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We describe an efficient, construction independent, alyoit test to determine whether Calabi—-Yau three-
folds admit a structure compatible with the Large Volume oiostabilization scenario of type 11B superstring
theory. Using the algorithm, we scan complete intersediuhtoric hypersurface Calabi—Yau threefolds with
2 < h*' < 4 and deduce that18 among4434 manifolds have a Large Volume Limit with a single large
four-cycle. We describe major extensions to this surveyckvhre currently underway.

Introduction—A realistic string model of low energy physics scarcity of explicit examples [4, 6-8]. Although some out-
requires the moduli of the associated compactification to betanding work studying classes of appropriate manifolds ca
stabilized. The Large Volume Scenario (LVS) [1] presentsbe found in [7, 8], the density of the Swiss Cheese geometries
one of the most promising avenues to such a goal. In this apwithin the standard constructions of Calabi—Yau threefadd
proach a combination of fluxes, non-perturbative effeaid, a not known. It is the aim of this letter to improve upon the sit-
o’ as well as loop expansion corrections are employed to gensation by providing an algorithm that scans for Swiss Cheese
erate a stable vacuum which is well within the regime of va-manifolds in as general a manner as possible.
lidity of a supergravity description of the theory. One part In particular, this algorithm is independent of the constru
larly nice feature of the LVS is that it avoids the “fine tuning tion of the Calabi—Yau threefold, can yield definite negatis
of flux parameters required by other scenarios such as thgfell as positive results, and produces more general example
of KKLT [2, 3]. The LVS instead balances non-perturbative than those of the form (1). The analysis is exact and ana-
and perturbative effects in a controlled manner by explgiti |ytic; we can look for any number of large and small cycles.
a situation where the overall volumeéof a smooth Calabi- To illustrate the use of this algorithm we present a scan over
Yau threefold is exponentially larger than the scale asso-the complete intersection Calabi—Yau manifolds in prosluct
ciated with four-cycles wrapped by certai3-Brane instan-  of projective spaces (CICYs) as well as Calabi—Yau mansfold
tons. Manifolds which are capable of supporting an approrealized as hypersurfaces in toric varieties, viith () < 4.
priate structure of small and large cycles are termed “Swis§ve will see that there are no Swiss Cheeses among the former
Cheese.” type of geometries, while the latter yields a rich set of new
One starting pointin the construction of a LVS string modelexamples.
is to takeX’ to be a smooth Calabi-Yau threefold where the \ye stress that we will be scanning for Calabi-Yau man-

overa!l volume) takes a distinctive diagonal form in terms jfg|ds supporting perturbative structure which is necsssa
of a single “large” four-cycle and a number of “small” four- o the existence of a stable large volume vacuum. This

cycles: structure is not, however, sufficient to guarantee the pieese
3 3 of such stable configurations, since one must still checkehe
V™ Targe ~ ZTa,smau : (1) manifolds support some further necessary non-pertuativ
@ structure. The latter includes, but is not restricted t@ th

More general possibilities are available [4], however, aad existence of the E3-brane instanton contributions to the

such we shall refer to Calabi—Yau manifolds of the type (1) asuperpotential mentioned earlier. These will be addressed

“Strong Cheese.” With this example geometry, the majority o future work.

four-cycles that are wrapped by#rane instantons are small Swiss Cheese Calabi—YauWe begin with some geometric

while the Calabi—Yau volume, which gets exponentiallyéarg preliminaries. LetD; C X be four-cycle divisors oft. The

addresses phenomenologically important hierarchy quresti  triple intersection numbers; ;. are defined with respect to

Moreover, the existence of the large cycle proffers a flat pothe basis{[D;]} for H''1(X;Z) = Div(X). The symplec-

tential for cosmological inflation. Different numbers ofde  tic Kahler(1,1)-form J is parameterized by!-!(X) Kahler

and small cycles are also possible and interesting to saldy, parameters’,

though it should be noted that the main theorem of [5] states

that all but a maximum of9 Kahler parameters can always pist

be interpreted as describing resolutions of singularities J = Z t'[Dy] 2)
Despite the promising features of the LVS, there is a redativ P



which endows the Kahler parametefswith a natural inter-

initially arbitrary basis transformation that yields a {itaon

pretation as two-cycle volumes. Likewise, the holomorphicinto small and large four-cycles.

(3,0)-volume form(2 that specifies the complex structure de-

pends upork?!(X) parameters.
The overall volumey of X' is determined by the Kahler
parameters and intersection numbers:

1 iy
v J/\J/\JZEZ/{ijkttth.
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In a similar fashion, the volumes of the four-cyclBs C X
are related to the parametetdy

v 1 1 :
ﬁ:E/X[Di]/\J/\Jzizkﬁijktjtk. (4)
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We define the rotation
Bl

T — E AiJFj

J=1

(6)

for some non-degenerate matrix € GL(h'1;Z). In what
follows, we will search for suitable solutions for the easi
of A such that the divisors; are separated out into the two
desired classes:

large cycles,,: 77,

1= 1,---7Nlargea
small cyclesrs,: 7o, @ = Niarge +1,..., A" (X) .
(7)

The problem of identifying Swiss Cheese geometries reduces

The generic Calabi—Yau threefold admitting a large volumen essence to characterizing the LVL in an arbitrary basis,
vacuum has a number of “small” four-cycles, whose volumesietermining whether it exists, and checking that the irevers
remain finite in the large volume limit (LVL), where the three Kahler potential has the correct scaling properties.
fold’s volumeV and the volumes of the “large” four-cycles Rewriting the Swiss Cheese Conditierin order to deduce

become parametrically large. The criterion férto be com-

whetherX is Swiss Cheese, one could simply solve for the

patible with the LVS is in [4]. For the convenience of the volume of X' as a function of the and check the scaling of

reader we reproduce parts of this discussion.

Let o TNt remain small as
TNeman+15 -+ -5 ThRLI(X) — 00, sendingV — oo. The
low energy limit of type IIB string theory in the LVS is
ad = 4, N = 1 supergravity. The scalar potenti#l,

T1y- -

the inverse Kahler potential directly. However, this regpro-
cedure turns out to be extremely inefficient computatigriall

all but the very simplest of cases. Instead, we reformutage t
conditions for a large volume vacuum in terms of the Kahler
parameters.

which is constructed from the superpotential and the Kahle Restricted to each divisor four-cycle;, the intersection
potential, admits a set of non-supersymmetric AdS minima atorm reduces to a symmetric matr()c(i))jk = Riji. Fur-

exponentially large volume located Bt~ e%™ for all small
cyclesi = 1,..., Ngman and parameters; appearing in the
superpotential if and only ib?1(X) > Abl(Xx) > 2 and

each small cycle of volume; behaves like a blow up mode

resolving a point-like singularity. The first of these cadiahs

leads us to consider only Calabi—Yau threefolds with negati

Euler characteristic.
The essential property ot established in [4] is that the
inverse Kahler metric for the small four-cycles associate

thermore, let = (¢', ..., t") denote a (column) vector of the
Kahler parameters with respect to the expansion of the sym-
plectic form in (2). The four-cycle volumes (4) can then be
rewritten asr; = i tth = L%kt wheret® refers to

the transposed row vector of Due to the correspondence
between the four-cycle volumesand the Kahler parameters
t, the LVL sends particular linear combinations of the Kahle
parameters’ to infinity. We split the Kahler parameter vector
into the form

the volumesr,, exhibits non-generic scaling properties with
respect to large cycles. For example, diagonal componénts o (8)
the inverse Kahler metric do not have a leading term which

scales with the second power of large divisor volumes buwherel 4 and~, are positive real numbers. The (potentially
rather has the form different) large volume limits correspond to the limitg —

oo for some or severall = 1,..., Mayge. ThereforefLA
and Fsa fora = 1,..., Ngman refer to the large and small

Koy ~ Vo - (5)
_ N o directions in the Kahler parameter space. After inserting
This condition, which is necessary so that terms do not appeap|itting into (4), we obtain

in the potential which are parametrically larger than these
sponsible for the large volume vacuum, turns out to be ex-
tremely restrictive.

Crucially, in describing the Swiss Cheese condition, we (9)
have assumed a partition of the geometry into large and small
four-cycles. For an arbitrary geometry, the basisbor(X) Note that the first two terms in this expansion contain powers
thatis natural given how the space was constructed may not o the associated large direction parameters whereas the
compatible with such a partition even if a large volume vac-ast term is independent of them.
uum exists. In an arbitrary divisor basis, the large and kmal Due to the general basis change (6), we can pick/éiaye
cycles generically mix together. In performing an algarith  number ofrs to correspond to our large four-cycleswith
scan for Swiss Cheese manifolds, it is important to include athe remaining Kahler moduli corresponding to small cycles

F: )\AFLA + ’Yat_’sa P

1 o o . .
T, = 5 [/\A)\B . (tEAK(i)tLB) 4+ 2A 47 - (tiAﬁ(i)tsb)

+ YV - (B K ts,)]
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7. From the\ power counting in the expansion, the scaling We must solve these fot;7, A4, 4, FLA, andfsa. We point

of the large cycles and small cycles then demands out that the last condition, which checks that the condgion

. - o ~ can be solved in the interior of the Kahler cone, statesttigt
large cyclest: ¢, kntL, #0 OR &y, knts, # 0, cone is simply the positive orthant. In the cases we shalystu

small cyclesr,: n(a)FLA =0 here this has been ensured by an additional transformation o

(10)  the triple intersection form, and we have restricted owvesel
for the respective divisors, such that as eagh— oo, one  to cases with simplicial Kahler cones [13]. In general aenor
combination of the large cycle volumes — oc. complicated description of this condition must be input.

Aside from the distinction between large and small cycles, The system (15) contains many redundancies in the vari-
there are also the conditions (5) on the inverse Kahlerimetr ables for which we are solving. Given their definition (8), we
In the expansion in inverse volume, for small cycles are only concerned about the direction of the vectarsthe

K-1 4 A2 Kahler mogluli space, suc_h that we can u;ehthé r.e_durjdan-
A — it -+ O(V7?) (11)  cies of their lengthgf] to fix some of the inequalities in (15)
v 9 4 to equalities. Furthermore, the basis change matyixis not
the second term goes to zero in the LVL by construction asequired to be an arbitraxy L (h"'; Z) matrix in order to iso-
the small cycle volumes, remain finite when — oo. In |ate the small cycles from the large cycles, and some of the
terms of the matrix/vector notation for the restricted isée-  residual freedom can be used to fix some of the components
tion matrices on the divisors, (11) in the limit asserts that of A. By these means, the second and fourth inequalities in
K-1 4 (15) can be set to plus or minus unity.
oo . . . . .
v —§(H(a)f)a (12) In solvmg the res_ultlng equations, or in proving that Fhey
) ) ) ) do not admit a solution, we take a two step approach. Firstly,
and, because of (5), it must scale @,. Since this scaling e analyze the first, second, and fourth equations of our sys-
only involves small cycles, the large volume direction F@s t (o which, after the redundancy fixing above, describe an
vanish on the right hand side of (12), leading to the condlitio algebraic variety. Using methods of computational algiebra
(,{(a){LA)a —0. (13)  geometry and in part.icular .the progre®n ng_ul ar [9], we
check the complex dimension of the solution space of these

By (10), this requirement is automatically satisfied forall  equations using a Grobner basis computation [10]. If the as
We can express the non-triviality and non-colinearity & th sociated dimension is minus one, i.e., if the equationsritesc
vectorstz,, andts, by requiring the empty variety, there are, in particular, no real sohgifor
S S S S the variables and the case of interest admits no large volume
det (tLN EREL I NRLUEEER ’tSNsmn) #0. (14) " vacuum. If the dimension of the ideal is greater than or equal

To establish the possibility of a large volume vacuum, itto Z€r0, We mqst solv_e the as_sociated equations over the rea|
suffices to check whether a solution to all of the conditions,° facilitate this _solutlon, which oceurs In the §econd of ou
we have described exists. two steps, we primary decompose t_he ideal using the GTZ al-
The Algorithm— The input data for our algorithm are the gorithm [11]. This returns sets of simpler equation sets, on
triple intersection numbers and a description of the Klé\hle]cor each of the ireducible solution spaces of th_e system. _
cone of the Calabi-Yau to be considered. Since these data S€condly, we proceed to search for a solution to the sim-
will not necessarily be provided in a basis compatible withPlified equation system, if one exists, with the remaining

the large and small cycle structure of the LVL, we considefnequalities in (15) added back in. This analysis is per-
the associated basis of four-cycle volumes to be the tilsed o formed using standard techniques available in packages suc
given in equation (6). asivat hemat i ca. The simplification afforded in these cases

Since X has non-degenerate intersection numbers, b)py the primary decomposition of thg .initi_al equation se.t is
Poincaré duality we may invert (4), which relates thand enough to allow the computation to finish in reasonable time.

the7;. This allows us to eliminate the two large cycle condi- N fact, we find that cases which are not ruled out by the di-
tions, as their existence follows from the non-colineatiiy- mensmnlcheck in the first step of our analysis are almost al-
dition as the complement of the small cycles. Combining allWays Swiss Cheese. N

we have learned, this then leaves us with the following min- The output consists of a Boolean determining whether the

imal set of conditions to find a Calabi-Yau threefold capablemanifold is Swiss Cheese and, in the case of a positive result
of admitting a LVS vacuum: a matrix A explicitly identifying the large and small cycles in

terms of the original basis of four-cycles.

. 7 - Results— A scan over the Calabi—Yau manifolds defined as
small cycles: Ao (k7 L{) =0, complete intersections in the products of projective space
basis change: det[A;7] #0, (CICYs) showed that there are no Swiss Cheese geometries

—1 e TA Gl 7OV of this class forh!:! < 4. Because CICYs at low!:! are all
K scaling: {o‘ Aa (’i@tS“)J 70, (19) favorable, they lack the blowup cycles that could be associ-
non-triviality: ~ det (tr,,...,ts,,...) #0, ated with the small cycles in the LVL, and thus this is not a
Kahler cone: A4 (fL,)" + Ya(ts,)" > 0 surprise. Nevertheless, this class, along with the knowis$Sw
Cheese manifolds, provides a useful test of the algorithm.
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Implementing the algorithm on the Kreuzer—Skarke datasethe scanning algorithm provides the base change matrix

of hypersurfaces in toric ambient spacesifof < 4 resultsin

such that by a rotation of the four-cycles= Aﬁ%, we obtain

418 Swiss Cheese Calabi-Yau manifolds with one large cycle.

The results are summarized in the following table.

|n1[# of Cases Scanng#d of Swiss Cheegé of Strong Cheede

39 22 22
266 94 50
4 3513 302 106

The Kreuzer—Skarke database contains, respectigély,

244, and 1197 polytopes whose resulting manifolds have

0 1 0 0 T 3(t1 4 2te +t3 + t4)?
-3 1 0 1 | 1(t1 + 3ts)?

6 —1 —2 —2 ol | 430+ t)?
31 1 0 Fa $(t1 + 3ta)?

1 = 2, 3, and4. In many cases there are many possible In this four-cycle basis, the volume (16) takes the Strong
triangulations for each polytope, and thus the number of geCheese form described in (1):

ometries to consider a9, 306, and5930 for A1 = 2, 3,

and 4, respectively. Of these, the above table counts those

whose Kahler cones are simplicial. We note that while the
overall volume for allh''! = 2 Swiss Cheeses can always be

1 2 3 3 3
V= T (\/575 — 2\/5751 — ng — 2\/57’53 a7

recast in the Strong Cheese form in (1), this can only be done Our initial scan of smooth compactification manifolds

for 50 of theh!'! = 3 cases and06 of theh!'! = 4 cases.

with small numbers of Kahler parametei$! < 4 shows

One can ask how far ih®! it will be possible to push these that the Calabi—Yau threefold landscape is richly popualate

scans. In particular, the Grobner basis computation ped

by Swiss Cheese geometries. This is fortuitous as many

by Si ngul ar is a highly optimized implementation of the more constraints must be imposed upon a Calabi-Yau
Buchberger algorithm. This has a worst case scenario doubtbreefold than those considered here if it is to give rise to
exponential scaling behavior in the number of unknown vari-a2 phenomenologically acceptable vacuum (as emphasized

ables [12]. Solving (15) foh!'! < 4 can be done in a matter from a scanning perspective in [8]).

In a future publica-

of seconds or minutes, and for the CICYs it has been checkelipn [13], we will present the results of performing the scan
that scans up th!>! = 8 can easily be finished on a standard outlined here over as large a set of Calabi-Yau threefolds
desktop machine. At this stage in our analysis, however, thes possible. Interestingly, requiring the existence of &LV

full possibility of removing redundancies from the variebl

already constrains the space of allowed intersection ntsnbe

of equation system (15) has not been utilized. At present, isignificantly [13]. The future of this research program will

is not clear how far beyond!:! = 8 it will be possible to

then consist of cataloguing ever more detailed properties o

push the algorithm once the potentially double exponentialhese geometries in a systematic way. Initial steps in this
improvement in calculation speed afforded by removingregard will be to catalogue which structures are available
additional redundancies is incorporated. The results isf th for both moduli stabilization and model building on each

work will be presented in a forthcoming publication [13].

manifold, and thus which variants of the LVS can be realized

An Example and Future Wark-To provide a concrete exam- in each case. The database will be made freely available in a
ple of a Swiss Cheese Calabi—Yau found by this algorithm lestandardized format so that our results may be exploited and

us consider a case whelé! = 4. The intersection form for
this case gives the following expression for the volume (3):

6V = (2t5 + 3t7(6tg + t3 + ta) + Oty (4t — 15 — 13
+Ato(ts +tq)) + 3(8t3 — 5t5 — 6t3t, — 6t3t;
—5t3 +12t3(t3 4 t4) + 6ta(ts + 1)) . (16)

supplemented by other groups.
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