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We study the possibility that particle production during inflation could source observable gravity
waves on scales relevant for Cosmic Microwave Background experiments. A crucial constraint on
such scenarios arises because particle production can also source inflaton perturbations, and might
ruin the usual predictions for a nearly scale invariant spectrum of nearly Gaussian curvature fluc-
tuations. To minimize this effect, we consider two models of particle production in a sector that is
only gravitationally coupled to the inflaton. For a single instantaneous burst of massive particle pro-
duction, we find that localized features in the scalar spectrum and bispectrum might be observable,
but gravitational wave signatures are unlikely to be detectable (due to the suppressed quadrupole
moment of non-relativistic quanta) without invoking some additional effects. We also consider a
model with a rolling pseudoscalar that leads to a continuous production of relativistic gauge field
fluctuations during inflation. Here we find that gravitational waves from particle production can
actually exceed the usual inflationary vacuum fluctuations in a regime where non-Gaussianity is
consistent with observational limits. In this model observable B-mode polarization can be obtained
for any choice of inflaton potential, and the amplitude of the signal is not necessarily correlated
with the scale of inflation.

I. INTRODUCTION

Inflation is currently the standard paradigm for solving the flatness, horizon and the unwanted topological relic
problems in standard big bang cosmology. In addition, the quantum fluctuation of the inflaton field provides the seeds
of inhomogeneity that seem to fit very well with the current observation on the Cosmic Microwave Background (CMB)
and Large Scale Structure (LSS). A particularly important probe of the physics of inflation is provided by primordial
gravitational waves (tensor fluctuations). A number of observational searches for gravitational wave perturbations are
proposed or are currently underway; these may be probed through the B-mode polarization of the CMB [1–3] or, on
smaller scales, through interferometers such as LIGO [4], VIRGO [5], DECIGO [6], Einstein Telescope [7], or LISA
[8].

During inflation, gravitational wave fluctuations are inevitably generated by quantum fluctuations of the tensor

part of the metric. These have an amplitude controlled by H2

M2
p

, where H is the Hubble scale and Mp ≈ 2.4 · 1018 GeV.

For generic inflationary models, the gravitational wave signal from vacuum fluctuations is detectable only when the
inflaton field range is trans-Planckian [9], which might be challenging to realize in a controlled effective field theory
(inflationary potentials can be constructed where the inflationary range is smaller, but still of O (Mp) [10, 11]).

Additional sources of Gravitational Waves (GW), which are uncorrelated with the usual quantum vacuum fluctu-
ations, may be present in the early universe (see, for instance, [12] for a recent review). Two broad categories of
mechanisms are:

1. Models involving phase transitions: For example, in first order phase transitions, vacuum bubble collisions
[13, 14] and the subsequent turbulence [15] could source GW. The generation and decay of cosmic strings can
also give rise to large GW [16]. Along similar lines, the self-ordering of a scalar field after a second order phase
transition has also been considered [17].

2. Models involving particle production: Generically the inflaton should be expected to couple to some
additional degrees of freedom, as would seem to be necessary for successful reheating [18–22]. In this case,
there is a natural possibility that the time-dependence of the inflaton condensate during inflation leads to the
production of some other degrees of freedom which may, in turn, provide an important new source of GW
[23–25]. A variety of different models have been proposed; see below for more discussion.1

1 For gravitational waves from particle production at the end of inflation, see [26–30]; effects on the scalar fluctuations were discussed in
[31–36].
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Given the importance of gravitational waves as a probe of inflation, it is important to understand if such mechanisms
could be competitive with the usual spectrum of GW from vacuum fluctuations. 2

Any mechanism which is being invoked to source gravitational waves might also source scalar metric perturbations.
Therefore, one must take care not to spoil the usual prediction of a nearly scale invariant spectrum of Gaussian scalar
curvature perturbations. Sometimes this concern is evaded by restricting attention to effects that take place on the
small scales relevant for interferometers where the scalar fluctuations are not strongly constrained. In this work we
will mostly be interested in models of particle production during inflation, where gravitational waves are sourced on
CMB scales. To test the feasibility of such scenarios, it is crucial to study also the spectrum and bispectrum of the
scalar fluctuations, to ensure that these are consistent with observations.

Models of particle production during inflation have received considerable attention in the literature; see for example
[23–25, 38–52]. One class of models involves instantaneous bursts of particle production, leading to localized features
in the cosmological perturbations. Early studies focused on the production of fermion [41] or scalar [42] particles,
neglecting the feed-back of the produced quanta on the perturbations of the inflaton. In Ref. [43] it was however shown
that this feed-back effect actually dominates observables for the case of scalar particle production. Ref. [43] considered
a simple model where scalar χ particles are produced through a coupling g2ϕ2χ2 to the inflaton, ϕ, using both lattice
field theory simulations and also analytical methods. Models of this same type were subsequently analyzed in the
context of trapped inflation [51]. More recently, models of instantaneous vector particle production have been studied
in connection with GW at interferometer scales [23]. Several scenarios of GW from scalar and string production were
instead studied in [24].

Another possibility is that particle production occurs continuously during inflation. This is quite natural in the
context of axion inflation [48]. Even in the simplest models of inflation driven by a single axion in slow roll on a smooth

flat potential, pseudoscalar couplings ϕFF̃ to gauge fields are ubiquitous. This interaction leads to a continuous
tachyonic production of gauge field fluctuations during inflation. There are a host of interesting phenomenological
signatures: observable equilateral non-Gaussianity [48, 49, 53], GW at interferometer scales [23, 25], and excess power
at small scales [54, 55]. Additionally, backreaction effects in such models can assist inflation by dissipating the
kinetic energy of the inflaton [47, 56], analogously to warm inflation [38] and trapped inflation [51]. 3 In [58–60] a
model of gauge field production through the scalar coupling I2(ϕ)F 2 was considered, in connection with primordial
non-Gaussianity and, perhaps, magnetogenesis (this last application is problematic [60, 61]).

Above we discussed some simple models of particle production during inflation where quanta are produced by
a direct coupling between the inflaton and some additional degrees of freedom. In such a scenario the produced
particles interact with the inflaton through couplings that are typically much stronger than gravitational. Hence,
these produced particles will tend to source scalar curvature fluctuations much more efficiently than GW. It is not
surprising, therefore, that the most stringent CMB constraints on such models often come from features and non-
Gaussianity in the scalar fluctuations, rather than from GW.

In this work, we investigate the possibility to source a significant GW signal on CMB scales without ruining the
spectrum of curvature fluctuations. To minimize the impact on the inflaton fluctuations, we assume that particle
production takes place in a “hidden” sector that is only gravitationally coupled to the inflaton.4 We compute for
the first time the scalar perturbations induced by the gravitational coupling, and we compare their phenomenological
impact with that of the produced GW. Since gravitational interactions are unavoidable, the case we investigate can
be thought of as a kind of “best case” scenario for the production of GW while minimizing the effect on the scalar
fluctuations. Concretely, we will focus on two models involving the production of spin-1 particles:

1. Model I: Particle production takes place in a hidden sector where a local U(1) invariance is spontaneously broken
by the expectation value of some complex scalar ψ. Here gauge fields are produced at an isolated moment -
namely, when the mass of the gauge field crosses zero during the evolution of ψ - and we have localized features
in the scalar spectrum and bispectrum, in addition to a localized feature in the tensor spectrum. For a single
isolated burst of production, we find that observational constraints on the scalar perturbations exclude any
interesting effect in GW. However, in a concrete model there may be many bursts of particle production and
their resonance could enhance the effect. We note that this model could lead to interesting phenomenological
signatures in the scalar fluctuations; localized features in the spectrum and bispectrum are discussed.

2 A GW signal may also be left at the largest scales as an imprint of a pre-inflationary era if inflation had only a minimal duration [37].
3 The pseudo-scalar interaction is also used to [57] to dissipate the inflaton kinetic energy from its classical interaction to a non-abelian

vector field.
4 Our scenario differs from the curvaton model [62], in which the inflaton provide the energy density to support inflation while a light

curvaton field provides the seed of scalar perturbation. The GW spectrum in the curvaton model has been considered at tree-level
[63, 64] and at 1-loop level [65], with possible detectability at future interferometer experiments [65]. See [66] for examples of vector
curvaton.
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2. Model II: Particle production takes place in a hidden sector where a rolling pseudoscalar sources gauge field
fluctuations continuously. Here we find that GW from particle production can be competitive with the vac-
uum fluctuations, or even larger than the vacuum fluctuations, without violating observational bounds on non-
Gaussianity. In this model the primordial tensor spectrum can be detectable for any choice of inflaton potential
(that is, also for small field inflation). In this model, GW from particle production are chiral. We show that
parity violation in the tensor sector can be almost maximal, which provides a distinctive observable signature
of this scenario; see also [50, 56].

In summary: we find that the possibility to source interesting GW from particle production is rather model
dependent. Even if particle production occurs in a hidden sector, coupled only gravitationally to the inflationary one,
this is not a sufficient condition to ensure that observable GW can be sourced without ruining the scalar spectrum.
On the other hand, we find that in some models GW from particle production can actually exceed the usual vacuum
fluctuations. The reason for the smaller GW production in Model I with respect to Model II is that in Model I
the gauge quanta are highly non-relativistic after their production, which suppresses their quadrupole moment. We
verified that the same suppression takes place if, instead of gauge fields, the particles produced in this mechanism have
spins 0 or 1

2 . 5 As we mentioned, a greater GW effect may be obtained for multiple instances of particle production,
or for a more complicated evolution of the gauge field mass, or if the massive particles decay into massless ones short
after they are produced [24].

Therefore, due to the possibility of GW from particle production, a measurement of primordial B-modes does not
necessarily constitute a measurement of the scale of inflation. Nor does a detectable B-mode signal necessarily require
super-Planckian excursions in field space. Fortunately, as we discuss below, the produced GW may be distinguished
from the vacuum signal, either by their localization at some given wavelength (assuming that Model I can be modified
so to enhance the GW signal), or by their violation of parity.

In terms of observational prospects of gravitational waves on CMB scales, Model II is certainly more promising, as
the gauge quanta are automatically relativistic and their quadrupole moment is not suppressed. While the focus of the
present work is to examine the signatures and constraints of gravitational waves produced during inflation as a result
of hidden sector particle production, the UV sensitivity of inflation motivates us to ask whether such models can be
realized in string theory. Indeed, the 4D low energy spectrum of string theory contains a myriad of axion-like fields,
e.g., those arise from the reduction of antisymmetric form fields on cycles of the internal space. These closed string
axions couple to U(1) gauge fields on the worldvolume of D-branes via ϕFF̃ couplings. The axion decay constant
f one typically finds in string theory constructions is of the order of the GUT scale MGUT ∼ 1016 GeV (see, e.g.,
[67, 68]) which sits comfortably within the allowed window for consistency of our model (see eqs. (115) and (116)). It
is not difficult to arrange the inflaton to have no direct coupling to the axion and the gauge field. We outline some
ideas to realize Model II in string theory in the concluding section. We leave, however, a detailed study of these and
other string theory embeddings for future work.

This paper is organized as follows. In Section II we develop a very general formalism which can be used to compute
the effects of particle production on the scalar and tensor cosmological perturbation in a variety of models. In Section
III we apply this formalism to Model I, discussed above. In Section IV we instead apply our formalism to Model
II, discussed above. In Section V, we conclude. In Appendix A, we discuss the production of the longitudinal mode
in Model I. This is the first time the longitudinal mode has been accounted for in a model of production of massive
vector fields during inflation. In Appendix B, we discuss some details of the computation of the scalar perturbations
for Model I. In Appendix C, we perform an analogous computation for Model II. In Appendix D, we discuss the
production of massive fermion fields during inflation, and the amount of GW that they generate.

II. FORMAL EXPRESSIONS FOR OBSERVABLE CORRELATORS

We assume that quanta of a vector field are produced (either at some discrete moment t∗, or throughout inflation)
in a sector only gravitationally coupled to the inflaton. We are interested in computing scalar and tensor cosmological
perturbations sourced by the vector quanta. The vector field can be decomposed as

A0 = 0 , Ai =

∫
d3k

(2π)
3/2

ei
~k·~x Ãi

(
τ, ~k

)
, Ãi

(
τ, ~k

)
=
∑
λ=±

ε
(λ)
i

(
k̂
) [

aλ

(
~k
)
Aλ (k) + a†λ

(
−~k
)
A∗λ (k)

]
(1)

5 We find that the results agree in all three cases, with only order unity differences coming from counting the number of degrees of freedom
and also from spin statistics. These order unity effects can be encoded in a very simple formula, which we present.
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where we have included only the transverse vector polarization (in Section III we actually study also the longitudinal
polarization, as it is present, and may be relevant, in that model). Here ~ελ are circular polarization vectors satisfying

~k · ~ε (±)
(
~k
)

= 0, ~k × ~ε (±)
(
~k
)

= ∓ik~ε (±)
(
~k
)

, ~ε (±)
(
−~k
)

= ~ε (±)
(
~k
)∗

, and normalized according to

~ε (λ)
(
~k
)∗
· ~ε (λ′)

(
~k
)

= δλλ′ .

In this section, we introduce the formalism for the correlators of the scalar and tensor perturbations sourced by
this vector vector, under the assumption that the latter is only gravitationally coupled to the inflationary sector, and
that it enters quadratically in the energy-momentum tensor. The discussion is divided in three parts; in Subsection
II A we present the structure of the equations for the scalar and tensor perturbations in presence of the source; in
Subsection II B we present the formal solutions, and the structures of the correlators; in Subsection II C we show how
these expressions enter in observable quantities.

A. Decompositions, and sourced equations for ζ, hλ

We compute scalar cosmological perturbations in the spatially flat gauge δgij,scalar = 0. In this gauge, the curvature

perturbation ζ is (up to negligible corrections, as we will see in the next two sections) ζ = − H
ϕ̇(0) δϕ, where ϕ(0) and

δϕ are the unperturbed and perturbed part of the inflaton, respectively. 6 We decompose

δϕ =

∫
d3k

(2π)
3/2

ei
~k·~x Qϕ

a
(2)

As we show in the next sections, the effect of the vector fields on the inflaton modes can be encoded in the
approximate equation [

∂2
τ +

(
k2 − a′′

a

)]
Qϕ

(
τ, ~k

)
' Jϕ

(
τ, ~k

)
(3)

where the source is formally of the type

Jϕ

(
τ, ~k

)
≡
∫

d3p

(2π)
3/2

Ôϕ,ij

(
τ, ~k, ~p

)
Ãi (τ, ~p) Ãj

(
τ, ~k − ~p

)
(4)

where Ô is a model-dependent operator.
In the tensor sector, the gravity waves are encoded in gij = a2 (δij + hij), where the modes hij are transverse and

traceless. We introduce the canonical modes

Mpa

2
hij =

∫
d3k

(2π)
3/2

ei
~k·~x

∑
λ=±

Πij,λ

(
k̂
)
Qλ

(
~k
)

, Πij,λ

(
k̂
)

= ε
(λ)
i

(
k̂
)
ε
(λ)
j

(
k̂
)

(5)

which obey the equation [
∂2
τ +

(
k2 − a′′

a

)]
Qλ

(
τ, ~k

)
= Jλ

(
τ, ~k

)
(6)

The source is obtained by starting from the transverse and traceless spatial part of the energy momentum tensor
and projecting along the λ polarization with Πij,λ. One finds

Jλ

(
τ, ~k

)
= Π∗ij,λ

(
k̂
)∫ d3x

(2π)
3/2

e−i
~k·~x a

Mp
Tij (τ, ~x) (7)

6 Throughout this work we denote physical time by t and conformal time by τ . Derivative wrt physical (conformal) time are denoted by a
dot (prime). We denote the scale factor and the Hubble rate by a and H, respectively. We denote by Mp the reduced Planck mass. We
use the mostly positive −,+,+,+ signature everywhere in the paper apart from the model of fermionic production (Subsection III D
and Appendix D) where we switch to the opposite signature.
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We note that, the multiplication by Π∗ij,λ automatically projects on the transverse and traceless part of Tij . If (as in

the cases that we will consider) the energy-momentum tensor is quadratic in the gauge fields, we recover an expression

formally identical to (4), with a different (and model-dependent) operator Ôλ,ij

(
τ, ~k, ~p

)
.

In summary, we have formally identical equations for the scalar and tensor canonical modes

[
∂2
τ +

(
k2 − a′′

a

)]
QX

(
τ, ~k

)
' JX

(
τ, ~k

)
JX

(
τ, ~k

)
≡
∫

d3p

(2π)
3/2

ÔX,ij

(
τ, ~k, ~p

)
Ãi (τ, ~p) Ãj

(
τ, ~k − ~p

)
, X = {ϕ, λ = +, λ = −} (8)

The operators ÔX depend on what X is, and also on the model. In all cases, they are invariant under the simultaneous

i↔ j and ~p→ ~k − ~p operations.

B. Formal solutions and correlators

The equation (8) is formally solved by

QX

(
τ, ~k

)
= QX,v

(
τ, ~k

)
+QX,s

(
τ, ~k

)
(9)

where QX,v is the standard vacuum solution, obtained in absence of the vector source; the sourced term is instead

QX,s

(
τ, ~k

)
=

∫ τ

dτ ′Gk (τ, τ ′) JX

(
τ ′, ~k

)
Gk (τ, τ ′) ' 1

k3ττ ′
[kτ ′ cos (kτ ′)− sin (kτ ′)] , −k τ � 1 (10)

where the Green function is only given in the super-horizon regime −k τ � 1. The two terms in (9) are uncorrelated.
We are interested in the two and three point correlators of the sourced solutions. For the two point correlator, we

find 〈
QX,s

(
τ, ~k1

)
QY,s

(
τ, ~k2

)〉
=

∫ τ

dτ1Gk1 (τ, τ1)

∫ τ

dτ2Gk2 (τ, τ2)
〈
JX

(
τ1, ~k1

)
JY

(
τ2, ~k2

)〉
(11)

where 〈
JX

(
τ1, ~k1

)
JY

(
τ2, ~k2

)〉
= 2

∫
d3p1d

3p2

(2π)
3 ÔX,ij

(
τ1, ~k1, ~p1

)
ÔY,lm

(
τ2, ~k2, ~p2

)
×
〈
Ãi (τ1, ~p1) Ãm

(
τ2, ~k2 − ~p2

)〉 〈
Ãj

(
τ1, ~k1 − ~p1

)
Ãl (τ2, ~p2)

〉
(12)

In writing this expression, we Wick decomposed the 〈A4〉 correlator coming from 〈J2〉, and then used the symmetry

of the ÔY,lm operator.
From (1) we then see that the two point correlator of the gauge field is formally of the type〈

Ãi (τ1, ~q1) Ãj (τ2, ~q2)
〉

=
∑
σ

P(σ)
ij (q̂1)D(σ)

(0,0) [τ1, τ2; q1] δ(3) (~q1 + ~q2) (13)

where

P(±)
ij (p̂) ≡ ε(±)

i (~p) ε
(±)∗
j (~p) =

1

2
(δij − p̂i p̂j)∓

i

2
εijk p̂k (14)

The index (0, 0) onD indicates that no time derivative is acting on the modes Ã on the l.h.s. of (13), and it is introduced

for later convenience. Using the hermiticity of Aµ (x), one can show that D(σ)
(0,0) [τ1, τ2; q] = D(σ)∗

(0,0) [τ2, τ1; q]. We show

in the following sections that, in both models we study, D(σ)
(0,0) becomes real and symmetric under τ1 ↔ τ2 for all times

after the particle production.
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Inserting (13) into (12) we obtain〈
JX

(
τ1, ~k1

)
JY

(
τ2, ~k2

)〉
= 2 δ(3)

(
~k1 + ~k2

)∫ d3p

(2π)
3

∑
σ,σ′

P(σ)
im (p̂)P(σ′)

lj

(
p̂− k1

)
ÔX,ij

(
τ1, ~k1, ~p

)
ÔY,lm

(
τ2, −~k1, ~p− ~k1

)
D(σ)

(0,0) [τ1, τ2; p] D(σ′)
(0,0)

[
τ1, τ2; |~p− ~k1|

]
(15)

Finally, we only need to compute the connected three point correlator of Qϕ. Proceeding as for the two point
function we obtain〈

3∏
i=1

Qϕ,s

(
τ, ~ki

)〉
=

∫ τ

dτ1Gk1 (τ, τ1)

∫ τ

dτ2Gk2 (τ, τ2)

∫ τ

dτ3Gk3 (τ, τ3)

〈
3∏
i=1

Jϕ

(
τi, ~ki

)〉
(16)

with 〈
3∏
i=1

Jϕ

(
τi, ~ki

)〉
= 8 δ(3)

(
~k1 + ~k2 + ~k3

)∫ d3p

(2π)
9/2

∑
σ,σ′,σ′′

P(σ)
im (p̂)P(σ′)

nj

(
p̂− k1

)
P(σ′′)
lo

(
p̂+ k2

)
Ôϕ,ij

(
τ1, ~k1, ~p

)
Ôϕ,lm

(
τ2, ~k2, ~p+ ~k2

)
Ôϕ,no

(
τ3, ~k3, ~p− ~k1

)
D(σ)

(0,0) [τ1, τ2; p] D(σ′)
(0,0)

[
τ1, τ3; |~p− ~k1|

]
D(σ′′)

(0,0)

[
τ2, τ3; |~p+ ~k2|

]
(17)

C. Phenomenology

From the two point scalar correlator we obtain the power spectrum

k3
1

2π2

〈
ζ
(
~k1

)
ζ
(
~k2

)〉
= Pζ δ

(3)
(
~k1 + ~k2

)
, (18)

The two solutions (9) are incoherent and therefore their power spectra add up. Recalling the standard slow roll result
for the vacuum mode, and using the two expressions (11) and (15), we obtain

Pζ = Pζ,v + Pζ,s

Pζ,v =
H4

4π2ϕ̇(0)2

Pζ,s =
k3

1

π2

H2

a2ϕ̇(0)2

∫ τ

dτ1Gk1 (τ, τ1)

∫ τ

dτ2Gk1 (τ, τ2)

∫
d3p

(2π)
3

∑
σ,σ′

P(σ)
im (p̂)P(σ′)

lj

(
p̂− k1

)
Ôϕ,ij

(
τ1, ~k1, ~p

)
Ôϕ,lm

(
τ2, −~k1, ~p− ~k1

)
D(σ)

(0,0) [τ1, τ2; p] D(σ′)
(0,0)

[
τ1, τ2; |~p− ~k1|

]
(19)

For the tensor mode, we show below that modes of different polarizations are uncorrelated. Starting from the
decomposition (5), the power in each polarization is

k3
1

2π2

4

a2M2
p

〈
Qλ

(
~k1

)
Qλ

(
~k2

)〉
= Pλ δ

(3)
(
~k1 + ~k2

)
, (20)

Also in this case, the power of the vacuum and the sourced modes add up

Pλ = Pλ,v + Pλ,s

Pλ,v =
H2

π2M2
p

Pλ,s =
k3

1

π2

4

a2M2
p

∫ τ

dτ1Gk1 (τ, τ1)

∫ τ

dτ2Gk1 (τ, τ2)

∫
d3p

(2π)
3

∑
σ,σ′

P(σ)
im (p̂)P(σ′)

lj

(
p̂− k1

)
Ôλ,ij

(
τ1, ~k1, ~p

)
Ôλ,lm

(
τ2, −~k1, ~p− ~k1

)
D(σ)

(0,0) [τ1, τ2; p] D(σ′)
(0,0)

[
τ1, τ2; |~p− ~k1|

]
(21)



7

The tensor-to-scalar ratio r is defined as

r =

∑
λ Pλ
Pζ

(22)

If the sourced term is absent, one recovers the standard vacuum slow roll result rv = 8 ϕ̇(0)2

H2M2
p

= 16ε. However, we see

that the sourced contribution can modify this result.
Finally, we are interested in the bi-spectum of the scalar modes, defined as〈

ζ
(
~k1

)
ζ
(
~k2

)
ζ
(
~k3

)〉
= Bζ

(
~ki

)
δ(3)

(
~k1 + ~k2 + ~k3

)
(23)

We disregard the contribution from the vacuum modes, as it is unobservable for standard slow roll inflation. Using
(16) and (17) we obtain

Bζ

(
~ki

)
= 8

∫ τ

dτ1Gk1 (τ, τ1)

∫ τ

dτ2Gk2 (τ, τ2)

∫ τ

dτ3Gk3 (τ, τ3)

∫
d3p

(2π)
9/2

∑
σ,σ′,σ′′

P(σ)
im (p̂)P(σ′)

nj

(
p̂− k1

)
P(σ′′)
lo

(
p̂+ k2

)
Ôϕ,ij

(
τ1, ~k1, ~p

)
Ôϕ,lm

(
τ2, ~k2, ~p+ ~k2

)
Ôϕ,no

(
τ3, ~k3, ~p− ~k1

)
D(σ)

(0,0) [τ1, τ2; p] D(σ′)
(0,0)

[
τ1, τ3; |~p− ~k1|

]
D(σ′′)

(0,0)

[
τ2, τ3; |~p+ ~k2|

]
(24)

In the following sections, we compute the bispectrum for equilateral configurations (which is where it is peaked in
the models that we consider), and use it to define an equilateral nonlinear parameter [49]

fNL,equil. eff. (k) =
10

9 (2π)
5/2

k6

P 2
ζ (k)

Bζ |k1=k2=k3=k (25)

III. MODEL I: VECTOR PRODUCED BY NON-ADIABATIC CHANGE OF ITS MASS

We consider a model where the sector in which particle production takes place has a local U(1) invariance sponta-
neously broken by the expectation value of a complex scalar Ψ:

S =

∫
d4x
√
−g
[
M2
p

2
R− 1

2
(∂ϕ)2 − V (ϕ)︸ ︷︷ ︸
inflaton sector

− | (∂µ − ieAµ) Ψ|2 − U (|Ψ|)− 1

4
F 2︸ ︷︷ ︸

hidden sector

]
. (26)

The field ϕ is the inflaton field, which is assumed to be only gravitationally coupled to the Ψ− Aµ sector. We work

in the unitary gauge Ψ = ψ√
2
, where ψ is real. We assume that the background value ψ(0) (t) crosses zero at the time

t∗ during inflation. Close to this time, the gauge field mass can be approximated by

m = eψ(0) ' eψ̇(0)
∗ (t− t∗) ≡ ṁ∗ (t− t∗) (27)

For definiteness, we take ṁ∗ > 0. The (comoving) frequency of a gauge mode, ω =
√
k2 + a2m2 varies nonadiabatically

(ω′ > ω2) when the mass vanishes. As we will show later, the gauge field modes that dominate the observational
signatures have k ∼

√
ṁ∗. For such modes, the frequency changes nonadiabatically in the time interval ∼ t∗± 1√

ṁ∗
,

provided that the expansion of the universe can be disregarded in this time interval. This is the case for 1√
ṁ∗
� 1

H . In

the remainder of this Subsection we concentrate on the production during this interval, and disregard the expansion
of the universe (we use physical and conformal time interchangeably). We can eliminate any reference to the scale
factor by normalizing a (t∗) = 1. In the following Subsections the expansion is taken into account.

The non-adiabatic change of the frequency causes non-perturbative production of the gauge modes. To compute
this, we decompose the vector field as in (1). We further decompose the mode functions in positive and negative
frequency modes

Aλ (k) = αk (τ) fk (τ) + βk (τ) f∗k (τ) , fk ≡
e−i

∫ τ dτ ′ ω(τ ′)√
2ω (τ)

A′λ (k) = −iω [αk (τ) fk (τ)− βk (τ) f∗k (τ)] (28)
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(the second line is the decomposition of the modes of the conjugate momentum to Ai). The decomposition (1)
disregards the longitudinal vector mode; we compute this mode in Appendix A, and we discuss its effects below in
this section. We have suppressed the index λ in this decomposition, since the Bogolyubov coefficients are the same
for both helicities. For t � t∗, the mode is in the adiabatic vacuum α = 1 (up to an arbitrary phase); the quantity
|β|2 is the occupation number of the gauge modes.

The gauge field modes satisfy A′′ + ω2A = 0. With the approximated expression (27), this equation can be
analytically solved in terms of two parabolic cylinder functions. The linear combination satisfying the proper initial
condition α = 1 gives (up to an arbitrary phase) [19, 23]

αk (t� t∗) '
√

1 + e−
πk2

ṁ∗ , βk (t� t∗) ' −e−
πk2

2 ṁ∗ (29)

Namely, one finds a O (1) occupation number for modes up to k '
√
ṁ∗, while the production is exponentially

suppressed at higher momenta. An analogous result is obtained for scalar [19] and fermion [41] fields produced by a
mass varying as in (27). This result is valid provided that

H2 � ṁ∗ �
√

6eMpH (30)

where (as we mentioned previously) the first condition ensures that the expansion of the universe can be disregarded
during the interval of particle production, while the second condition imposes that the kinetic energy of ψ is negligible
with respect to the inflaton energy density.

Having the mode functions, we can now compute the correlators (13). The correlators need to be regularized.
The regularization can be performed by normal ordering with respect to the time dependent annihilation creation
operators

āλ

(
τ, ~k

)
≡ αk (τ) aλ

(
~k
)

+ β∗k (τ) a†λ

(
−~k
)

, ā†λ

(
τ, −~k

)
≡ βk (τ) aλ

(
~k
)

+ α∗k (τ) a†λ

(
−~k
)

(31)

These are the “physical” operators of the system, as one can show that they diagonalize the Hamiltonian at all times.
Using (1) and (28) it is immediate to show that, in terms of these operators,

Ãi

(
τ, ~k

)
=
∑
λ

ε
(λ)
i

(
k̂
) [
fk (τ) āλ

(
τ, ~k

)
+ f∗k (τ) ā†λ

(
τ, −~k

)]
(32)

We then compute
〈

: Ãi

(
τ, ~k

)
Ãi

(
τ ′, ~k′

)
:
〉

by normal ordering with respect to the ā, and ā†, but by recalling that

the vacuum state is annihilated by the original time-independent a (we are working in the Heisenberg picture, in
which the states are constant). 7 Proceeding in this way, and casting the result as in (13), we obtain

D(σ)
(0,0) [τ, τ ′; k] = αk (τ)β∗k (τ ′) fk (τ) fk (τ ′) + βk (τ)α∗k (τ ′) f∗k (τ) f∗k (τ ′)

+βk (τ)β∗k (τ ′) f∗k (τ) fk (τ ′) + β∗k (τ)βk (τ ′) fk (τ) f∗k (τ ′) (33)

Clearly, the result is σ−independent, since both helicities are produced in the same amount. After the particle
production, this expression simplifies into

D(σ)
(0,0) [τ, τ ′; k] = αk β

∗
k fk (τ) fk (τ ′) + α∗k βk f

∗
k (τ) f∗k (τ ′) + |βk|2 [f∗k (τ) fk (τ ′) + fk (τ) f∗k (τ ′)] (34)

where α and β assume the asymptotic values (29). As we anticipated, this expression is real and symmetric under
τ ↔ τ ′.

The same result (34) is obtained if one computes
〈
Ãi

(
τ, ~k

)
Ãi

(
τ ′, ~k′

)〉
without normal ordering, and then sub-

tracts the term that one would have in absence of particle production (α = 1, β = 0), as done in [43]. Therefore these
two regularizations are equivalent after the particle production has taken place.

7 This procedure is conventionally adopted in Bogolyubov computations, although it is not always spelled out; indeed, the initial Hamilto-

nian, without normal ordering, can be cast in the form Ĥ =
∫
d3k ωk N̂ , where the counting operator is N̂ = āā†+ā†ā

2
. One then defines

normal ordering wrt the barred operators, : N̂ := ā† ā, and evaluates 〈: N̂ :〉 using (31) and recalling that the vacuum is annihilated by

the original time-independent a; only in this way one obtains 〈: N̂ :〉 = |β|2. We employ the exact same procedure for evaluating the
correlators D.
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For further convenience, we extend the definition (13) to〈
:

(
∂

∂τ1

)a
Ãi (τ1, ~q1)

(
∂

∂τ2

)b
Ãj (τ2, ~q2) :

〉
≡
∑
σ

P(σ)
ij (q̂1)D(σ)

(a,b) [τ1, τ2; q1] δ(3) (~q1 + ~q2) (35)

We compute these quantities by using (28). After α and β have assumed the asymptotic values (29), the correlators
of our interest become

D(σ)
(1,0) [τ, τ ′; k] = −iωk (τ)

{
αk β

∗
k fk (τ) fk (τ ′)− α∗k βk f∗k (τ) f∗k (τ ′) + |βk|2 [−f∗k (τ) fk (τ ′) + fk (τ) f∗k (τ ′)]

}
D(σ)

(0,1) [τ, τ ′; k] = −iωk (τ ′)
{
αk β

∗
k fk (τ) fk (τ ′)− α∗k βk f∗k (τ) f∗k (τ ′) + |βk|2 [f∗k (τ) fk (τ ′)− fk (τ) f∗k (τ ′)]

}
D(σ)

(1,1) [τ, τ ′; k] = −ωk (τ) ωk (τ ′)
{
αk β

∗
k fk (τ) fk (τ ′) + α∗k βk f

∗
k (τ) f∗k (τ ′)− |βk|2 [f∗k (τ) fk (τ ′) + fk (τ) f∗k (τ ′)]

}
(36)

We note that in the regime in which (34) and (36) are valid, ∂τD(σ)
(0,0) [τ, τ ′; k] = D(σ)

(1,0) [τ, τ ′; k], and analogously for

the other terms. Namely, in this regime, time derivatives can be equivalently taken before or after evaluating the
correlator. One can verify that (for the regularized correlators) this is not the case during the particle production,
when α and β are still functions of time.

A. Scalar perturbations sourced by the vector modes

We are interested in the phenomenological consequences of the vector field production in the model (26). As men-
tioned in the Introduction, we work under the assumption that the Ψ−Aµ sector has a negligible energy density with
respect to the inflationary sector, and that the two sectors are coupled only gravitationally. Under these assumptions,
the main signature of the particle production is encoded in how the gauge quanta enter in the gravitational equations.
In this subsection we study the effect on the scalar metric and inflaton perturbations; the effect on the tensor modes
is computed in the next subsection.

We divide the computation in 3 parts; in the first one, we present the master equation for the density perturbation
ζ; in the second and the third part we compute, respectively, the power spectrum and the bispectrum of the part of
ζ sourced by the vector quanta.

1. Master equation for ζ

We perform computations in the spatially flat gauge δgij,scalar = 0. We then decompose the fields into background
+ first order + second order perturbations; for example, for the inflaton field we write

ϕ = ϕ(0) + ϕ1 + ϕ2 + . . . (37)

(dots denotes perturbations of higher order, that we ignore). Under our working assumption that Ψ gives a negligible
contribution both to the background energy density, and to the cosmological perturbations (which is certainly the
case, if ρΨ is sufficiently small), the gauge curvature perturbations ζ in this gauge is

ζ = −H
φ̇

(ϕ1 + ϕ2) (38)

We are interested in a master equation for ζ. We follow the same steps outlined in Section 5 of [49]. We start from
the inflaton equation of motion

∂µ
(√
−g gµν ∂ν ϕ

)
−
√
−g dV

dϕ
= 0 (39)

Formally, only perturbations of the inflaton and of the metric enter in this equation. However, one can use the
gravitational equations to express the modes δg00 and δg0i in terms of the other perturbations,

δg00 = δg00 [ϕi, Aµ, hij ] , δg0i = δg0i [ϕi, Aµ, hij ] , (40)
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and then insert these expressions back into (39). The explicit expressions for (40) can be most directly obtained from
the Einstein equations. 8 The vector field modes enter in these equations through their contribution to the energy
momentum tensor

Tµν,gauge = Fµα F
α

ν +m2AµAν + gµν

(
−1

4
F 2 − m2

2
A2

)
(41)

where m2 = e2ψ(0) 2 (t). 9

Equivalently, we can eliminate the δg00 and δg0i modes from the action using the so called energy and momentum
constraints in the ADM formalism. Clearly, this is equivalent to using (40) at the level of the equations. Both methods
are presented in [49]. The net result is that (39) can be put into a master equation in terms of ϕi, Aµ, and hij . The
master equation, in absence of gauge fields, was first derived in [69].

As one can readily employ the same exact steps outlined in [49] to the current model, we do not repeat those
computations here. There are only two changes that need to be taken into account when one repeats the computations
of [49] for the present model. Firstly, in the model of [49] the vector field had a direct coupling to the inflaton

∆L = − α
4f ϕFF̃ ; here the coupling is absent, so we simply formally take α

f = 0 in all the steps of [49]. Secondly, the

vector field was taken to be massless in [49], while it is massive here. This amounts in the additional contributions
proportional to the vector mass given in (41), or equivalently, in the extra term in the cubic action for the perturbations
in the ADM formalism

∆S = −1

2

∫
d4xNa2m2A2

i (42)

where N is the lapse factor.
As the energy-momentum tensor (41) is quadratic in the gauge field modes, the first order metric and inflaton

perturbations are not affected by the gauge field. Therefore the master equation at first order reproduces the standard
first order expression (

∂2
τ −∇2

)
ϕ1 + 2Hϕ′1 ' 0 (43)

where ∇2 ≡ ∂i∂i and H ≡ a′

a . The approximation symbol arises because on the left hand side of this expression we
have disregarded a “mass term” for ϕ1 which is proportional to the slow roll parameters (the same is true for eq.
(45))

ε ≡
M2
p

2

(
V,ϕ
V

)2

� 1 , η ≡M2
p

V,ϕϕ
V
� 1 (44)

The reason for this is that we are not interested in slow roll corrections to our results.
At next order in perturbations theory we find instead

(
∂2
τ −∇2

)
ϕ2 + 2Hϕ′2 ' −

ϕ(0)′a2

2M2
pH

{
E2 +B2

2
+

1

a4
∇−2∂τ

[
a4~∇ ·

(
~E × ~B

)]}
− ϕ(0)′

2M2
Pa

2H
a2m2

2
AiAi + . . . (45)

Dots denote terms which are proportional to squares of the first order inflaton and tensor metric perturbations, namely
they are of O

(
ϕ2

1

)
and of O

(
h2

1,ij

)
(we recall that δΨ can be disregarded); these terms are explicitly given in [69].

The “electric” and “magnetic” fileds are defined in analogy to the electromagnetic expressions, namely

Ei = − 1

a2
A′i , Bi =

1

a2
εijk∂jAk (46)

The expression (45) should be compared with eq. (5.15) of [49]. Also here we have disregarded the inflaton “mass
term”, which is given instead in [49] at leading order in slow roll approximation. The expression in [49] had a term

8 We note that only the tensor mode hij enters in the spatial perturbations δgij , since δgij,scalar = 0 in our gauge, and since we can
disregard vector metric perturbations as in the standard case.

9 We remind that we are working in the unitary gauge, (Ψ real) and disregarding perturbations of Ψ. In principle, the gauge quanta also
source perturbations δΨ, which are then gravitationally coupled to the inflationary sector. We do not expect that this effect is more
important than the direct gravitational coupling of the gauge modes to the inflationary sector.
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resulting from the direct inflaton-vector field coupling, that is absent in the present model. 10 On the other hand,
the final term in (45) - proportional to the vector mass - is absent in [49]. Finally, we note the presence of a typo (a
missing H) in eq. (5.15) of [49].

2. Scalar source and power spectrum

Identifying the decompositions (2) and (37), the two equations (43) and (45) can then be combined into a unique
linear non-homogeneous differential equation for Qϕ, which is formally of the type (3), in terms of the two sources

J
[
A2
µ

]
+ J̃

[
ϕ2

1, h
2
1,ij

]
(47)

Namely, the source J is obtained from the terms explicitly written on right hand side of (45), while J̃ is obtained from
the terms denoted with dots. The two sources are uncorrelated, and therefore the two particular solutions sourced
by them can be obtained independently. The solution sourced by J̃ is the one emerging from cosmological second
order perturbation theory in absence of gauge fields. For standard scalar field slow roll inflation, this term provides a
negligible contribution to the power spectrum, and unobservable non-Gaussianity. Therefore, we disregard this term
in this work. In Appendix B we show that

J ' φ̇

2M2
pHa

∫
d3p

(2π)
3/2

[
k̂ik̂j

(
M2 − ∂(1)

τ ∂(2)
τ

)
−M2 δij

]
Ãi (τ, ~p) Ãj

(
τ, ~k − ~p

)
, M ≡ am = a eψ(0) (48)

where we are using the notation

∂(1)
τ ∂(2)

τ f g ≡ ∂τf ∂τg (49)

It is worth noting that the source does not diverge as k → 0; this is not immediate from (45), since one term contains
an inverse laplacian. See Appendix B for details.

From (48) we see that, for this model, the source is formally of the type (4), with

Ôϕ,ij

(
τ, ~k, ~p

)
=

φ̇

2M2
pHa

[
k̂ik̂j

(
M2 − ∂(1)

τ ∂(2)
τ

)
−M2 δij

]
(50)

We insert this operator in (19); we also use the fact that D(σ)
(0,0) is actually helicity independent in this model, so

that the sum over the helicity σ is limited to
∑
σ P

(σ)
im (p̂) = δim − p̂i p̂m - see (14) - and analogously for the sum over

σ′. Moreover, in the integrand we approximate ~p− ~k ' ~p. 11 We obtain

Pζ,s (k) ' k3

4π2a2M4
p

∫ τ

τ∗

dτ1
Gk (τ, τ1)

a (τ1)

∫ τ

τ∗

dτ2
Gk (τ, τ2)

a (τ2)

∫
d3p

(2π)
3

{[
1 +

(
k̂ · p̂

)4
]
M2 (τ1)M2 (τ2) δa0 δ

b
0

+
(
k̂ · p̂

)2
[
1−

(
k̂ · p̂

)2
] [
M2 (τ1) δa0 δ

b
1 +M2 (τ2) δa1 δ

b
0

]
+

[
1−

(
k̂ · p̂

)2
]2

δa1 δ
b
1

}
D(a,b) [τ1, τ2; p]

2

(51)

where we have omitted the suffix (σ) from the correlators (since they are σ−independent in this model). By inserting

10 This provides the main difference between the scalar field cosmological perturbations obtained in [49] and in the present work; the
computations of [49] were done under the working assumption that the direct interaction is stronger than the gravitational coupling,
so that all the other terms were disregarded. In this work we compute instead the more complicated contribution of the gravitational
interactions.

11 The reason for this is that, as we shall see, the signal from particle production is maximal at k ∼ H (namely, for modes of the size of
the horizon when particle production occurs; recall that the scale factor is normalized to one at the moment of particle production).
We shall also see that the source integrand is peaked at p ∼

√
ṁ∗. We therefore have k � p due to (30).
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the expressions (34) and (36) for the correlators, and by performing the angular integrals, we obtain

Pζ,s (k) ' k3

4π2a2M4
p

∫ τ

τ∗

dτ1
Gk (τ, τ1)

a (τ1)

∫ τ

τ∗

dτ2
Gk (τ, τ2)

a (τ2)

M (τ1)M (τ2)

2π2

∫
dp p2

{
|βp|2

[
|αp|2 + |βp|2

]
+

2|βp|2

3
Re
[
α∗pβp

(
eiγ(τ1) + eiγ(τ2)

)]
+

11

15
Re
[
α∗2p β

2
pei[γ(τ1)+γ(τ2)] + |βp|4ei[γ(τ1)−γ(τ2)]

]}
(52)

where γ (τ) ≡ 2
∫ τ
τ∗
dτ ′M (τ ′), and where the Bogolyubov coefficients are evaluated after the particle production, and

given in (29). To obtain this expression we have disregarded p with respect to M inside the mode functions fp present
inside the correlators. This is appropriate since, as we shall see, the integrand is peaked at p ∼

√
ṁ∗ �M .

The curly parenthesis in (52) contains several terms proportional to the fast oscillating phase eiγ . All these terms
give a negligible contribution to the final result. To see this, we can separate the momentum and time integrals in
this expression, and obtain

Pζ,s (k) ' k3

8π4a2M4
p

∫
dpp2

{
|βp|2

[
|αp|2 + |βp|2

]
T 2
k +

4

3
|βp|2Tk Re

(
α∗pβpEk

)
+

11

15
|βp|4|Ek|2 +

11

15
Re
(
α∗2p β

2
pE2
k

)}
(53)

where

Tk ≡
∫ τ

τ∗

dτ ′Gk (τ, τ ′) m (τ ′) , Ek ≡
∫ τ

τ∗

dτ ′Gk (τ, τ ′) m (τ ′) e2i
∫ τ′
τ∗
dτ ′′M(τ ′′) (54)

Using the expression (10) for the Green function, the expression

m (τ) = ṁ∗ (t− t∗) =
ṁ∗
H

ln

(
−τ∗
−τ

)
= −ṁ∗

H
ln (−Hτ) (55)

(in the last equality we have used the fact that a (τ∗) = 1) we find, in the super-horizon −kτ � 1 limit (in practice,
we introduce the integration variable y′ = −kτ ′, and we integrate it from 0 to −kτ∗, rather than from −kτ to −kτ∗),

Tk '
a (τ) ṁ∗
27H3 2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;
−k2

4H2

)
(56)

where the generalized hypergeometric function evaluates to ∼ 1 for k � H and to ∼ 27π
2

H3

k3

(
ln k
H − 0.423

)
for k � H.

The time integral in the exponent of E can be done analytically, and, leads to

Ek =
a (τ) ṁ∗

k3

∫ 1

−Hτ

dy

y

[
k

H
y cos

(
k

H
y

)
− sin

(
k

H
y

)]
ln (y)

{
cos

[
ṁ∗
H2

ln2 y

]
+ i sin

[
ṁ∗
H2

ln2 y

]}
(57)

Since ṁ∗ � H, the term in curly parenthesis is rapidly oscillating unless y ≡ τ ′

τ∗
' 1. This however means that the

integrand is peaked at the moment in which the particle production is taking place. In our computation we used the
asymptotic values (29) for α, β (valid once particle production has completed). Therefore we only provide an upper
bound on Ek. It is easy to verify that instead the integrand of Tk is dominated by times at which (29) hold.

Provided that k �
√
ṁ∗ (which is true in the range of our interest, since the occupation number of the gauge field

is exponentially suppressed in the opposite regime), we can keep in the integral only the fast oscillating term, and the
log term, and obtain the estimate

|Ek| <
∣∣∣∣a (τ) ṁ∗

k3

[
k

H
cos

(
k

H

)
− sin

(
k

H

)] ∫ 1

−Hτ
dy ln (y)

{
cos

[
ṁ∗
H2

ln2 y

]
+ i sin

[
ṁ∗
H2

ln2 y

]}∣∣∣∣
' a (τ)H2

2k3

∣∣∣∣ kH cos
k

H
− sin

k

H

∣∣∣∣ (58)

for the upper bound. We indeed see that |Ek|Tk < H2

ṁ∗
� 1.
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This confirms that the oscillatory terms in (52) - or (53) - provide a negligible contribution to the final result.
Performing the momentum integral we finally obtain

Pζ,s (k) ' 2 +
√

2

46, 656π5

k3 ṁ
7/2
∗

H6M4
p

[
2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;
−k2

4H2

)]2

, k �
√
ṁ∗ (59)

while the result is exponentially suppressed and uninteresting at larger momenta. The exponential suppression of the
spectrum is due to the fact that the occupation numbers of the vector particles are exponentially suppressed at such
large momenta, see eq. (29). We discuss this result in Subsection III C.

3. Scalar bispectrum

We now evaluate the formal expression (24) for the bispectrum in this model. This expression contains various
intermediate quantities that have been given above. Explicitly, we write the green functions in eq. (10), the projection
operators in eq. (14), the operator Oϕ in eq. (50), and the correlators in eqs. (34) and (36). The computation follows
the same steps presented in the previous Subsection for Pζ . Also in this case we use the approximation k � p�M ,
and we find that the terms with a fast oscillating phase in the final time integral can be disregarded. We obtain

B (k1, k2, k3) ' 1

2M6
pa (τ)

3 Tk1 Tk2 Tk3
∫

d3p

(2π)
9/2
|β|4

(
3|α|2 + |β|2

)
' 27 + 8

√
6

22, 674, 816π9/2

ṁ
9/2
∗

H9M6
p

3∏
i=1

2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;
−k2

i

4H2

)
, ki �

√
ṁ∗ (60)

This corresponds to the effective equilateral nonlinear parameter (25)

fNL,equil. eff. (k) ' 2.1 · 107 k
6 ṁ

9/2
∗

H9M6
p

[
2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;
−k2

4H2

)]3

, k �
√
ṁ∗ (61)

where we have used the numerical value Pζ ' 2.5 · 10−9 for the power spectrum. Analogous to the sourced part of the
power spectrum (59), the bispectrum and the nonlinear parameter are exponentially suppressed and uninteresting at
larger momenta.

B. Gravity waves sourced by the vector modes

We now compute the amount of gravity waves sourced by the produced gauge fields. Inserting the energy momentum
tensor (41) for this model in the general expression (7), we see that the source is formally of the type (8) with

Oij,λ =
Π∗mn,λ

(
k̂
)

aMp

[
δmiδnj

(
−∂(1)

τ ∂(2)
τ +M2

)
+ εmaiεnbjpa (k − p)b

]
(62)

where we recall our notation (49).
It is instructive to compare this expression with the analogous operator in the source of the scalar perturbations,

given in (50). In writing (50) we disregarded terms proportional to spatial momenta ~p and ~p − ~k ' ~p with respect
to time derivatives and the mass M . The reason for this is that k � p � M , as we explained after (52). As a
consequence, time derivatives acting on a mode also give ∂τA ∼ MA� pA, and should be retained in the operator,
when compared to spatial momenta. Disregarding the momentum terms is correct for the scalar source. However, we
see that in (62) the time derivatives enter with an opposite sign to M2. As a consequence, the dominant contributions
from the first two terms in (62) cancel against each other, and therefore we need to keep the complete structure. We
now show explicitly how the cancellation arises.

We insert the operator (62) in the formal expression (21) for the power in the tensor modes. The other intermediate
quantities entering in (21) are the Green functions, given in (10), the projection operators, given in (14), and the
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correlators, given in (34) and (36). We obtain 12

Pλ,s =
2k3

3π4a2M4
p

∫ τ

τ∗

dτ1
Gk (τ, τ1)

a (τ1)

∫ τ

τ∗

dτ2
Gk (τ, τ2)

a (τ2)

∫
dp p2

{
7

5

[
M (τ1)

2
δa0 − δa1

] [
M (τ2)

2
δb0 − δb1

]
+p2 δb0

[
M (τ1)

2
δa0 − δa1

]
+ p2 δa0

[
M (τ2)

2
δb0 − δb1

]
+

7

5
p4δa0δb0

}
D(a,b) [τ1, τ2; p]

2

(63)

where we have disregarded k as compared to p.
This expression is analogous to eq. (51) for Pζ , with the difference that here we have already performed the trivial

angular integrals of d3p. Terms without p in the curly parenthesis are obtained from the square of the first term

∝
(
−∂(1)

τ ∂
(2)
τ +M2

)
in (62) ( recall that two Oλ enter in Pλ ) . We note that the structure −∂(1)

τ ∂
(2)
τ + M2 is

preserved in (63) since the suffix 0 (1) on D indicates that Ã (Ã′) is present in the correlator. The term ∝ p4 in
the curly parenthesis is obtained from square of the other term in (62). The terms ∝ p2 are the mixed terms. The
different coefficients ( 7

5 vs 1) follow from the angular integrals.
The result (63) is a sum of squares of correlators. In each square, most terms present fast oscillating phases; as we

shall see, these terms give a negligible contribution to the final result once the time integrals are performed. This is
analogous to |T | � |E| in eq. (54). Squaring the expressions (34) and (36) we obtain

D(0,0) [τ1, τ2; p]
2

=
|βp|2

(
|αp|2 + |βp|2

)
2ωp (τ1)ωp (τ2)

+ oscillatory phases

D(1,0) [τ1, τ2; p]
2

= ω2
p (τ1)D(0,0) [τ1, τ2; p]

2
+ oscillatory phases

D(0,1) [τ1, τ2; p]
2

= ω2
p (τ2)D(0,0) [τ1, τ2; p]

2
+ oscillatory phases

D(1,1) [τ1, τ2; p]
2

= ω2
p (τ1)ω2

p (τ2)D(0,0) [τ1, τ2; p]
2

+ oscillatory phases (64)

We recall that ωp (τi) =

√
M (τi)

2
+ p2, and that momentum integrand has its support in the region p � M (τi).

We see, however, that the O
(
M4
)

and O
(
M2
)

parts of the curly parenthesis in (63) cancel for the non-oscillatory
contributions (64).

Using the full expressions (34) and (36) for the correlators, we obtain

Pλ,s =
2k3

3π4a2M4
p

∫ τ

τ∗

dτ1
Gk (τ, τ1)

a (τ1)

∫ τ

τ∗

dτ2
Gk (τ, τ2)

a (τ2)

∫
dp p2

{
2p4

5ωp (τ1)ωp (τ2)
|βp|2

(
|αp|2 + |βp|2

)
− 4

5
p2|βp|2

[
M2 (τ1)

ωp (τ1)ωp (τ2)
Re
(
α∗pβp eiγ(τ1)

)
+ τ1 ↔ τ2

]

+
2

5

7M2 (τ1)M2 (τ2) + 6p2
[
M2 (τ1)M2 (τ2)

]
+ 6p4

ωp (τ1)ωp (τ2)

[
Re
(
α∗2p β

2
pei[γ(τ1)+γ(τ2)]

)
+ |βp|4Re

(
ei[γ(τ1)−γ(τ2)]

)]}
(65)

where γ (τi) are the oscillatory phases defined immediately after (52). The first term in the curly parenthesis is
obtained from the non-oscillatory parts (64), and we see that it is indeed of O

(
p4
)
. As we shall see, this is the term

that dominates the final result.
Eq. (65) is therefore characterized by a part without oscillatory phase plus a part with one oscillatory phase plus

a part with two oscillatory phases. For each part we only take the leading prefactor in the p� M (τi) regime. This
expression then rewrites

Pλ,s '
2k3

3π4a2M4
p

∫
dp p2

{
2

5
p4|βp|2

(
|αp|2 + |βp|2

)
T̃ 2
k −

8

5
p2|βp|2T̃kRe

(
α∗pβpẼk

)
+

14

5
Re
(
α∗2p β

2
p Ẽ2
k

)
+

14

5
|βp|4|Ẽk|2

}
(66)

12 We remind that the tensor power is obtained from 〈hλhλ〉. We have verified that 〈hλh′λ〉 ∝ δλλ′ .
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where

T̃k ≡
∫ τ

τmin

dτ ′
Gk (τ, τ ′)

a (τ ′)ωp (τ ′)
, Ẽk ≡

∫ τ

τmin

dτ ′
Gk (τ, τ ′)

a (τ ′)ωp (τ ′)
M2 (τ ′) e2i

∫ τ′
τ∗
dτ ′′M(τ ′′) (67)

We evaluate the time integrals after the particle production (τ > τmin), so that αp and βp can indeed be taken as
constant. Particle production is completed when ω2

p > ω̇p, which, in the support region p <∼
√
ṁ∗ of the momentum

integral, gives tmin ' t∗ + 1√
ṁ∗

. This corresponds to the conformal time τmin ' − 1
H exp

(
− H√

ṁ∗

)
. For τ > τmin, we

can approximate ωp 'M ' am, with m given in (55). We then obtain the expression

T̃k '
H2a (τ)

ṁ∗ k3

∫ exp
(
− H√

ṁ∗

)
−Hτ

dy′
[
k

H
y′ cos

(
k

H
y′
)
− sin

(
k

H
y′
)]

y′

ln (y′)

' H2a (τ)

ṁ∗ k3

[
k

H
cos

(
k

H

)
− sin

(
k

H

)] ∫ exp
(
− H√

ṁ∗

)
0

dy′

ln (y′)
' H2a (τ)

ṁ∗ k3

[
sin

(
k

H

)
− k

H
cos

(
k

H

)]
ln

(√
ṁ∗
H

)
(68)

where the integration variable in the first expression is y′ = −Hτ ′. In going from the first to the second line we have
used the fact that the integrand is peaked at the asymptotically early times, while in the final expression we have
used H �

√
ṁ∗. We note that the result is only logarithmically sensitive to the difference between τmin and τ∗.

Under the approximation ω 'M , the integral Ẽk coincides with the integral Ek defined in (54) (we actually notice

that |Ẽk| <∼ |Ek|). We obtained an upper bound for this quantity in (58). The relative contribution of the two time
integrals to (66) can therefore be estimated as∣∣∣∣∣p2 T̃k

Ẽk

∣∣∣∣∣
p'
√
ṁ∗

> ln

(√
ṁ∗
H

)
� 1 (69)

This shows that the oscillatory integral Ẽk can be disregarded in our estimate of Pλ,s,

Pλ,s
∣∣
from AT

' 4k3

15π4a2M4
p

T̃ 2
k

∫
dp p6|βp|2

(
|αp|2 + |βp|2

)
(70)

Using the results (29), we finally obtain

Pλ,s
∣∣
from AT

'
(
8 +
√

2
)
H4 ṁ

3/2
∗

32π7M4
p k

3

[
sin

(
k

H

)
− k

H
cos

(
k

H

)]2

ln2

(√
ṁ∗
H

)
, k �

√
ṁ∗ (71)

while the result is exponentially suppressed and uninteresting at larger momenta. We discuss this result in Subsection
III C.

In these last two expressions we have emphasized that in this computation we have considered only the gravity
waves sourced by the transverse modes of the gauge field. In Appendix A we present the full computation, including
also the longitudinal vector polarization. We find that the expression (70) is replaced by

Pλ,s
∣∣
from AT and AL

' 2k3

15π4a2M4
p

T̃ 2
k

∫
dp p6

[
2|βp|2

(
|αp|2 + |βp|2

)
+ |βLp |2

(
|αLp |2 + |βLp |2

)]
(72)

where αL and βL are the Bogolyubov coefficients of the longitudinal mode. Namely, we see that, if they are produced
in the same amount, the longitudinal quanta contribute to the gravity waves as one transverse polarization. This
results in a factor 3

2 multiplying the final result (71).

C. Phenomenology

The observable spectrum of curvature fluctuations in the model (26) is given by the sum of the sourced contribution
and the usual nearly scale-invariant contribution from the vacuum fluctuations; see section II. The sourced part of the
spectrum in the model (26) leads to a localized “bump” feature in the primordial power spectrum for scales leaving
the horizon at the moment t = t∗, when the gauge fields are produced. We have illustrated this feature in the left
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panel of Fig. 1 for an arbitrary choice of parameters. The most stringent observational constraints on the model (26)
come from non-observation of such localized bump features. These observational constraints are the subject of this
subsection. 13
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FIG. 1: Left panel: the total observable power spectrum in the model (26) for a representative choice of parameters, illustrating
the appearance of a localized bump feature. The solid black curve is the total spectrum while the dashed blue line gives the
spectrum of the vacuum fluctuations for comparison. Right panel: a comparison of the shape function Sb (solid black curve)
and the fitting function Sfit (dashed red curve).

We can write the total observable power spectrum in the following form:

Pζ(k) = P
(
k

kp

)ns−1

︸ ︷︷ ︸
=Pζ,v(k)

+Ab Sb

[
k

kb

]
︸ ︷︷ ︸

=Pζ,s(k)

. (73)

The spectrum of the vacuum fluctuations are characterized as usual: kp is the pivot scale (taken to be 0.002 Mpc−1,
consistent with [70]) while the amplitude and tilt are given by

P ≡ H2

8π2εM2
p

, ns = 1 + 2η − 6ε . (74)

Here all quantities are understood to be evaluated at the moment when the pivot scale left the horizon. The sourced
contribution in (73) describes a localized bump-like feature that we characterize by an amplitude Ab, a location kb,
and a “shape function” Sb. The shape and amplitude are given by:

Ab ≡ 3.2 · 10−2 P2 ε2
ṁ

7/2
∗

H7
, Sb[x] = 4.7x3

[
2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;−5.5x2

)]2

. (75)

The shape function has been constructed so that the global maximum is Sb(x = 1) = 1, meaning that the feature
in (73) reaches its maximum value, Ab, when k = kb. For this work we assume that particle production could have
taken place at any moment during inflation, so the location of the feature is treated as arbitrary.14

The bump-like feature (75) is very similar to the one that would be generated due to instantaneous production
during inflation of scalar particles directly coupled to the inflaton. The signatures of scalar particle production
during inflation, including important rescattering effects, were fully derived in [43]. The phenomenology of the bump-
like feature in the curvature spectrum was subsequently studied in [44]. (See [45] for a discussion of non-Gaussian

13 In this discussion, we disregard the contribution from the longitudinal vector mode to the source of tensor and scalar perturbations. As
discussed at the end of the previous Subsection, the longitudinal mode changes the result for the gravity wave spectrum by at most a
factor 3

2
(if it is produced in equal amount to each tensor mode). We expect an analogous enhancement for ζ. The current discussion

can be easily modified to account for these additional O (1) factors; all of our conclusions are unchanged.
14 Concretely kb ≈ 4.67H if the scale factor is normalized to one at t = t∗.
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signatures and [46] for a review.) To derive observational constraints we follow closely the analysis in [44] and replace
the somewhat complicated shape function (75) by the following simple fitting function

Sfit(x) = 4.5x3 e−1.5x2

, (76)

which, again, is normalized to have maximal value unity at x = 1. In the right panel of Fig. 1 we show that the simple
formula (76) provides an adequate description of the feature.

In [44], a variety of data sets were used to perform a detailed analysis of the observational constraints on localized
features with shape (76); we refer the reader to that paper for a discussion of the methodology. See also [71] for
forecast constraints from Large Scale Structure data, and see [55] for a discussion of both current and forecasted
constraints from measurements of the CMB energy spectrum. In the present work we are mostly interested in a
feature localized on CMB scales, in which case the likelihood contours presented in [44] are approximately flat and
the observational bound can be roughly summarized as:

Ab
P

<∼ 0.1 ⇒ ṁ
1/2
∗

H
<∼ 1.2P−1/7 ε−2/7 (77)

Since the sourced part needs to be subdominant in the power spectrum, P = 2.5 · 10−9; then, the bound (77) can be
expressed as

ṁ
1/2
∗

H
<∼ 20 ε−2/7 . (78)

(Recall that ṁ
1/2
∗ � H and ε � 1 are both required for theoretical consistency.) We will see shortly that the

observational bound (78) excludes the possibility of having any interesting effect from particle production in the
tensor spectrum.

So far we have discussed the bump-like feature in the spectrum of curvature perturbations. However, there will also
be a corresponding localized feature in the bispectrum. This kind of localized non-Gaussianity is very far from scale
invariant and hence quite different from the bispectrum templates that are most often used in data analysis. To get
a very rough sense of the amplitude of non-Gaussianity in our model, we have computed the effective (k-dependent)

f equil
NL (k) parameter, which exhibits a bump-like structure. This parameter assumes the maximal value:

f equil.eff
NL (k)

∣∣∣
max
≈ 1.9 · 10−10 ε3

ṁ
9/2
∗

H9
<∼ 92 ε3/7 , at k ' 1.2 kb (79)

where P = 2.5 · 10−9 has been used in the first equality and the upper bound comes from imposing (78). It should

be emphasized that existing observational constraints (or forecasts) on f equil
NL cannot be applied directly to (79). A

dedicated search for this type of localized non-Gaussianity would be interesting, however, it is beyond the scope of
this paper. (See also [45, 72] for a discussion about localized non-Gaussianities from scalar particle production during
inflation.) In the event of a detection of a bump in the power spectrum, localized non-Gaussian features could play
an important role to falsify (or support) models of particle production during inflation.

Using our result (71), the total primordial tensor spectrum in the model (26) is given by

PGW(k) =
∑
λ

[
Pλ,v + Pλ,s

]
=

2H2

π2M2
p

[
1 + 4.17 · 10−4 H

2

M2
p

ṁ
3/2
∗

H3
ln2

(
ṁ

1/2
∗

H

)
SGW [x]

]
. (80)

where in the shape function

SGW [x] ≡ 0.0226

x3
[sin (4.67x)− 4.67x cos (4.67x)]

2
, (81)

the scale x is normalized as in the scalar shape function (75). The shape function is maximized at x = k
kb
' 0.53,

where it evaluates to ' 1.
To estimate the amplitude of the gravitational wave signal that can be obtained from particle production, we

evaluate the tensor-to-scalar ratio on scales where the second term in (80) is maximized. Assuming the observational
constraint (78) is satisfied we can approximate Pζ ≈ Pζ,v = 2.5 · 10−9 and we find:

r(k)
∣∣∣
max
≈ 16ε

[
1 + 8.2 · 10−11 ε

ṁ
3/2
∗

H3
ln2

(
ṁ

1/2
∗

H

)]
, at k ' 0.53 kb (82)
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Using (78) and ε <∼ 0.006 (corresponding to rvac
<∼ 0.1) it is straightforward to show that the sourced contribution

to (82) is always <∼ 10−6, which is undetectably small. We conclude that an observationally interesting signature in
gravitational waves cannot be obtained in the model (26).

Before concluding, we note that the estimates presented here should be interpreted as lower bounds on the efficiency
of particle production effects. We have considered only a single instance where ψ = 0, leading to a single burst of
vector particle production. However, in a concrete model one could expect ψ to undergo damped oscillations about
the minimum of its potential, passing through zero several times before its kinetic energy is dissipated due to Hubble
friction or backreaction effects. In such a scenario resonance effects would be expected to enhance the occupation
number of the produced gauge fields by some factor E that could, in principle, be � 1. The enhancement nk → Enk
leads to a factor of E2 in the sourced contribution to the tensor spectrum, so that the relevant term in (82) becomes

r(k)
∣∣∣
max,sourced

≈ 1.3 · 10−9E2ε2
ṁ

3/2
∗

H3
ln2

(
ṁ

1/2
∗

H

)
, (83)

where we still assume that the scalar spectrum is dominated by the vacuum fluctuations. The sourced part of the
scalar spectrum also gets enhanced by a factor of E2, so the bound (78) becomes stronger:

ṁ
1/2
∗

H
<∼ 20(εE)−2/7 . (84)

Combining these results we find:

r(k)
∣∣∣
max,sourced

<∼ 10−5 (Eε)
8/7

ln2
[
20(Eε)−2/7

]
. (85)

The value E >∼ 200 ε−1 gives rs ∼ 0.01 at the bump. It would be interesting to study under which conditions this
value can be reached in a concrete model.

D. Comparison with GW sourced by modes of different spins

In Subsection III B, we have computed the power in gravity waves sourced by vector fields produced in the model
(26). Schematically, the sourced part of the power spectrum is Pλ ∝

∫
d3p 〈TT 〉, where T is the traceless-transverse

spatial part of the energy-momentum tensor of source (the gauge fields, in this case) with appropriate contraction.
The spatial part of the energy momentum tensor contain dominant terms that scale as Tij ∼M2AiAj in the M � p
limit (we recall that p and M are, respectively, the momentum and mass of the quanta sourcing the gravity waves).
One could therefore conclude that Pλ ∝

∫
dp p2M4. However, we showed that the dominant terms cancel against each

other. Also the next to leading term in a p2

M2 Taylor expansion of the integral cancel, and one is left with Pλ ∝
∫
dp p6,

see eq. (70).
In Appendix D we performed the analogous computation using fermion fields rather than vector fields as sources.

In this case the spatial part of the energy-momentum tensor has terms of the type Tij ∼ χ̄γipjχ, and one may
conclude that Pλ ∝

∫
dp p4M2 (the factor M2 coming from the different normalization of the fermion wave function

with respect to the vector one, compare the function f in (28) and in (D6)). Also in this case there is however a
cancellation, resulting in 〈χ2〉 ∝ p2, see eq. (D15), and in Pλ ∝

∫
dp p6, see eq. (D16).

These two scalings agree with that obtained if the source is a scalar particle. In this case, Tij ∝ pipjφ
2, and one

immediately has Pλ ∝
∫
dp p6 without any cancellation. In fact, from our results (70) and (D16), and from the result

for the analogous computation with a scalar source given in [23], we obtain a very general expression for the power
spectrum:

Pλ,s '
2 gs k

3

15π4a2M4
p

T̃ 2
k

∫
dp p6|βp|2

(
|αp|2 + (−1)

2s |βp|2
)

(86)

where s is the spin of the sourcing field, and gs is the number of degrees of freedom of that field: gs = 1 for a scalar,
gs = 2 for a vector if the longitudinal mode is produced in a negligible amount (gs = 3 if it is produced in the same
amount as each transverse mode), and gs = 4 for a Dirac fermion.

We see that, apart from the difference in the number of degrees of freedom, and a small difference due to the spin
statistics, the different fields in the nonrelativistic regime M � p have a comparable quadrupole moment (transverse
and traceless projection of Tij) and generate a comparable amount of gravity waves.
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IV. MODEL II: VECTOR PRODUCED BY A PSEUDO-SCALAR INTERACTION

In this section we consider the following model

S =

∫
d4x
√
−g
[
M2
p

2
R− 1

2
(∂ϕ)2 − V (ϕ)︸ ︷︷ ︸
inflaton sector

− 1

2
(∂ψ)2 − U(ψ)− 1

4
F 2 − ψ

4f
F F̃︸ ︷︷ ︸

hidden sector

]
. (87)

In addition to a standard inflationary sector, we have introduced a “hidden” sector consisting of a light pseudoscalar,
ψ, and a U(1) gauge field, Aµ, whose energy density is small as compared to that of the inflaton (so that the Friedmann
equation takes the usual form 3H2M2

p ≈ V (φ)). As in section III, the hidden sector in (87) has been introduced so that
the production of gauge field fluctuations can provide a new source of inflationary gravitational waves, complementary
to the usual quantum vacuum fluctuations of the tensor part of the metric. Unlike the model of section III, however,
we will see that particle production in the theory (87) occurs continuously during inflation, leading to broad-band
signatures rather than localized features in the scalar and tensor n-point correlation functions.

The coupling ψ(0)(t)FF̃ of the gauge field to the time-dependent pseudoscalar condensate leads to an exponential
production of fluctuations Aµ. This effect has already been discussed at length in the literature – see Refs. [47–49],
for example – and here we only review the key features that will be necessary for our analysis. Employing the
decomposition (1) we find the following linearized equation of motion of the gauge field mode functions[

∂2
τ + k2 ± 2kξ

τ

]
A±(τ, k) = 0 , ξ ≡ ψ̇(0)

2Hf
. (88)

If the pseudoscalar is in an overdamped regime then the parameter ξ can be treated as a constant. Moreover, we
assume that ψ̇(0) > 0 so that the “+” helicity state of the gauge field gets copiously produced while the “−” state
remains in the vacuum and its effect is renormalized away.15 The properly normalized solutions of (88) can be written
as [47]

A+(τ, k) ≈
(
−τ
8ξk

)1/4

eπξ−
√
−2ξkτ , A′+(τ, k) ≈

(
2ξk

−τ

)1/2

A+(τ, k) . (89)

This solution is valid only in the phase space interval 1
8ξ � −kτ � 2ξ, where the production of gauge fluctuations

is most important. By restricting ourselves to this regime we effectively cut-off an ultra-violet divergence associated
with the usual quantum vacuum fluctuations of the gauge field on sub-horizon scales; see [49] for more discussion.
We have also assumed that ξ >∼ O(1), so that the phase space of produced fluctuations is non-trivial and each mode
experiences a significant exponential enhancement, eπξ � 1, near horizon crossing. (For ξ < 1 there is no interesting
particle production in the model.)

We are interested in a scenario where inflation is driven by the potential energy of the ϕ field, so that 3H2M2
p ≈ V (ϕ);

the “hidden” sector in (87) instead should give a small contribution to the total energy density of the universe. This
requirement imposes several constraints on the model parameters, which we now discuss. We must first require that
the energy density in the produced gauge field fluctuations is smaller than the kinetic energy of ψ,

1

2
〈 ~E2 + ~B2〉 � ψ̇(0)2

2
, (90)

where the “electric” and “magnetic” fields are Ei ≡ − 1
a2A

′
i, Bi ≡ 1

a2 εijl∂jAl. Using the solution (89) to evaluate the
expectation value [49], the condition (90) can be written as:

H2

ψ̇(0)
� 60 ξ3/2e−πξ . (91)

We also require that the energy density of the rolling pseudoscalar can be neglected with respect to that of the inflaton:

1

2

(
ψ̇(0)

)2

+ U
(
ψ(0)

)
� 3H2M2

p . (92)

15 None of our result for the scalar or tensor correlation functions will depend on the choice ψ̇(0) > 0.
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Finally, we require that ξ is adiabatically evolving, ξ̇
H ξ = ψ̈(0)

H ψ̇(0)
− Ḣ

H2 � 1, so that it is appropriate to treat it as

nearly constant during the time interval in which each mode of A is relevant (namely, close to horizon crossing, when

the mode is produced, and affect cosmological perturbations). As | ḢH2 | � 1 during inflation, we need to require

ψ̈(0)

H ψ̇(0)
� 1 ⇔ mψ �

3H

2
(93)

where in the last condition we have approximated U (ψ) as a quadratic potential, and we have required the evolution
of ψ(0) to be in the overdamped regime. Throughout our analysis we will require that the conditions (91), (92), and
(93) are simultaneously satisfied (these conditions are discussed at the end of Subsection IV C).

The background equation for the pseudoscalar reads:

ψ̈(0) + 3Hψ̇(0) + U ′
(
ψ(0)

)
=

1

f
〈 ~E · ~B〉 . (94)

It is interesting to note that the condition (91) guarantees right hand side of this equation can be disregarded. Indeed
[49]:

|U ′
(
ψ(0)

)
| � 1

f
|〈 ~E · ~B〉| ⇔ H2

ψ̇(0)
� 82ξ3/2e−πξ . (95)

which is implied by (91).
The quantity D(λ) introduced in (13) characterizes the two-point function of the produced gauge field fluctuations.

This function, and its derivative, can be written explicitly in terms of the c-number mode functions as

D(λ)
(0,0) [τ1, τ2; q] ≡ Aλ(τ1, q)A

∗
λ(τ2, q) , D(λ)

(1,1) [τ1, τ2; q] ≡ A′λ(τ1, q)A
∗′
λ (τ2, q) . (96)

Considering only the “+” helicity state and using the approximate solution (89) we have

D(+)
(0,0) [τ1, τ2; q] ≈ (τ1τ2)1/4

√
8ξq

e2πξ−
√

2ξq[
√
−τ1+

√
−τ2] , D(+)

(1,1) [τ1, τ2; q] ≈ 2ξq
√
τ1τ2
D(+)

(0,0) [τ1, τ2; q] . (97)

A. Scalar perturbations sourced by the vector modes

1. The master equation

The hidden sector in (87) decouples from the inflaton in the limit Mp → ∞. However, at finite Mp, gravitational
couplings will transmit the effects of particle production in the hidden sector to the inflaton perturbations, modifying
the usual predictions for the observable curvature fluctuations. To see this effect we follow closely the analysis of
subsection III A and derive a master equation for the inflaton perturbations in the model (87). At linear order in
perturbation theory we have recovered the standard result(

∂2
τ −∇2

)
ϕ1 + 2Hϕ′1 ' 0 , (98)

where we work to leading order in slow roll parameters. At second order, instead, we have the following equation of
motion

(
∂2
τ −∇2

)
ϕ2 + 2Hϕ′2 ' −

ϕ(0)′a2

2M2
pH

{
E2 +B2

2︸ ︷︷ ︸
gives J1

+
1

a4
∇−2∂τ

[
a4~∇ ·

(
~E × ~B

)]
︸ ︷︷ ︸

gives J2

}
+ . . . (99)

which is formally equivalent to (45) with m2 → 0. In (99) the · · · schematically denotes terms involving ϕ2
1, ψ2

1 and
h2

1,ij which do not involve the exponential factors eπξ that characterize the gauge field modes (89) and may therefore
be neglected.

As we did in Subsection III A, both the first and second order equations can be combined into the single master
equation (3). The first order mode ϕ1 is the homogeneous solution of this master equation, while the second order
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ϕ2 is the particular solution of this master equation. The source in the master equation can be written as a sum of
two terms

Jϕ

(
τ,~k
)

= J1

(
τ,~k
)

+ J2

(
τ,~k
)
. (100)

The source J2 is associated with the second term on the right hand side of (99), which is non-local in position space.
We show in Appendix C that this term is actually infra-red finite, and that the full source can be cast in the form

Jϕ

(
τ,~k
)

=
ϕ′(0)a3

4M2
pH

∫
d3p

(2π)3/2

[
−1 +

(p− |~k − ~p|)2

k2

] [
Ẽi (τ, ~p) Ẽi

(
τ,~k − ~p

)
+ B̃i (τ, ~p) B̃i

(
τ,~k − ~p

) ]
. (101)

where we have defined the “electric” and “magnetic” field operators as Ẽi(τ,~k) ≡ − 1
a2 Ã

′
i

(
τ,~k
)

and B̃i

(
τ,~k
)
≡

i
a2 εijlkjÃl

(
τ,~k
)

. This expression appears simpler than the corresponding source (48) in the previous model, due to

the fact that only the modes A+ are relevant here.
In this model the energy density in the “electric” field dominates over that in the “magnetic” field [49]. Dropping

terms involving B̃i we have a source term of the form (4) where the model-dependent operator can be approximated
by

Ôϕ,ij
(
τ,~k, ~p

)
≈ ϕ′(0)

4M2
pHa

[
−1 +

(p− |~k − ~p|)2

k2

]
δij ∂

(1)
τ ∂(2)

τ , (102)

where we recall our notation (49).

2. Two-point and three-point correlation functions

We now proceed to compute the two-point and three-point correlation functions of the gauge invariant curvature
perturbation, ζ. We are only interested in contributions that are sourced by particle production effects, since the
vacuum fluctuations in the model (87) are standard. The sourced contribution to the power spectrum of ζ is given by
(19). As discussed above, we only consider the σ = + contributions in the sum over helicity states. Using the explicit

expression (102) for the operator Ô, along with the identity (14), we find that (19) can be written as

Pζ,s(k) ≈ k3

64π2M4
pa

2

∫
dτ1
a(τ1)

Gk(τ, τ1)

∫
dτ2
a(τ2)

Gk(τ, τ2)

×
∫

d3p

(2π)3

[
1 +

p2 − ~k · ~p
p|~k − ~p|

]2 [
1− (p− |~k − ~p|)2

k2

]2

D(+)
(1,1) [τ1, τ2; p] D(+)

(1,1)

[
τ1, τ2; |~k − ~p|

]
. (103)

Next we insert our previous result (97) for D(+)
(1,1). Since we are interested in computing the spectrum at late times,

the explicit expression (10) for the Green function can be employed. The sourced power spectrum takes the form

Pζ,s(k) =
ξe4πξH4

128π2M4
p

∫
d3q

(2π)3
q1/2|k̂ − ~q|1/2

[
1− (q − |k̂ − ~q|)2

]2 [
1− ~q · (k̂ − ~q)

q|k̂ − ~q|

]2

I2
[
q, |k̂ − ~q|

]
, (104)

where we have introduced dimensionless variables ~q ≡ ~p/k and k̂ ≡ ~k/k. The dimensionless time integral is defined as

I [a, b] ≡
∫ ∞
−kτ

dz
sin z − z cos z

z1/2
e−2
√

2ξz[
√
a+
√
b] , (105)

(notice that z ≡ −kτ ′). In the super-horizon regime, −kτ � 1, we can set the lower bound of integration to zero.
Moreover, particle production effects are most interesting in the regime ξ >∼ O(1), in which case the integral (105) has

most of its support in the region z � 1 where we can approximate sin z − z cos z ≈ z3

3 . Hence, we have the following
analytical approximation

I [a, b] ≈
∫ ∞

0

dz
z5/2

3
e−2
√

2ξz[
√
a+
√
b] =

15

32
√

2
(√

a+
√
b
)7

ξ7/2

. (106)
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Finally, the momentum integral in (104) must be performed numerically, giving the final result

Pζ,s(k) ≈ 4 · 10−10 H
4

M4
p

e4πξ

ξ6
. (107)

The computation of the three-point correlation function is completely analogous to the derivation that we have
outlined for the source power spectrum. Here we simply state the final result for the bispectrum in the equilateral
configuration:

Bζ (k1 = k2 = k3 ≡ k) ≈ 2.6 · 10−13 H
6

M6
p

e6πξ

ξ9

1

k6
. (108)

The reason for considering the equilateral configuration is that, in this model, the source at any moment is dominated
by modes with wavelength comparable to the horizon at that moment. This generates mostly correlations between
scalar perturbations of comparable size [48, 49].

B. Gravity waves sourced by the vector modes

The produced gauge field fluctuations that are described by the mode solution (89) carry anisotropic stress/energy
and provide a source of gravitational wave fluctuations that is complimentary to the standard quantum vacuum
fluctuations from inflation.16 The computation of the gravitational wave spectrum in the model (87) follows closely
what we had for the the curvature perturbation. Moreover, this computation has in fact already been performed in
[48–50]. Therefore we simply state the final result:

P+ = P+,v + P+,s '
H2

π2M2
p

[
1 + 8.6 · 10−7 H

2

M2
p

e4πξ

ξ6

]
P− = P−,v + P−,s '

H2

π2M2
p

[
1 + 1.8 · 10−9 H

2

M2
p

e4πξ

ξ6

]
(109)

The first term in the square braces corresponds to the usual contribution from the quantum vacuum fluctuations of the
graviton, and the two helicities have equal power. The second term, on the other hand, corresponds to gravitational
wave perturbations that have been sourced by particle production effects in the hidden sector. The production is
much more significant for the h+ mode, due to the fact that the source consists of only A+ modes.

C. Phenomenology

In this subsection we explore the phenomenology of the scalar and tensor cosmological fluctuations in the model
(87). We first consider the spectrum of curvature fluctuations. The total observable power spectrum is the sum of
(107) and the standard result for the vacuum fluctuations (see the general result in eq. (19)). Explicitly we have

Pζ ≈ P
[
1 + 2.5 · 10−6 ε2P e

4πξ

ξ6

]
, P ≡ H2

8π2εM2
p

, (110)

where the first term in the square braces is the usual spectrum from quantum vacuum fluctuations, while the second
term is the sourced contribution coming from gauge field production in the model (87).

Next, we consider the spectrum gravitational wave fluctuations. From (109) and (110) we can write the tensor-to-
scalar ratio as

r ≡
∑
λ Pλ
Pζ

≈ 16ε
1 + 3.4 · 10−5εP e

4πξ

ξ6

1 + 2.5 · 10−6ε2P e4πξξ6
. (111)

16 At second order in cosmological perturbation theory tensor fluctuations can also be sourced by bi-linear combinations of the first
order scalar fluctuations, δϕ and δψ. Neither of these exhibit the exponential enhancement that characterizes the linear gauge field
perturbations – see equation (89) – therefore we can safely neglect this effect in what follows.
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When both the tensor and scalar spectra are dominated by the vacuum fluctuations we recover the standard result,
r ≈ 16ε. On the other hand, if the sourced contributions to (109) and (110) dominate then we have r ≈ 218,
independently of model parameters. The current observational limit is r <∼ 0.17 [73], while r ∼ 0.01 might be
detectable with future missions [1]. Since the expression (111) interpolates between 16ε and 218, it follows that an
observable signal can be obtained for any value of ε.

Let us now discuss the phenomenology of the scalar perturbations. From (110) and (111) we get

Pζ,s
Pζ,v

' r − 16 ε

218
(112)

We therefore see that the scalar power spectrum is dominated by the vacuum part (Pζ ' P). Concerning the scalar
bispectrum, the effective nonlinearity parameter is immediately obtained from (25) and (108):

f equil.eff
NL ≈ 1.5 · 10−9ε3

P3

P 2
ζ

e6πξ

ξ9
. (113)

The current CMB bound is −214 < f equil
NL < 266 [74] while fNL ∼ O(10) might be accessible with Planck [75].

To obtain the correct amplitude of density fluctuations, we must impose the normalization condition Pζ = 2.5 ·10−9

on CMB scales. We can use this condition to eliminate the parameter P in favour of ξ and ε. Having done so, the

key observables r and f equil.eff
NL then depend only on the model-dependent quantities ξ and ε, which in turn depend

on the inflationary potential and the dynamics of the hidden sector fields. In Fig. 2 we plot our results for r and fNL
as a function of ξ, for various representative choices of ε.
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FIG. 2: Left panel: The tensor-to-scalar ratio as a function of ξ, for several illustrative choices of ε. The horizontal line
corresponds to r = 0.1, the approximate current observational limit. Notice that an observable tensor-to-scalar ratio can
be achieved for any inflationary potential, by suitably tuning the dynamics in the hidden sector. Right panel: The effective
nonlinearity parameter as a function of ξ, for several illustrative choices of ε. The horizontal line corresponds to fNL = 266,
the approximate current observational limit on non-Gaussianity.

The observational bound on the tensor-to-scalar ratio forces us into a region of parameter space where non-
Gaussianity is undetectably small. Therefore gravitational wave fluctuations constitute the most interesting phe-
nomenology associated with the model (87). This is shown in Fig. 3 where we plot contours in the ξ− ε plane leading
to various phenomenologically interesting scenarios. We note that our findings are relevant also for values of ε smaller
than those shown in the figure.

As discussed in [49, 50, 56], the sourced contribution to the tensor spectrum is chiral; only one helicity state is
efficiently sourced by the gauge field fluctuations (89). This effect may be detected through TB and EB correlations
in the CMB [76, 77]. This was first explored by [50] in the case in which the inflaton is the pseudo-scalar sourcing
the vector modes; in this case, the direct inflaton-gauge field coupling is so strong that, typically, the main bound
on the gauge field production is given by the sourced scalar perturbations (non-gaussianity [48, 49] and, depending
on the inflaton potential, increased power at small scales [25, 54]). To overcome this, [50] assumed the presence
of ∼ 1000 sourcing gauge fields (this decreases the amount of non-gaussianity), or the curvaton mechanism for the
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FIG. 3: Here we plot contours in the ξ − ε plane leading to fNL = 266 (the current observational bound on non-Gaussianity),
r = 0.1 (the current observational bound on tensor modes), and r = 0.01 (which may be detectable in the near future). The
region above the solid red line is ruled out by producing too much non-Gaussianity while the region above the dashed green
line is ruled out by non-detection of tensor fluctuations. We see that the non-Gaussianity bound is weaker, meaning that the
dominant signature of the model comes from gravitational waves.

generation of the scalar perturbations. For some values of parameters, the signal can be above the 1σ detection line
for a cosmic-variance limited experiment [50]. As we shall now discuss, a more optimistic conclusion is reached if one
assumes that the gauge field production occurs in a sector only gravitationally coupled to the inflaton, as we have
studied here.

A measure of the net handedness of the tensor modes is the following quantity:

|∆χ| ≡
∣∣∣∣P+ − P−
P+ + P−

∣∣∣∣ =
3.4 · 10−5εP e

4πξ

ξ6

1 + 3.4 · 10−5εP e4πξξ6
' 1− 16 ε

r
, (114)

which interpolates between zero (at small ξ, when the vacuum fluctuations dominate the tensor mode spectrum) and
unity (at large ξ when the sourced GW dominate the tensor mode spectrum). In the final approximation we have
used the fact that, for r < 0.1, the scalar power spectrum in this model is dominated by the vacuum modes.

In Figure 4 we plot the relation (114) in the r vs ∆χ plane, for a few representative values of ε; each of the red/solid
lines is characterized by a given ε, and by varying ξ (growing ξ leads to more gravity wave production, and therefore
greater values of r and ∆χ). We stress that arbitrary large values of r in the range shown in the figure can be reached
for any value of ε. As ε decreases, this requires a greater and greater amount of sourced modes, which in turn leads
to a greater and greater ∆χ. This explain why, for any given obtained r, greater ∆χ correspond to smaller ε. These
predictions are superimposed in the figure to 1σ detection lines from various experiments; from top to bottom, the
lines shown are for the ongoing and forthcoming Planck (P) [75] and SPIDER (S) [78] experiments, for the suggested
CMB-Pol experiment (C) [1], and for a hypothetical cosmic-variance limited experiment (CV). The signal needs to
be above a line to be detectable at 1σ by that experiment. These lines are taken by Figure 2 of [77]. We observe
that, for some values of parameters, the parity-violation could be detected (at least at 1σ) already by the ongoing /
forthcoming Planck and SPIDER experiments.

Before concluding this section, we comment on the constraints (91) and (92) which are necessary for the consistency
of our calculation. We find:

0.074

√
εPeπξ

ξ5/2
� f

Mp
� 1.2

ξ

√
1− U (ψ)

V (ϕ)
(115)

where the first condition, obtained from (91), ensures that the energy density of the produced gauge quanta is smaller
than the kinetic energy of ψ, while the second condition, obtained from (92), ensures that the energy density of ψ is
smaller than that of the inflaton.
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FIG. 4: Red/solid lines: Predictions for r vs ∆χ in the model (87); each line is obtained for a fixed value of ε, and for varying ξ,
with greater ξ corresponding to greater particle production, and therefore larger signal. Black/dotted lines: 1σ detection lines
for the Planck (P), SPIDER (S), CMB-Pol (C), and a cosmic-variance limited (CV) experiment. The signal needs to be above
a line to be detectable at 1σ by that experiment. These experimental forecasts are an approximate copy of the lines shown in
Figure 2 of [77].

The interval in (115) exists for any reasonable choice of model parameters, therefore we can always choose f/Mp

such that that various backreaction constraints are satisfied. The lower bound on the inflationary scale becomes
simpler in the limit in which the sourced part of the gravity wave signal dominates over the vacuum one (which is the
regime of most interest for our work). Using (111) in this regime, the lower limit in (115) can be expressed as:

f

Mp
� 3.7 · 10−3 r1/4

ξ
∼ O

(
10−4

)
, rv < rs ∼ 0.01− 0.1 (116)

where r has been chosen so that the gravity wave signal is observable in the near future (we note that this requires
ξ ∼ 4− 5).

Finally, using (74), the condition (93) for the adiabatic evolution of ξ can be cast in the form

mψ

Mp
� 6.6 · 10−4

√
ε (117)

For a quadratic inflaton potential, mϕ ' 6.4 ·10−6Mp and
√
ε ' 0.09 (for 60 e-folds of inflation). The condition (117)

then rewrites mψ � 9mϕ.

V. CONCLUSIONS

A large experimental effort is currently taking place to detect gravitational waves from inflation. The conventional
vacuum signal will be detectable only if the scale of inflation is sufficiently high, V 1/4 >∼ 1016 GeV (corresponding to
r >∼ 0.01, or ε >∼ 6 · 10−4 in single field slow roll inflation). Does this imply that, for a lower scale, this experimental
effort will be unsuccessful, or can we hope that an observable gravity wave signal can be obtained from some different
mechanism ? And can we distinguish the gravity waves generated by this mechanism from the conventional vacuum
ones ?

Recently, [23] and [24] considered the possible gravity signal from particle production taking place during inflation. A
difficulty with this idea is that the same particle production will also source scalar perturbations; the observed scalar
perturbations have properties in perfect agreement with standard vacuum fluctuations generated by the simplest
inflationary model; in particular, they are gaussian to a very high degree, while there is no reason to expect that this



26

should be the case for a generic model of particle production. 17 Therefore, any mechanism of gravity waves from
inflation needs to explain why the mechanism has not already manifested itself in the scalar sector.

To evade this problem, [23] studied scenarios in which the particle production takes place (or increases at a sufficient
level) only towards the end of inflation, so to generate gravity waves only at scales much smaller than the CMB ones.
At these scales, the scalar perturbations are only constrained by primordial black holes (see for instance [79] for a
recent study), which is a significantly weaker bound than those from non-gaussianity at the CMB scales. One of the
scenarios of [23] was further studied in [25] to account for the backreaction of the produced particles on the background
inflaton. It was shown in [25] that in this region the sourced gravity wave signal can already be observed by the next
LIGO stage [4]. The main purpose of the present paper is to study whether an analogous mechanism can produce an
observable gravity wave signal at CMB scales, without conflicting with the limits from non-gaussianity in the scalar
sector.

Let us denote by X the field that is produced during inflation, and that sources the gravity waves. In the models
considered in [23, 24] quanta of X are produced by the motion of the inflaton, which we denote by ϕ. This implies
a direct coupling between the inflaton and the produced quanta. As a consequence, if the inflaton is the source of
cosmological perturbations ζ, quanta of X will source ζ with a stronger than gravitational interaction. On the contrary,
the source of gravity waves from X is of gravitational strength. To minimize the relative amount of produced ζ vs.
produced gravity waves, in this work we made the opposite assumption of considering the weakest possible coupling
(in standard gravitational theory) between X and the inflaton: namely, we assumed that ϕ and X are coupled only
gravitationally. We therefore assumed that particle production occurs in a “hidden sector” and in this paper, for the
first time, we computed the amount of scalar perturbations ζ induced by X through a purely gravitational interaction.
We then computed the amounts of gravity waves produced by X in these two models (for model II, we quote existing
results), and we compared the two effects.

Clearly, there is a large arbitrariness in the choice of the model for particle production, and we do not claim our
findings to be exhaustive; in particular, we did not study here the analogous of all the scenarios considered in [24],
where for instance multiple bursts of particle production, and production of strings were also studied. We study two
models in which X is a vector field, which is produced by the motion of a field ψ 6= ϕ. In model I, the vector field
has a mass term ψ (t)

2
A2, and quanta of A are produced when the classical value of ψ crosses zero. In model II the

vector is continuously sourced by a pseudo-scalar ψ
f FF̃ interaction. The reasons for considering these two models

is that, after the particle production, the vector quanta are highly massive in Model I, while massless in Model II.
We showed that in the first case this gives rise to a strong suppression of the gravity wave signal with respect to the
amount of scalar perturbations. In the remainder of this concluding section, we summarize our findings in these two
models, together with some discussion.

1. Model I: The main signature of particle production in this model is a bump in the scalar power spectrum, at
the scales that exited the horizon when the gauge quanta were produced. 18 If this bump will be observed, this
mechanism can be supported / disproved by the presence/ absence of an analogous bump in the bispectrum,
which we also computed here for the first time. The spectrum of gravity waves produced by the gauge quanta also
presents a peak at the same scales, which - if sufficiently high - could distinguish them from the vacuum gravity
waves. However, we found that - once the bound from not having observed a large bump in the scalar spectrum
is respected - the amount of gravity waves produced in this model is completely unobservable (r <∼ 10−6). The
relative smallness of the gravity waves vs scalar perturbations produced in the model may come as a surprise,
due to the fact that the gauge quanta are coupled gravitationally to both these quantities. The reason for the
suppression is due to the fact that the quanta are highly non-relativistic after they are produced. This highly
suppresses their quadrupole moment, and the amount of gravity waves that they generate.

To verify this, we also computed the amount of gravity waves produced if the vector field is replaced by a fermion,
with mass ∝ ψ (t). Ref. [23] computed the amount of gravity waves produced by a scalar with mass ∝ ψ (t). From
our two results, and from the result of [23] for the scalar case, we actually obtained the very general formula (86)
for the amount of gravity waves produced in all these cases. We see that there is no large enhancement between the
different spins, apart from the proportionality of the final result to the number of degrees of freedom in each case.

We did not compute the amount of scalar perturbations ζ sourced in the fermionic case. However, we believe that
also in this case the result will be analogous to the one that we have computed, and that therefore our conclusions on
the relative importance of gravity waves vs scalar perturbations production apply for produced particles of any spin.

17 In fact, as shown in [48], particle production is a very simple source of observable non-gaussianity of the scalar perturbations, even for
the highly motivated class of natural inflation models.

18 This is qualitatively identical to the findings of [43], where the sourced field is a scalar with mass depending on the inflaton.
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In this model, the vector field is massive after the production, and it therefore also possesses a longitudinal com-
ponent. The results for this component are more model dependent than those of the transverse components: they
depend on the specific choice of the potential U for ψ (the results for the transverse component are independent of U
provided that it is smaller than the kinetic energy of ψ during particle production). The longitudinal mode may drive
the theory out of perturbative regime when m ∝ ψ (t)→ 0. We showed that this is avoided if the ratio 1

ψ
dU
dψ remains

finite as ψ → 0. This is, for instance, the case if U ≈ 1
2m

2
ψ ψ

2 at the origin. These considerations can be relevant
for all the models in which symmetries are enhanced at some point during the cosmological evolution. For instance,
we expect massive gauge modes to become massless when different branes move to the same bulk location as in the
trapping mechanism of [80]. We also found that, for U ≈ 1

2m
2
ψψ

2, the longitudinal component is produced as much
as each transverse component, and sources the same amount of gravity waves, for the most reasonable values of the
mass mψ.

Finally, it is worth pointing out that our study applies to a single instance of particle production. Things may be
different in cases of multiple bursts of particle production; for instance, if the potential U does not flatten at large ψ,
so that ψ performs oscillations about its minimum, gauge quanta will be produced at each oscillation, in a regime of
parametric resonance [19]. We have found that the gravity wave signal can reach an interesting level if the parametric
resonance enhances the amount of produced quanta by a factor of >∼ 200 ε−1 with respect to the single episode of
particle production (ε being the slow roll parameter). It would be interesting to study under which conditions this
value can be reached in a concrete model.

2. Model II: The amount of gravity waves produced in this model was already computed in [48–50]. The novel
computation in this work is the amount of scalar perturbations produced in this model under the assumption
that the inflaton is only gravitationally coupled to the gauge field, and the comparison of the two effects. We
found that coupling the inflaton only gravitationally sufficiently suppresses the amount of scalar modes generated
in this model, so that the limits from non-gaussianity are irrelevant when compared to those from gravity waves.
Therefore, particle production in this model can lead to gravity waves observable at the CMB scales. Differently
from Model I, the gravity waves in this model are produced at all scales, and not just with a localized bump.
However, this signal may be distinguishable from the vacuum one since one gravity wave helicity is produced
in a much stronger amount than the other one, and this can lead [50] to observable nonvanishing TB and EB
correlations in the CMB [76, 77].

Ref. [50] already studied whether the parity violation in the sourced gravity waves produced by this model can be
observed. Also in that case, the problem was to suppress the non-gaussianity of the scalar perturbations produced
by the gauge field [48]. This was overcome in [50] by assuming the presence of ∼ 1000 sourcing gauge fields, or the
curvaton mechanism for the generation of the scalar perturbations. It was shown in [50] that, under these assumptions,
and for some values of parameters, the parity-violation signal can be above the 1σ detection line for a cosmic-variance
limited experiment [50]. We have seen that in our implementation of the mechanism (namely, by assuming that the
gauge field is only gravitationally coupled to the inflaton) the parity violation can, for some choice of parameters, be
observed already by the ongoing / forthcoming Planck and SPIDER experiments.

We have seen that backreaction bounds from this mechanism are under control for an axion scale f in the interval
10−4Mp

<∼ f <∼ Mp. Interestingly, the axion decay constant one typically finds in string theory is of the order of
the GUT scale f ∼ 1016 GeV (see, e.g., [67, 68]) which fits comfortably within this window. Indeed, given the UV
sensitivity of inflation, it is natural to ask whether one can realize our model in string theory. The low energy spectrum
of string theory contains generically many axion-like particles, which arise from the reduction of antisymmetric p-form
fields on p-cycles of the internal space.19 These closed string axions have a pseudoscalar coupling ψFF̃ to U(1) gauge
fields on the worldvolume of D-branes.20 In such string theory setting, it is not difficult to find inflaton candidates
with no direct coupling to the axion-gauge field sector. For example, the inflaton can be another axion; the absence
of direct couplings to the hidden sector follows from some topological and geometrical constraints. Consider a basis
of p-cycles Σi, and their dual p-forms ωj such that

∫
Σi
ωj = δji . Two of such axions ψ =

∫
Σi
Cp, ϕ =

∫
Σj
Cp do

not have kinetic mixing if
∫
ωi ∧ ∗ωj = 0. The absence of direct inflaton-gauge field ϕFF̃ coupling is ensured by∫

ωi∧ ω̃j = 0 where ω̃j is the 6−p form dual to ωj , and F is the gauge field to which the axion ψ couples. In fact, the
shift symmetries enjoyed by the axions may provide a natural explanation for why they remain as the light dynamical

19 In addition to these closed string axion-like particles, there are also open string axions but their presence is more model-dependent. For
this discussion, we shall focus on closed string axions. Moreover, we consider only those axions that are not projected out by discrete
symmetries (e.g., orientifolding), and do not receive a Stuckelberg mass.

20 Such couplings arise from the reduction of Chern-Simons terms in the worldvolume action of D-branes, e.g.,
∫
Dp+4

Cp ∧ F ∧ F̃ .
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fields during inflation. The modest hierarchy of masses (see e.g., eq. (117)) can be reasonably accommodated without
necessarily assuming an “axiverse” [83].21, though having a hierarchy of axion masses offer more flexibilities. Clearly,
more model building possibilities (with the inflaton being an axion or not) remain to be explored. We hope to return
to such string theory realizations in the future.

Note added in proof: After the completion of the present manuscript, ref. [87] appeared, studying the GW produced
by a scalar particle produced by the mechanism of model I. Ref [87] pointed out that a higher order term in the
expansion of Tµν can provide a contribution to the produced GW of comparable amount to the one computed here
and in [23]. This may change by an order one factor the amount of GW produced in this model. The result continues
to be completely unobservable, so that all the physical conclusions reached in the present work remain valid.

Acknowledgments

The work of N.B., R.N., and M.P. was supported in part by DOE grant DE-FG02-94ER-40823 at the University
of Minnesota. The work of JM, GS, and PZ was supported in part by DOE grant DE-FG-02-95ER40896 at the
University of Wisconsin. GS would also like to thank the University of Amsterdam for hospitality during the final
stage of this work, as he was visiting the Institute for Theoretical Physics as the Johannes Diderik van der Waals
Chair. We are grateful to M. Berg, P. Camara, M. Haack, F. Marchesano, L. Sorbo, A. Uranga, M. Voloshin, and
T. Weigand for helpful discussions.

Appendix A: Longitudinal vector mode

In the model (26) the vector has also a longitudinal mode, which was disregarded in the computations performed
in the main text. The longitudinal sector is actually more subtle than the transverse one, as perturbation theory may
break down in the m→ 0 limit. This can be seen, for example, from the action of the longitudinal modes, as we now
show.

Let us start by disregarding the perturbations of Ψ, as we do in the main text. Also, for simplicity, we disregard the
expansion of the universe. As we have discussed in the main text, this is a good approximation as long as H �

√
ṁ∗.

Then the mass of the vector field is a classical function of time, and the longitudinal mode is encoded in

Aµ (x) =

∫
d3k

(2π)
3/2

eix·k
(
Ã0, i ki χ̃

)
⇒ L ⊃ −1

4
F 2 − m2

2
A2 =

1

2

[
k2|χ̃′|2 − k2Ã†0χ̃

′ − k2χ̃
′†Ã0 + k2|Ã0|2 − k2m2|χ̃|2 +m2|Ã0|2

]
(A1)

The component Ã0 is non-dynamical (it enters in the action without time derivatives) and it can be integrated out.
Namely, from (A1) we obtain the equation

Ã0 =
k2

k2 +m2
χ̃′ (A2)

Plugging this solution back into (A1) leads to the action of the longitudinal mode

Slong =
1

2

∫
dtd3k

[
|L̃′|2 −

(
k2 +m2 +

3k2m
′2

(k2 +m2)
2 −

m′′

m

k2

k2 +m2

)
|L̃|2

]
, L̃ ≡ km√

k2 +m2
χ̃ (A3)

The field L̃ is the canonical field associated with the longitudinal mode. We see that its equation of motion has a
term that formally diverges as m→ 0. 22 The formal reason for the divergence is that the kinetic term for the original
longitudinal mode vanishes in this limit, as it appears from the relation between L̃ and χ̃ (A3). This is not surprising,
since a massless vector has only transverse modes.

21 See [84, 85] for some string theory ways of generating a logarithmic hierarchy of axion masses in an “axiverse”.
22 Clearly, the same equation of motion can also be obtained by writing out the equations for the system in terms of the modes Ã0 and χ̃

and by eliminating Ã0 from these equations.
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When, as in the present case, the U(1) symmetry is broken spontaneously, there is actually not a decrease of the
number of degrees of freedom when the classical background part Ψ(0) vanishes. The physical mass term in the
original action is obtained from L ⊃ e2|Ψ(0) (t) + δΨ|2A2, and the quantity that we have denoted by m in the main
text is only related to the classical part, m2 ≡ 2e2|Ψ(0) (t) |2. However, when Ψ(0) (t) = 0, the fluctuations of Ψ
cannot be disregarded, and one does not obtain a truly massless vector mode at this point (compare this with what
would happen if m was a hard and time dependent mass in the original theory; in this case there would be instead a
discontinuity in the number of degrees of freedom at m = 0).

In short, a full study of the longitudinal sector would require going beyond the linearized theory; this may also affect
the transverse sector, since all the sectors are coupled to each other beyond the linearized level. Here we use a simpler
approach, and discuss under which conditions the longitudinal mode does not blow up in the linearized theory; if this
is the case, then one can expect that dealing with the full theory is unnecessary. We note that these considerations
apply for a general class of model in which symmetries are enhanced at some point during the cosmological evolution.
For instance we expect massive gauge modes to become massless when different branes move to the same bulk location
as in the trapping mechanism of [80].

Using the background equations of motion, the dangerous factor m′′/m in the linearized computation (A3) rewrites

m′′

m
=

(aψ)
′′

aψ
=
a′′

a
− a2 U,ψ

ψ
' −U,ψ

ψ
(A4)

where the first two equations are exact, and in the final step we instead disregard the expansion of the universe.
Therefore, the equation of motion of L̃ remain finite provided that U,ψ/ψ does not diverge. This could be for

instance the case for a quadratic potential U ∼ 1
2m

2
ψψ

2 for ψ ∼ 0. In our computations, we assumed a constant

ψ̇(0) ≡ ṁ∗
e , corresponding to ψ(0) = ṁ∗

e (t− t∗). As we discussed in the main text, this implies that the gauge fields

are produced during the time interval ∆t ∼ 1√
ṁ∗

around t = t∗. Then, for a quadratic potential, imposing that the

potential energy gained by ψ(0) during this interval is smaller than its kinetic energy at t∗ (so that ψ̇(0) can indeed
be taken as constant) amounts in requiring mψ �

√
ṁ∗. This also ensures that the period of oscillations of ψ(0) is

much greater than the time in which particle production takes place, so that one can indeed treat α and β as constant
when computing the amount of perturbations sourced by the gauge modes.

Using (A3), we computed the occupation number of longitudinal vector modes with U ∼ 1
2m

2
ψψ

2, and mψ �
√
ṁ∗.

We found that in this regime the longitudinal mode is produced in essentially the same amount as each transverse
vector mode (for instance, we found that for mψ = 0.1

√
ṁ∗ the total number densities of the longitudinal and of

one transverse polarization differ from each other by less than 1%). We stress however that this conclusion is model
dependent, as the precise evolution of the effective frequency in (A3) depends on the details of U (ψ). On the contrary,
the amounts of the transverse modes produced is independent of U , provided that it remains sufficiently smaller than
the kinetic energy during the time of production.

In the remainder of this Appendix we study the spectrum of gravity waves produced in this model, once also the
longitudinal modes are taken into account. When all modes are taken into account, we formally separate the energy
momentum tensor (41) of the vector field into TTTµν + TLTµν + TLLµν , where the first term is quadratic in the transverse
polarizations, and it is the only one used in the main text, while the third term is quadratic in the longitudinal
polarization, and the second term is the “mixed term”. Inserting the last two terms into (7) we obtain the two
contributions

JLTλ

(
~k
)

=
Π∗ij,λ
aMp

(
k̂
)∫ d3p

(2π)
3/2

2ipiM
2

[
− ∂

(1)
τ ∂

(2)
τ

p2 +M2
+ 1

]
χ̃ (~p) Ãj

(
~k − ~p

)

JLLλ

(
~k
)

=
Π∗ij,λ
aMp

(
k̂
)∫ d3p

(2π)
3/2

M2pipj

− M2∂
(1)
τ ∂

(2)
τ

[p2 +M2]
[
(k − p)2

+M2
] + 1

 χ̃ (~p) χ̃
(
~k − ~p

)
(A5)

to the gravity wave source in (6). These add up to the term JTTλ , which is the only one studied in Subsection III B
of the main text (where it is denoted simply by Jλ).

To obtain the total power spectrum we need to evaluate the correlator〈[
JTTλ + JLTλ + JLLλ

]
τ1, ~k1

[
JTTλ′ + JLTλ′ + JLTλ′

]
τ2, ~k2

〉
and insert it in (11). Each piece in Jλ is correlated only

with the corresponding piece in Jλ′ .
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Proceeding as in the main text, we obtain〈
JLTλ

(
τ1, ~k

)
JLTλ

(
τ2, ~k

′
)〉
' 2

5π2M2
p

δλλ′δ
(3)
(
~k + ~k′

)M (τ1)
2

a (τ1)

M (τ2)
2

a (τ2)

∫
dpp4

[
− δa1

p2 +M2
+ δa0

]
τ1

[
− δb1
p2 +M2

+ δb0

]
τ2

C(a,b) [τ1, τ2; p]D(a,b) [τ1, τ2; p] (A6)

and 〈
JLLλ

(
τ1, ~k

)
JLLλ

(
τ2, ~k

′
)〉
' 2

15π2M2
p

δλλ′δ
(3)
(
~k + ~k′

)M (τ1)
2

a (τ1)

M (τ2)
2

a (τ2)

∫
dpp6

[
− M2 δa1

(p2 +M2)
2 + δa0

]
τ1

[
− M2 δb1

(p2 +M2)
2 + δb0

]
τ2

C2
(a,b) [τ1, τ2; p] (A7)

In these expressions we have introduced the correlators

〈χ̃ (τ1, ~p1) χ̃ (τ2, ~p2)〉 = C(0,0) [τ1, τ2; p1] δ(3) (~p1 + ~p2) (A8)

which evaluate to

C(0,0) [τ1, τ2; p] =

√
p2 +M2 (τ1)

√
p2 +M2 (τ2)

p2M (τ1)M (τ2)
DL(0,0) [τ1, τ2; p] (A9)

where DL(a,b) are formally identical to the D(σ)
(a,b) quantities given in eqs. (34) and (36), with the only difference that

in DL(a,b) we use the Bogolyubov coefficients and the mode functions of the longitudinal mode:

L̃
(
~k
)

=
[
αLk gk + βLk g

∗
k

]
aL~k + h.c. (A10)

where aLk is an annihilation operator, and

gk ≡
e−i

∫ τ dτ ′ ωL(τ ′)√
2ωL (τ)

, ωL ≡

(
k2 +M2 +

3k2M
′2

(k2 +M2)
2 −

M ′′

M

k2

k2 +M2

)1/2

(A11)

As in the computation of 〈JTTλ JTTλ′ 〉 presented in the main text, the square of the correlators appearing in (A6)
and (A7) contain terms proportional to fast oscillating phases, which give a negligible contribution to the final result.
Disregarding these terms, we obtain〈
JLTλ

(
τ1, ~k

)
JLTλ

(
τ2, ~k

′
)〉
' −δλλ′

20π2M2
p

δ(3)
(
~k + ~k′

) ∫
dpp6Re

[
αpα

L∗
p β∗pβ

L
p Q (τ1)Q (τ2)− |βp|2 |βp|2Q (τ1)Q∗ (τ1)

]
(A12)

where

Q (τ) ≡ 1

aM

[
2M ′

M2
− 3iM

′2

M4
+
iM ′′

M3

]
(A13)

and 〈
JLLλ

(
τ1, ~k

)
JLLλ

(
τ2, ~k

′
)〉
' δλλ′

15π2M2
p

δ(3)
(
~k + ~k′

) 1

aM (τ1)

1

aM (τ2)

∫
dpp6 |βLp |2

(
|αLp |2 + |βLp |2

)
(A14)

In these expressions, we have retained only the dominant contributions to the ωL in the adiabatic regime (namely, we
have used M ′ �M2 and M ′′ �M3). As in the computation of the main text, the terms without oscillatory phases
are of O

(
p6
)
, as a consequence to a cancellation of the would be dominant terms in the transverse and traceless

projection of the energy-momentum tensor. This cancellation is already visible in (A6) and (A7), see the discussion
after the analogous expression (63) presented in the main text.

We see that the mixed term (A12) is suppressed in the adiabatic regime, and can be disregarded. From the (A14)
we instead obtain

Pλ,s
∣∣
from AL

' 2k3

15π4a2M4
p

T̃ 2
k

∫
dp p6|βLp |2

(
|αLp |2 + |βLp |2

)
(A15)

where T̃k is defined in (67). This contribution adds up to the one of the transverse modes leading to the result (72)
given in the main text.
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Appendix B: Source for ζ in Model I

In this appendix, we derive the approximated expression (48) for the scalar source in Model I. The source we are
interested in is the part of (47) that depends on the gauge field. From the three terms at the r.h.s. of (45) we obtain,
respectively,

J
[
A2
µ

]
= J1

(
τ,~k
)

+ J2

(
τ,~k
)

+ J3

(
τ,~k
)

J1

(
τ,~k
)

= − ϕ̇(0)

4M2
pHa (τ)

∫
d3p

(2π)
3/2

Ã′i (τ, ~p) Ã′i

(
τ,~k − ~p

)
(B1)

J2

(
τ,~k
)

=
ϕ̇(0)

2M2
pHa (τ)

1

k2

∫
d3p

(2π)
3/2

∂τ

[
pi ki Ãj (τ, ~p) Ã′j

(
τ,~k − ~p

)
− ki kj Ãi (τ, ~p) Ã′j

(
τ,~k − ~p

)]
(B2)

J3

(
τ,~k
)

= − M2ϕ̇(0)

4M2
pHa (τ)

∫
d3p

(2π)
3/2

Ãi (τ, ~p) Ãi

(
τ,~k − ~p

)
. (B3)

In the part J1 we have actually disregarded the “magnetic” contribution with respect to the “electric” one.23 The

relative contribution between the two terms in the integrand is B2

E2 ∼ Ã
′2

Ã2
∼ k2, k p, p2

M2 . The quantity k is the momentum

of the cosmological perturbations that we are computing; we show in the main text that the signal from particle
production is maximal at k ∼ H (we recall that the scale factor is normalized to one at the moment of particle
production). We also show in the main text that the source integrand is peaked at p ∼

√
ṁ∗. We therefore have

k � p due to (30). Finally M = am ≥ m �
√
ṁ∗ after the particle production has taken place. As a consequence

p�M and the “magnetic” contribution can indeed be disregarded.
We perform the time derivative in J2, and eliminate the second derivative through the equation of motion Ã′′i '

−M2 Ãi. We obtain

J2 '
φ̇

2M2
pHa

1

k2

∫
d3p

(2π)
3/2

(
~k · ~p δij − ki kj

) [
Ã′i (~p) Ã′j

(
~k − ~p

)
−M2 Ãi (~p) Ãj

(
~k − ~p

)]
.

(B4)

We rewrite (B4) changing the integration variable ~p→ ~k− ~p. We add the resulting expression to (B4), and divide by
two. We obtain

J2 '
φ̇

2M2
pHa

(
1

2
δij − k̂ik̂j

)∫
d3p

(2π)
3/2

[
Ã′i (~p) Ã′j

(
~k − ~p

)
−M2Ãi (~p) Ãj

(
~k − ~p

)]
(B5)

It is worth noting that this expression explicitly shows that J2 does not diverge in the k → 0 limit. This is not
immediately obvious from the original expression, since J2 originates from the term with an inverse laplacian in (45).

Adding this expression for J2 to the expression for J1 and J3 given above, one readily obtains the result (48) given
in the main text.

Appendix C: Source for ζ in Model II

In this appendix, we derive the expression (101) for the scalar source in Model II. In eq. (99) we separated the
source in the two parts J1 + J2.

In Fourier space we have the relatively simple expression

J1

(
τ,~k
)

= −ϕ
′(0)a3

4M2
pH

∫
d3p

(2π)3/2

[
Ẽi (τ, ~p) Ẽi

(
τ,~k − ~p

)
+ B̃i (τ, ~p) B̃i

(
τ,~k − ~p

) ]
, (C1)

for the first part. For the second part, we have instead

J2

(
τ, ~k

)
=

ϕ
′(0)

2M2
pHa

1

k2

∫
d3p

(2π)
3/2

∂τ

[
pikiÃj (τ, ~p) Ã′j

(
τ, ~k − ~p

)
− kikjÃi (τ, ~p) Ã′j

(
τ, ~k − ~p

)]
. (C2)

23 An analogous simplification cannot be done for the source of gravity waves, since in this case the dominant term cancels.
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Some manipulations are instead necessary to put the non-local source term J2 in a form that is amenable to compu-
tations and is manifestly infra-red finite. We begin by noting that Ãi effectively only contains the “+” helicity state
in this model. This allows us to use the identity

ki kj ε
(+)
i (~p) ε

(+)
j

(
~k − ~p

)
=
[
p|~k − ~p|+ (~k − ~p) · ~p

]
ε
(+)
i (~p) ε

(+)
i

(
~k − ~p

)
, (C3)

to simplify the tensor structure in the second term of (C2) and re-write J2 as

J2

(
τ,~k
)

=
ϕ′(0)

2M2
pHa

1

k2

∫
d3p

(2π)3/2
p
[
p− |~k − ~p|

]
∂τ

[
Ãi (τ, ~p) Ã′i

(
τ,~k − ~p

) ]
. (C4)

Next we perform the time derivative and use the equation of motion (88) to eliminate Ã′′ which gives the result

J2

(
τ,~k
)

=
ϕ′(0)a3

2M2
pH

1

k2

∫
d3p

(2π)3/2

(
|~k − ~p| − p

)[
−pẼi (τ, ~p) Ẽi

(
τ,~k − ~p

)
+

(
|~k − ~p|+ 2ξ

τ

)
B̃i (τ, ~p) B̃i

(
τ,~k − ~p

) ]
.

(C5)

We rewrite (C5) changing the integration variable ~p→ ~k− ~p. We add the resulting expression to (C5), and divide by
two. We obtain:

J2

(
τ,~k
)

=
ϕ′(0)a3

4M2
pH

∫
d3p

(2π)3/2

(p− |~k − ~p|)2

k2

[
Ẽi (τ, ~p) Ẽi

(
τ,~k − ~p

)
+ B̃i (τ, ~p) B̃i

(
τ,~k − ~p

) ]
. (C6)

We note that this expression is manifestly finite in the limit k2 → 0, proving that the non-local source term in (99)
does not lead to any spurious effects in the infra-red.

Adding (C1) and (C6) leads to the expression (101) reported in the main text.

Appendix D: Fermionic production and gravity waves

In this appendix, we outline the computation of gravity waves produced by a fermion with a mass varying as in the
model I studied in the main text. If we denote by X the fermion in the original action, and we rescale, χ = X a3/2,
the action for the fermion field becomes identical to the one of a massive fermion in Minkowski spacetime, whose mass
is multiplied by the scale factor

Sf =

∫
d4x χ̄ [i γµ∂µ −M (t)]χ , M = g a (t)

[
ψ(0) (t)− ψ∗

]
(D1)

As in the main text, ψ(0) is a homogeneous classical field that evaluates to ψ∗ at some given moment t∗ during
inflation, while g is the coupling of the Yukawa interaction in the original action. Without loss of generality we
can choose ψ∗ = t∗ = 0. As in the main text, we consider a regime in which the expansion of the universe can be
disregarded during the particle production, and we expand

g ψ(0) (t) ≡ ṁ∗ t , t ' 0 (D2)

We instead include the expansion of the universe when we study the amount of gravity waves sourced by the fermionic
quanta produced at t ' 0.

The fermionic production in this model was studied in [81, 82] for reheating after inflation and leptogenesis, and
in [41] for the imprint on the scalar power spectrum. Here we follow the computations of [82, 86], skipping some
intermediate steps. We refer the reader to those works for details. One decomposes 24

χ =

∫
d3k

(2π)
3/2

ei
~k·~xχ̃

(
τ, ~k

)
, χ̃

(
τ, ~k

)
=
∑
r

[
Ur
(
τ, ~k

)
ar

(
~k
)

+ Vr
(
τ, −~k

)
b†r

(
−~k
)]

(D4)

24 We use

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
(D3)

and, only in this Appendix, we switch to +,−,−,− signature.
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where, for ~k aligned along the z−axis,

Ur (τ, kz) =
1√
2

(
U+ (τ, k) ψr
U− (τ, k) r ψr

)
, Vr (τ, −kz) =

1√
2

(
−V+ (τ, k) ψ−r
−V− (τ, k) r ψ−r

)
(D5)

where ψ+ =

(
1
0

)
and ψ− =

(
0
1

)
. The spinor V is related to U by charge conjugation, giving V± (τ, k) = U∗∓ (τ, k).

It is convenient to decompose the spinors in terms of the Minkowski solutions (more precisely, the adiabatic solution,
since in the current case M is not constant)

U± (τ, k) = α (t) f± (τ, k)∓ β (t) f∗∓ (τ, k) , f± (τ, k) ≡
√

1± M

E
e−i

∫ τ
τ∗
dτ ′ E (D6)

and E ≡
√
k2 +M2. Starting from β = 0 at asymptotically early times, and using (D2) one finds, at late times (see,

for instance, [82] for the computation)

α (t� 0) ' 2
√
π

q
eiq

2/2eiπ/4
(
q√
2

)−iq2
e−πq

2/4

Γ
(
−iq2

2

) , β (t� 0) ' −e−πq
2/2 , q ≡ k√

ṁ∗
(D7)

As in the bosonic case, |β|2 is the occupation number, and Pauli blocking is ensured by the fact that, in the fermionic
case, the Bogolyubov coefficients satisfy |α|2 + |β|2 = 1.

To compute the gravity waves produced by these quanta, we proceed as in the main text, and obtain the formal
solution (10) for the sourced part Qλ,s of the canonical gravity wave modes introduced in (5). Using the fermionic
energy momentum tensor

Tµν =
i

4a2
[χ̄γµ∂νχ+ χ̄γν∂µχ− (∂µχ̄) γνχ− (∂ν χ̄) γµχ] (D8)

we can cast the source appearing in (10) in the form

Jλ

(
τ, ~k

)
=

1

2aMp
Π∗ij,λ

(
k̂
)∫ d3p

(2π)
3/2

¯̃χ (τ, ~p) (γi pj + γj pi) χ̃
(
τ, ~k + ~p

)
(D9)

After Wick contraction, the correlator of two sources acquires the form〈
Jλ

(
τ, ~k

)
Jλ′
(
τ ′, ~k′

)〉
=

1

M2
pa (τ) a (τ ′)

Π∗ij,λ

(
k̂
)

Π∗lm,λ′
(
k̂′
)∫ d3pd3p′

(2π)
3

tr

[
γipj

〈
χ̃
(
τ, ~k + ~p

)
¯̃χ (τ ′, ~p′)

〉
γlp

′m
〈

¯̃χ (τ, ~p) χ̃
(
τ ′, ~k′ + ~p′

)〉T]
(D10)

where the transposition acts on the spinor indices. The correlators appearing in this expression need to be regularized.
We adopt the same prescription adopted in Section III for the vector field correlators. Namely, we normal order the
fields appearing in the correlators with respect to the time dependent operators

â
(
~k
)
≡ αa

(
~k
)
− β∗ b†

(
−~k
)

b̂†
(
−~k
)
≡ β a

(
~k
)

+ α∗ b†
(
−~k
)

(D11)

that diagonalize the Hamiltonian at any given time. We then recall that the vacuum of the theory is annihilated by
the original time-independent a and b operators. After some algebra, we obtain〈

: χ̃
(
τ, ~k + ~p

)
¯̃χ (τ ′, ~p′) :

〉
= δ(3)

(
~p′ − ~p− ~k

) (
C11 [τ, τ ′; p′] 1 C12 [τ, τ ′; p′] ~σ · p̂′

C21 [τ, τ ′; p′] ~σ · p̂′ C22 [τ, τ ′; p′] 1

)
= δ(3)

(
~p′ − ~p− ~k

) (C11 + C22

2
1 +
C11 − C22

2
γ0 +

C12 + C21

2
γ0~γ · p̂′ + C12 − C21

2
~γ · p̂′

)
〈

¯̃χ (τ, ~p) χ̃
(
τ ′, ~k′ + ~p′

)〉T
= δ(3)

(
~p− ~p′ − ~k′

) ( −C22 [τ, τ ′; p] 1 C∗21 [τ, τ ′; p] ~σ · p̂
C∗12 [τ, τ ′; p] ~σ · p̂ −C11 [τ, τ ′; p] 1

)
(D12)
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where, when particle creation has completed, and (D7) hold,

C11 [τ, τ ′; p′] =
1

2

{
−|β|2

[
f+ (τ, p′) f∗+ (τ ′, p′)− f∗− (τ, p′) f− (τ ′, p′)

]
− αβ∗f+ (τ, p′) f− (τ ′, p′)− α∗βf∗− (τ, p′) f∗+ (τ ′, p′)

}
C12 [τ, τ ′; p′] =

1

2

{
|β|2

[
f+ (τ, p′) f∗− (τ ′, p′) + f∗− (τ, p′) f+ (τ ′, p′)

]
− αβ∗f+ (τ, p′) f+ (τ ′, p′) + α∗βf∗− (τ, p′) f∗− (τ ′, p′)

}
C21 [τ, τ ′; p′] = −C∗12 [τ, τ ′; p′]

C22 [τ, τ ′; p′] = C∗11 [τ, τ ′; p′] (D13)

We insert these expressions into (D10). We evaluate the trace, and (as in the analogous computation of the main

text ) disregard ~k and ~k′ in comparison to ~p and ~p′. The d3p′ integral can be performed using one δ−function. We
perform the angular part of the remaining d3p integral. Finally, we use the property of the polarization operators
Πij . We obtain

〈
Jλ

(
τ, ~k

)
Jλ′
(
τ ′, ~k′

)〉
=

2

15π2

δ(3)
(
~k + ~k′

)
δλλ′

M2
pa (τ) a (τ ′)

∫
dp p4 Re

[
5 C2

11 + C2
12

]
(D14)

Squaring the correlators, we have

C2
11 = |β|2

(
|α|2 − |β|2

) p2

2E (τ) E (τ ′)
+ oscillatory phases , C2

12 = −C2
11 + oscillatory phases (D15)

and we see that the non oscillatory part of the integrand in (D14) is of O
(
p6
)

as in the vector case studied in the
main text. The oscillatory part gives a negligible contribution to the tensor power. Combining this result with (11)
and (20) we obtain

Pλ,s '
8k3

15π4a2M4
p

T̃ 2
k

∫
dp p6|β|2

(
|α|2 − |β|2

)
(D16)

where T̃k is defined in (67).
Inserting the result (68) for this quantity, and performing the momentum integral, gives

Pλ,s '
(
8−
√

2
)
H4 ṁ

3/2
∗

16π7M4
p k

3

[
sin

(
k

H

)
− k

H
cos

(
k

H

)]2

ln2

(√
ṁ∗
H

)
, k �

√
ṁ∗ (D17)

while the result is exponentially suppressed at higher momenta.
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