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An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice
QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered nf = 2 + 1
MILC configurations. Calculations were performed at two lattice spacings of b ≈ 0.125 fm and
b ≈ 0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice
volumes. The ratios of light quark to strange quark masses are in the range 0.1 ≤ ml/ms ≤ 0.6,
while pion masses are in the range 235 . mπ . 680 MeV. A two-flavor chiral perturbation theory
analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients l̄3 and l̄4 to
be l̄3 = 4.04(40)(7355) and l̄4 = 4.30(51)(8460). All systematic effects in the calculations are explored,
including those from the finite lattice space-time volume, the finite lattice spacing, and the finite
fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral
perturbation theory analysis at fixed lattice spacing combined with a leading order continuum
extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes
the leading order discretization effects. Chiral corrections to the pion decay constant are found to
give fπ/f = 1.062(26)(4240) where f is the decay constant in the chiral limit, and when combined
with the experimental determination of fπ results in a value of f = 122.8(3.0)(4.64.8) MeV. The most
recent scale setting by the MILC Collaboration yields a postdiction of fπ = 128.2(3.6)(4.46.0)(1.23.3) MeV
at the physical pion mass. A detailed error analysis indicates precise calculations at lighter pion
masses is the single most important systematic to address to improve upon the present work.
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I. INTRODUCTION

The masses and decay constants of the pseudo-Goldstone bosons are hadronic observables that Lattice QCD can
now calculate with percent-level accuracy in the absence of isospin breaking and electromagnetism. This is primarily
due to the fact that the signal-to-noise ratio of the ground state contribution to pion correlation functions does not
degrade exponentially with time. While Lattice QCD calculations are still being carried out at unphysically large
quark masses, with relatively coarse lattice spacings, and in modest volumes, chiral perturbation theory (χPT) can be
used to describe the dependence of the pseudo-Goldstone boson masses and decay constants on these variables. Such a
description involves a set of low-energy constants (LECs), which can be determined from experimental measurements,
or from the Lattice QCD calculations themselves. The LECs that are extracted from the pseudo-Goldstone boson
observables also appear in other physical processes, and therefore accurate Lattice QCD calculations of pion and
kaon correlation functions are beginning to translate into predictive power for other –more complicated– observables
involving pions and kaons.
χPT, the low energy effective field theory (EFT) of QCD, provides a systematic description of low energy processes

involving the pseudo-Goldstone bosons [1]. The theory consists of an infinite series of operators (and their coefficients,
the LECs) whose forms are constrained by the global symmetries of QCD. The quantitative relevance of these operators
is dictated by an expansion in terms of the pion momentum and light quark masses suppressed by the chiral symmetry
breaking scale, Λχ. At leading order (LO) in the two-flavor (nf = 2) chiral expansion, the two coefficients that appear
are determined by the pion mass, mπ, and the pion decay constant, fπ. At next-to-leading order (NLO), there
are four new operators in the isospin limit whose coefficients are not constrained by global symmetries [2]; these
LECs are the Gasser-Leutwyler coefficients. Two of these LEC’s, l̄1 and l̄2, can be reliably determined from low
energy ππ scattering [3]. The LEC l̄3 governs the size of the NLO contributions to mπ, while l̄4 controls the size
of the NLO contributions to fπ. Lattice QCD, the numerical solution of QCD, provides a way to constrain these
coefficients, including those that depend upon the light quark masses. Further, as Lattice QCD calculations can
be performed to arbitrary precision with appropriate computational resources, they will likely provide more precise
determinations of the LEC’s than can be extracted from experimental data. A number of lattice collaborations have
recently determined l̄3 and l̄4 using nf = 2, nf = 2 + 1 and nf = 2 + 1 + 1 calculations of mπ and fπ with a variety
of lattice discretizations [4–11]. These efforts have been compiled into a review article [12] which has performed
averages of these various computational efforts. It should be noted that there is an increasing number of Lattice QCD
calculations performed at or near the physical point [6, 13–16], and it will be exciting to have reliable predictions of
hadronic observables that do not rely on χPT.

In this work, we focus on the determination of l̄3 and l̄4 from the pion mass and the pion decay constant using
a mixed-action calculation with domain-wall valence quarks on gauge-field configurations generated with rooted,
staggered sea-quarks. This serves to strengthen the case that the systematic effects arising from the finite lattice-
spacing, which are unique to a given lattice discretization, can be systematically eliminated to produce results that
are independent of the fermion and gauge lattice actions. There are already preliminary results from mixed-action
calculations which can be found in Ref. [17].

Section II describes the details of the Lattice QCD calculation. In Sec. III, details of the systematic uncertainties
are presented. Continuum and chiral extrapolations of the results of the Lattice QCD calculations are detailed in
Sec. IV. Conclusions are presented in Sec. V.

II. DETAILS OF THE LATTICE CALCULATION AND NUMERICAL DATA

The present work is part of a program of mixed-action lattice QCD calculations performed by the NPLQCD collabo-
ration [18–32]. The strategy, initiated by the LHP Collaboration [33–38], is to compute domain-wall fermion [39–43]
propagators generated on the nf = 2+1 asqtad-improved [44, 45] rooted, staggered sea quark configurations generated
by the MILC Collaboration [46, 47], (with hypercubic-smeared [48–51] gauge links to improve the chiral symmetry
properties of the domain-wall propagators). The predominant reason for the success of this program is the good
chiral symmetry properties of the domain-wall action, which significantly suppresses chiral symmetry breaking from
the staggered sea fermions and discretization effects [52–54]. This particular mixed-action approach has been used to
perform a detailed study of the meson and baryon spectrum [37] including a comparison with predictions from the
large-Nc limit of QCD and SU(3) chiral symmetry [55, 56]. The static and charmed baryon spectrum were respec-
tively determined in Refs. [57, 58]; the first calculation of the hyperon axial charges was performed in Ref. [59]; the
first calculation of the strong isospin breaking contribution to the neutron-proton mass difference was calculated in
Ref. [21], and the hyperon electromagnetic form factors were explored in Ref. [60]. The majority of calculations using
this mixed-action strategy have been performed at only one lattice spacing, the coarse lattice spacing of b ≈ 0.125 fm;
a notable exception was the calculation of BK [61], which included the fine MILC ensembles with b ≈ 0.09 fm. In
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TABLE I: The parameters used in the Lattice QCD calculations.

b ≈ 0.125 fm ensembles

β bmsea
l bmsea

s L T M5 L5 bmdwf
l bmres

l bmdwf
s bmres

s Nsrc ×Ncfg

6.76 0.007 0.050 20 64 1.7 16 0.0081 0.001581(14)a 0.081 0.000895(3) 4 × 468

6.76 0.007 0.050 24 64 1.7 16 0.0081 0.00164(3) 0.081 0.00091(2) 8 × 1081

6.76 0.010 0.050 20 64 1.7 16 0.0138 0.001566(11)a 0.081 0.000913(2) 4 × 656

6.76 0.010 0.050 28 64 1.7 16 0.0138 0.001566(11)a 0.081 0.000913(2) 4 × 274

6.79 0.020 0.050 20 64 1.7 16 0.0313 0.001227(11)a 0.081 0.000836(3) 4 × 486

6.81 0.030 0.050 20 32 1.7 16 0.0478 0.001013(6) 0.081 0.000862(7) 24 × 564

b ≈ 0.09 fm ensembles

β bmsea
l bmsea

s L T M5 L5 bmdwf
l bmres

l bmdwf
s bmres

s Nsrc ×Ncfg

7.08 0.0031 0.031 40 96 1.5 40 0.0038 0.000156(3) 0.0423 0.000073(2) 1 × 170

7.08 0.0031 0.031 40 96 1.5 12 0.0035 0.000428(3) 0.0423 0.000233(2) 1 × 422

7.09 0.0062 0.031 28 96 1.5 12 0.0080 0.000375(4) 0.0423 0.000230(3) 7 × 1001

7.11 0.0124 0.031 28 96 1.5 12 0.0164 0.000290(3) 0.0423 0.000204(2) 8 × 513

aProvided by LHPC [38].

Ref. [62], very nice agreement was found between the prediction of the scalar a0 correlation function from mixed-action
χPT (MAχPT) and the Lattice QCD calculations of the same correlation function [63]. This was an important check
of the understanding of unitarity violations that are inherent in mixed-action calculations.

A. The Lattice QCD Parameters

In our previous works [18–32], on the b ≈ 0.125 fm ensembles, domain-wall valence propagators were calculated on
half the time extent of the MILC lattices by using a Dirichlet boundary condition (BC) in the time direction. With
the relatively high statistics that have now been accumulated, systematic effects from the light states reflecting off
the Dirichlet wall are observed and are found to contaminate the correlation functions in the region of interest (see
Fig. 1). This “lattice chopping” strategy has been discarded, and the valence propagators are now calculated with
anti-periodic temporal BC’s imposed at the end of the full time-extent of each configuration. The exception is on
the heaviest light quark mass point of the b ≈ 0.125 fm ensemble. At this heavy pion mass, the correlation function
falls sufficiently rapidly to not be significantly impacted in the region of interest by the choice of BC. Further, this
ensemble contributes very little to our analysis in Sec. IV.

The parameters used in the present set of Lattice QCD calculations are presented in Table I. On the b ≈ 0.125 fm
configurations, light quark propagators computed by LHPC with anti-periodic temporal BC’s are used for the three
lightest ensembles [38]. Strange quark propagators are computed from the same source points in order to “match”
the light quark propagators. In addition, calculations on the b ≈ 0.125 fm ensembles with a lighter than physical
strange quark mass have been performed. Statistics on three b ≈ 0.09 fm ensembles have been accumulated, with the
lightest pion mass being mπ ≈ 235 MeV. Finally, approximately 6500 thermalized trajectories have been completed
on an additional rooted staggered ensemble with the parameters

β = 6.76, bmsea
l = 0.007, bmsea

s = 0.050, V = 243 × 64 , (1)

and measurements have been performed on them.

B. Results of the Lattice QCD Calculations

Correlation functions with the quantum numbers of the π+ were constructed from propagators generated from a
gauge-invariant Gaussian-smeared source [64, 65] with both smeared (SS) and point (SP) sinks. To determine the
pion mass, the correlation functions were fit with a single cosh toward the center of the time-direction.

C(SX)(t) ∼ A(SX) e
−mπT/2 cosh(mπ(t− T/2)) , (2)
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where X = S, P . Fits incorporating excited states over larger time ranges produced consistent results for both
mπ and A(SX). With Domain-Wall fermions, the pion decay constant can be computed without need for operator
renormalization by making use of an axial ward identity [66]. The decay constant is determined from the extracted
overlap factors, A(SX), along with the input quark masses and computed values of the pion mass and residual mass,
using the relation

bfπ =
ASP√
ASS

2
√

2(bmdwf
l + bmres

l )

(bmπ)3/2
. (3)

In the limit L5 → ∞, the residual chiral symmetry breaking in the domain-wall action vanishes and mres
l → 0. In

addition to these valence quantities, the mixed valence-sea pion correlation functions have been calculated to extract
the mixed-meson masses, as described in Ref. [67].

TABLE II: The pion masses and decay constants from the Lattice QCD calculations. The first uncertainty is statistical and
the second is systematic determined from the fit range.

msea L3 × Tval × L5 bmπ bfπ bmπMix mπL

m007m050 203 × 64 × 16 0.18159(42)(2732) 0.09293(45)(4186) 0.2553(15) 3.63

m010m050 203 × 64 × 16 0.22298(26)(4629) 0.09597(27)(7947) 0.2842(15) 4.46

m020m050 203 × 64 × 16 0.31091(27)(2010) 0.10204(26)(3321) 0.3516(09) 6.22

m030m050 203 × 32 × 16 0.37469(22)(2022) 0.10749(13)(3333) 0.412(4) 7.49

m007m050 243 × 64 × 16 0.18167(23)(6663) 0.09311(28)(3445) 0.2553(15) 4.36

m010m050 283 × 64 × 16 0.22279(21)(1916) 0.09639(41)(5037) 0.2842(15) 6.24

m0031m031 403 × 96 × 40 0.10328(32)(3640) 0.0621(12)(1013) 0.1344(14) 4.13

m0031m031 403 × 96 × 12 0.10160(22)(2124) 0.0617(09)(1013) 0.1293(08) 4.06

m0062m031 283 × 96 × 12 0.14530(15)(1509) 0.06539(14)(3430) 0.1632(10) 4.07

m0124m031 283 × 96 × 12 0.20043(17)(1310) 0.07032(19)(2040) 0.2153(03) 5.61

The results of the Lattice QCD calculations are given in Table II. Statistical uncertainties are determined from a
correlated χ2 analysis as well as from a single-elimination JackKnife. Binning of the data was performed until the
uncertainties did not change appreciably. The quoted fitting systematic uncertainties are determined by varying the
fit range, including a broad sweep of tmin. Effective mass plots (EMP’s) for the full-volume correlation functions are
generated with a cosh-style effective mass;

meff
π =

1

τ
cosh−1

[
C(t+ τ) + C(t− τ)

2C(t)

]
, (4)

while the others were generated with a log-style effective mass;

meff
π =

1

τ
ln

(
C(t)

C(t+ τ)

)
. (5)

In Figs. 1-3 the EMP’s of the correlation functions and the extracted pion masses are presented using τ = 3.
In Fig. 1, the effective masses from calculations with anti-periodic BC’s imposed on the valence quarks, as well as

those from the Dirichlet temporal BC’s, are shown. Correlation functions from propagators generated with a Dirichlet
BC (located at t = 22 and t = −10 in the figures) show a significantly different behavior from those generated with
anti-periodic BC’s. It is for this reason that we have abandoned the Dirichlet BC in the generation of valence quarks.
However, it is only the lightest ensemble on which the extracted pion mass determined with the Dirichlet BC is
statistically discrepant from that generated with anti-periodic BC’s.

Interestingly, the correlation functions generated with anti-periodic BC’s are not free of their own systematics.
The EMPs exhibit an oscillation with a period of approximately 1 fm, which is not simply explained by either the
staggered taste-pion mass splittings or by the mixed-meson mass splittings. In the top panel of Fig. 2, the oscillations
are more pronounced (with higher statistics). Comparing the EMP’s from the b ≈ 0.09 fm and b ≈ 0.125 fm ensembles,
the oscillations are seen to become more pronounced for lighter quark masses. As the statistics are increased, the
amplitude of the oscillation becomes more significant and increasing L5 does not appear to ameliorate these effects.
The choice of τ used in Eq. (4) has no appreciable impact on the observed oscillation, unless one takes τ ' Tosc, the
oscillation period, in which case the oscillations are washed out. At this point, it is not clear if the oscillations are an
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FIG. 1: EMP’s of the pion correlation functions on the b ≈ 0.125 fm ensembles. For comparative purposes, the effective masses
from the correlation functions with Dirichlet BC’s in time are shown for the lightest ensembles (slightly offset for visibility).
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FIG. 2: EMP’s of the pion correlation functions calculated on the large volume b ≈ 0.125 fm ensembles. For comparative
purposes, the effective masses obtained in the smaller volumes are shown (slightly offset in time for visibility).

artifact of this particular mixed-action, or originate from the domain-wall valence propagators. Similar oscillations are
observed for calculations with domain-wall valence propagators computed on dynamical domain-wall ensembles, as
shown in Fig. 11 of Ref. [9] and Fig. 2 of Ref. [68]. In Ref. [69], it was suggested these fluctuations may be explained by
the time correlations in the propagators. However, in Refs. [70–73], a calculation of the pion correlation function was
performed with ∼ 400 times the number of measurements analyzed in Ref. [69], and no evidence for such oscillations
or fluctuations was found (see Figs. 17 and 18 of Ref. [73]). For the present work, the masses and decay constants
are determined with fits that encompass at least one full period of oscillation, with the fitting systematic established
through variations of the fitting ranges.

C. Scale Setting

To extrapolate the calculated pion masses and decay constants and make predictions at the physical pion mass, the
scale must be determined. The MILC collaboration has performed extensive scale setting analyses on their ensembles,
and it is used to convert the calculated pion masses and decay constants into r1 units (extrapolated to the physical
values of the light quark masses),1 collected in Table III. In Table IV these values are listed for the ensembles used
in this work [47]. The MILC Collaboration has determined r1 = 0.318(7) fm using the bb̄ meson spectrum and
r1 = 0.311(2)(3

8) fm using fπ to set the scale [47]. The value of

r1 = 0.311(2)(3
8) fm , (6)

is used in this work to convert to physical units.

1 The distance r1 is the Sommer scale [74] defined from the heavy-quark potential at the separation, r21F (r1) ≡ −1.
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TABLE III: The pion masses (normalized to the light-quark masses) and decay constants in r1 units. The third uncertainty is
the systematic from the conversion to r1 units.

ensemble masses V (r1mπ)
2

r1mq
r1fπ

m007m050 203 × 64 × 16 9.310(43)(2631)(11) 0.2545(12)(1123)(03)

m010m050 203 × 64 × 16 8.861(21)(3723)(10) 0.2628(08)(2314)(03)

m020m050 203 × 64 × 16 8.384(14)(1005)(10) 0.2879(07)(0906)(03)

m030m050 203 × 32 × 16 8.275(10)(0910)(12) 0.3093(04)(10)(05)

m007m050 243 × 64 × 16 9.318(23)(6863)(11) 0.2550(08)(1013)(03)

m010m050 283 × 64 × 16 8.846(16)(1412)(10) 0.2640(11)(1210)(03)

m0031m031 403 × 96 × 40 10.123(62)(7078)(11) 0.2331(45)(3849)(03)

m0031m031 403 × 96 × 12 9.942(57)(5462)(11) 0.2318(34)(3849)(03)

m0062m031 283 × 96 × 12 9.551(20)(2012)(08) 0.2477(05)(1211)(02)

m0124m031 283 × 96 × 12 9.285(16)(1209)(10) 0.2713(07)(0715)(03)

TABLE IV: r1/b from MILC [47]. The values (provided by the MILC Collaboration) extrapolated to the physical light quark
masses (right most column) were used to convert from lattice units to r1 units.

ensemble masses β r1
b

(bml, bms, β) r1
b

(bmphy
l , bmphy

s , β)

m007m050 6.76 2.635(3) 2.739(3)

m010m050 6.76 2.618(3) 2.739(3)

m020m050 6.79 2.644(3) 2.821(3)

m030m050 6.81 2.650(4) 2.877(4)

m0031m031 7.08 3.695(4) 3.755(4)

m0062m031 7.09 3.699(3) 3.789(3)

m0124m031 7.11 3.712(4) 3.858(4)

III. LATTICE SYSTEMATICS

In order to make contact with experimental measurements, the lattice QCD results must be extrapolated to the
continuum and to infinite volume, as well as to the physical values of the light quark masses. χPT is the natural tool
to perform these extrapolations, a consequence of which is that the LEC’s can be determined.

A. Light Quark Mass and Volume Dependence

Generally, the chiral expansion at NLO involves analytic terms, chiral logarithms and scale-dependent LEC’s. How-
ever, the perturbative expansion can be optimized by setting the renormalization scale to lattice-determined quantities
which vary with the quark mass, leading to modifications at next-to-next-to-leading order (NNLO). For instance, the
SU(2) chiral expansion of mπ and fπ can be expressed as [12, 18]

m2
π = 2Bmq

{
1 +

1

2
ξ ln

(
ξ

ξphy

)
− 1

2
ξ l̄3

}
(7)

fπ = f

{
1− ξ ln

(
ξ

ξphy

)
+ ξl̄4

}
(8)

where

ξ =
m2
π

8π2f2
π

and li = log
Λ2
i

(mphy
π )2

, (9)

and Λi is an intrinsic scale that is not determined by chiral symmetry. Here mπ and fπ denote lattice-measured
quantities, f is the chiral-limit value of the pion decay constant, and B is proportional to the chiral condensate. The
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FIG. 3: EMP’s of the pion correlation functions on the b ≈ 0.09 fm ensembles.
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“phy” superscript indicates that the relevant quantity is evaluated with the physical values of the pion mass and
decay constant, for which we use the central values

fphy
π = 130.4 MeV and mphy

π = 139.6 MeV . (10)

One benefit of performing the perturbative expansion with ξ is immediately clear: as ξ is dimensionless, the higher
order corrections are free of scale setting ambiguities as only the LO order contributions must be expressed in terms
of some lattice scale.

In addition to the light quark mass dependence, the finite volume corrections to the pion masses and decay constants
can be simply determined in the p-regime, defined by mπL � 1. At NLO in the chiral expansion, the finite volume
corrections are given by [75, 76]

∆(FV ) m2
π

2Bmq
= 8π2∆iI(ξ,mπL) (11)

∆(FV ) fπ
f

= −16π2∆iI(ξ,mπL) (12)

where

8π2∆iI(ξ,mπL) =
2ξ

mπL

∞∑
n=1

k(n)√
n
K1(
√
nmπL) (13)

and k(n) is the number of ways that the integer n can be formed as the sum of squares of three integers, n =
∑3
i=1 n

2
i

with ni ∈ Z.
The light quark mass dependence of mπ and fπ are known at NNLO in two-flavor χPT [77]. In the ξ expansion, in

infinite volume, they are

m2
π

2Bmq
= 1 +

1

2
ξ

[
ln

(
ξ

ξphy

)
− l̄3

]
+

7

8
ξ2 ln2(ξ)−

[
16

3
+

1

3
l̄12 −

9

4
l̄3 − l̄4 −

7

4
ln(ξphy)

]
ξ2 ln(ξ)− l̄4 ξξphy + ξ2kM (14)

and

fπ
f

= 1 + ξ

[
l̄4 − ln

(
ξ

ξphy

)]
+

5

4
ξ2 ln2(ξ) + ξ2 ln(ξ)

[
53

12
+

1

6
l̄12 − 5l̄4 −

5

2
ln(ξphy)

]
+ 2l̄4 ξξ

phy + ξ2kF (15)

where l̄12 = 7l̄1 + 8l̄2.

B. Mixed Action χPT

The low-energy EFT for mixed-action Lattice QCD calculations is well understood [52–54, 62, 63, 67, 78–85]. In
Refs. [53, 54, 85], it was demonstrated that the formulae for the pion mass and decay constant at NLO, including
discretization effects, are the same for all sea-quark discretizations provided the valence quarks satisfy the Ginsparg-
Wilson relation [86] (including our MA approach with domain-wall valence propagators computed on rooted-staggered
sea quark configurations). The difference between the various sea quark actions will be encoded in the values of the
unphysical parameters which quantify the discretization effects. At NLO in the MA expansion, including finite volume



11

TABLE V: Expansion parameters ml/ms, ξ, ξ̃Mix, ξ̃sea − ξ, ξsea − ξ and mres

mq
.

msea V ml/ms ξ ξ̃Mix ξ̃sea − ξ ξsea − ξ mres

mq

m007m050 203 × 64 × 16 0.14 0.0491 0.096 0.114 0.0032 0.165

m010m050 203 × 64 × 16 0.20 0.0681 0.111 0.108 0.0010 0.102

m020m050 203 × 64 × 16 0.40 0.1177 0.150 0.093 0.0001 0.038

m030m050 203 × 32 × 16 0.60 0.1540 0.186 0.084 0.0026 0.021

m007m050 243 × 64 × 16 0.14 0.0489 0.096 0.114 0.0032 0.165

m010m050 283 × 64 × 16 0.20 0.0674 0.111 0.108 0.0010 0.102

m0031m031 403 × 96 × 40 0.10 0.0360 0.058 0.050 0.0004 0.039

m0031m031 403 × 96 × 12 0.10 0.0365 0.058 0.050 0.0004 0.109

m0062m031 283 × 96 × 12 0.20 0.0629 0.079 0.045 0.0019 0.045

m0124m031 283 × 96 × 12 0.40 0.1037 0.119 0.038 0.0054 0.017

effects, the pion mass and decay constant are given by

m2
π

2Bmq
= 1 +

1

2
ξ ln

(
ξ

ξphy

)
− 1

2
ξ l̄3

− 1

2

(
ξ̃sea − ξ

)
[1 + ln (ξ)]− lPQ3 (ξsea − ξ) + lb3

(
b

r1

)2

+ 8π2∆iI(ξ,mπL) + 8π2(ξ̃sea − ξ)∆∂iI(mπL) , (16)

fπ
f

= 1− ξ̃Mix ln

(
ξ̃Mix

ξphy

)
+ ξl̄4

−
(
ξ̃Mix − ξ

)
ln
(
ξphy

)
− lPQ4 (ξsea − ξ) + lb4

(
b

r1

)2

− 16π2∆iI(ξ̃Mix,mπMix
L) , (17)

where

∆∂iI(mL) =
1

(4π)2

∞∑
n=1

k(n)

(
K0(
√
nmL) +K2(

√
nmL)− 2K1(

√
nmL)√

nmL

)
(18)

For the present calculations, the extra expansion parameters of the theory are defined as

ξ̃Mix =

1
2

(
m2
π +m2

πsea,5

)
+ b2∆′Mix

8π2f2
π

ξ̃sea =
m2
πsea,5

+ b2∆I

8π2f2
π

ξsea =
m2
πsea,5

8π2f2
π

(19)

where mπsea,5 is the taste-5 staggered pion mass, b2∆I is the mass splitting of the taste identity staggered pion and

b2∆′Mix is the mass splitting of the mixed valence-sea pion [80, 85], determined in Refs. [62, 67] and this work. In
Table V, the values of the parameters relevant for the calculations are listed.

In analogy with finite-volume χPT, the pion mass and pion decay constant in finite-volume MAχPT are related to
their infinite volume values at NLO via the relations

mπ[FV ] = mπ

{
1 +

1

2

∞∑
n=1

k(n)

2

[
4ξ
K1(
√
nmπL)√
nmπL

+ (ξsea − ξ)
(
K0(
√
nmπL) +K2(

√
nmπL)− 2

K1(
√
nmπL)√
nmπL

)]}
, (20)

and

fπ[FV ] = fπ

[
1− 4ξMix

∞∑
n=1

k(n)
K1(
√
nmπMix

L)√
nmπMixL

]
. (21)
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TABLE VI: Finite volume corrections to mπ and fπ at NLO in MAχPT, as given in Eq. (20) and Eq. (21). For a quantity Y
in the table, δY [FV ]/Y = (Y [FV ] − Y )/Y .

b ≈ 0.125 fm ensemble

Quantity m007m050 m010m050 m020m050 m030m050

L = 20 L = 24 L = 20 L = 28 L = 20 L = 20

MAχPT: δmπ[FV ]/mπ 1.6% 0.6% 0.6% 0.1% 0.1% 0.0%

χPT: δmπ[FV ]/mπ 0.2% 0.1% 0.1% 0.0% 0.0% 0.0%

MAχPT: δfπ[FV ]/fπ -0.3% -0.1% -0.2% -0.0% -0.1% -0.0%

χPT: δfπ[FV ]/fπ -1.4% -0.5% -0.6% -0.1% -0.1% -0.0%

b ≈ 0.09 fm ensemble

Quantity m0031m031 m0062m031 m0124m031

L = 40 L = 28 L = 28

MAχPT: δmπ[FV ]/mπ 0.4% 0.4% 0.1%

χPT: δmπ[FV ]/mπ 0.1% 0.1% 0.0%

MAχPT: δfπ[FV ]/fπ -0.2% -0.6% -0.1%

χPT: δfπ[FV ]/fπ -0.6% -0.9% -0.2%

In the case of fπ, the finite-volume effects in MAχPT are somewhat suppressed compared to those in χPT. This
is because the contribution from the “average” valence-sea type virtual pion in a one-loop diagram is smaller than
from a valence-valence pion due to its larger mass [67]. In contrast, the pion mass receives a one-loop contribution
from a hairpin diagram [87], which has enhanced volume effects compared to a typical one-loop contribution. In
Table VI, the FV contributions to mπ and fπ from Eq. (20) and Eq. (21) are presented. On the lightest two coarse
ensembles, the NLO volume contributions to mπ from MAχPT are substantially larger than those from χPT. Further,
due to the high precision of the Lattice QCD calculations, the finite-volume volume contributions are larger than the
uncertainties on the m007m050 ensembles. This is in contrast to the results of the Lattice QCD calculations of mπ,
which show little volume dependence. In Ref. [88], it was demonstrated that NNLO χPT could increase the finite-
volume contributions by as much as ∼ 50% of the NLO contribution. In the case of MAχPT, with hairpin diagrams
having enhanced volume effects, the importance of the NNLO contributions are likely to be even greater than in χPT.
As these NNLO effects have not yet been calculated, the MAχPT finite-volume contributions are assigned a 30%
systematic uncertainty when performing the analysis in Sec. IV. In Fig. 4, the NLO finite-volume contributions in
χPT and in MAχPT for the m007m050 and m010m050 ensembles are compared with the results of the Lattice QCD
calculations. The χPT band is given by the range ∆mπ = (1 + 0.5)∆mχPT

π , while the MAχPT corrections are given
by ∆mπ = (1±0.3)∆mMAχPT

π , where the central values have been chosen to coincide for the larger volume ensembles.
The MAχPT finite volume contributions appear not describe the observed volume dependence of mπ, indicating the
likely importance of NNLO contributions. In the case of fπ, the volume contributions are in good agreement with the
results of the Lattice QCD calculations.

C. Strange Quark Mass Effects

The strange quark masses used in the present calculations are not equal to the physical value [89]; the physical
staggered strange quark mass was determined to be bmphy

s = 0.0350(7) and bmphy
s = 0.0261(5) on the b ≈ 0.125 fm

and b ≈ 0.09 fm ensembles respectively [47]. In order to estimate the effects of this small mistuning in the two flavor
expansion, a matching to SU(3) χPT must be performed, where it is found the effects can be absorbed into the NLO
LECs [90];

l̄3(ms,m
phy
s ) = l̄3(mphy

s ) + δl̄3(ms,m
phy
s ) , δl̄3(ms,m

phy
s ) = −1

9
ln

(
ms

mphy
s

)
l̄4(ms,m

phy
s ) = l̄4(mphy

s ) + δl̄4(ms,m
phy
s ) , δl̄4(ms,m

phy
s ) =

1

4
ln

(
ms

mphy
s

)
(22)
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FIG. 4: NLO finite-volume contributions, and an estimate of their uncertainty, in χPT and MAχPT compared with the results
of the Lattice QCD calculations on the m007m050 and m010m050 ensembles. The central values have been chosen to coincide
for the larger volume ensembles.

These lead to mild corrections to l̄3 and l̄4 on both the coarse and fine ensembles,

δl̄3(ms,m
phy
s ) =

{
−0.040(2), b ≈ 0.125 fm, bmsea

s = 0.05

−0.019(1), b ≈ 0.09 fm, bmsea
s = 0.031 ;

δl̄4(ms,m
phy
s ) =

{
0.089(5), b ≈ 0.125 fm, bmsea

s = 0.05

0.043(5), b ≈ 0.09 fm, bmsea
s = 0.031 .

(23)

These strange quark-mass mistuning effects are negligible compared with the uncertainties of the extracted values for
l̄3 and l̄4 (see Sec. IV).

D. Residual Chiral Symmetry Breaking Effects

The domain-wall action has residual chiral symmetry breaking due to the finite extent of the fifth dimension, L5,
resulting from the overlap of the chiral modes bound to opposite walls in the fifth-dimension. The quantity mres is
the leading manifestation of this residual chiral symmetry breaking, and the effective quark mass of the Lattice QCD
calculation becomes

mq = mdwf
l +mres

l , (24)
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TABLE VII: Parameters used to isolate mres effects. The L5 = 16, 24 calculations were used to tune the quark mass for the
L5 = 40 calculation in such a way that the sum b(ml+mres

l ) was the same (within ∼ 0.7%) for the L5 = 12 and 40 calculations.

Ensemble L5 bml bmres mres

ml+m
res bmπ bfπ

4096f21b708m0031m031 12 0.0035 0.000428(03) 0.109(1) 0.10160(22)(2124) 0.0617(12)(1013)

16 0.0030 0.000321(11) 0.0987(3) - -

24 0.0030 0.000229(12) 0.071(4) - -

40 0.0038 0.000156(03) 0.039(1) 0.10328(32)(3640) 0.0621(09)(1013)

capturing the dominant effects of the residual chiral symmetry breaking appearing at LO in the chiral Lagrangian.
However, it is known that there are sub-leading effects. Defining the quark mass through Eq. (24) and taking the
standard definition of mres as the ratio of two pion to vacuum matrix elements [66]

bmres ≡ 〈0|J
a
5q|π〉

〈0|Ja5 |π〉
, (25)

where Ja5q and Ja5 are pseudoscalar densities made respectively from quarks in the middle and boundaries of the 5th

dimension, the quantity mres = mres(bml, b) depends upon the input quark mass and the lattice spacing (see Ref. [9]
for a discussion of these effects). Consequently, the chiral Lagrangian receives a simple modification at NLO [91–93].
Following the method of Ref. [94], the modifications to the chiral Lagrangian at NLO are

δLres =
lres
3 + lres

4

16
tr
(
2BmqΣ + 2BmqΣ

†) tr
(
2BmresΣ + 2BmresΣ†

)
+

lres
4

8
tr
(
∂µΣ∂µΣ†

)
tr
(
2BmresΣ + 2BmresΣ†

)
. (26)

The corrections to mπ and fπ arising from these new terms are

δm2
π

2Bmq
= −1

2
ξ
mres

mq
l̄res
3 and

δfπ
f

= ξ
mres

mq
l̄res
4 , (27)

with

l̄res
i =

32π2

γi
lres
i , (28)

where γ3 = −1/2 and γ4 = 2 [2]. As with the coefficients lbi , these lres
i coefficients are not universal and depend upon

the choice of lattice action used.
The new operators in Eq. (26) were found to give the dominant uncertainty in the prediction of the I = 2 ππ

scattering length at the physical pion mass [25] as the lres
i were unknown. Therefore, for ππ scattering, and for other

observables, it is important to determine the lres
i , which can be done simply by performing calculations with different

values of L5 on the same ensemble . The fine MILC ensembles, with b ≈ 0.09 fm, at the lightest quark mass point
were used to perform calculations with L5 = 12 and L5 = 40. The quark mass, defined by Eq. (24), was tuned to be
the same for both L5’s, which was achieved to within 0.7% accuracy (giving the same value of m2

π up to ∼ 3%). The
results of the calculations are presented in Table VII. The values of lres

3 and lres
4 that are determined by the Lattice

QCD calculations are presented in Sec. IV.

IV. CHIRAL, CONTINUUM AND VOLUME EXTRAPOLATIONS

The numerical results presented in this work were obtained at several values of the light quark masses and two lattice
spacings. To control the discretization effects, it would be ideal to have at least three lattice spacings, however, a
third smaller lattice spacing is beyond the scope of this work. To address this limitation, the chiral and continuum
extrapolations are performed in two different ways. The first method is to fit the LEC’s of χPT to the b ≈ 0.125 fm
and b ≈ 0.09 fm calculations independently. The extracted LECs are then extrapolated to the continuum limit, using
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TABLE VIII: Results of the fixed lattice spacing NLO χPT analysis of mπ. Max ml/ms denotes the maximum value of the
ratio of light quark masses used to perform the analysis.

Max b ≈ 0.125 fm

ml/ms l̄3 χ2
stat+sys dof Q

0.4 5.09(06)(52) 18.1 3 0.00

0.6 4.60(03)(36) 46.6 4 0.00

b ≈ 0.09 fm

ml/ms l̄3 χ2
stat+sys dof Q

0.4 4.05(10)(40) 3.31 1 0.07

TABLE IX: Results of the fixed lattice spacing NLO χPT analysis of fπ. Max ml/ms denotes the maximum value of the ratio
of light quark masses used to perform the analysis.

Max b ≈ 0.125 fm

ml/ms r1f l̄4 χ2
stat+sys dof Q

0.4 0.2166(10)(40) 4.78(06)(20) 2.35 3 0.50

0.6 0.2109(07)(13) 5.28(03)(10) 15.3 4 0.00

b ≈ 0.09 fm

ml/ms r1f l̄4 χ2
stat+sys dof Q

0.4 0.1983(16)(34) 5.48(13)(28) 0.15 1 0.69

the ansatz2

λ(b) = λ0 + λ2

(
b

r1

)2

. (29)

This analysis is performed at both NLO and NNLO in the chiral expansion. The second method to perform the
continuum and chiral extrapolations is to use MAχPT, which leads to determinations of the LEC’s that are consistent
with those obtained with the first method. This lends confidence that the discretization effects are small enough to
be captured by the MAχPT formulation.

Before proceeding, it should be noted that the light quark masses are given in lattice units and have not been
converted to a continuum regularization scheme. As the product mqB is renormalization scheme and scale indepen-
dent, the values of the LEC B, which we determine, have not been properly converted to a continuum regularization
scheme. For this reason, we do not provide the results of this quantity.

A. Method 1: χPT and Continuum Extrapolation

1. NLO SU(2)

The pion masses and decays constants obtained in the Lattice QCD calculations on the b ≈ 0.125 fm and b ≈ 0.09 fm
ensembles are used to determine the LEC’s at NLO in χPT by independently fitting to the expressions in Eq. (7)
and Eq. (8), including the FV corrections in Eq. (11) and Eq. (12). Strange quark mass effects are included by using
Eq. (22), but residual chiral symmetry breaking effects, such as those described by Eq. (27), are not. Both the mass
and decay constant depend upon two LECs each, as seen from Eqs. (7) and (8). The uncertainties in the values
of ξ and other parameters in Tab. V are included in our analysis through our Monte-Carlo treatment but do not
appreciably impact the analysis. Including the larger volume calculations, the complete set of results presented in
Table III utilizes six data sets on the b ≈ 0.125 fm ensembles and three on the b ≈ 0.09 fm ensembles. For each of the
NLO fixed lattice spacing fits that are presented in Table VIII and Table IX, the maximum value of ml/ms used in

2 The leading discretization corrections in the current formulation of MA lattice QCD scale as O(b2).
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TABLE X: Results of the continuum NNLO χPT analysis of mπ and fπ.

Max b ≈ 0.125 fm

ml/ms r1f l̄3 l̄4 kM kF χ2
stat+sys dof Q

0.4 0.233(04)(08) 7.95(35)(60) 2.63(37)(67) 29(3)(4) 21(6)(10) 0.53 4 0.74

0.6 0.230(02)(03) 5.83(14)(18) 2.95(14)(24) 14(1)(1) 16(2)(3) 10.0 6 0.12

b ≈ 0.09 fm

r1f l̄3 l̄4 kM kF χ2
stat+sys dof Q

0.4 0.203(11)(15) 5.61(67)(73) 4.1(1.1)(1.6) 19(5)(5) 2(17)(25) 0 0 –

the fit is listed. On the b ≈ 0.125 fm ensembles, the ratio is in the range ml/ms = 0.14−0.6, while on the b ≈ 0.09 fm
ensembles the ratio is in the range ml/ms = 0.1− 0.43.

From the quality of fit given in Tables VIII and IX, it is clear that the NLO χPT formula for mπ fails to describe
the results of the Lattice QCD calculation at either lattice spacing, while the NLO χPT formula for fπ describes the
results on the lightest three b ≈ 0.125 fm ensembles well and describes all the results on the b ≈ 0.09 fm ensembles.
Taking the results of the fits with ml/ms ≤ 0.4, a continuum extrapolation of the extracted LECs using Eq. (29) gives

l̄3 = 3.2(0.2)(1.2) and l̄4 = 6.3(0.3)(1.1) . (32)

The NLO χPT determination of l̄3 must be taken with extreme caution (and essentially discarded) as the fit to mπ

is poor. This (relatively) large value of l̄4 extracted at NLO is consistent with the JLQCD NLO results using nf = 2
overlap fermions [5].

2. NNLO SU(2)

The pion mass and decay constant at NNLO in χPT, given in Eq. (14) and Eq. (15), depend upon two additional
LECs, kM and kF , in addition to the appearance of further NLO LEC’s l̄12 = 7l̄1 + 8l̄2. Both l̄1 and l̄2 are reasonably
well determined from ππ scattering [3],

l̄1 = −0.4(6) and l̄2 = 4.3(1) . (33)

To perform the fits at NNLO, these values of l̄1 and l̄2 are used as input. Normal distributions of l̄1 and l̄2 are
generated with means and variances given by Eq. (33), which are then used in the fitting process. This allows for
a determination of the systematic uncertainty generated by their use as input parameters. In fitting to the results
of the calculations on the b ≈ 0.09 fm ensembles, there are six Lattice QCD results, and six fit parameters. The
results of this analysis are collected in Table X. The NNLO χPT is found to describe the results of the Lattice QCD
calculations for both mπ and fπ. Taking the b ≈ 0.125 fm and b ≈ 0.09 fm fit and using them to perform a continuum
extrapolation,

l̄3 = 3.3(1.4)(1.7) and l̄4 = 5.8(2.4)(3.5) (34)

are obtained, consistent with those from the NLO analysis. These results must also be treated with caution due to the
small number of calculations performed on the b ≈ 0.09 fm ensembles. In Figs. 8 and 9, one can see the approximate
contribution of discretization effects in the values of l̄3 and l̄4.

3 In addition to giving the χ2 and the number of degrees of freedom (dof) in the fit, the Q-value, or confidence of fit, is also provided,

Q ≡
∫ ∞
χ2
min

dχ2 P(χ2, d) , (30)

where

P(χ2, d) =
1

2d/2Γ(d/2)
(χ2)d/2−1e−χ

2/2 (31)

is the probability distribution function for χ2 with d degrees of freedom. (The Q-value represents the probability that if a random
sampling of data were taken from the parent distribution, a larger χ2 would result.)
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TABLE XI: Fit ranges used in the MAχPT analysis. For a given fit, A–E, the maximum value of ml/ms (sea-quark masses)
is given.

Fit Max ml/ms

COARSE COARSE FINE

L = 20 L = 24, 28

A 0.20 0.20 0.20

B 0.20 0.20 0.40

C 0.40 0.20 0.20

D 0.40 0.20 0.40

E 0.60 0.20 0.40

TABLE XII: Results from NLO MAχPT fits to (r1mπ)2/(r1mq).

LECs

Fit l̄3 lb3 l̄res3 lPQ3 χ2
stat+sys dof Q

A 4.27(23)(3639) −1.23(21)(2529) 14(6)(78) −0.6(1.6)(2.82.3) 1.41 2 0.49

B 4.11(21)(2938) −1.09(19)(2034) 19(5)(59) −2.9(0.9)(2.01.4) 2.33 3 0.51

C 4.10(19)(2127) −1.16(20)(2034) 17(6)(59) −1.4(1.5)(3.51.7) 1.78 3 0.62

D 4.10(19)(2128) −1.09(19)(1934) 19(5)(59) −2.8(0.8)(1.40.8) 2.33 4 0.67

E 4.10(19)(2128) −1.13(18)(1830) 18(5)(58) −2.7(0.7)(1.10.7) 2.36 5 0.80

B. Method 2: Mixed Action χPT

As in the continuum case, the mπ and fπ analyses with MAχPT are decoupled at NLO in the expansion, but the
results of the Lattice QCD calculations at both lattice spacings can be fit simultaneously. This allows for several
choices of fit ranges, which are denoted as A-E in Table XI. The maximum value of ml/ms used in the fits from
the b ≈ 0.125 fm and b ≈ 0.09 fm ensembles are listed in Table XI. As discussed in Sec. III B, the NLO MAχPT
volume contributions are assigned a 30% uncertainty as an estimate of NNLO effects. This additional uncertainty is
combined in quadrature with the other quoted systematic uncertainties.

1. NLO Mixed Action χPT

Fits are performed over the ranges listed in Table XI, the results of these analyses are collected in Table XII and
Table XIII. There are a few observations to make. First, the NLO MAχPT formula is capable of describing the
results of the Lattice QCD calculations of mπ, unlike the NLO χPT formula. Second, the MAχPT provides a slightly
better description of the pion decay constant than of the pion mass. In both cases, the NLO formulae is capable of
describing the results of the Lattice QCD calculations over the full range of quark masses.

As the Q-value has a probabilistic interpretation, it is convenient to use it in forming weighted averages of the
quantities that have been extracted with multiple fitting procedures and/or different numbers of degrees of freedom.

TABLE XIII: Results from NLO MAχPT fits to r1fπ.

LECs

Fit r1f l̄4 lb4 l̄res4 lPQ4 χ2
stat+sys dof Q

A 0.1847(61)(8089) 5.80(52)(6854) 0.6(0.9)(1.01.1) −2(12)(1513) −3.8(5.5)(8.77.3) 0.27 2 0.87

B 0.1860(20)(3651) 5.73(42)(5539) 0.5(0.8)(0.80.9) −1(11)(1211) −2.7(2.6)(4.43.2) 0.28 3 0.96

C 0.1812(26)(5536) 6.03(40)(3843) 0.8(0.8)(0.81.0) −5(12)(1411) −6.1(4.4)(8.35.0) 0.32 3 0.96

D 0.1841(17)(3339) 5.99(39)(3941) 0.4(0.8)(0.90.8) 1(11)(1112) −0.9(2.4)(3.33.7) 0.58 4 0.97

E 0.1797(12)(2431) 6.10(40)(3645) 0.9(0.8)(0.90.8) −5(11)(1112) −2.9(2.4)(2.44.2) 3.48 5 0.63
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TABLE XIV: Extracted values of the LEC’s from NLO MAχPT plus NNLO χPT fitting of the Lattice QCD results. Data set
A has insufficient light quark mass range to constrain the NNLO analysis.

LECs

Fit r1f l̄3 l̄4 kM kF χ2
stat+sys dof Q

A – – – – – – – –

B 0.186(9)(13) 4.48(51)(8977) 4.83(94)(1.41.3) 13(5)(87) −8(17)(2524) 2.22 4 0.69

C 0.188(7)( 9
11) 4.12(30)(5771) 4.38(55)(8965) 8(2)(45) 1(8)(1013) 2.17 4 0.70

D 0.193(5)( 5
10) 4.00(28)(7753) 4.10(44)(8745) 6(2)(63) 5(6)( 7

13) 2.99 6 0.81

E 0.194(3)( 5
7) 3.69(14)(1819) 4.01(22)(3624) 3(1)(1) 7(2)( 3

4) 3.63 8 0.89

For extractions of a parameter λ from different procedures, each giving λi with Qi, the weighted average

λ̄ =

∑
iQiλi∑
j Qj

, (35)

can be formed.4 As each of the fits considered in this work, presented in Table XI, includes successively larger quark
masses, this averaging will give more weight to the lighter quark mass values, where χPT is more reliable. Performing
this Q-weighted averaging of the results from Tables XII and XIII gives

l̄3[NLO] = 4.13(20)(25
31) , l̄4[NLO] = 6.09(40)(37

45) ,

l̄res
3 [NLO] = 18(5)(5

9) , l̄res
4 [NLO] = −5(11)(11

12) . (36)

The value of l̄3 is consistent with the average of all other Lattice QCD calculations [12]. However, the value of l̄4 is
noticeably higher, but is consistent with that obtained with Nf = 2 overlap fermions and a NLO χPT analysis [5].
While the residual chiral symmetry breaking LEC’s are not well determined, they will help constrain the analysis of
the I = 2 ππ scattering length [25].

2. NLO MAχPT + NNLO SU(2) χPT

While the complete NNLO expressions for the pion mass and decay constant are not available in MAχPT, it is
useful to consider the hybrid construction of NLO MAχPT plus NNLO χPT. As in the previous section, the NLO
MAχPT volume contributions are assigned a 30% uncertainty. Further, the infinite volume formulae for the NNLO
contributions are used. While the fit values of the NNLO LECs will be polluted by discretization effects, the NLO
Gasser-Leutwyler coefficients will be be free of these contaminations, and further, their extracted values should be
stabilized with the inclusion of these higher order contributions.

The fit functions for mπ and fπ share two LECs; at NNLO, m2
π depends upon l̄4 as well as l̄3, and both depend upon

l̄12, see Eqs. (14) and (15). In principle, a correlated analysis should be performed, however, the correlations only
exist at NNLO, and are expected to be insignificant. To capture the effects of the correlations on the central value of
l̄4, the extrapolation analysis is performed with a Monte-Carlo. Further, as seen in Fig. 7, the NNLO contributions
to mπ are insignificant, supporting the above expectation. In order to verify these expectations, a fully correlated
fit was performed on a subset of the fits, A–E. The change in the values of the LECs was well contained within the
quoted uncertainties. Results of these fits are presented in Table XIV for the various data sets. Taking the Q-weighted
average of these results gives

l̄3[NNLO] = 4.04(40)(73
55) , l̄4[NNLO] = 4.30(51)(84

60) ,

l̄res
3 [NNLO] = 17(5)( 6

10) , l̄res
4 [NNLO] = 0(11)(12) . (37)

with l̄3[NNLO] and l̄4[NNLO] in good agreement with the averages given in Ref. [12]. At NNLO in the chiral
expansion, corrections to the pion decay constant are found to be

fπ
f

[NNLO] = 1.062(26)(42
40) . (38)

4 NPLQCD has consistently performed systematic uncertainty analysis by weighting the results of different but equivalent fitting strate-
gies [18–32]. This particular method of Q-weighting has also been advocated by the BMW Collaboration [13], for example.
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FIG. 5: l̄3 and l̄4 generated through a Monte-Carlo averaging of the fits in Table XIV. The histograms are generated with 105

samplings. The vertical dashed lines represent the 16% and 84% quantiles.

Setting the scale either by using rphy
1 = 0.311(2)(3

8) fm from the MILC collaboration to determine fphy
π , or by using

the experimental value of fπ+ to determine r1, gives

fphy
π [NNLO] = 128.2(3.6)(4.4

6.0)(1.2
3.3) MeV and rphy

1 [NNLO] = 0.306(9)(10
14) fm . (39)

where the last uncertainty in the postdicted value of fπ comes from MILC’s determination of r1, Eq. (6).
Figure 5 shows Monte-Carlo histograms of the extracted values of l̄3 and l̄4 using the Q-weights to determine the

ratio of samples to draw from each of fits A-E. The result of fit E for fπ, extrapolated to the infinite volume and
continuum limits is displayed in Fig. 6. The inner (colored) band represents the 68% statistical confidence interval
while the outer (gray) band results from the 68% statistical and systematic uncertainties combined in quadrature.
The dashed vertical line is located at ξphy determined from Eq. (10).

C. Convergence of the SU(2) Chiral Expansion

With the analyses performed in the previous section in hand, the convergence of the two-flavor chiral expansion can
be explored. The resulting NLO and NNLO contributions to the quantities

m2
π

2Bmq
− 1 and

fπ
f
− 1 , (40)

(both of which vanish in the chiral limit) are shown in Fig. 7. In both cases (the left and right panels of Fig. 7),
it is the continuum limit and infinite-volume limit extrapolations that are displayed. In the case of mπ, the NNLO
contributions are negligible over most of the range of ξ used in our fits. Further, the total corrections to mπ are small,
being less than ∼ 15% over the full range of quark masses. In contrast, the corrections to fπ become substantial at
the heavier pion masses, exceeding ∼ 50% at the heaviest mass considered. Further, at the modest value of ξ>∼ 0.08
the NNLO corrections become significant compared to the NLO corrections.

In the left panel of Fig. 8, the determination of l̄3 is shown. The results of the fixed lattice spacing χPT analysis
from Sec. IV A 2 is displayed, as well as the continuum extrapolated value. Also shown are the values extracted from
MAχPT at NLO, and from NLO MAχPT supplemented with continuum NNLO χPT, as discussed in Sec. IV B 1 and
Sec. IV B 2, respectively. The results of the MAχPT analyses are consistent with the continuum extrapolated results,
but with smaller uncertainties. This is not surprising as the mixed-action framework allows a simultaneous treatment
of calculational results from multiple lattice spacings. This consistency lends confidence in the entire analysis. In the
right panel of Fig. 8, the extraction is compared to the original estimates by Gasser and Leutwyler [2] as well as to
the recent Lattice QCD average [12]. In Fig. 9, the analogous results for l̄4 are displayed, although Ref. [12] does not
provide an average value (citing insufficient reporting of the associated systematic uncertainties).
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FIG. 6: The result of NLO MAχPT plus NNLO χPT fit E described in the text, extrapolated to the infinite volume and
continuum limits. The star denotes the experimentally determined value of fπ+ (not used in the fitting).
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FIG. 7: The NLO and NNLO contributions to
m2
π

2Bmq
− 1 (left panel) and fπ

f
− 1 (right panel). Both of these quantities vanish

in the chiral limit. The larger (red) dashed curves are the NLO contributions and the smaller (blue) dashed curves are the
NNLO contributions. The solid (black) curve is the entire NLO + NNLO value.

V. RESULTS AND DISCUSSION

We have performed precision calculations of the pion mass and the pion decay constant with mixed-action Lattice QCD.
Calculations using domain-wall valence quarks and staggered sea-quarks were performed on a number of ensembles of
MILC gauge-field configurations at different light-quark masses, two lattice-spacings, different volumes and different
extents of the fifth dimension. Using the two lattice spacings and the multiple light-quark masses, the results of these
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FIG. 8: The present determination of l̄3 (left panel), and its comparison to the Lattice QCD average value [12] and phenomeno-
logical results (right panel). Some of the l̄3 results in the left panel have been given small offsets in (b/r1)2 for presentations
reasons.
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FIG. 9: The present determination of l̄4 (left panel), and its comparison with phenomenological results (right panel). (Ref. [12]
does not currently provide a Lattice QCD average value for this quantity.) Some of the l̄4 results in the left panel have been
given small offsets in (b/r1)2 for presentations reasons. CGL 2001 refers to Ref. [3].

calculations were extrapolated to the continuum, to infinite-volume and to the physical pion mass. Ideally, continuum
extrapolations would be performed with more than two lattice spacings. While this is not possible with the present
numerical results, the two methods used to quantify uncertainties associated with the continuum extrapolation from
the two lattice spacings used in this work are found to give the same results within uncertainties. One method involved
using two-flavor χPT to extract the LEC’s, which implicitly include lattice-spacing artifacts. LEC’s calculated at
two different lattice-spacings were then extrapolated to the continuum. It is found that NLO χPT fails to describe
the results of the Lattice calculations of mπ, while NNLO χPT appears to be consistent with them. The second
method was to use MAχPT where the lattice-spacing artifacts are explicit, and the extracted LEC’s are those of the
continuum, up to higher order contributions. A hybrid analysis was motivated to be sufficient, where the mixed-action
NLO contributions were combined with continuum NNLO contributions to provide reliable extractions of the LEC’s.
These analyses have provided determinations of the Gasser-Leutwyler coefficients l̄3 and l̄4,

l̄3 = 4.04(40)(73
55) and l̄4 = 4.30(51)(84

60) (41)
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TABLE XV: Comparison with most recent results from various lattice collaborations.

Collaboration Ref. Nf fπ/f l̄3 l̄4

MILC 10 [SU(3)] [11] 2 + 1 1.06(5) 3.18(50)(89) 4.29(21)(82)

MILC 10A [SU(2)] [10] 2 + 1 1.05(1) 2.85(81)(3792) 3.98(32)(5128)

RBC/UKQCD 10A [9] 2 + 1 – 2.57(18) 3.83(09)

ETM 10 [8] 2 + 1 + 1 1.076(2)(2) 3.70(07)(26) 4.67(03)(10)

ETM 09C [7] 2 1.0755(6)(0894) 3.50(9)(0930) 4.66(4)(0433)

PACS-CS 08 [SU(3)] [6] 2 + 1 1.062(8) 3.47(11) 4.21(11)

PACS-CS 08 [SU(2)] [6] 2 + 1 1.060(7) 3.14(23) 4.04(19)

JLQCD/TWQCD 08A [5] 2 1.17(4) 3.38(40)(24)(310 ) 4.12(35)(30)(310 )

RBC/UKQCD 08 [4] 2 + 1 1.080(8) 3.13(33)(24) 4.43(14)(77)

FLAG Avg. [12] – 1.073(15) 3.2(8) –

NPLQCD [this work] 2 + 1 1.062(26)(4240) 4.04(40)(7355) 4.30(51)(8460)

These values are consistent with the (lattice) averaged values reported in Ref. [12]. Our analysis also provides

fπ
f

= 1.062(26)(42
40) , (42)

which is to be compared to the lattice averaged value of fπ/f = 1.073(15). Combined with the experimental value for
fphyπ = 130.4 MeV, a value of f = 122.8(3.0)(4.6

4.8) MeV is found (we have not accounted for explicit isospin breaking
effects, but these are expected to be small). In Table XV, the present results are compared with those of the most
recent calculations from other lattice collaborations. Further, the extrapolated value of r1fπ and the experimentally
measured value of fπ+ provides a determination of the physical scale r1,

r1 = 0.306(9)(10
14) fm , (43)

which is to be compared with the MILC determination (on the same ensembles) of r1 = 0.311(2)(3
8) fm. It is

interesting to note that, despite greatly enhanced statistics on the same ensembles of MILC gauge-field configurations,
the uncertainty that we have obtained in the calculation of fπ is somewhat larger than that obtained in Ref. [17].

The systematics in the calculations arising from the finite lattice volume and from residual chiral symmetry breaking
due to the finite fifth dimensional extent of the domain-wall action have been explored and quantified. Previously,
residual chiral symmetry breaking contributions were identified to be the dominant source of uncertainty in Lattice
QCD predictions of the I = 2 ππ scattering length [25]. While the present analysis has not been able to precisely
determine these effects, the analysis resulted in constraints on the size of these contributions,

l̄res
3 = 17(5)( 6

10) , l̄res
4 = 0(11)(12) , (44)

which in turn can be used to reduce the uncertainties in the I = 2 ππ scattering length predictions.
The predicted NLO mixed-action finite-volume contributions to the pion mass appear to be incompatible with the

results of the Lattice QCD calculations, suggesting the importance of higher orders in the MAχPT expansion. A 30%
systematic uncertainty is assigned to the NLO finite volume contributions to account for NNLO effects, leading to a
consistent description of the results.

In Table XVI the contributions to the total uncertainty from the various systematics are displayed. While the
discretization and residual chiral symmetry breaking effects have some impact on the determination of the LECs, it
is clear from this summary table that the dominant uncertainty is due to the chiral extrapolation. Having further
numerical results at lighter pion masses is the single most important systematic to address to improve upon the
present work.

In conclusion, we have found that a careful two-flavor low-energy effective field theory analysis of the Lattice QCD
calculations of the pion mass and its decay constant can reliably determine the NLO Gasser-Leutwyler coefficients, l̄3
and l̄4, which are found to be in good agreement with the average of other determinations. In particular, mixed-action
chiral perturbation theory which includes lattice-spacing artifacts explicitly, provides a reliable framework with which
to perform chiral extrapolations of mπ and fπ to the physical light quark masses, and to determine l̄3 and l̄4.
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TABLE XVI: Error budget for current work expressed as relative uncertainties.

quantity total statistical chiral continuum volume mres mtune
s

uncertainty uncertainty extrapolation extrapolation extrapolation

l̄3 19% 10% 15% 5% 0% 2.7% 0%

l̄4 21% 7% 19% 4% 0% 4% 0%

fπ/f 4.6% 2.4% 3.9% 0% 0% 0% 0%

Acknowledgments

We would to thank the LHP Collaboration for their light quark propagators computed on the b ≈ 0.125 fm MILC
ensembles. We thank C. DeTar for help with the HMC generation of the large volume m007m050 ensemble. We thank
C. Bernard for providing the updated values of r1 from MILC as well as those extrapolated to the physical values of
the light quark masses. We thank G. Colangelo for valuable conversations and R. Edwards and B. Joo for developing
qdp++ and chroma [95]. We would also like to thank H.-W. Lin for comments on the manuscript. We acknowledge
computational support from the USQCD SciDAC project, National Energy Research Scientific Computing Center
(NERSC, Office of Science of the DOE, Grant No. DE-AC02-05CH11231), the UW HYAK facility, Centro Nacional
de Supercomputación (Barcelona, Spain), LLNL, the Argonne Leadership Computing Facility at Argonne National
Laboratory (Office of Science of the DOE, under contract No. DE-AC02-06CH11357), and the NSF through Teragrid
resources provided by TACC and NICS under Grant No. TG-MCA06N025. SRB was supported in part by the
NSF CAREER Grant No. PHY-0645570. The Albert Einstein Center for Fundamental Physics is supported by
the Innovations- und Kooperationsprojekt C-13 of the Schweizerische Universitätskonferenz SUK/CRUS. The work
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