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We study the effects of systematic errors in Type Ia supernova (SN Ia) measurements on dark
energy (DE) constraints using current data from the Supernova Legacy Survey (SNLS). We consider
how SN systematic errors affect constraints from combined SN Ia, baryon acoustic oscillations
(BAO), and cosmic microwave background (CMB) data, given that SNe Ia still provide the strongest
constraints on DE but are arguably subject to more significant systematics than the latter two
probes. We focus our attention on the temporal evolution of DE described in terms of principal
components (PCs) of the equation of state, though we examine a few of the more common, simpler
parametrizations as well. We find that the SN Ia systematics degrade the total generalized figure of
merit (FoM), which characterizes constraints in multi-dimensional DE parameter space, by a factor
of three to four. Nevertheless, overall constraints obtained on roughly five PCs are very good even
with current data and systematics. We further show that current constraints are robust to allowing
for the finite detection significance of the BAO feature in galaxy surveys.

I. INTRODUCTION

Since the discovery of the accelerating universe in the
late 1990s [1, 2], a tremendous amount of effort has
been devoted to improving measurements of dark energy
(DE) parameters. As constraints on these parameters
improved, controlling the systematic errors in measure-
ments became critical for continued progress. The sys-
tematics come in many flavors, including a multitude of
instrumental effects and astrophysical effects.

Type Ia supernovae (SNe Ia) were used to discover DE
and still provide the best constraints on DE. The ad-
vantage of SNe Ia relative to other cosmological probes
is that every SN provides a distance measurement and
therefore some information about DE. More recently, SN
Ia observations have been joined by measurements of
baryon acoustic oscillations (BAO), which provide ex-
ceedingly accurate measurements of the angular diameter
distance in redshift bins. Cosmic microwave background
(CMB) anisotropies come mostly from high redshift and
are thus not particularly effective in probing DE, but they
do provide one measurement of the angular diameter dis-
tance to redshift z ' 1100 very accurately. Galaxy clus-
ters also constrain DE usefully, while weak gravitational
lensing is expected to become one of the most effective
probes of DE in the near future. For recent comprehen-
sive reviews of DE probes, see [3, 4].

In this work, we are interested in studying the effect
of SN Ia systematics on DE constraints by including the
covariance of measurements between different SNe. The
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covariance includes primarily systematic errors, and for
the first time it has been quantified in depth by Conley
et al. [5]. Including the effects of the systematic errors,
represented by nonzero covariance, weakens the overall
constraints on model parameters. Here we wish to ex-
plore the effect of systematic errors for general models
of DE described by a number of principal components
(PCs) of the equation of state, though we first consider
these effects for simpler, more commonly used descrip-
tions of the DE sector. We choose to combine the SN
Ia data with BAO and CMB measurements and estimate
the effects of current systematic errors in SN Ia obser-
vations. We then proceed to study another systematic
concern that is particularly relevant for BAO: whether
the finite significance of the detection of the BAO feature
in various surveys, when taken into account, weakens the
constraints imposed on DE parameters.

While we closely follow the accounting for the SN Ia
systematics from Conley et al. [5], we note that several
other analyses have considered the effect of SN system-
atics. However, most of these analyses only studied the
effects of the systematic errors on the constant equation
of state (e.g. [5–8]) or included the additional parame-
ter wa to describe the variation of the equation of state
with time (e.g. [9]). Notable exceptions are studies by
Davis et al. [10] and Rubin et al. [11], which considered
a number of specific DE models with non-standard be-
havior, and Amanullah et al. [12] and Suzuki et al. [13],
which parametrized the DE density in several redshift
bins. Here our goal is to go beyond any specific mod-
els and study the effects of systematic errors in current
data on DE constraints in the greatest generality pos-
sible. While a truly model-independent description of
the DE sector is of course impossible, a description of
the expansion history in terms of 10 or so parameters
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– which we adopt in this paper – comes close1. In this
sense, our paper complements the recent investigations
by Mortonson et al. [14, 15] (see also [16–24]), which
studied constraints on very general descriptions of DE
using (a slightly different set of) current data but with-
out specific study of the effects of systematic errors.

The paper is organized as follows. In Sec. II, we de-
scribe the SN Ia, BAO, and CMB data (and for BAO and
CMB, the distilled observable quantities) that we use in
our analysis. In Sec. III, we discuss useful parametriza-
tions of DE and compare constraints on the DE param-
eters with and without systematic errors included in the
analysis. In Sec. IV, we investigate the effects of the fi-
nite detection significance of the BAO feature in galaxy
surveys on the cosmological parameter constraints. In
Sec. V, we summarize our conclusions.

II. DATA SETS USED

We begin by describing the data sets used in this anal-
ysis. We have used three probes of DE: SNe Ia, BAO and
CMB anisotropies.

A. SN Ia Data and Covariance

Although SNe Ia are not, of course, perfect standard
candles, it has long been known that there exist useful
correlations between the peak apparent magnitude of a
SN Ia and the stretch, or broadness, of its light curve
(simply put, broader is brighter). The peak apparent
magnitude is also correlated with the color of the light
curve (bluer is brighter). We therefore model the appar-
ent magnitude of a SN Ia with the equation [25]

mmod = 5 log10

(
H0

c
dL

)
− αs(s− 1) + βc C +M, (1)

where dL is the luminosity distance, αs is a nuisance pa-
rameter associated with the measured stretch s of a SN
Ia light curve, and βc is a nuisance parameter associ-
ated with the measured color C of the light curve. The
absolute magnitude of a SN Ia is contained within the
constant magnitude offset M, which is considered yet
another nuisance parameter2.

Recent work has concentrated on estimating correla-
tions between measurements of individual SN Ia magni-
tudes. A complete covariance matrix for SNe Ia includes

1 We do not, however, consider allowing departures from general
relativity; doing so would further generalize the treatment.

2 Throughout the analyses in this paper, we actually marginalize
analytically over a model with two distinct M values, where
a mass cut of the host galaxy dictates which M value applies
(here we use a mass cut of 1010M�). This is meant to correct
for host galaxy properties and is empirical in nature (see text
and Appendix C of [5]). For simplicity, we suppress mention of
the second M parameter.

Source NSN Range in z

Low-z 123 0.01 - 0.1

SDSS 93 0.06 - 0.4

SNLS 242 0.08 - 1.05

HST 14 0.7 - 1.4

TABLE I. Summary of SN Ia observations included in this
analysis, showing the number of SNe included from each sur-
vey and the approximate redshift ranges.

all identified sources of systematic error in addition to
the intrinsic scatter and other sources of statistical error.
The χ2 statistic is then given by

χ2 = ∆mTC−1∆m, (2)

where ∆m = mobs−mmod(p) is the vector of magnitude
differences between the observed magnitudes of N SNe Ia
mobs and the theoretical prediction that depends on the
set of cosmological parameters p, mmod(p). Here C is
the N ×N covariance matrix between the SNe. Given a
value for χ2, we assume that the likelihood of a set of cos-

mological parameters is Gaussian, so that L(p) ∝ e−χ2/2.
Since C is a function of parameters αs and βc (see below),
we would näıvely expect that the inclusion of the Gaus-

sian prefactor 1/
√

detC in the likelihood is necessary.
However, using simple simulations of parameter extrac-
tion with synthetic data, we (and separately Conley et al.
[5]) find that including the prefactor leads to significant
biases in recovered αs and βc values. This result, dis-
cussed briefly in [5], is in hindsight not surprising given
that both the independent variables (stretch and color)
and dependent variable (magnitude) have errors; see e.g.
[26] for a lengthy discussion. We therefore do not include

the 1/
√

detC prefactor in our analysis.
Recently Conley et al. [5] determined covariances be-

tween SN Ia measurements from the Supernova Legacy
Survey (SNLS). The SN compilation and covariance ma-
trix that resulted from this work will be used in this
analysis. The SNLS compilation consists of 472 SNe Ia,
approximately one half of which were detected in SNLS,
while the rest originated from one of three other sources.
These four main sources are summarized in Table I and
illustrated in the Hubble diagram of Fig. 1. The low-
redshift (Low-z) SNe actually come from a variety of
samples as discussed in Conley et al. [5].

The complete covariance matrix from [5] can be writ-
ten most usefully as the sum of two separate parts, a
diagonal part consisting of typical statistical errors and
a systematic part, which includes both diagonal and off-
diagonal elements. This off-diagonal piece includes some
correlated errors which are considered statistical in [5]
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FIG. 1. Hubble diagram for the compilation of all SN Ia
data used in this paper, labeling SNe from each survey sepa-
rately and showing the (diagonal-only) magnitude uncertain-
ties. The solid black line represents the best fit to the data.

(since they can be reduced by including more observa-
tions), but here we disregard the distinction and group
these errors with the actual systematic errors, which also
lead to off-diagonal covariance elements. This simplifica-
tion is reasonable because the correlated statistical errors
are small compared to the (correlated) systematic errors.
The diagonal, statistical-only part of the covariance ma-
trix can be expressed as

Dstat
ii = σ2

mB ,i + α2
s σ

2
s,i + β2

c σ
2
C,i + σ2

int

+

(
5(1 + zi)

zi(1 + zi/2) log 10

)2

σ2
z,i + σ2

lensing (3)

+ σ2
host correction +DmBs C

ii (αs, βc)

In the above, σmB ,i , σs,i , σC,i , and σz,i are the statis-
tical uncertainties of the measured magnitude, stretch,
color, and redshift, respectively, of the ith SN. The z term
translates the error in redshift into error in magnitude.
To include actual intrinsic scatter of SNe Ia and allow
for any mis-estimates of photometric uncertainties, the
quantity σint is included, with a different value allowed
for each sample. The σint values were derived by requir-
ing the χ2 of the best-fitting (ΩM ,w) cosmological fit to
a flat universe to be one per degree of freedom for each
sample separately. Also included here are statistical un-
certainties due to gravitational lensing and uncertainty
in the host galaxy correction.

The contribution DmBs C
ii (αs, βc) represents a combina-

tion of the covariance terms between magnitude, stretch,
and color for the ith SN. It is given by

DmBs C
ii (αs, βc) = 2αsD

mB s
ii − 2βcD

mB C
ii (4)

− 2αsβcD
s C
ii ,

where DmB s
ii , DmB C

ii and Ds C
ii represent the computed

magnitude-stretch, magnitude-color, and stretch-color

covariances for the ith SN. Note that even the statisti-
cal covariance matrix is a function of αs and βc, meaning
that a proper analysis involves varying the errors (re-
computing the covariance matrix) any time αs and βc
are changed.

A similar equation can be used to construct the system-
atic covariance matrix, where different systematic terms
are combined to produce submatrices which are then
added together with specified values for αs and βc, as
above. The systematic terms include calibration (which
is the dominant contribution), Malmquist bias, peculiar
velocities, Milky Way dust extinction, contamination of
the sample with non-Ia SNe, uncertainties arising from
differences in the light-curve fitters, uncertainty in the
relationship between host galaxy properties and SN mag-
nitude, evolution of αs and βc, and early light-curve pho-
tometric uncertainty. The systematic covariance matrix
includes diagonal and off-diagonal elements, which are
calculated (see [5] for more details) using the equation

Csys
ij =

K∑
k=1

(
∂mmod i

∂Sk

)(
∂mmod j

∂Sk

)
(∆Sk)

2
, (5)

where the sum is over the K systematics Sk, ∆Sk is the
size of each term (for example, the uncertainty in the
zero point), and mmod is defined in Eq. (1). Then the
full covariance matrix is simply given by

Cfull = Dstat + Csys. (6)

A plot of the full covariance matrix (constructed using
flat w = const model best-fit values αs = 1.43 and βc =
3.26) is shown in Fig. 2.

B. BAO and CMB data

To produce the combined constraints in this paper,
we include information from both BAO and the CMB
in addition to the SN data. In each case, we choose for
simplicity distilled quantities which depend only on ΩM ,
ΩDE, ΩK , and a parametrized w(z).

For BAO, we compare the theoretical prediction for
the acoustic parameter A(z) with the measured value,
where we define (see Eisenstein et al. [27])

A(z) ≡
[
r2(z)

cz

H(z)

]1/3 √
ΩMH2

0

cz
, (7)

where r(z) is the comoving distance to redshift z. We
combine recent measurements of A(z) at different effec-
tive redshifts, using data from the 6dF Galaxy Survey
[28], the Sloan Digital Sky Survey (SDSS) Data Release
7 (DR7) [29], the WiggleZ survey [30, 31], and the SDSS
Baryon Oscillation Spectroscopic Survey (BOSS) [32, 33].
The measured values are summarized in Table II.

A plot of the measured values and their uncertain-
ties superimposed on an A(z) curve (Fig. 3) suggests
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FIG. 2. Left panel: correlation matrix obtained from the complete covariance matrix Cfull, sorted first by survey and then by
redshift within each survey. Right panel: same, but using only the systematic covariance matrix Csys. In both cases we assume
αs = 1.43 and βc = 3.26, the best-fit values for the flat w = const model. The right panel is similar to Fig. 12 from [5], but we
repeat it here and show the full covariance (left panel) for completeness.

Sample zeff A0(zeff)

6dFGS 0.106 0.526± 0.028

SDSS DR7 0.20 0.488± 0.016

SDSS DR7 0.35 0.484± 0.016

WiggleZ 0.44 0.474± 0.034

BOSS 0.57 0.444± 0.014

WiggleZ 0.60 0.442± 0.020

WiggleZ 0.73 0.424± 0.021

TABLE II. Summary of measurements of distilled BAO pa-
rameter A(z). We show the survey from which the measure-
ment comes, the effective redshift of the survey (or its sub-
sample), and the measured value A0.

that there is no significant tension between the mea-
surements. Note that the SDSS DR7 measurements at
z = (0.2, 0.35) are correlated with correlation coefficient
0.337. The WiggleZ measurements are correlated with
coefficient 0.369 for the pair z = (0.44, 0.6) and coeffi-
cient 0.438 for z = (0.6, 0.73). Ignoring the relatively
small overlap in survey volume between SDSS DR7 and
the BOSS sample, we expect all other pairwise correla-
tions to be zero. We compute χ2 in the usual way for
correlated measurements, as in Eq. (2).

Nearly all of the sensitivity of the CMB to DE comes
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FIG. 3. Measured values of A(z) and their (diagonal-only) un-
certainties for each effective redshift. The black curve shows
A(z) for a model that fits the data points well, and the pa-
rameters for this model are given in the legend.

from the measurement of an angle at which the sound
horizon at z ≈ 1100 is observed (e.g. [34]). This measure-
ment in turn determines the angular diameter distance to
recombination with the physical matter quantity, ΩMh

2,
essentially fixed. The latter quantity is popularly known
as the CMB shift parameter R and is defined as

R ≡
√

ΩMH2
0

c
r(z∗), (8)

where z∗ = 1091.3 is the redshift of decoupling as mea-
sured by WMAP7 [35]. We take the measured value
of R to be the value determined by WMAP7, R0 =
1.725 ± 0.0184 [35]. We compute χ2 in the usual way,
comparing this measured value of R with the theoretical
prediction.

Calculating the combined SN, BAO, and CMB likeli-
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hood is now a simple task. We define Lcomb ∝ e−χ
2
tot/2,

where χ2
tot = χ2

SN + χ2
BAO + χ2

CMB.

C. Parameter constraint methodology

We use two alternate codes to produce our constraints.
For the basic constraints, including the constant equation
of state of DE or the (w0, wa) description, we use a brute-
force search which computes likelihoods over a grid of
values of ∼ 5 parameters (listed below).

Alternatively, we developed a new Markov Chain
Monte Carlo (MCMC; e.g. see [36, 37]) code to determine
DE parameter constraints and figures of merit (FoMs)
for the general (∼ 13 parameters) PC description. The
MCMC procedure is based on the Metropolis-Hastings
algorithm [38, 39]. From the likelihood L(x|θ) of the
data x given each proposed parameter set θ, Bayes’ The-
orem tells us that the posterior probability distribution
of the parameter set given the data is

P(θ|x) =
L(x|θ)P(θ)∫
L(x|θ)P(θ) dθ

, (9)

where P(θ) is the prior probability density. The MCMC
algorithm generates random draws from the posterior
distribution. We test convergence of the samples to
a stationary distribution that approximates P(θ|x) by
applying a conservative Gelman-Rubin criterion [40] of
R − 1 . 0.03 across a minimum of four chains for each
model class. We use the getdist routine of the Cos-
moMC code [41, 42] to process the resulting chains;
getdist bins the chains and then smoothes the binned
distribution of counts by convolution with a multidimen-
sional Gaussian kernel.

We verified that the two codes give results that are
in excellent agreement in several relevant cases, e.g. con-
straints in the ΩM–w or w0–wa plane.

III. RESULTS: EFFECTS OF THE
SYSTEMATICS

A. Preliminaries

Before beginning our discussion of systematics, we
briefly consider the vanilla ΛCDM cosmology, where
w = −1. The cosmological parameters describing the
expansion rate are matter and cosmological constant den-
sities relative to critical, ΩM and ΩΛ. Including the nui-
sance parameters, the total parameter set is

pi ∈ {ΩM ,ΩΛ,M, αs, βc}. (10)

We combine SN constraints with BAO and CMB con-
straints and marginalize over the other parameters to
map the likelihood of ΩΛ. We find a mean value ΩΛ =
0.724 ± 0.0114. This suggests that a universe with zero

(or negative) cosmological constant is ruled out at ap-
proximately 64-σ! Amusingly, using the brute-force like-
lihood search that includes the positive and negative val-
ues of ΩΛ, we find that the combined data give a re-
markably low likelihood of zero or negative vacuum en-
ergy, even allowing for nonzero curvature: P (ΩΛ ≤ 0) ∼
10−267. Of course, in reality, the evidence for DE is not
nearly this convincing, since the likelihood in the space
of cosmological observables is certainly not expected to
be Gaussian this far away from the peak and thus would

not be described by Lcomb ∝ e−χ
2
tot/2 (we discuss a re-

lated issue in Sec. IV). Nonetheless, it is impressive how
strong the evidence for DE is with current data.

We now discuss how one goes beyond ΛCDM cosmol-
ogy by parametrizing the DE equation of state.

Previous work on the effect of systematics, such as [5],
considered the DE sector parametrized by its energy den-
sity relative to critical, ΩDE, and a constant equation of
state w. Here, we are particularly interested in extend-
ing the DE sector to allow for a time-varying equation of
state. We make two alternative choices in addition to the
constant equation of state so that the three parametriza-
tions we consider are:

1. Constant equation of state, w = constant;

2. Equation of state described with w0 and wa [43],
so that w(a) = w0 + wa(1− a);

3. Equation of state described by a finite number of
principal components of w(z) [44].

We now describe in more detail the different
parametrizations of DE that we consider (constant w,
w0 and wa, PCs) and then proceed to analyze the effects
of SN systematics on parameter constraints.

B. Constant w

Assuming that DE can be described by an equation of
state w that is constant in time, and assuming a flat uni-
verse, we calculate the SN-only likelihood in the ΩM–w
plane. We marginalize over the usual nuisance parame-
ters M, αs, and βc.

The results for SN-only constraints on ΩM and w are
shown in Fig. 4, where we illustrate the effect of the sys-
tematics by showing constraints from the full covariance
matrix Cfull on top of those which assume only the diag-
onal statistical uncertainties Dstat. The systematic un-
certainties broaden the well-determined direction in the
ΩM -w plane without elongating the poorly determined
direction much. Constraints in either parameter are not
appreciably shifted. The marginalized uncertainty for w
is σw = 0.17 for statistical errors only and σw = 0.20
when systematic errors are included. Thus, even though
systematic errors increase the area of the contours in the
ΩM–w plane by more than a factor of two, they only
increase the uncertainty of w by about 20%.
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FIG. 5. 68.3%, 95.4%, and 99.7% likelihood constraints on αs

and βc, assuming a constant value for w and a flat universe.
We use only SN data and marginalize overM, ΩM , and w. We
compare the case of diagonal statistical errors only (shaded
blue) with the full covariance matrix (red).

We also seek to understand how SN systematics in-
fluence the stretch and color parameters αs and βc, not
only because these correlations are what make SNe Ia
useful standard candles, but also because it is expected
that systematics could potentially affect these correla-
tions. In Fig. 5, we marginalize over M, ΩM , and w
to show constraints on the stretch and color coefficients
αs and βc. Of particular interest is the color coefficient
βc, which is broadly consistent with values found previ-
ously; the systematic errors shift it slightly upwards and
increase errors in both parameters by a modest amount.

C. w0 and wa

We wish to understand the constraints on the redshift
dependence of w(z), so we allow w(z) to have the form
[43, 45]

w(z) = w0 + wa z/(1 + z). (11)

Constraints on w0 and wa in a flat universe are shown in
Fig. 6. The shaded blue contours represent constraints
with only statistical SN errors assumed (Dstat), while the
red contours (Cfull) additionally include the systematic
errors. The left panel shows SN-only constraints, while
the right panel shows constraints when BAO and CMB
information is also included.

The figure of merit (FoM) for this model defined by the
Dark Energy Task Force (DETF) [46, 47] is the inverse
of the area of the 95.4% confidence level region A95 in
the w0–wa plane; to be slightly more specific, we instead
define the FoM as in Mortonson et al. [15] as

FoM(w0 wa) ≡ (detC)−1/2 ≈ 6.17π

A95
. (12)

The approximate equality in Eq. (12) becomes exact for
a Gaussian posterior distribution, in which case our FoM
is equivalent to the DETF FoM. The FoMs for various
scenarios in the w0–wa plane are given in Table III. We
find that including the systematic errors reduces the FoM
by about a factor of two to three.

FoM(w0 wa) Dstat Cfull

SN 2.28 1.16

SN+BAO+CMB 32.9 11.8

TABLE III. Values of the FoM (Eq. (12)) for SN alone (mid-
dle row) and SN+BAO+CMB (bottom row). The middle
column shows the FoMs for the statistical covariance matrix
Dstat only, while the right column shows the FoMs for the full
covariance matrix Cfull. Note that including the systematics
reduces the FoM by a factor of two to three.

D. Principal Components

We now describe the methodology of how to calcu-
late and constrain the principal components of DE [44],
which are weights in redshift ordered by how well they
are measured by a given cosmological probe and with a
given survey.

Following e.g. Mortonson et al. [14], we first precom-
pute the PCs assuming the current data centered at a
fixed fiducial model (we choose the standard flat ΛCDM
model with ΩM = 1−ΩΛ = 0.25). For this precomputa-
tion, we include data from all probes (SN+BAO+CMB)
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FIG. 6. 68.3%, 95.4%, and 99.7% likelihood constraints on w0 and wa in a flat universe, marginalized over ΩM and the nuisance
parameters. The left panel shows SN-only constraints, while the right panel shows combined SN+BAO+CMB constraints. The
shaded blue contours represent constraints with only statistical SN errors assumed (Dstat), while the red contours represent

the full SN covariance matrix (Cfull). Note that the ΛCDM model (w0, wa) = (−1, 0), represented by the black dashed lines,
is fully consistent with the data.

and use all identified SN errors. We follow the procedure
set forth by the Figure of Merit Science Working Group
(FoMSWG) [48] and parametrize w(z) by 36 piecewise
constant values in bins uniformly spaced in scale factor
a in the range 0.1 ≤ a ≤ 1.0. We fix (i.e. ignore) all
other parameters in the FoMSWG except for ΩM and
the SN Ia nuisance parameter3 M because they are not
probed by the SN Ia data, and at the same time they
are effectively marginalized over in the BAO and CMB
data in the distilled observable quantities, A(z) and R
respectively. We fix curvature to zero.

We therefore have a 38 × 38 Fisher matrix (or really
a 45 × 45 Fisher matrix with seven parameters fixed),
corresponding to parameters

pi ∈ {w1, . . . , w36,ΩM ,M}. (13)

We marginalize over ΩM and M and then diagonalize
the remaining 36-dimensional Fisher matrix of the piece-
wise constant w parameters. The resulting eigenvectors

3 In the Fisher matrix precomputation of the PCs we assume a sin-
gle M parameter as per usual practice (and following the FoM-
SWG parametrization), but in the actual constraints on the cos-
mological parameters we adopt two such parameters as described
in Sec. II A. To the extent that the PCs will be correlated any-
way due to the differences between real data and assumed “data”
going into the Fisher matrix, this subtle difference will be unim-
portant.

– shapes that describe w(z) – are the PCs ei(z), and we
show the 10 best-determined of these PCs, e1(z)–e10(z),
in Fig. 7.

The equation of state can be described as [49]

1 + w(z) =

N∑
i=1

αiei(z), (14)

where αi are amplitudes for each PC ei(z). While the
Fisher matrix tells us the best accuracy to which these
PCs are measured using the assumed data set (these ac-
curacies are related to the eigenvalues λi via σ(αi) =

λ
−1/2
i ), we are not interested in this; rather, we would

like to constrain the PCs using actual current data.
We then feed the shapes in redshift of the first several

PCs to the MCMC procedure to constrain these (and a
few other, non-w(z)) parameters.

Finally, in our parameter search we impose weak priors
on the PCs. Following [49] we impose a hard-bound prior
on each αi, enforcing its contribution to excursions in
the equation of state to the region |1 + w(z)| ≤ 1. This
approach yields top-hat priors of width [15]

∆αi =
2

Nz,PC

Nz,PC∑
j=1

|ei(zj)| (15)

centered at w(z) = −1 or αi = 0. As we will demon-
strate, these priors are much wider than the allowed
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FIG. 7. The first 10 PCs, e1(z)–e10(z), used in our analysis,
in order of increasing variance (bottom to top). The PCs
were obtained assuming the observable quantities centered at
the fiducial ΛCDM model, but with actual errors from the
current data. See text for details.

ranges for many of the individual PCs, meaning that our
principal results are largely unaffected by the prior (In-
deed, we verified this explicitly by constraining the PCs
without the prior).

The pairwise constraints on all 13 parameters (ΩM , the
PC amplitudes α1−α10, and the nuisance parameters αs
and βc) are shown in Fig. 8. The black curves represent
constraints from the diagonal statistical SN errors only,
while the red curves correspond to the full SN covariance
matrix. Overall, the systematic errors broaden and shift
the contours slightly.

In Fig. 9, we show the individual marginalized con-
straints on the 10 PC amplitudes. When we assume only
diagonal statistical errors, three PCs have a ratio of er-
ror to the rms value of the top-hat prior less than 1/3,
and six PCs have a ratio less than 1/2. For the full
covariance case, two and five PCs have error/prior ra-
tios less than 1/3 and 1/2, respectively. From this, we
are extremely encouraged by the fact that constraints on
several PCs are very good even with current data, a re-
sult incidentally also found by [14] using a slightly differ-
ent combined “current” data set that, most notably, did
not include the BOSS and WiggleZ BAO measurements.
Here we again see that the SN systematics broaden the
constraints slightly; however, as we show just below, the
cumulative effect of the systematics on the FoM is not

negligible.
We finally calculate the generalization of the DETF

FoM to PCs. As defined in Mortonson et al. [15],

FoM(PC)
n ≡

(
detCn

detC
(prior)
n

)−1/2

, (16)

where Cn is the n×n covariance submatrix of n PCs and

detC(prior)
n =

n∏
i=1

(
∆αi√

12

)2

is the determinant of the top-hat prior covariance for the

n PC coefficients. Each (∆αi/
√

12)2 term refers to the
rms value of the top-hat prior, where ∆αi is the width of
the top-hat prior as calculated in Eq. (15).

FoM results are shown in Fig. 10, where we show the
FoM as a function of the number of PCs included. The
top panel shows the FoMs with and without SN system-
atic errors, while the bottom panel shows the correspond-
ing ratios of the two cases. We see that the FoM degrada-
tion with the addition of SN systematic errors asymptotes
to about a factor of three to four when about five PCs are
included and after that remains relatively constant. We
therefore conclude that only the few lowest PCs are af-
fected by current systematic errors. We suspect that this
is due to the fact that the effect of the systematics is rel-
atively smooth in redshift, and therefore systematics do
not become degenerate with the higher PCs that wiggle
in z (see the PC shapes in Fig. 7). It is somewhat fortu-
itous that higher (n & 5) PCs seem to be unaffected by
systematics, since it is precisely those higher PCs that
are difficult to measure accurately; however, it may be
the case that systematics in future data will behave dif-
ferently and affect the higher components.

IV. EFFECT OF FINITE DETECTION
SIGNIFICANCE OF BAO

In an interesting paper, Bassett and Afshordi [50]
pointed out that for marginal detections of cosmologi-
cal observable quantities, a Gaussian assumption for the
likelihood may be a poor one, especially for models that
are several-σ away from the central value of the observed
quantity. This happens because the usual Gaussian likeli-
hood implicitly ignores the possibility that the observed
quantity has not actually been detected in the data at
all. That possibility may have non-negligible probability,
and in that case a flat likelihood in the observable may
be more appropriate. In other words, writing a total like-
lihood of parameters p as a function of data vector d, we
have

P (p|d) = Pdetect P (p|d,detect) (17)

+ (1− Pdetect)P (p|d,noise)

where Pdetect is the probability that the observable quan-
tity has actually been detected and P (p|d,detect) is the
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FIG. 8. 68.3%, 95.4%, and 99.7% likelihood constraints for all pairwise combinations of the 13 cosmological parameters using the
combined SN+BAO+CMB data. Diagonal boxes show the 1D marginalized likelihood for each parameter. The black contours
illustrate the case of diagonal statistical SN errors only (Dstat), while the red contours (Cfull) also include the systematic SN
covariance matrix. The parameter ordering is (top to bottom, or left to right): matter density relative to critical ΩM , the 10
PC amplitudes α1–α10, and the stretch and color nuisance parameters αs and βc. Note the good constraints on all parameters
except for the last few PC amplitudes.

likelihood of the cosmological parameters in that case.
The cosmological parameter likelihood P (p|d,noise) cor-
responds to the case that the observable feature was ac-
tually noise, and it can be represented by a flat distribu-

tion in the parameters p. Most BAO analyses effectively
assume that Pdetect = 1, thus ignoring the higher-than-
expected tail in the overall likelihood coming from the
nonzero second term on the right-hand side of Eq. (17).
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full SN covariance matrix. The black and red number in each panel shows the ratio of the PC error to the rms of the top-hat
prior for the statistical-covariance and full-covariance case, respectively. Note the good constraints on all PC amplitudes except
for the last few.

If the BAO feature has been detected at very high signifi-
cance, then this is a good assumption, but it is not a pri-
ori clear that this is the case with all of the current BAO
surveys which typically have several-σ detection signifi-
cances.

To account for the diminished power of the observa-
tions to discriminate between cosmological models when
detection significance is not high, Bassett and Afshordi
[50] suggest a fitting function which replaces the usual
Gaussian χ2 expression ∆χ2

G with

∆χ2 =
∆χ2

G√
1 +

(
S

N

)−4

∆χ4
G

, (18)

where S/N is the signal-to-noise ratio or detection signif-
icance of the observable feature or quantity. With this
prescription, the quantity ∆χ2 is equal to its Gaussian
counterpart for departures from the best-fit model that
are small compared to the signal-to-noise of the observed
feature, but it asymptotes to a constant “tail” (S/N)2 in
the opposite limit, when ∆χ2

G � (S/N)2.
Here we apply this reasoning to the measurement of

the BAO feature. The significances of the detection of
the BAO feature are 2.4σ (corresponding to S/N = 2.4)
for 6dF [28], 2.8σ for WiggleZ [31] (combined for three
redshift bins), 3.6σ for SDSS [29] (combined for two red-
shift bins), and 5.0σ for BOSS [33]. We expect that,
once the probability of non-detection of the BAO feature

has been included, the BAO constraints will change, es-
pecially for surveys with lower significance of detection
and for 99.7% contour regions. This has in fact been con-
firmed by Bassett and Afshordi [50] for the case of the
SDSS BAO data alone.

Fig. 11 shows the BAO-only (left panel) and
BAO+CMB+SN (right panel) constraints in the ΩM–w
plane with and without the finite detection of the BAO
features taken into account4. Note that the difference is
modest in the BAO-only case and negligible in the com-
bined case. This is as expected, especially given that
some of the strongest BAO data sets (e.g. BOSS) also
have the highest detection significances of the BAO fea-
ture.

Note also that there is nothing BAO-specific to the ef-
fects of the finite detection significance. While the CMB
is detected with very high confidence and thus does not
warrant a similar analysis, it could be applied to SNe
Ia where, for example, a few percent of SNe may not
be Type Ia5. Given the full probabilistic classification of
each SN on whether or not it is Type Ia [51, 52], one could

4 The results in the w0–wa plane are qualitatively similar, and we
do not show them here.

5 Conley et al. [5] find that the fraction of non-Ia SNe rises from
zero at low redshift to O(10%) at z ∼ 1; however, their modeling
is very conservative, and the true fraction of non-Ia SNe is likely
very small in the current data sets.
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FIG. 10. Top panel: FoM as a function of the number of PCs
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and the red line showing the FoM with systematics included
(See Eq. (16) for the definition of the FoM). Bottom panel:
ratio of the FoM with systematic errors considered in the SN
Ia data to that with only statistical errors considered. BAO
and CMB constraints were included in both cases. Notice
that the FoM ratio levels off after approximately five PCs
have been included. Note that here we have considered the
first 15 PCs (as opposed to 10 in Figs. 7-9) to show that
the FoM indeed flattens off as the PCs become very poorly
constrained.

carry out a similar analysis, which in this context would
be how imperfect purity of the SN Ia sample affects the
constraints on cosmological parameters. We suspect the
results would be even less discrepant relative to the usual
perfect-detection analysis than in the case of BAO, and
we do not pursue such an analysis in this paper.

In conclusion, the finite detection significance of the
BAO feature in large-scale structure surveys leads to a
small but discernible weakening of the constraints on cos-
mological parameters.

V. CONCLUSIONS

In this paper, we have investigated the effects of sys-
tematic errors in current SN Ia observations on DE pa-
rameter constraints. We accounted for the systematic er-
rors in SN Ia observations, including the effects of photo-
metric calibration, dust, color, gravitational lensing, and
other systematics by adopting a fully off-diagonal covari-
ance matrix between ∼ 500 SNe from the SNLS compila-
tion (see Fig. 2). We extended the similar analysis from

Conley et al. [5] by constraining the temporal evolution
of the equation of state of DE described by the pair of
parameters (w0, wa) as well as a much richer description
in terms of 10 PCs of the equation of state (shown in
Fig. 7). We combined the SN Ia constraints with data
from BAO from four different surveys (see Fig. 3) as well
as the principal information on DE given by the acoustic
peak measurements of the CMB anisotropies measured
by the WMAP experiment.

The constraints on the simple parametrizations of DE
are affected by the systematics, but the overall con-
straints are still strong even after their inclusion (see
Figs. 4 and 6). More importantly, we found that system-
atic errors affect the constraints somewhat, reducing the
w0–wa FoM by a factor of about three (see Table III),
while the generalized PC-based FoM is degraded by a
factor of three to four (see Fig. 10). However, as the PC
analysis shows, this degradation is mainly restricted to
the first few numbers (PC amplitudes) describing DE. In
fact, what is particularly impressive about current data
is that roughly five PCs are well-constrained even in the
presence of systematic errors (see Figs. 8 and 9).

In the spirit of testing for systematic effects in current
data constraining DE, we also wondered if the relatively
low detection significances of BAO features, ranging from
about 2.4σ to 5.0σ in various surveys, change the over-
all cosmological constraints. While not a systematic error
per se, the small but non-negligible probability that the
BAO feature has not been detected in some of these sur-
veys implies that the posterior probability of cosmologi-
cal parameter values asymptotes to a small but nonzero
value far from the likelihood peak [50]. We find that,
while the BAO-only constraints are somewhat affected,
the combined constraints are not (see Fig. 11).

From all this, we conclude that current systematic er-
rors do degrade DE constraints and FoMs, but not in a
major way. Given that future constraints are forecasted
to be much better, continued control of current system-
atic errors remains key for progress in characterizing DE.
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