass of φ2

changes with φ1, and also the slope of φ1 changes with φ2. When the amplitude of φ2

oscillation is still large, most likely φ1 is not slowly rolling. Depending on the signs of

these third order terms, either certain field space distance is squandered during the

damped oscillation, or the field does not even roll back to this inflation trajectory.

Again we shall not dive into various details about possible field motions in N

dimensional space. Our first approximation is to treat all orthogonal directions

equally, which is true in a statistical sense. So what matters is the total magnitude

δφort =

√

√

√

√

N
∑

i=2

φ2
i . (2.28)

Then we simply define the quantity δφ(δφ1, δφort). This refers to the amount of field

displacement along the inflation trajectory that was not spent in slowroll motion.

We already know from the single field example that

δφ(δφ1, 0) = |δφ1| . (2.29)

For small δφort, we can assume

δφ(0, δφort) = c|φort|β , (2.30)

for some appropriate c > 0 and β > 0.8 We will ignore the possible cross dependence

and assume the following particular form for small δφ.

δφ(δφ1, δφort) =
√

(δφ1)2 + c2(δφort)2β . (2.31)

8For example, Eq. (2.17) with q > 0 leads to β = 2.
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The exact form does not really matter. The constant δφ surface simply provides the

(N − 1) dimensional shell contribution from a region that we can integrate over.

By analogy to the single field calculation, we have

Pweighted(Ne) =

∫ ∞

Ne

dne

∫

dδφ1

∫

(δφort)
N−2dδφort

P (ne) δ

(

Ne − ne
∆φ− δφ(δφ1, δφort)

∆φ

)

. (2.32)

Eq. (2.31) allows us to change variable to δφ to get

Pweighted(Ne) ∼
∫ ∞

Ne

dne

∫

(δφ)
(N−1)

β dδφ P (ne) δ

(

Ne − ne
∆φ− δφ

∆φ

)

∼
∫ ∞

Ne

dne n
−4
e

(

1− Ne

ne

)
(N−1)

β

= N−3
e

∫ 1

0

(1− x)2x
(N−1)

β dx . (2.33)

So, we see that the attraction mechanism does not change the Ne dependence. This

is again because the attraction mechanism is naturally described by the field space

distance, δφ. We already learned from the previous section that tuning for more

e-foldings is quite parallel to the field space distances, so there is little reason to

care.

3. Checking for Pathologies

In the multiverse scenario, one repeatedly runs into situations that certain aspect of

our universe seems rare. One should not be scared and prematurely conclude that

the multiverse is wrong. For every trait of rareness, one can make specific predictions

in the form of relative probabilities, and check if such predictions are in conflict with

experiments or observations.9

For example, the famous Boltzmann Brain (BB) problem is actually the following

relative probability.

P (consistent evolution | current observation)
P (random outcome | current observation) =

POO

PBB

. (3.1)

Given the current state of our brains that observes our surroundings, one can try to

predict how the world looks like, say, one minute in the future. An ordinary observer

(OO) would see that everything still evolves according to the known physical laws,

9Or one could try to see if the rareness makes it impossible to realize certain necessary condition

for our universe in the entire landscape. Given the exponentially large size of the landscape, those

efforts have been inconclusive.
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while a Boltzmann Brain would “think” that it is seeing totally random outcome, or

simply itself will dissipate.

So, for any theory that predicts PBB

POO
≫ 1, it constantly runs into contradictions

with observations (every minutes per observer in our example). It is ruled out by an

exponentially high confidence level in any practical standard.

It has been shown that in most of the successful measures,

PBB

POO
=

ΓBB

Γdecay
. (3.2)

Thus if all the BB habitable vacua decay before producing them, the above ratio is

much less than one.

However, all existing analysis assumed that the number of BB friendly vacua is

comparable to those producing OO. The production of OO requires slowroll inflation,

which we have shown to be exponentially rare. So one should include some more

suppression factors,
PBB

POO

∼ ΓBB

Γdecayǫ
N−1

2 ξNe−aN2
. (3.3)

Here ǫ and ξ are the slowroll parameters coming from Eq. (2.16); e−aN2
is the possible

suppression factor coming from eigenvalue repulsion where a is an order one number.

A conservative estimation from [67] gives ΓBB ∼ exp[−1042] . So even if we take

ǫ and ξ as small as the observation bound and N ∼ 500, this factor is obviously not

enough to revive the Boltzmann Brain problem.

Another relative probability we should check is

P (detect open curvature | current curvature bound)

P (improve curvature bound | current curvature bound)
=

∫ n2

n1
P (Ne)dNe

∫∞
n2

P (Ne)dNe

. (3.4)

If the probability of having more e-foldings is significantly suppressed, then people

sitting with the data from WMAP1 [68] should expect to be on the verge of seeing

a non-zero curvature, instead of large improvement of the bound consistent with

zero. It has already be shown in [27] that a landscape of single field inflation has

P (Ne) ∝ N−4
e , which is a mild enough suppression to avoid such problem. Our

analysis shows that for a multifield landscape such conclusion is still true. Imagine if

we had instead shown that P (Ne) ∝ N−N
e , then the improvement of curvature bound

from requiring n1 = 30 e-foldings to n1 = 50 e-foldings would have had a probability

of about (30/50)500. It would have been a serious contradiction with observations.

4. Discussion

We provided a heuristic argument that in a multifield landscape, the FVEI framework

provides the following probability distribution to realize slowroll inflation.

P (Ne) = AN−α
e , (4.1)
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where A is exponentially small and α ∼ 3. Although we focused on one particular

type of slowroll model to write down specific equations, we expect this behavior to be

generic. Basically, the number of conditions to be tuned for slowroll grows with the

number of fields. That is why A is an exponentially small number and the exponent

depends on N . Longer e-foldings only requires tuning in one particular direction and

can be produced in a confined region in the field space, so α does not grow with N .

We also argued that such probability is still consistent with the multiverse scenario.

The next interesting question is, can the multiverse scenario tell us that among

so many proposed slowroll models, which ones are more likely to make our universe,

thus deserve more attention. We should first remind the readers that if the multiverse

selection rule assigns a (90%, 10%) probabilities to two models, that is pretty useless.

Since we only have one universe to observe, being as rare as a few sigma event is

not a sharp contradiction. A useful selection rule needs to give exponential relative

probabilities, like the ones we checked in Sec.3. Thus, the fact that A is exponentially

small is actually cruicial. Since the ratio of exponentially small numbers are typically

exponential, this suggests the possibility of useful selection rules.

Obviously, within the scope of this paper we cannot provide such a specific rule.

Even the measures of the parameters in our analysis are quite arbitrary. However,

there is a very direct way to make predictions. We have assumed that the tunneling

ends in a random place, and it does not correlate with the local properties of V that

controls whether we can have slowroll inflation. If in some models, the tunneling

paths always end at places supporting slowroll inflation, then such model does not

suffer from the exponential suppression.

We have actually took a quite tortuous way to demonstrate such a simple idea.

In the FVEI picture slowroll inflation comes after a tunneling, so it prefers a slowroll

model that such sequence is likely. If someone can recognize regions on the landscape

that tunneling paths must end, then one should focus on slowroll models supported

by such regions. Due to the current growth of interests on multifield tunneling

paths [69–73], this goal may come within our reach soon. Certain global properties

of the effective potential enforce a detour to a special direction. There are currently

two examples for such excursion. One goes toward large compactification volume

[69–71, 73], and the other goes toward a strongly warped throat [72]. If one can

design a slowroll model that connects with the tunneling path returning from these

special directions, they will not suffer from the exponential suppression and may be

the most likely slowroll model from the multiverse point of view.
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