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Abstract

To obtain a SM-like Higgs boson around 125 GeV in the Minimal Supersymmetric Standard

Model with minimal gauge mediation of supersymmetry breaking (GMSB), a heavy stop at multi-

TeV level is needed and incurs severe fine-tuning, which can be ameliorated in the framework

of the deformed GMSB with visible-hidden direct Yukawa interactions (YGMSB). We examine

some general features of the YGMSB and focus on the scenario with Higgs-messenger couplings

(H−YGMSB) which can automatically maintain the minimal flavor violation (MFV). It turns out

that such a Yukawa mediation scenario can give a large −At and −m2
t̃L,R

, leading to a maximal

stop mixing, and thus can readily give a light stop (t̃1) below the TeV scale. However, we find

that in the minimal H−YGMSB scenario, m2
Hu

is too large and then the electroweak symmetry

breaking is inconsistent with the large stop mixing. To solve this problem, we modify the hidden

sectors in two ways, adding a new strong gauge dynamics or introducing the (10, 10) messengers.

For each case we present some numerical study.
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I. INTRODUCTION

Supersymmetry (SUSY) elegantly stabilizes the electroweak scale. However, SUSY must

be broken and the SUSY-breaking must happen in some hidden sector and then mediated to

the visible sector. In order to avoid the catastrophic flavor-changing neutral currents (FC-

NCs), the mediation mechanism must be rather special. Since gauge interaction is flavor

blind, the gauge mediated SUSY-breaking (GMSB) [1, 2] can generate a flavor-universal soft

spectrum and suppress FCNCs. In addition to realize the minimal flavor violation (MFV) [3],

the GMSB has some other virtues, e.g., it has only a few parameters and hence very pre-

dictive. Furthermore, it may accommodate the natural SUSY [4, 5] since the stop/gluino

renormalization group equation (RGE) effect can be reduced considerably by lowering the

messenger scale.

The present experimental results also indirectly support the GMSB. Firstly, the LHC

SUSY search [6, 7] did not find any colored sparticles. Such null search results can be natu-

rally understood in the GMSB where the squarks and gluino lie at the top of the hierarchical

soft spectrum. Secondly, the dark matter (DM) detection experiments (like XENON100 [8])

have so far yielded null results. These results can be also naturally interpreted in the GMSB

where the DM is the superweakly interacting gravitino.

However, the LHC hints of a SM-like Higgs near 125 GeV [9] place the minimal GMSB in

an uncomfortable situation [10]. In the MSSM, the SM-like Higgs mass mh at the tree-level

is upper bounded by mZ , so a large stop radiative correction is required to lift up mh:

m2
h = m2

Z cos2 2β +
3m4

t

4π2v2

[
log

m2

t̃

m2
t

+
X2

t

m2

t̃

(
1− X2

t

12m2

t̃

)]
, (1)

with the average stop mass mt̃ =
√
mt̃1mt̃2 and the stop mixing Xt = At−µ cot β. To obtain

a Higgs mass mh ≈ 125 GeV without multi-TeV stops (heavy stops cause severe fine-tuning

and lead to null results for the future LHC search), we should go to the maximal mixing

scenario with |Xt| ≃
√
6mt̃ [11]. Even in this ideal case mt̃ should be close to the TeV

scale [12]. The maximal mixing scenario is hard to realize in the minimal GMSB where At is

only generated from the RGE running (mainly from the effects of the gluino mass) which, at

the same time, also increases stop masses. So it is urgent to explore some deformed GMSB

which can give a large At and/or decreased stop soft mass at the boundary.

In order to obtain a large stop mixing, we in this work turn to the deformed GMSB with
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direct visible-hidden Yukawa couplings (YGMSB) (note that the YGMSB considered here

is different from the framework proposed in [13], which focuses on the interactions between

the messengers and another hidden sector). Actually, the Higgs-messenger couplings have

been studied in the early days of the GMSB [14] and more recently are studied for various

purposes, e.g., dynamically solving the µ/Bµ−problem [15, 16], making the next-to-minimal

supersymmetric model (NMSSM) with GMSB viable [17], breaking a dark U(1)X gauge

symmetry [19] or generating the seesaw scale in neutrino physics [18]. In this work we will

first investigate some general features of the YGMSB and then focus on the models with

Higgs-messenger coupling, where the MFV is automatically maintained. We find that in

such models the Yukawa interactions can give large −At and −m2

t̃L,R
, driving the stop sector

towards maximal mixing. However, this will lead to a large m2
Hu

, rendering the electroweak

symmetry breaking (EWSB) inconsistent with the large stop mixing. To tackle this problem,

we explore two realistic hidden sectors by introducing a new strong gauge dynamics or using

(10, 10) messengers.

The paper is organized as follows. In Section II we present some general insights into the

SUSY breaking soft spectrum of the YGMSB and discuss the application to the MSSM. In

Section III we focus on the YGMSB with the Higgs bridge. The discussion and conclusion

are given in Section IV. In appendices A and B we present some details of our calculations.

II. VISIBLE-HIDDEN YUKAWA COUPLINGS

In this section we first present a brief review on the basic technique used in this work

and then give a general analysis for the features of the soft spectrum in the YGMSB.

A. The Wave Function Renormalization Method

The soft SUSY-breaking effect can be treated in a supersymmetric way [20] and the

renormalized spurion superfields (e.g., the wave function Z), which encode the SUSY-

breaking information, can be utilized to extract the soft terms [21]. Here the crucial observa-

tion [20] is that, after crossing the messenger threshold M , the wave function Z develops the

θ−dependence through the replacement M →
√
XX†, where X = M + Fθ2 is the spurion

field parameterizing the typical scales of the hidden sector and
√
F (≪ M) characterizes the
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SUSY-breaking scale.

To illustrate the method, we consider a visible field Q with renormalized wave function

ZQ. The Kahler potential of Q is

L =

∫
d4θZQ(X,X†, µ)Q†Q, (2)

where µ is the renormalization scale. We expand ZQ in θ and θ̄ and employ the field

redefinition

Q′ = Z
1

2

Q

(
1 +

∂ lnZQ

∂X
Fθ2

)
|X=MQ, (3)

with ZQ being the scalar component of ZQ. Now Q′ has a canonically normalized kinetic

term and its soft mass square can be read from the coefficient of θ̄2θ2:

m̃2
Q(µ) = −∂2 lnZQ(X,X†, µ)

∂ lnX ∂ lnX†

∣∣∣∣
X=M

FF †

MM †
≡ −Z ′′

Q|X=M
FF †

MM †
. (4)

If Q interacts with the visible matters via an operator λQQ1Q2, through the same manipu-

lation we get a corresponding trilinear soft term λAλQQ1Q2 with

Aλ =
∂ lnZQ(X,X†, µ)

∂ lnX

∣∣∣∣
X=M

F

M
= Z ′

Q|X=M
F

M
. (5)

Hereafter we define F/M ≡ Λ.

The derivatives Z ′
Q and Z ′′

Q can be explicitly expressed in terms of the anomalous dimen-

sions, the beta-functions of the couplings and their discontinuities. We formally integrate

the one-loop RGE γQ = −1
2

d lnZQ

dt
(t = ln µ

ΛUV
with ΛUV a referred scale) [36] and get

lnZQ(µ)

lnZQ(µ0)
= −2

(∫ ln M
ΛUV

ln
µ0

ΛUV

dt′γ+
Q +

∫ ln µ
ΛUV

ln M
ΛUV

dt′γ−
Q

)
, (6)

where µ < M < µ0. The above quantities denoted with superscripts + and− are respectively

defined above and below the messenger mass scale. Then we obtain

m̃2
Q|µ=M =

1

2

∑

λ

[
β+
λ

∂(∆γQ)

∂λ
−∆βλ

∂(γ−
Q)

∂λ

]

µ=M

Λ2, (7)

Aλ(µ)|µ=M =−
∑

Q

∆γQ|µ=MΛ, (8)

with ∆X = [X+ − X−]µ=M and βλ = dλ/dt. From the simple loop-factor counting one

can find that the soft mass square and trilinear term respectively arise at the two-loop and

one-loop level.
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In the above derivations we have assumed that γj
i is a diagonal matrix in the Qi−flavor

space. In this case, it is more convenient to rewrite the derivatives in Eq. (7) with respect

to λ2, and redefine the beta function as

βλ =
dλ2

dt
= 2λ2

∑

Qλ

γQλ
, (9)

where Qλ runs over all fields participating the interactions involving λ. We will use this

convention in the following. The previous discussions can be directly generalized to a more

general situation where γj
i develops non-diagonal elements [23].

B. Some General Insights into Visible-Hidden Yukawa Couplings

SUSY should be as natural as possible and thus the MSSM with light stops and gluino

is preferred. However, the presence of a relatively heavy Higgs around 125 GeV requires

rather heavy stops, which renders the fine-tuning worse than ∼ 1% [4] (the fine-tuning can

be alleviated in the NMSSM [5]). For the GMSB model, such a heavy Higgs boson is even

more problematic, owing to the fact that no stop trilinear soft term is generated at the

boundary. So, the stop sector should be properly modified, which at the boundary should

have the following features:

• A large negative At. The negative sign is important and the reason can be explicitly

found from the following discussions (see Eq. 25), i.e., if the initial M3 and At have

opposite sign, at the weak scale |At| will receive an enhancement from M3.

• Reduced stop soft mass squares relative to the first and second family squarks. This

helps to achieve the maximal stop mixing scenario with a relatively light stop sector.

In the following we will show that they can be elegantly realized in the framework of YGMSB.

1. Basic Features of the Soft Spectrum in the YGMSB

As mentioned in the introduction, the YGSMB has been used in different circumstances.

The basic features of its soft spectrum are of crucial importance, especially the signs of the

soft terms which are relevant to the discussion in this work. We simplify the discussion by

ignoring the gauge interaction at the moment, which is valid in the large Yukawa coupling
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limit. In fact, the gauge interaction contribution only appears in the beta functions, taking

the form of βλ = −λ2g2/16π2 + ..., and thus it can be easily traced back when necessary.

Through Yukawa interactions, the visible fields φi can couple to the messengers Φi in two

ways: φΦ1Φ2 and φ1φ2Φ. The field which directly couples to the messengers is dubbed as

the bridge field, denoted by B. Then the general YGMSB takes a form of the Wess-Zumino

model:

W =

(
λija

2
BiBjΦa +

λ′
iab

2
BiΦaΦb

)
+

κijk

6
BiBjBk +

yijl
2

BiBjφl +
y′ilm
2

Biφlφm. (10)

Here we use i/j/k for the bridge field indices, a/b/c for messenger indices while l/m/n for

the light field indices (the light fields are the visible fields which couples to B unless specified

otherwise). Moreover, each letter used to label the Yukawa coupling type is specified, e.g.,

λ is used to label the type with two-bridges and one-messenger. The light fields’ soft terms

are given by

−Lsoft =
κijkAκijk

6
BiBjBk +

yijlAyijl

2
BiBjφl +

y′ilmAy′
ilm

2
Biφlφm, (11)

where we have omitted the soft mass terms.

In Eq. (10), the bridge field B first encodes the SUSY-breaking information in its one-

loop wave function. Then through Yukawa interactions, the information is mediated to the

light field φ. In this picture, the chiral field B essentially plays the role of a force mediator,

while in the pure GMSB the vector superfield is the mediator. This difference will lead to a

remarkable difference in the soft terms between the GMSB and YGMSB.

Based on Eqs. (7) and (8), now we present an analysis for the structure of the soft terms

from the Yukawa mediation. We will emphasize the signs of various terms as well as the

possible cancelations between them. First of all, it is noticed that the Yukawa interactions

contribute positively to the anomalous dimension. As a result, after the decoupling of the

bridge-messenger interactions, we get ∆γB > 0 for bridges and ∆γφ = 0 for the light fields.

Using these properties, some inferences can be obtained:

• In light of Eq. (8), the A−term, which only depends on the discontinuities of the

bridge fields ∆γB ∝ λ2(λ′2), always takes a negative sign.

• The anomalous dimension of the light field is smooth when it crosses the messenger

threshold. Then, in terms of Eq. (7), only the second term which comes from the
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discontinuities of βyφl
contributes to m2

φl
:

m2
φl
∼ − 1

(16π2)2
λ2y2φl

. (12)

So it is definitely negative.

These two features are the main guidelines for the model building in this work.

The soft mass square of the bridge field is much more involved due to its dual identities:

it is not only the force mediator but also a light field. Therefore, its soft mass square m2
B

receives two kinds of contributions, as shown from Eq. (7). The subtle points come from

the potential cancellations which will be discussed later. But since our primary interest is

the general structure of m2
B, we can explicitly find its expression, with details presented in

Appendix A. From the general expression, we can decompose it into the following three

parts (with a common factor Λ2/(16π2)2 factored out):

1. The quartic terms of the visible-hidden coupling constants: λ4, λ2λ′2, λ′4. They are

definitely positive and generically dominant in m2
Bi

in the large λ/λ′ limit.

2. The cross terms λ2κ2 and λ′2κ2 (repeating index will be summed in the following unless

specified otherwise):

λ̂ij κ̂j − 2κ̂ijλ̂j − κ̂ijλ̂
′
j, (13)

where λ̂ij ≡ λijaλ
ija with only the index a summed over, and other quantities are

defined similarly. Remarkably, the term λ′2κ2 always takes the negative sign, implying

that if we work in a model with a proper structure, the dominant term given in the

first item can be reduced. As a case in point, in the NMSSM with the singlet coupling

to messengers, such a cancelation is important to trigger the EWSB [17].

3. The cross terms λ2y2, λ2y′2 and λ′2y2:

2
(
λ̂ij ŷj − ŷijλ̂j

)
+ λ̂ij ŷ

′
j − ŷijλ̂

′
j . (14)

Whether or not the terms in the bracket can cancel is model dependent, but the

third and last terms take definite signs. Anyway, using the general formula given in

Appendix A it is easy to get the soft mass squares in a given model. Note that the

term ∝ λ′2y′2 vanishes as a result of cancellation.
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In concrete models some Yukawa couplings will be turned off and thus the expressions can

be greatly simplified. In the following the first and third item will be the focuses of our

discussion.

Before ending this section, we remind that the wave function renormalization method

cannot be used to extract the one-loop contribution for the soft mass square of B. Actually,
it is model-dependent [16] and usually vanishes at the leading order of SUSY-breaking, say

suppressed by F 2/M4 [14]. In the following discussions we will ignore such a contribution.

2. Model Classification

Restricting our discussions within the MSSM and considering the phenomenological re-

quirements, we classify the models into two basic types. One type contains matter bridges,

especially the q3 field, and the other type contains Higgs fields as the only bridges.

Here we consider the first type. The minimal messengers under consideration are n pairs

of vector-like particles, (Φ̄D,ΦD) and (Φ̄L,ΦL), where Φ̄D and Φ̄L carry the same SM gauge

group charges as Dc
i and Li, respectively. Φ = (ΦD,ΦL) ∼ 5 forms a complete multiplet of

the SU(5) grand unification theory (GUT). The SM gauge invariance allows for the following

general superpotential

W =

n∑

i=1

ηiXΦiΦ̄i +W1,2m +WMSSM , (15)

where the first term denotes the ordinary hidden sector and WMSSM consists of the MSSM

Yukawa interactions Y uQU cHu + Y dQDcHd + Y eLEcHd. The visible-hidden Yukawa cou-

plings take the form of

W1m =λu,ijQiΦLU
c
j + λd,ijQiΦ̄LD

c
j + ...,

W2m =λiQiHdΦ̄D + λ′
iQiΦ̄LΦ̄D + ..., (16)

with the dots being the couplings involving leptons. The terms in W1m are similar to the

models studied in [23, 26], where W1m is due to the (large) Higgs-messenger mixings. W2m

is a generalization of the Higgs-messenger mixing to the matter-messenger mixing. In such

kind of models the dangerous high-dimensional operators, which may induce fast proton

decay, could be forbidden with the help of additional symmetries.
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The direct visible-hidden couplings may incur large flavor violations and undermine the

original motivation of the GMSB. However, according to our above general analysis, the

dangerous FCNCs can be avoided if the flavor structure in W1,2m is such that the same

set of messengers only significantly couple to one single family of matters. For example, in

the context of messenger-Higgs mixing [23], the flavor structure in W1m is identical to the

MSSM counterpart, i.e., λf,ij ∼ Y f
ij . Therefore, effectively only the third family couples to

the messengers due to the family hierarchy of the SM Yukawa couplings. Actually, the flavor

violations in this kind of models respect the MFV.

We would like to point out that the YGMSB potentially is able to provide a natural SUSY

spectrum [27] without FCNC problems. This is realized by taking the first two families of

matters as bridges which couple to the messengers:

WV H ⊃ λ10,a10aΦ̄aΦ̄a + λ5,aSa5̄aΦa (a = 1, 2), (17)

where 10a and 5a are the matter superfields in the SU(5) model. In a complete model, a

flavor symmetry should naturally account for the above Yukawa coupling structure. Provided

that λ10,a, λ5,a ∼ 1, then according to the analysis in Section IIB 1, the sfermion masses of

the first two generations obtain large and dominant positive contributions from the Yukawa

mediation. But the third generation sfermion masses still originate from the ordinary GMSB,

and can be much lighter than the first two generations of sfermions. This kind of realization

of natural SUSY may be easier than those in [24, 25].

In the following we turn our attention to the main point of this work, namely the second

type in which the Higgs bridges the visible and hidden sectors. One of the main features

of this type is that the resulted soft terms automatically satisfy the MFV since here the

small sfermion flavor violations originate from the flavor violations in the SM. For example,

the up-type squark mass squares take the form of m2
ũij

∝ λ2
u(y

u(yu)†)ij with λu being the

Hu-messenger Yukawa couplings. In the proceeding section we discuss in depth this type of

models and study their phenomenological features. We will start from a toy model and then

propose two simple modifications on the hidden sector to obtain the realistic YGMSB with

Higgs bridge.
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III. THE YGMSB WITH HIGGS BRIDGE (H−YGMSB)

A. A Toy Model with Higgs Bridge

To show the main features of the H−YGMSB, we start from a toy model. First of all, in

order to couple the Higgs fields with the messengers, the minimal messenger content must

be extended. For this purpose, two SM singlets (S, S̄) are introduced and they couple to

the goldstino superfield via ηSXSS̄. Then the Higgs-messenger couplings are

WH = λuSΦ̄LHu + λdS̄ΦLHd. (18)

Such a structure originally is motivated by the possible solution to the µ/Bµ−problem [15,

16]. But here we do not try to solve this problem, and instead evade it by turning off λd

(which is not an important parameter in this work) and treat µ/Bµ as free parameters.

Alternatively, one can just introduce one singlet and get the coupling

W ′
H = λSHuHd. (19)

The basic features of these two models in Eq.(18) and Eq.(19) are quite similar, as shown

in Appendix B. However, we find that WH is more preferred for building realistic models.

Therefore, in the following we focus on WH (recently some aspects of W ′
H were studied in

[35]).

We would like to make a comment. A proper symmetry should be introduced to guarantee

that the messengers only couple to the Higgs rather than the matters. It does not give rise

to a new problem, since it amounts to how to distinguish the Higgs and matters, e.g, Hd

and Li, which also should be addressed in the MSSM. The well-known solution is imposing

some symmetry such as the R−parity, U(1)PQ or U(1)R, etc., on the model.

To calculate the soft spectrum in the YGMSB, we should work out the discontinuities

of the anomalous dimensions of the relevant fields. Above the messenger scale M , they are
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given by (despite our assumption λd = 0, we still list the relevant quantities for completeness)

γ+
Hu

=
1

16π2

[
λ2
u + 3h2

t − 2C2g
2
2 − 2(1/2)2(3/5)g21

]
,

γ+
Hd

=
1

16π2

[
λ2
d + 3h2

b + h2
τ − 2C2g

2
2 − 2(1/2)2(3/5)g21

]
,

γ+
ΦL

=
1

16π2

[
λ2
u − 2C2g

2
2 − 2(1/2)2(3/5)g21

]
,

γ+

Φ̄L
=

1

16π2

[
λ2
d − 2C2g

2
2 − 2(1/2)2(3/5)g21

]
,

γ+
S =

1

16π2
2λ2

u, γ+

S̄
=

1

16π2
2λ2

d, (20)

where C2 = 3/4 and C3 = 4/3 are the quartic Casimirs for SU(2)L and SU(3)C , respectively.

Below the scale M the messengers decouple, and hence γ−
φ of the bridges and light fields

are obtained from the corresponding γ+
φ by setting λu,d → 0. Then, with Eq. (20), the

Yukawa-mediated SUSY-breaking soft terms can be calculated in light of Eq. (7). In the

following we present them and analyze their implications.

1. The Maximal Mixing Stop Sector with a Light Stop

We look at the stop sector which is of our main interest. Compared to the situation in the

pure GMSB, it is modified towards the desired form outlined at the beginning of this section

even if we work in the H−YGMSB with a single term λuSΦ̄LHu. First, at the one-loop level

a large negative At is generated at the boundary

At = − Λ

16π2
λ2
u, Ab = Aτ = − Λ

16π2
λ2
d. (21)

Note that they are universal to three generations. Next, the stops, together with other third

family sfermions, obtain sizable negative contributions:

∆m2

Q̃3

=− Λ2

(16π2)2
(
h2
tλ

2
u + h2

bλ
2
d

)
, (22)

∆m2

Ũc
3

=− 2Λ2

(16π2)2
h2
tλ

2
u, ∆m2

D̃c
3

= − 2Λ2

(16π2)2
h2
bλ

2
d. (23)

By contrast, the Yukawa-mediation contributions to the first two families of sfermions are

negligible since they couple to the Higgs very weakly.

Given the above modifications to the stop sector, the maximal mixing scenario can be re-

alized in this toy model. Taking into account the RGE effect, the weak-scale stop parameters
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can be parameterized as [5]

m2

Q̃3

≈Cg1M
2
3 + CL1m̄

2

Q̃3

− CR1m̄
2

Ũc
3

, m2

Ũc
3

≈ Cg2M
2
3 − CL2m̄

2

Q̃3

+ CR2m̄
2

Ũc
3

, (24)

where the quantities in the right side are defined at the scale M (hereafter we will use this

convention for the RGE effect estimations). In addition, the stop sector trilinear term takes

the form of

At ≈CAĀt − CgAM3. (25)

In the above equations, Ci are positive numbers, determined by the MSSM Yukawa and

gauge couplings as well as M . There are hierarchies CR1 ≪ CL1 and CL2 ≪ CR2: in the low

scale M limit, CL1, CR2, CA → 1 while others are negligible; as M increases (say to & 1012

GeV), CL1 ∼ CR2 are reduced no more than half, but CR1, CL2, CA are generated at O(0.1).

Note that for a high scaleM the gluino effect is significant and roughly Cg1 ≃ Cg2 & CgA ∼ 1.

With these approximate features we simplify Eq. (24) as

m2

Q̃3

≃ CL1 (δg − 1) |∆m2

Q̃3

|, m2

Ũc
3

≃ CR2 (δg − 2) |∆m2

Q̃3

| > 0, (26)

where the δg terms approximately measure the SU(3)C−GMSB and gluino contributions.

We now can see how the H−YGMSB accommodates the maximal stop mixing. It is

noticed that in the stop mass square matrix the difference between the diagonal entries is

∼ |∆m2

Q̃3

|, which is much larger than the non-diagonal entries mt|At|. Consequently, its

heavier and lighter eigenvalues can be approximated to be m2

Q̃3

and m2

Ũc
3

, respectively. And

then the degree of mixing is estimated as

x2
t ≡

X2
t

m2

t̃

∼ A2
t

|∆m2

Q̃3

| [CL1CR2 (δg − 2)]−1/2 , (27)

where the term (δg − 1)−1/2 has been neglected. Considering a quite low scale M , we then

get x2
t ≈ (λ2

u/h
2
t ) (δg − 2)−1/2 with good approximation. Since λu is only allowed to be mildly

larger than the gauge coupling of SU(3)C due to the bound m2

Ũc
3

> 0, the maximal mixing

x2
t ≃ 6 requires an enhancement from (δg − 2)−1/2 ∼ O(3). This enhancement comes from

the negative stop soft mass square contributions from the H−YGMSB. So, our scenario is

quite different from the one proposed in the top-bridge models [23, 26] where the stop soft

mass squares are increased and thus one needs a rather large |At| (then a rather large λu), to

lift up x2
t . In our Higgs-bridge model the condition x2

t ≃ 6 can be realized while a light stop
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is maintained, which is favored by naturalness. Note that we introduce a new fine-tuning

at the boundary, namely the cancellation between the gauge- and Yukawa-contributions to

the stop soft mass squares. But this tuning is quite mild, estimated to be δg − 2 ∼ 0.1.

Some comments are in orders. In the MSSM ht ∼ 1 correlates the naturalness of the weak

scale with mh [5], and mh ≃ 125 GeV means a large fine-tuning of the MSSM, especially in

the GMSB case. Interestingly, in the H−YGMSB this large ht helps to relax the correlation

and thus may alleviate the naturalness. But we still suffer a rather large fine-tuning. The

weak scale mZ is affected by the stops via the RGE:

m2
Z

2
∼ CGm

2

t̃,G
− CYm

2

t̃,Y
+ ..., (28)

where the subscript Y and G denote the boundary soft terms from the gauge and Yukawa

mediations respectively. We have CG ∼ 0.5 even if M is as low as 100 TeV. Furthermore,

mt̃,G should be around the TeV scale (in order to lift up mh and satisfy the LHC bounds

on the squarks and gluino). Therefore, tuning at a level of 1% is unavoidable and we need

further exploration on a sufficiently natural model.

2. The Problematic Radiative EWSB

If the H−YGMSB is required to give a relatively heavy SM-like Higgs with relatively

light stops, it will be difficult to realize the radiative EWSB. As is well known, the successful

EWSB should satisfy the following two equations:

m2
Z

2
≃
m2

Hd
− tan2 β m2

Hu

tan2 β − 1
− µ2 ≃ −m2

Hu
− µ2, (29)

sin 2β =
2Bµ

m2
Hu

+m2
Hd

+ 2µ2
. (30)

Here the Higgs parameters are defined at the electroweak scale, and the soft mass squares

can be expressed as (similar to Eq. 24)

m2
Hu

≈0.62m̄2
Hu

− 1.10M2
3 − 0.10Ā2

t − 0.37m̄2

Q̃
− 0.32m̄2

Uc (for M = 1012GeV),

m2
Hu

≈0.80m̄2
Hu

− 0.15M2
3 − 0.12Ā2

t − 0.20m̄2

Q̃
− 0.18m̄2

Uc (for M = 106GeV). (31)

The parameter m2
Hd

is approximated as its boundary value. Since Bµ is regarded as a free

parameter, Eq. (30) can always be satisfied. In the ordinary GMSB, Eq. (29) is also satisfied

13



since the significant RGE effects from the heavy colored spartiles drive m2
Hu

to be negative

at the low energy, as shown in Eq. (31).

However, in the H−YGMSB the soft mass squares of the Higgs bridges receive large

positive contributions from Yukawa mediations:

∆m2
Hu

=
Λ2

(16π2)2

[
λ2
u

(
4λ2

u − 3(g22 +
1

5
g21)

)]
, (32)

∆m2
Hd

=
Λ2

(16π2)2

[
λ2
d

(
4λ2

d − 3(g22 +
1

5
g21)

)]
. (33)

Compared to ∆m2

Ũc
3

shown in Eq. (23), ∆m2
Hu

takes an opposite sign and additionally is

enhanced by the factor 2λ2
u/h

2
t . As a consequence, the realization of stop maximal mixing

scenario is inconsistent with the radiative EWSB. To see this clearly, using Eq. (22) we

explicitly rewrite Eq. (31) as

m2
Hu

∼2.48(λ2
u/h

2
t )|∆m2

Q̃3

| − 1.01M2
3 (for M = 1012GeV),

m2
Hu

∼3.20(λ2
u/h

2
t )|∆m2

Q̃3

| − 0.15M2
3 (for M = 106GeV). (34)

Here the dependence on M2
3 arises at two-loop, and therefore its coefficient is expected to be

smaller than the coefficients Cg1 ∼ Cg2 in m2
q̃3
, which arise at one-loop. This fact, combined

with the stop maximal mixing condition, allows us to find a bound on m2
Hu

:

m2
Hu

>
(
2.48λ2

u/h
2
t − 2CR2

)
|∆m2

Q̃3

| > 0 (for M = 1012GeV), (35)

where CR2 < 1 and λu > ht are used. This bound becomes stronger as the messenger scale

lowers and thus the EWSB is not consistent with the maximal stop mixing in the toy model

of H−YGMSB. It is noticed that a higher scale M helps to lower m2
Hu

and hence benefits

the radiative EWSB.

3. The muon anomalous magnetic moment from the light smuon

Before presenting realistic models, we introduce another potential merit of the spectrum of

the H−YGMSB. It may account for the muon anomalous magnetic moment aµ ≡ (gµ−2)/2,

which can be regarded as a harbinger of new physics. Its experimental value [28] and the

SM prediction [29] are given by

aexpµ =11659208.9(6.3)× 10−10, aSMµ = 11659182.8(4.9)× 10−10. (36)
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Their discrepancy implies that the new physics contribution should be

δaµ ≡ aexpµ − aSMµ = (26.1± 8.0)× 10−10. (37)

Within the MSSM the chargino and neutralino loops give the dominant contributions [30]

δaMSSM
µ ≃ g22

8π2

m2
µM2µ tanβ

m4
µ̃L

. (38)

In the MSSM with GMSB, since a SM-like Higgs boson around 125 GeV significantly pushes

up the sparticle masses (including the left-handed smuon mass), it is hard to give the required

contribution.

In the H−YGMSB the smuon mass can be lowered considerably. Then with a properly

large µ and M2, δa
MSSM
µ might be able to reach the required value in Eq. (37). However, we

note that the trace S ≡ Tr(Yfm̄
2

f̃
), which vanishes in the pure GMSB due to the anomaly-free

of U(1)Y , is now given by

S ≃m̄2
Hu

− m̄2
Hd

+ m̄2

Q̃3

− 2m̄2

Ũc +m2

D̃c − m̄2

ℓ̃3
+ m̄2

Ẽc

≃ Λ2

(16π2)2
[
λ2
u

(
4λ2

u + 3h2
t

)
− λ2

d

(
4λ2

d + 3h2
b

)]
. (39)

It takes a large and positive value by virtue of the contribution ∆m2
Hu

. Therefore, by means

of the RGE effect it will family-universally increase the masses of the sparticles with negative

U(1)Y−charge (including µ̃L). So in this toy model of H−YGMSB it is also hard to give the

required contribution to muon g − 2. Note that this difficulty arises from the large positive

∆m2
Hu

and thus has the same origin as the problem of radiative EWSB. By contrast, in the

top-bridge models ∆m2
Hu

is negative and the contribution to muon g − 2 can be enhanced

more readily [26].

B. Realistic Hidden Sectors for the H−YGMSB

To solve the EWSB problem in the simplest Higgs bridge model, we modify the messen-

ger structure. In the following we present some simple and realistic modifications for the

toy model given above, based on the crucial observation that the gauge interaction of the

messengers can decrease m2
Hu

.
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1. Introducing a Hidden (Strong) Gauge Group

As the first modification, we assume that the messengers (S, S̄) and (Φ, Φ̄) introduced

in the toy model are charged under a hidden gauge group Gh with gauge coupling gh (they

form vector-like representations under Gh for the sake of anomaly cancelation) while visible

fields are neutral. Although the model has the same superpotential as WH in Eq. (18), the

presence of Gh, say SU(N), brings great difference. Now the anomalous dimensions above

the messenger scale are modified to be

γ+
Hu

=
1

16π2

[
Nλ2

u + 3h2
t − 2C2g

2
2 − 2(1/2)2(3/5)g21

]
,

γ+
ΦL

=
1

16π2

[
λ2
u − 2Chg

2
h − 2C2g

2
2 − 2(1/2)2(3/5)g21

]
,

γ+
S =

1

16π2

[
2λ2

u − 2Chg
2
h

]
, (40)

where Ch = (N2 − 1)/2N is the quardratic Casimir group invariant for the superfield in

the (anti-)fundamental representation under Gh = SU(N). For the Abelian Gh, Ch = Q2
φ

with Qφ being the Gh charge of φ. The messengers’ anomalous dimensions decrease due to

their hidden gauge interactions, but for the Higgs bridges, which are neutral under Gh, their

anomalous dimensions are not affected. Note that in γ+
Hu

the term ∝ λ2
u is enhanced by the

messenger number N .

By virtue of Gh, the Higgs bridges get the desired negative soft mass squares (for com-

parison, see Eq. 32):

∆m2
Hu

=
NΛ2

(16π2)2

[
λ2
u

(
(N + 3)λ2

u − 4Chg
2
h − 3(g22 +

1

5
g21)

)]
, (41)

∆m2
Hd

=
NΛ2

(16π2)2

[
λ2
d

(
(N + 3)λ2

d − 4Chg
2
h − 3(g22 +

1

5
g21)

)]
. (42)

Gh does not affect βyφl
and γφl

, and thus the soft terms of the light fields, especially the

terms in the stop sector, are the same as in the toy model except for an overall factor N .

Note that all the above discussions are valid only when Gh is broken below the messenger

scale, which can be realized easily and will not be discussed further in this work.

We now look at the consistency of introducing Gh and check the constraints. Generically,

λu & 1 is needed to get the maximal stop mixing, but such a large Yukawa coupling at

the low scale potentially spoils the perturbativity of the theory up to the GUT scale. The

presence of the hidden strong gauge group can greatly improve the situation. This can be
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explicitly seen from

βλu
≈ λ2

u

8π2

[
(N + 3)λ2

u + 3h2
t − 4Chg

2
h

]
. (43)

Here a large gh can cancel a large part of the Yukawa term contribution and hence prevent

λu from the Landau pole below the GUT scale. To realize the substantial cancelation, we

may need gh & 1. But this does not mean that Gh will quickly run into the strong coupling

region. Actually, the beta-function of gh is

bh > (1 + 5)× 2/2− 3×N = 3(2−N), (44)

where the factor 5 is due to the fact that Φ is in the fundamental representation of SU(5).

Thus for N ≥ 2 we obtain bh ≤ 0 and consequently the Gh gauge dynamics is asymptotic

free or conformal. In addition, Gh distinguishes the messengers from the visible fields with

identical SM gauge group charges and thus forbids their dangerous mixings. In a word, the

H−YGMSB equipped with a hidden gauge group is an attractive framework.

In the following we present some numerical analysis for the above model, using the code

SuSpect [32]. We take the top quark pole mass as 174.1 GeV, and choose N = 2 and a

relatively low messenger scale M = 106 GeV for the sake of naturalness [5].
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FIG. 1: Scatter plots of viable parameter space projected on the planes of λu versus Λ (left panel)

and gh (right panel). Here we choose M = 106 GeV, λd = 0, and tan β = 25.

As shown in the left panel of Fig. 1, a relatively heavy Higgs boson requires a relatively

large Λ, which is expected. The considerable cancelation between the contributions from

the hidden gauge interaction and Yukawa interaction in Eq. (41) is reflected in the right

panel in Fig. 1. From it one can see that the allowed parameter space for λu and gh is rather

small, and moreover it shrinks as the Higgs mass increases.
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FIG. 2: Same as Fig.1, but projected on on the planes of the light stop mass mt̃1
versus xt ≡ Xt/mt̃

and the Higgs mass.

In Fig. 2 we project the parameter space on the planes of the stop mass versus xt and the

Higgs mass. This figure shows that both properly heavy stops and sizable stop mixing are

required to lift up mh. For example, when mh > 126 GeV, the light stop mass needs to be at

least 700 GeV even in the maximal mixing scenario xt ≃ −2.5. But for a moderately heavy

Higgs mt̃1
typically is far below 1 TeV provided significant stop mixing, and such a light

stop may be accessible at the LHC [31]. This is contrary to the ordinary GMSB where very

heavy stops are needed [10]. In addition, the lightest slepton (in this model it is the right-

handed stau with mass varying in the region 100-300 GeV), typically the next-to-lightest

supersymmetric particle, may also be accessible at the LHC. The other colored sparticles

are rather heavy, say 2 TeV, and can satisfy the present LHC search bounds.
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FIG. 3: Same as Fig.1, but showing δaµ versus the Higgs mass for tan β = 25 (left panel) and

tan β = 35 (right panel). The solid line in each panel denotes the 1σ lower limit of δaµ.

Fig 3 shows the prediction of δaµ versus the Higgs mass. From the figure we clearly see
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the trend that δaµ becomes smaller as mh gets heavier, and the reason has been explained in

Section IIIA 3. With a sufficiently large tanβ and for mh . 123 GeV the model can reach

the 1σ lower limit.

2. Variant Messenger Representation

Instead of introducing extra strong gauge dynamics, we can implement the idea of gauge-

Yukawa cancelation by varying the messenger representation. We consider the variant hidden

sector with messengers forming the SU(5) representation (10, 10), which are decomposed to

the SM components as 10 = (QΦ, EΦ, UΦ). The Higgs-messengers couplings now are given

by

Whid ⊃ λuQΦHuUΦ + λdQ̄ΦHdŪΦ. (45)

First, with such a messenger content, the pure gauge mediated contributions to the soft

mass terms are

m2

f̃
= 2× 3

[
C3

(α3

4π

)2
+ C2

(α2

4π

)2
+ 2× 5

3

(
Y

2

)2 (αY

4π

)2
]
Λ2, (46)

M3 =
α3

4π
3Λ, M2 =

α2

4π
3Λ, M1 =

αY

4π
5Λ. (47)

Roughly speaking, the messenger number is 3 in this model. Next, the Higgs bridges receive

extra contributions which are proportional to the SU(3)C gauge coupling g3:

∆m2
Hu

=
3λ2

uΛ
2

(16π2)2
[
6λ2

u − 4C3g
2
3 − 4C2g

2
2 − (13/15)g21

]
, (48)

∆m2
Hd

=
3λ2

dΛ
2

(16π2)2
[
6λ2

d − 4C3g
2
3 − 4C2g

2
2 − (13/15)g21

]
. (49)

As expected, these results can be reproduced from Eq. (41) by taking N = 3. The SU(3)C

contributed term can typically reduce 6λ2
u by about 90% if λu . 1 and thus make the EWSB

viable. From Fig. 4 we see that most samples are constrained to lie around λu ∼ 1.

Numerically this model is more attractive for its single new parameter (we have set λd = 0

as before). But here the messenger mass scale M is an important parameter for the sake

of radiative EWSB (see the relevant discussion in Section IIIA 2). Thus for comparison we

take two cases M = 5 × 108 GeV and M = 5 × 1012 GeV. tanβ = 25 is fixed. Then some

observations are obtained:
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FIG. 4: Scatter plots of viable parameter space projected on the planes of λu versus Λ. The

messenger mass scale is fixed to be 5× 108 GeV for the left panel and 5× 1012 GeV for the right.

• Practically, Fig. 4 is a contour plot of mh on the λu−Λ plane. For a given mh, there is

a corresponding curve, e.g., the borderline between the green and red region labeling

the mh =123 GeV curve. In each curve, the case with a smaller Λ but larger λu

reflects that the maximal mixing scenario works. But the degree of mixing is clearly

competing with the EWSB, and a higher messenger scale helps to relieve their tension,

as is shown in Fig. 5. Note that Fig. 4 has revealed this tension: in case of M = 5×108

GeV we need a large Λ (heavy stops) and λu (significant stop mixing) to give mh = 126

GeV, which makes the EWSB very difficult. We find only a few points have mh & 126

GeV. By contrast, for M = 5 × 1012 GeV case mh & 126 GeV can be accommodated

more readily.
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FIG. 5: Same as Fig.4, but projected on on the planes of the light stop massmt̃1
versus xt ≡ Xt/mt̃.

• From the muon g−2, this model is not so attractive, as shown by Fig. 6. In this model

the smuon generically is heavier than in the previous model. Also, we usually have a
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FIG. 6: Same as Fig.4, but showing δaµ versus the Higgs mass. The solid line in each panel denotes

the 1σ lower limit of δaµ.

smaller µ (. 1 TeV) since it is determined by |m2
Hu

| which typically is relatively small

due to the difficulty in triggering EWSB. Thus the muon g − 2 is hard to explain in

this model.

Thus, the H−YGSMB with (10, 1̄0) messenger content is viable given a sufficiently high

messenger scale. However, compared to the previous model, the degree of stop mixing is

limited due to the EWSB constraint. Additionally, the muon g−2 can not be accommodated.

Overall, the model with a new gauge dynamic is favored.

IV. CONCLUSION

If the SM-like Higgs mass is indeed around 125 GeV, then the MSSM with pure GMSB

must have very heavy stops, which can be improved in the framework of YGMSB. In this

work we first investigated some general features of the soft spectrum of the YGMSB, and then

focused on the YGMSB with Higgs-messenger interactions. We found that such models are

attractive from several aspects: (i) They automatically maintain the MFV; (ii) The Yukawa

mediation generates a large −At and a large −m2

t̃L,R
simultaneously, driving the stop sector

towards the maximal mixing region; (iii) Stop can be light and thus may be accessible at

the LHC. However, generically m2
Hu

is too large and makes the EWSB inconsistent with a

large stop mixing. So we further explored two kinds of realistic hidden sectors: one with a

new strong gauge dynamics and the other has a variant messenger representation (10, 10).

Some numerical studies were presented for these models.
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Finally, we make some remarks:

• Although our YGMSB models have attractive phenomenology and can simply accom-

modate a more natural SUSY, they challenge the conventional secluded hidden sector

dynamics and may not be compatible with the popular dynamical SUSY-breaking

models like the simple ISS model. Basically, this incompatibility is owing to the fact

that the hidden sector fields (usually) are composite degree of freedoms while the SM

gauge dynamics is only a spectator to the hidden sector dynamics. To circumvent the

problem, one may turn to the composite third family [25].

• In this work we focused on the Higgs mass in the MSSM, but the Higgs mass alone is

not enough to distinguish the MSSM from other supersymmetric models such as the

NMSSM. Then we need other observables, for example, the di-photon signal rate from

the Higgs boson decays [33].

• We note that very recently there are some discussions on the vacuum stability problem

in extended GMSB models [34], but in our work we did not take this bound into

account.
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Appendix A: General Formulas for Soft Terms

A general formula for the soft terms in the YGMSB can be obtained. The model and

notation conventions are given in Eqs. (10) and (11). First, the anomalous dimensions above

the messenger scale are

γ+
Bi

=λ̂i +
1

2
λ̂′
i +

1

2
κ̂i + ŷi +

1

2
ŷ′i,

γ+
Φa

=
1

2
λ̂a + λ̂′

a, γ+
φm

=
1

2
ŷm + ŷ′m, (A1)
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where the contactor λ̂ij ≡ λijaλ
ija, with only “a” summed over. Similarly, the omitted indices

should be summed and the quadratic symbols κ̂ and ŷ are used in the following. Below the

messenger scale, the anomalous dimensions for light fields are obtained by turning off λ and

λ′.

Using the wave function renormalization method mentioned before, the soft mass square

could be obtained. First, we give the corrections for bridge field divided by three parts

explicitly, i.e., m2
Bi

= m2
1 +m2

2 +m2
3 where m2

1, m
2
2, and m2

3 are the terms proportional to

λ4, λ2κ2, and λ2y2 respectively (we neglect the kinetic mixing for simplicity)

m2
1 =

Λ2

512π4

[
2λ̂ija(∆γBi

+∆γBj
+∆γΦa

) + λ̂′
iab(∆γBi

+∆γΦa
+∆γΦb

)
]
, (A2)

m2
2 =

Λ2

512π4

[
λ̂ijκ̂j − 2κ̂ijλ̂j − κ̂ijλ̂

′
j

]
, (A3)

m2
3 =

Λ2

512π4

[
2(λ̂ij ŷj − ŷijλ̂j) + λ̂ij ŷ

′
j − ŷijλ̂

′
j

]
, (A4)

∆γ is same as the one defined in Section II. The corrections to the light field φi are

m2
φi

= − Λ2

512π4

[
2ŷij(∆γBi

+∆γBj
)− ŷ′i(∆γBi

)
]
. (A5)

Appendix B: Soft Spectra of the Second Model

We give the soft spectra of the second model W ′
H = λSHuHd. The trilinear terms are

given by

At = Ab = Aτ = − 1

16π2
λ2Λ. (B1)

The stop soft mass squares are

∆m2

Q̃
=− 1

(16π2)2
(
h2
tλ

2 + h2
bλ

2
)
Λ2, (B2)

∆m2
U =− 2

(16π2)2
h2
tλ

2Λ2, ∆m2
D = − 2

16π2
h2
bλ

2Λ2. (B3)

The Higgs mass squares are given by

∆m2
Hu

=
3

(16π2)2

[
λ4 + h2

bλ
2 − λ2(g22 +

1

5
g21)

]
Λ2, (B4)

∆m2
Hd

=
3

(16π2)2

[
λ4 + h2

tλ
2 − λ2(g22 +

1

5
g21)

]
Λ2. (B5)
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The mainly concerned part of the soft spectrum is quite similar to the first model, after the

mapping λ2 → λ2
u.
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