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We present the results of a calculation of the positive-parity ground-state charmed-baryon spec-
trum using 2 + 1 + 1 flavors of dynamical quarks. The calculation uses a relativistic heavy-quark
action for the valence charm quark, clover-Wilson fermions for the valence light and strange quarks,
and HISQ sea quarks. The spectrum is calculated with a lightest pion mass around 220 MeV, and
three lattice spacings (a ≈ 0.12 fm, 0.09 fm, and 0.06 fm) are used to extrapolate to the continuum.
The light-quark mass extrapolation is performed using heavy-hadron chiral perturbation theory up
to O(m3

π) and at next-to-leading order in the heavy-quark mass. For the well-measured charmed
baryons, our results show consistency with the experimental values. For the controversial J = 1/2
Ξcc, we obtain the isospin-averaged value mΞcc = 3595(39)(20)(6) MeV (the three uncertainties are
statistics, fitting-window systematic, and systematics from other lattice artifacts, such as lattice
scale setting and pion-mass determination), which shows a 1.7 σ deviation from the experimen-
tal value. We predict the yet-to-be-discovered doubly and triply charmed baryons Ξ∗cc, Ωcc, Ω∗cc
and Ωccc to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV, 3765(43)(17)(5) MeV and
4761(52)(21)(6) MeV, respectively.

I. INTRODUCTION

In recent years, interest in charmed-baryon spectroscopy has resurfaced. This excitement has been partly triggered
by the first observation of a candidate doubly charmed baryon Ξ+

cc(3520) by SELEX [1], as well as a potential
isospin partner Ξ++

cc (3460) [2]. The SELEX Collaboration later confirmed their observation of Ξ+
cc(3520) [3], but the

BABAR [4], BELLE [5], and FOCUS [6] experiments have seen no evidence for either state of the isospin doublet
(Ξ+
cc,Ξ

++
cc ). The SELEX evidence for this doublet implies unprecedented dynamics. If these two states are indeed

isospin partners the 60-MeV mass difference between the two states would be unprecedented. If they do not form
an isospin doublet, then there should be evidence for their corresponding isospin partners. The ground-state doubly
charmed baryon has been previously studied theoretically via various methods, including: the nonrelativistic quark
model [7], the relativistic three-quark model [8], the relativistic quark model [9], QCD sum rules [10], heavy-quark
effective theory [11], the Feynman-Hellmann theorem [12], and lattice quantum chromodynamics (LQCD) [13–19].
Overall, theoretical predictions for this state suggest the Ξcc mass to be 100–200 MeV higher than the Ξ+

cc(3520)
observed by SELEX1.

There remain many undiscovered doubly and triply charmed baryon states. The recently upgraded Beijing Electron-
Positron Collider (BEPCII) detector, the Beijing Spectrometer (BES-III), the LHC, and the future GSI project, the
antiProton ANnihilation at DArmstadt (PANDA) experiment, will help further disentangle the heavy-baryon spectrum
and resolve puzzles like the one mentioned above. LQCD calculations serve as direct first-principles theoretical input
for these experiments.

Currently, LQCD provides the best option for performing reliable calculations of low-energy QCD observables.
LQCD is a numerical calculation of QCD, which is necessarily performed in a finite discretized and Euclidean space-
time volume. These approximations introduce an infrared cut-off (the spatial extent L) and an ultraviolet cutoff
(the lattice spacing a). The latter of these artifacts has been a source of large systematic errors in the heavy-quark
sector of QCD. For heavy-quark masses satisfying amQ � 1, it is natural to control the discretization errors using

a briceno@uw.edu
1 Only results for the Ξ+

cc(3520) [1] have been published, and this is the only doubly charmed state recognized by the Particle Data

Group [20]; therefore, in this work we will assume this to be the JP = 1
2

+
doubly charmed ground state and compare the corresponding

theoretical predictions of this state. It is important to note that the quantum numbers of the Ξ+
cc(3520) have not yet been identified.
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nonrelativistic QCD (NRQCD) [21]. NRQCD has proven particularly useful when studying physics regarding the
bottom quark, but for lattice spacings ≤ 0.12 fm the charm-quark mass is too small to make the NRQCD approx-
imation justifiable. Alternatively, one can implement relativistic heavy-quark actions [22–26], where all O((amQ)n)
corrections are systematically removed.

Several groups have performed lattice charmed-baryon calculations using the quenched approximation [18, 19, 27,
28]. Although these have served as benchmark calculations of the charmed-baryon sector, the quenched approximation
is a large source of systematic error that is difficult to estimate. Three previous groups have studied the charmed-
baryon spectrum using dynamical quarks [13–17, 29, 30].

Na et al. [16, 17] performed a rather extensive calculation of charm- and bottom-baryon masses at three different
lattice spacings (a ≈ 0.15 fm, 0.12 fm, and 0.09 fm). They used chiral perturbation theory (χPT)-inspired polynomial
extrapolations of the light-quark masses but refrained from performing a continuum extrapolation of their results.
From their results for the doubly charmed baryons, one could infer a 40–100 MeV systematic error associated with
discretization effects.

Liu et al. [13–15] did a rather nice exploratory calculation over four different pion masses and performed what is
probably the best (to this day) chiral extrapolation of the J = 1/2+ charmed-baryon spectrum using a relativistic
heavy quark action for the charm quark. There are a few places where this calculation could be further improved.
First, the lightest pion used in their calculation was about 290 MeV; with advances in technology, we can get closer
to the physical point. For baryons with no light degrees of freedom, this is a minor issue, but for isodoublet doubly
charmed baryons the light-quark mass dependence is nontrivial. Second, they performed all calculations at a single
coarse lattice spacing, a ≈ 0.125 fm, which lies near the upper limit of reliable spacings for studying charm physics.
In their work, they used power-counting arguments to give estimates of the discretization effects. In particular, in
the doubly charmed sector, they assigned a rather conservative systematic uncertainty associated with discretization
effects, δmhcc = −78 MeV. This is by far their largest uncertainty across all states; for example, their result for
the lightest doubly charmed baryon is mΞcc = 3665(17)(14)+0

−78. Lastly, they restricted themselves to studying the
J = 1/2+ sector. The J = 1/2+ and J = 3/2+ charmed baryons are related by heavy-quark symmetries, which
results in their chiral extrapolations being coupled. This is particularly relevant when performing a χPT-motivated
extrapolation of the (Ξcc,Ξ

∗
cc) doublet to the physical point.

The European Twisted-Mass (ETM) Collaboration recently presented results for Λc, Σc, Σ∗c , Ξcc, Ξ∗cc, and Ωccc,
using Nf = 2 dynamical sea quarks with a lightest pion mass of about 260 MeV at three lattice spacings a ∈
{0.056(1), 0.0666(6), 0.0885(6)} fm, and a relativistic action for the valence charm quark [30]. They used χPT-inspired
polynomials for the light-quark mass extrapolation, neglecting O(1/mQ) corrections and chiral-log contributions.
Having performed calculations at three lattice spacings allowed them to quantify their discretization error, which was
incorporated into their systematics. Although historically, the use of Nf = 2 dynamical sea quarks was a reasonable
approximation, this (like full quenching) introduces a source of systematic error that can only be quantified when
results are directly compared to Nf = 2 + 1 or Nf = 2 + 1 + 1 calculations.

In order to confidently deal with systematics due to discretization effects, it is necessary to perform calculations
with highly improved actions, relativistic heavy-quark actions, and multiple lattice spacings in order to extrapolate to
the continuum. With these goals in mind, we evaluated the positive-parity ground-state charm-baryon spectrum using
two pion masses (with a lightest mπ around 220 MeV) and three lattice spacings (a ≈ 0.12 fm, 0.09 fm, and 0.06 fm).
In this work, we made three extensions to our previous preliminary calculation [31]. Firstly, we used an ensemble
at the super-fine a ≈ 0.06 fm lattice spacing in order to further constrain the continuum extrapolation. Secondly,
when extrapolating the charmed-baryon masses to the physical mπ, we used heavy-hadron χPT (HHχPT) [32–35]
at next-to-leading order (NLO) in mπ and in the heavy-quark mass expansion, while in our previous work we had
restricted ourselves to the LO mπ dependence. In order to do this, we extended previous HHχPT results [36, 37] to
include O(1/mQ) corrections. Thirdly, we quantified systematics associated with finite-volume effects, scale setting,
the determination of mπ, O(m4

π, a
2mπ) corrections to the expressions used to extrapolate to the physical point, and

the strange-mass tuning.

This paper is structured as follows. In Sec. II, we outline the formulation of the lattice calculation, including
the actions used for the sea, valence light, and valence charm quarks, as well our procedure for setting the scale
independently, and the construction of our correlation functions. In Sec. III, we present the tuning of the charm-quark
action and show the results for the charmonium spectrum. In this section, we present the results for the mDs −mηc/2

splitting, which is shown to have rather large lattice-spacing dependence, but the result presented is in agreement with
experiment when extrapolated to the continuum. Section IV outlines our analysis of the charmed-baryon spectrum
and includes a detailed discussion of the O(m3

π, 1/mQ) HHχPT expressions for the masses. In this section, the a
dependence of the charmed-baryon sector is discussed, as well the systematics mentioned at the end of the previous
paragraph. Finally, in Sec. V we give a summary of our results and a comparison of the yet-to-be-discovered masses
across different models.
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β (amπ)sea (amK)sea (amπ)val (amK)val L3 × T Lmπ Ncfgs Nprops

A1 6.00 0.18931(10) 0.32375(12) 0.18850(79)(55) 0.32358(58)(67) 243 × 64 4.5 504 2016

A2 6.00 0.13407(6) 0.30806(9) 0.13584(79)(59) 0.30894(52)(60) 323 × 64 4.4 477 1908

B1 6.30 0.14066(13) 0.24085(14) 0.14050(40)(28) 0.24032(39)(23) 323 × 96 4.5 391 1564

B2 6.30 0.09845(9) 0.22670(12) 0.09950(53)(23) 0.22464(27)(35) 483 × 96 4.8 432 1568

C1 6.72 0.09444(9) 0.16204(11) 0.09444(38)(9) 0.16086(29)(68) 483 × 144 4.5 330 1320

TABLE I: Details of the configurations and propagators used in this work. The subscript “sea” labels the lightest
sea pseudoscalar masses from the HISQ action [38, 39], while the subscript “val” labels the valence masses. The sea
hadron masses have a single uncertainty due to the statistics, while the valence masses include statistical and
systematic uncertainty due to fitting-window selection as defined in Sec. II B. Additionally, listed are the spatial (L)
and temporal extents (T ) in lattice units, the value of mπL, the number of configurations, and the number of
measurements performed for each ensemble.

II. LATTICE FORMULATION

A. Light-Quark Action

In this work, we used Nf = 2 + 1 + 1 gauge configurations that were generated by the MILC Collaboration with the
highly improved staggered quark (HISQ) [38–42] action for the sea quarks. The implementation of the HISQ action,
first proposed by the HPQCD/UKQCD Collaboration [40–42], has been shown to further reduce lattice artifacts as
compared to the asqtad action [38]. Staggered actions reduce the number of doublers to four “tastes”, which are
reduced to the desired number of true flavors by taking the fourth-root of the fermionic determinant. As a result,
staggered actions have two sources of discretization errors. The first is due to the discretization of the derivative,
while the second is associated with taste-exchange interactions in quark-quark scattering. It has been shown that the
latter type of errors are suppressed at � 1% level when the HISQ action is used for light quarks at lattice spacings of
0.1 fm or less [42]. Furthermore, its suppression of O((am)4) errors makes the HISQ action a desirable candidate for
studying charm physics on the lattice [42]. Lastly, despite the HISQ action being significantly more computationally
expensive than the asqtad action [43], it is still more economical than a non-staggered action. This has allowed the
MILC Collaboration to recently generate multiple Nf = 2 + 1 + 1 HISQ ensembles, with a range of lattice spacings
a ∈ [0.045, 0.15] fm and three light-quark (up, down) masses corresponding to mπ ∈ {140, 220, 310} MeV. This variety
of ensembles allows for clean extrapolations to the physical pion mass and the continuum limit.

Hypercubic blocking [44] is implemented on the gauge configurations in order to further reduce the ultraviolet noise
from the gauge field. For the valence light (up, down and strange) fermions a tree-level tadpole-improved clover-Wilson
action is used2, since the construction of baryon operators with staggered fermions is rather complicated. However,
for the coarser and lighter pion mass ensembles (such as 140-MeV pion mass at 0.12 fm), one runs into the problem
of exceptional configurations where the clover-Dirac operator has near-zero modes [48]. Thus, in this work, we were
limited to heavier light-quark masses which correspond to mπ ∈ {220, 310} MeV with lattice spacings of around 0.06,
0.09 and 0.12 fm.

Because the actions used for the sea and valence quarks differ, the calculation presented uses a mixed action, and
for nonzero lattice spacing, unitarity is violated. In order to restore unitarity, it is necessary to match the valence-
and sea-quark masses, as well as to extrapolate the results to the continuum. Due to the four-fold degeneracy of the
staggered action, in the continuum limit it has an SU(8)L⊗SU(8)R⊗U(1)V chiral symmetry. In this limit, each pion
obtains 15 degenerate partners. A finite lattice spacing breaks this symmetry and lifts the degeneracy [49]. Therefore,
there is an ambiguity when tuning the valence-quark mass to the sea-quark mass. We chose to simultaneously tune
the light- and strange-quark masses to assure that the valence pion and kaon masses match those of the lightest
Goldstone Kogut-Susskind sea pion and kaon masses, as shown in Table I. The Goldstone Kogut-Susskind sea pion
is the lightest pion, the only one that becomes massless in the chiral limit for a nonzero lattice spacing. Ideally, one
would want to perform all calculations at a range of light, strange and charm masses and simultaneously extrapolate
all masses to their physical values. Due to limited in computational resources, we performed calculations at a single
strange quark mass, but as will be discussed in Sec. II D our determination of mK at the continuum and physical mπ

is in agreement with experiment. This gives us confidence that the strange-quark mass is tuned properly.

2 The light clover propagators were generated and provided by the PNDME Collaboration [45–47].
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B. Correlation Functions and Fitting Method

Before discussing the tuning of the charm-quark action, let us explain how we constructed our correlation functions

and extracted hadronic masses. For a given interpolating hadron operator, O
(i)
H , we construct the two-point correlation

functions

C
(ij)
H (t− t0) =

∑
x

〈O(i)
H (t,x)O(j)†

H (t0,x0)〉, (1)

where the superscripts i and j label the smearing type of the annihilation and creation operator, respectively, {x0, t0}
labels source location, and {x, t} the sink location. In order to reduce statistical noise, the two-point functions are
averaged over four source locations for each gauge configuration.

Both the baryonic and mesonic correlation functions are calculated with gauge-invariant Gaussian-smeared (S)
sources and point (P) sinks. For the mesons, we use the generalized Prony-matrix (PM) method [50] over the
smeared-smeared (SS) and smeared-point (SP) correlation functions. The PM method uses the fact that each choice
of smearing parameters corresponds to a particular linear combination of the exponentiated masses (mj) and the

corresponding overlap factors (Aj), C
(i)
H (t) = A

(i)
0 e−m0t + A

(i)
1 e−m1t + · · · . By computing correlation functions with

two sets of smearing parameters, we can determine the two lowest energy states that have overlap with the interpolating
operator used by solving the eigenvalue equation

MyH(t+ 1)− V yH(t) = 0 (2)

where yTH(t) = (C
(SS)
H (t), C

(SP)
H (t)). One solution to this equation is given by [50]

M =

[
τ+tW∑
t=τ

yH(t+ 1)yTH(t)

]−1

V =

[
τ+tW∑
t=τ

yH(t)yTH(t)

]−1

, (3)

where the window size tW must be ≥ 1 in order to ensure the matrices within the brackets are invertible. For each
hadron, τ is chosen in order to maximize the plateau of the ground state. The statistical uncertainties of the extracted
hadron masses are evaluated using the jackknife method.

We test the PM method for a subset of the baryonic masses and compare the results with those extracted from a
single-exponential and double-exponential fits to the SP correlation function at large Euclidean time. We find these
to be in agreement within our systematics, with the single-exponential having the smaller uncertainty. As a result,
we choose to extract all masses from the single-exponential behavior of the SP correlation function.

For all energies extracted, we determine the statistical uncertainty and a systematic associated with choosing a
fitting window [ti, tf ]. In order to estimate the latter, for all fitting windows that fall within [ti, tf + 2] we calculate

the energy, χ2, and goodness of fit Q(d) (defined as (2d/2Γ(d/2))−1
∫∞
χ2 dχ

2
0(χ2

0)d/2−1e−χ
2
0/2), which depends on the

number of degrees of freedom d and is optimally near 1. From this ensemble of energies, we define the systematic as
the standard deviation of the energies weighted by Q(d).

C. Charm-Quark Action

Since the charm-quark mass is too light to justifiably implement a nonrelativistic action for the lattice spacings used
in our calculation, it is necessary to use a relativistic action. To systematically remove the O((mca)n) discretization
artifacts (where mc is the charm-quark mass), we use the following relativistic heavy-quark action for the valence
charm quark [23–26]:

SQ =
∑
x,x′

Qx

(
m0 + γ0D0 −

a

2
D2

0 + ν
(
γiDi −

a

2
D2
i

)
− a

4
cBσijFij −

a

2
cEσ0iF0i

)
xx′

Qx′ , (4)

whereQx is the heavy-quark field at the site x, γν are the Hermitian gamma matrices that satisfy the Euclidean Clifford
algebra σµν = i[γµ, γν ]/2, Dµ is the first-order lattice derivative, and Fµν is the Yang-Mills field-strength tensor. The
parameters {m0, ν, cB, cE} must be tuned to assure O((mca)n) terms have been removed. For the coefficients cB and
cE we use the tree-level tadpole-improved results [13–15, 51] cB = ν/u3

0, cE = 1 + ν/(2u3
0) with the tadpole factor
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a [fm] amΩ amc1 amc2

A1 0.11926(77)(51) 1.0291(56)(37) 0.901 0.872

A2 0.11926(77)(51) 1.0192(31)(21) 0.900 0.853

B1 0.0871(10)(5) 0.7562(81)(52) 0.561 0.536

B2 0.0871(10)(5) 0.7463(52)(25) 0.552 0.522

C1 0.0578(13)(19) 0.5148(17)(39) 0.319 0.309

TABLE II: The lattice spacings and Ω masses cited include the statistical and systematic uncertainties due to the
fitting window. The lattice spacings are determined by the chiral extrapolation of the Ω mass to the physical value
of (mπ/mΩ)2 for each value of βa. Additionally listed are the two bare masses of the valence charm quarks used for
each ensemble.

a Note that we calculate the Ω mass [amΩ = 0.5007(65)(96)] on 200 configurations for a ≈ 0.06 fm, 220-MeV to fix the lattice spacing
for ensemble C1.

FIG. 1: A sample dispersion relation for the ηc and J/ψ. The six points correspond to energies (and uncertainties)
for the at the six lowest-momenta states: (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0) in units of (2π/L)a−1,
and their permutations. The red line is the resulting fit to the data using the relativistic dispersion relation
E2
H = m2

H + c2p2, and the blue band includes the statistical and systematic errors added in quadrature. The
energies shown are obtained using the full statistics of the C1 ensemble and have been extrapolated to the physical
charm mass. From the fit we obtain the speed of light and its statistical and systematic uncertainties,
cηc = 1.0039(28)(9) and cJ/ψ = 0.9964(35)(5).

u0 defined as u0 = (1/3)
〈∑

p Tr(Up)
〉1/4

, where Up is the product of gauge links around the fundamental lattice

plaquette p.
The coefficients m0 and ν were simultaneously determined nonperturbatively by requiring the ratio m1S/mΩ ≡

(mηc + 3mJ/ψ)/(4mΩ) to be equal to its experimental value, 1.83429(56), and {ηc, J/ψ} to satisfy the correct disper-

sion relation, E2
H = m2

H + p2. In constructing the charmonium correlation functions, we used the local interpolating
operators shown in Table III. The dispersion relation was matched using ηc and J/ψ energies at the six lowest mo-
menta: (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0) in units of (2π/L)a−1, and their rotational equivalents. In
practice, we performed the initial tuning with a subset of 40 gauge configurations (with four sources each). Clearly
this procedure does not guarantee correct tuning upon analysis of the full ensemble. Therefore, we used two separate
charm-quark masses and extrapolated to the physical charmonium mass. These two points allowed us to interpolate
linearly in amc to the physical charm-quark mass defined by m1S/mΩ = 1.83429(56). The valence charm-quark
masses used for each ensemble are shown in Table II. Figure 1 shows examples of the resulting dispersion relations
for the ηc and J/ψ with full statistics after extrapolating to the physical charm mass from one of the ensembles, C1,
and they show that the slopes are consistent with 1.
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FIG. 2: χPT and continuum extrapolations of the kaon mass. The red line indicates the fit of the data that has
been extrapolated to a = 0. The blue band includes the statistical and systematic errors added in quadrature.

D. Lattice-Spacing Determination and Discussion of mH/mΩ Ratios

As mentioned earlier, it is necessary to evaluate the spectrum at multiple lattice spacings in order to simultaneously
restore unitarity and remove discretization errors. With this in mind, we perform the calculation at three lattice
spacings, a ≈ 0.06 fm, 0.09 fm and 0.12 fm. For the coarse (a ≈ 0.12 fm) and fine (a ≈ 0.09 fm) lattice spacings, we
use two different light-quark masses corresponding to mπ ≈ 220, 310 MeV; for the super-fine (a ≈ 0.06 fm) ensemble
we use a single light quark, mπ ≈ 310 MeV. We calculate the Ω mass on 200 configurations for a ≈ 0.06 fm and
mπ ≈ 220 MeV to fix the lattice spacing for ensemble C1.

In order to obtain physical masses in the continuum, it is necessary to determine the lattice spacing for the five
ensembles used. Currently, the most precise determination of lattice spacings for the MILC ensembles is by the
HPQCD Collaboration [40]; however, their determinations of the lattice spacings for the B2 and C1 ensembles
remain unpublished. For this reason, we perform our own determination. Due to the small m2

π-dependence of mΩ

(at the few-percent level) we choose to set the scale by extrapolating the value of amΩ across all ensembles with the

same value of β to the physical pion mass. We define the lattice spacing by dividing amphys
Ω by the physical Ω mass,

1672.45(49) MeV.

In constructing the correlation functions for the Ω, we use (Ω)i = εklmP+(P
3/2
E )ijqks

(
qlTs Γjqms

)
as the interpolating

operator. The strange-quark annihilation operator is denoted qks with color index k, Γi = Cγi are the symmetric spin
matrices (where C is the charge-conjugation matrix), P+ = (1 + γ4)/2 is the positive-parity projection operator, and

(P
3/2
E )ij = δij − 1

3γ
iγj are the spin-projection operators for spin-3/2 particles.

One can determine mΩ as a function of m2
π via SU(3) χPT, but this expression suffers from rather large expansion

parameters (mK/Λχ, mη/Λχ) and does not always describe lattice baryon masses well. Alternatively, it has been
proposed that the hyperon masses can be extrapolated using a two-flavor chiral perturbation theory [52]. With a
faster convergence than its three-flavor counterpart, the advantages of this approach are clear. The cost is manifested
in a larger set of unknown coefficients. Using SU(2) χPT for the hyperons, the Ω mass as a function of m2

π up to
O(m6

π) is [52]

mΩ = m0
Ω +

m2
π

4πfπ
σ

(2)
Ω +

m4
π

(4πfπ)3

[
σ

(4)
Ω log

m2
π

µ2
+ β

(4)
Ω

]
+

m6
π

(4πfπ)5

[
σ

(6)
Ω log2 m

2
π

µ2
+ β

(6)
Ω log

m2
π

µ2
+ γ

(6)
Ω

]
, (5)

where fπ = 130.7(4) MeV is the pion decay constant, and the {σΩ, βΩ, γΩ} are the low-energy coefficients (LECs) of
the theory. Because at each lattice spacing we have (at most) two ensembles with two corresponding values of mπ, we
are forced to truncate Eq. 5 at O(m2

π) in order to retain a reasonable level of precision. This truncation introduces a
systematic uncertainty into our calculations which will be accounted for in Sec. IV B.

Further details of the ensembles, including our determination of the lattice spacing and the Ω mass are listed in
Table II. The values determined by the MILC Collaboration are a = 0.1211(2) fm for the coarse and a = 0.0884(2) fm
for the fine. The HPQCD Collaboration performed a rather extensive program in which they determined the lattice
spacing for each ensemble using three different quantities: Υ 2S-1S splitting, the decay constant of the ηs meson,
and the r1/a ratio [40]. We determine a single lattice spacing for each value of β and find central values that are
consistently below both the MILC and HPQCD central values. This difference in the definition of the lattice spacing
should have no impact on continuum-extrapolated results.
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FIG. 3: Diagrams that contribute to the charmonium correlation functions. In this work we evaluate the
contribution from connected diagrams (left) and neglect disconnected diagrams (right). The latter are OZI
suppressed, and previous lattice calculations have determined their contributions to be consistent with zero [54–56].

Table II shows that the lattice spacing for the ensemble C1 is currently determined at the ∼ 4% level of precision.
For the same reasons discussed above, we choose to determine the physical hadron masses using the mH/mΩ ratio.
As will be shown, the mH/mΩ is determined at the sub-1% level for all ensembles and particles. Due to the removal
of the O(m4

π)-terms in Eq. 5, we proceed to truncate all of our chiral fits at the O(m3
π) level of accuracy, and estimate

a systematic error associated with this approximation (see Sec. IV B).
Because we are using the strange mass to set the scale, it is important to first test the strange-mass tuning, which

we do using the kaon mass. For all the pseudoscalar mesons, we use the standard local operators OH = q̄kfγ5q
k
f ′ , where

qkf is the annihilation operator for a quark with flavor f and color index k. As discussed in Ref. [53], when reducing

the symmetry of χPT from SU(3) to SU(2), kaons can be represented as a matter field that couples to the SU(2)
chiral currents. This treatment of the kaons is referred to as KχPT. The advantage of KχPT is that the largest
expansion parameter is m2

π/m
2
K < m2

K/(4πfπ)2. Using KχPT, the kaon mass as a function of mπ is found to be [53]

mK

mΩ
=
m0
K

m0
Ω

−
(
σK +

mKσΩ

4πfπmΩ

)
m2
π

mΩ
+ ca(mphys

Ω a)2 +O(m4
π), (6)

where m0
K is the bare kaon mass, and the a-dependence is parametrized by ca(mphys

Ω a)2. For the kaon and for all
other hadrons studied in this work, the continuum-limit mass is recovered by multiplying the ratio at the physical
point by the physical Ω mass, 1672.45(49) MeV.

In Table I the valence kaon masses are shown for each ensemble. In Fig. 2 we show the values for the kaon mass
for each ensemble with the corresponding statistical and systematic uncertainties as a function of mπ/mΩ, as well
as the chiral extrapolation at the continuum. Figure 2 shows that the lattice-spacing dependence of the kaon is
rather small, and that the extrapolated value, mK+ = 488.7(5.3)(5.3)(5.7) MeV (the three uncertainties are statistics,
fitting-window systematic, and systematics from scale setting, O(m4

π, a
2mπ)-corrections to the expressions used to

extrapolate to the physical point, finite volume, and strange-mass tuning as discussed in Sec. IV B), agrees with
experiment within our systematics. This confirms our strange-mass tuning as well as our scale determination and
extrapolation procedure using the mH/mΩ ratio.

III. CHARMONIUM SPECTRUM

In this section, we calculate the charmonium 1S splitting and the rest of the charmonium spectrum in the continuum
limit, and we compare them with experimental and previous dynamical lattice results. We use the ratios of spin
averages of ηc and J/ψ masses to Ω baryon masses to tune the charm-quark mass for each ensemble; thus, the
splitting between them is not fixed in our calculations. Any deviations from the well-measured experimental values
give us an estimation of the final systematics.

In constructing the meson correlation functions, we restrict ourselves to the local interpolating operators shown
in Table III. In order to evaluate the full correlation functions of the charmonium spectrum, we need to perform
two different types of propagator contractions, as depicted in Fig. 3, connected and disconnected diagrams. Dis-
connected diagrams would increase the number of propagators needed by approximately two orders of magnitude
but are suppressed by the OZI rule [57]. Previous lattice calculations at zero temperature have shown disconnected
diagrams in the charmed sector are rather noisy, and their contributions to the hyperfine splitting are in the range of
1–4 MeV and consistent with zero [54–56]. Thus, we neglect contributions arising from disconnected diagrams here.
Figure 4 displays examples of the effective-mass plots after performing the generalized Prony-matrix method for the
charmonium sector, and the charmonium masses for each ensemble are shown in Table IV in lattice units.

For every hadron, we calculated the ratio of its mass to the Ω mass, mH/mΩ at the two different values of the
charm-quark mass. After interpolating these to the physical charm-quark mass for each ensemble, we simultaneously
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FIG. 4: Sample effective-mass plots of the charmonium spectrum from the various ensembles. The errorbar shown
includes the statistical and systematic uncertainty (from varying the fitted range) added in quadrature.

Hadron 2S+1LJ JPC Interpolator

ηc
1S0 0−+ Q̄kcγ5Q

k
c

(J/ψ)i 3S1 1−− Q̄kcγ
iQkc

χc0
1P0 0++ Q̄kcQ

k
c

(χc1)i 3P1 1++ Q̄kcγ5γ
iQkc

(hc)
ji 3P1 1+− Q̄kcγ

jγiQkc

TABLE III: Interpolating operators for the charmonium spectrum. Qkc labels the the charm quark with color index
k.

extrapolated the five values of the hadron masses to the continuum and the physical mπ. To perform the light-quark
mass extrapolation we use the SU(2) χPT expressions, which up to O(m3

π) is linear in m2
π:

mcc̄

mΩ
=
m0
cc̄

m0
Ω

+
m2
π

4πfπmΩ

(
σcc̄ −

mcc̄σΩ

mΩ

)
+ ca(mphys

Ω a)2 +O(m4
π), (7)

where m0
cc̄ is the bare charmonium mass, and the a-dependence is parametrized by ca(mphys

Ω a)2.

Using this procedure, we have verified that our calculations reproduce the experimental low-lying charmed-meson
spectrum. In Fig. 5 we show our results for the charmonium spectrum (as well as the hyperfine splitting ∆1S ≡
MJ/ψ − Mηc) after extrapolating to the physical point. As a result, our errorbars are larger than those of other
calculations. For comparison, we show in Fig. 5 a sample of previous dynamical lattice calculations that have studied
the charmonium spectrum. By comparing the level of precision of amΩ (see Table II) and amcc̄ (see Table IV), one
can see that it is the uncertainty of amΩ that dominates the overall uncertainty of the mcc̄/mΩ ratio.

The works by Bali et al. and Mohler et al. are far more extensive than the small sample that is being represented
here. Both groups used the variational method over different sources and sinks to not only extract ground-state
energies but also those of the excited states. Mohler et al. evaluated the spectrum for the {cc̄, cs̄, cl̄} systems for a
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Hadron mc (amH)A1 (amH)A2 (amH)B1 (amH)B2 (amH)C1

1S
mc1 1.86213(61)(21) [8–16] 1.85571(32)(5) [9–15] 1.37703(27)(18) [11–18] 1.36696(41)(26) [13–23] 0.93723(18)(11) [12–32]

mc2 1.83438(47)(24) [8–16] 1.80666(32)(5) [9–15] 1.34397(28)(20) [11–18] 1.32897(41)(15) [13–23] 0.92157(18)(9) [12–32]

ηc
mc1 1.86213(61)(19) [7–13] 1.85571(32)(4) [16–24] 1.37703(27)(15) [24–36] 1.36696(41)(39) [20–25] 0.93723(18)(14) [18–36]

mc2 1.83438(47)(27) [7–13] 1.80666(32)(4) [16–24] 1.34397(28)(20) [24–36] 1.32897(41)(13) [20–25] 0.92157(18)(16) [18–36]

J/ψ
mc1 1.91025(50)(29) [5–17] 1.90212(54)(21) [13–17] 1.41634(78)(19) [26–30] 1.40612(53)(18) [21–26] 0.96470(29)(38) [18–36]

mc2 1.88354(44)(30) [5–17] 1.85446(55)(15) [13–17] 1.38428(81)(29) [26–30] 1.36975(54)(9) [21–26] 0.94955(30)(22) [18–36]

χc0
mc1 2.1382(22)(19) [4–9] 2.1264(23)(34) [5–12] 1.5873(29)(27) [7–10] 1.5599(44)(22) [12–23] 1.0619(34)(20) [17–22]

mc2 2.1126(19)(17) [4–9] 2.0787(23)(28) [5–12] 1.5537(28)(25) [7–10] 1.5209(46)(21) [12–23] 1.0557(19)(20) [17–22]

χc1
mc1 2.164(11)(5) [11–16] 2.1574(56)(36) [9–12] 1.6121(26)(12) [3–9] 1.6001(53)(31) [12–23] 1.0966(37)(16) [12–18]

mc2 2.133(10)(4) [11–16] 2.1104(57)(44) [9–12] 1.5807(26)(16) [3–9] 1.5631(55)(33) [12–23] 1.0814(39)(10) [12–18]

hc
mc1 2.1612(93)(60) [7–10] 2.1573(54)(62) [9–14] 1.6296(59)(45) [10–17] 1.6078(59)(45) [12–23] 1.0904(89)(36) [18–24]

mc2 2.1373(90)(65) [7–10] 2.1105(55)(35) [9–14] 1.5952(83)(74) [10–17] 1.5709(59)(47) [12–23] 1.0869(53)(20) [18–24]

Ds
mc1 1.20785(70)(38)[13–23] 1.20348(65)(29)[8–15] 0.89883(46)(40)[13–29] 0.88914(62)(46)[13–23] 0.61196(53)(37)[18–26]

mc2 1.19203(69)(40)[13–23] 1.17734(64)(26)[8–15] 0.88112(45)(36)[13–29] 0.86803(59)(45)[13–23] 0.60333(52)(28)[18–26]

TABLE IV: Charmonium and Ds masses in lattice units for the five ensembles and two charm masses. Errors listed
are statistical and fitting window systematic. The fitting window is given in square brackets.

range of six pion masses ranging from 702 MeV to 156 MeV at a single lattice spacing, a ≈ 0.09 fm. On the other
hand, Bali et al. evaluated the {cc̄} spectrum, including disconnected diagrams, at three lattice spacings but did not
provide a continuum-extrapolated result for the spectrum or an estimate of the discretization error.

The conclusion of Fig. 5 is evident: these non-continuum results come with a large systematic error due to nonzero
lattice spacing. This error decreases with lattice spacing, but from Fig. 5 it is clear that in order to reproduce
the physical spectrum, it is necessary to extrapolate masses to the continuum. For example, in the upper figure in
Fig. 5 we see that despite our masses having the largest uncertainties, ours are the only results that are consistently
in agreement with experiment. We conclude that previous calculations that do not extrapolate their results to the
continuum have underestimated their systematic errors.

When tuning the charm mass to the spin-averaged mass, 1S, the most natural quantity to study is the hyperfine
splitting ∆1S . As a result, this splitting has received a great deal of attention in the community. One surprising
feature is that for a finite lattice spacing, ∆1S is underestimated [42, 58]. In our calculations we find the value of
∆1S agrees with experiment only after extrapolating to the continuum. This is consistent with the findings of the
HPQCD/UKQCD Collaboration [58] and Fermilab Lattice and MILC Collaborations [60], as shown in the lower part
of Fig. 5. Therefore, it cannot be overstated that charmed quantities need to be evaluated at multiple lattice spacings
to properly quantify the systematics.

In order to further test the strange- and charm-mass tuning, we evaluated the ∆sc ≡ mDs −mηc/2 splitting. This
is the binding-energy difference between the heavy-light and heavy-heavy systems; there is no reliable analytical
procedure for calculating this quantity. Since the strange-charm meson Ds has no light degrees of freedom, up to
O(m3

π) its mass is linear in m2
π, therefore the ∆sc splitting can be extrapolated using

∆sc

mΩ
=

∆0
sc

m0
Ω

+
m2
π

4πfπmΩ

(
σ∆sc −

σΩ∆sc

mΩ

)
+ ca(mphys

Ω a)2 +O(m4
π), (8)

where ∆0
sc denotes the bare splitting.

In Table IV, the Ds and ηc meson masses are shown for each ensemble. Figure 6 shows the values for the ∆sc

splitting after continuum extrapolation, along with their corresponding statistical and systematic uncertainties (see
Sec. IV B). Figure 6 shows that the a-dependence of ∆sc is sizable; in fact, continuum extrapolation is necessary in
order to reproduce the physical value. In performing the continuum extrapolation of ∆sc, we find the a-dependent
LEC to be ca = −0.0088(46). Since our determination of the cc̄ and cs̄ spectrum is in agreement with experiment,
we believe that the estimates of the systematics in Sec. IV B accurately reflect the sources of systematic error of the
calculation presented in this paper.
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Experiment
Bali et al. (Nf =2, a=0.09 fm)
Briceno et al. (Nf =2+1+1, Cont. Ext.)
Mohler et al. (Nf =2+1, a=0.09 fm splitting)
HPQCD & UKQCD (Nf =2+1, Cont. Ext.)
Fermilab & MILC (Nf =2+1, Cont. Ext.) 
PACS-CS Collaboration (Nf =2+1, a=0.09 fm)

FIG. 5: Our determination of the low-lying charmonium spectrum after extrapolating to the physical point, labeled
as “Briceno et al.”, as well as a survey of previous unquenched lattice calculations [42, 56, 58–60]. Calculations are
labeled by the number of dynamical flavors (Nf) and the approximate lattice spacing (a) used. If the calculation
evaluated the spectrum at multiple lattice spacings and extrapolated quantities to the continuum limit [a→ 0] it is
labeled “Cont. Ext.”. Mohler et al. determined the spitting between {χc0, χc1, hc} and 1S [58]; in order to compare
their results with ours, we have set 1S to its physical value, while leaving their hyperfine splitting unchanged. The
statistical uncertainty is shown as a thick inner error bar, while the statistical and systematic uncertainties (if
estimated in the paper) added in quadrature are shown as a larger thin error bar. Our systematic uncertainties
include errors originating from the fitting window, scale setting, pion mass determination, finite-volume effects,
O(m4

π, a
2mπ)-corrections to the expressions used to extrapolate to the physical point, and the strange mass tuning

(as discussed in Sec. IV B). The orange line/band indicates the experimentally measured masses or splittings with
their corresponding uncertainties [20].

IV. CHARMED-BARYON SPECTRUM

With confidence that our tuning reproduces the low-lying cc̄, cs̄, ls̄ spectrum within our systematics, we proceed to
evaluate the positive-parity charmed-baryon spectrum. Heavy-quark symmetry dictates that the quantum numbers
of the light degrees of freedom of any heavy-light system are conserved. One can identify approximately degenerate
multiplets by these quantum numbers. For singly charmed baryons, the light degrees of freedom can have total spin
equal to zero or one. Under SU(3)V chiral symmetry, the spin-singlet multiplet transforms as a 3̄ irrep. The spin
triplet is a 6 irrep when the total angular momentum is J = 1/2 and a 6∗ irrep when the total angular momentum
is J = 3/2. In the heavy-quark limit, these are degenerate. The doubly charmed baryons form a 3 irrep when
the total angular momentum is J = 1/2 and a 3∗ irrep when the total angular momentum is J = 3/2. The triply
charmed baryons are singlets under SU(3)V . This algebra was manifested by the interpolating operators used in this
calculation, as shown in Table III [61]. Figure 7 displays examples of the effective-mass plots for various correlation
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FIG. 6: χPT and continuum extrapolations of the ∆sc = mDs −mηc/2 splitting. The red line indicates the fit of the
data that has been extrapolated to a = 0. The blue band include the statistical and systematic errors added in
quadrature.

FIG. 7: Sample effective-mass plots from the various ensembles of the charmed-baryon sector. The errorbar shown
includes the statistical and systematic uncertainty (from varying the fitted range) added in quadrature.

functions. Table VI lists the baryon masses in lattice units for each charm-quark mass and ensemble along with the
statistical and fitting-window systematic uncertainties and the chosen fitting window.

A. Chiral and Continuum Extrapolation

As discussed in Sec. II C, the ratios of each charmed-hadron mass to the Ω mass are interpolated to the physical
charm mass, defined by m1S/mΩ = 1.83429(56). After this is done for each ensemble, it is necessary to extrapolate
the ratios to the physical light-quark mass and continuum. Due to the rather large expansion parameter of SU(3)
χPT and poorer convergence rate, we use SU(2) HHχPT to extrapolate the baryon masses to the physical pion mass.
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JP = 1
2

+
JP = 3

2

+

Λc = εklmP+Qkc
(
qlTu ΓAqmd

)
Ξc = εklmP+Qkc

(
qlTu ΓAqms

)
(Σ∗c)

i = εklmP+(P
3/2
E )ijQkc

(
qlTu Γjqmu

)
,

(Σc)
i = εklmP+(P

1/2
E )ijQkfc

(
qlTu Γjqmu

)
(Ξ∗c)

i = εklm√
2
P+(P

3/2
E )ijQkc

(
qlTu Γjqms + qlTs Γjqmu

)
(Ξ′c)

i = εklm√
2
P+(P

1/2
E )ijQkc

(
qlTu Γjqms + qlTs Γjqmu

)
(Ω∗c)

i = εklmP+(P
3/2
E )ijQkc

(
qlTs Γjqms

)
(Ωc)

i = εklmP+(P
1/2
E )ijQkc

(
qlTs Γjqms

)
(Ξ∗cc)

i = εklmP+(P
3/2
E )ijqku

(
QlTc ΓjQmc

)
(Ξcc)

i = εklmP+(P
1/2
E )ijqku

(
QlTc ΓjQmc

)
(Ω∗cc)

i = εklmP+(P
3/2
E )ijqks

(
QlTc ΓjQmc

)
(Ωcc)

i = εklmP+(P
1/2
E )ijqks

(
QlTc ΓjQmc

)
(Ωccc)

i = εklmP+(P
3/2
E )ijQkc

(
QlTc ΓjQmc

)
TABLE V: The interpolating operators for the positive-parity baryons [61]. qu,d,s respectively denote the up-, down-
and strange-quark annihilation operators, Qc denotes the charm-quark operator, {k, l,m} are color indices, while
{i, j} denote polarization indices.

(
ΓA,Γi

)
are the antisymmetric and symmetric spin matrices (Cγ5, Cγ

i), where C
is the charge-conjugation matrix. In order to have the best possible overlap with the state of interest, we have used

the spin projection operators (P
3/2
E )ij = δij − 1

3γ
iγj and (P

1/2
E )ij = δij − (P

3/2
E )ij = 1

3γ
iγj , and the positive-parity

projection operator P+ = (1 + γ4)/2.

FIG. 8: Two of the self-energy diagrams contributing to the masses of a singly charmed baryon in the 6 irrep. The
first depicts contributions arising from loops containing a pion and a member of the 6 irrep, while the second
correspond to loops containing a pion and a member of the 6∗ irrep. There are similar self-energy diagrams for
baryons in the 6∗ irrep.

Previous HHχPT calculations of the singly charmed-baryon masses used the static limit, mQ → ∞ [36, 37]. At
O(1/mQ) new operators are introduced that explicitly break the 6-6∗ degeneracy [62], resulting in three independent
bare splittings {∆3̄,6,∆3̄,6∗ ,∆6,6∗}. We extend previous work to include the O(1/mQ) corrections for the {Λc,Σc,Σ∗c}
and {Ξc,Ξ′c,Ξ∗c} multiplets by evaluating the contribution arising from the two self-energy diagrams depicted in Fig. 8.

First, consider the {Λc,Σc,Σ∗c} multiplet. Up to O(m3
π), the mπ dependence of the ratio of the particle masses to

mΩ can be written as

mΛc

mΩ
=
m0

Λc

m0
Ω

+
σ̄Λcm

2
π

(4πfπ)mΩ
− 6g2

3

(4πfπ)2mΩ

(
1

3
F(mπ,∆ΛcΣc , µ) +

2

3
F(mπ,∆ΛcΣ∗c

, µ)

)
+ ca(mphys

Ω a)2 (9)

mΣc

mΩ
=
m0

Λc
+ ∆0

ΛcΣc

m0
Ω

+
σ̄Σcm

2
π

(4πfπ)mΩ
− 2g2

3

3(4πfπ)2mΩ
F(mπ,−∆ΛcΣc , µ) +

g2
2

(4πfπ)2mΩ

(
4

9
F(mπ, 0, µ) +

8

9
F(mπ,∆ΣcΣ∗c

, µ)

)
+ca(mphys

Ω a)2

mΣ∗c

mΩ
=
m0

Λc
+ ∆0

ΛcΣ∗c

m0
Ω

+
σ̄Σ∗c

m2
π

(4πfπ)mΩ
− 2g2

3

3(4πfπ)2mΩ
F(mπ,−∆ΛcΣ∗c

, µ) +
g2

2

(4πfπ)2mΩ

(
10

9
F(mπ, 0, µ) +

2

9
F(mπ,−∆ΣcΣ∗c

, µ)

)
+ca(mphys

Ω a)2,

where σ̄H =
(
σH −m0

HσΩ/mΩ

)
, m0 and ∆0 label the bare masses and splittings, and g’s and σ’s are the LECs of the

theory. The chiral function F is defined as

F(m,∆, µ) = (∆2 −m2 + iε)3/2 ln

(
∆ +

√
∆2 −m2 + iε

∆−
√

∆2 −m2 + iε

)
− 3

2
∆m2 ln

(
m2

µ2

)
−∆3 ln

(
4∆2

m2

)
, (10)

with F(m, 0, µ) = πm3
π. From Eq. 9, in the static limit we reproduce the previous results [36, 37]. For the extrapolation

to the continuum limit, we consider the lattice-spacing dependence of δr(a) = ca(mphys
Ω a)2 for each baryon within the
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Hadron mc (amH)A1 (amH)A2 (amH)B1 (amH)B2 (amH)C1

Λc
mc1 1.4561(42)(70)[8–16] 1.4228(77)(73)[9–15] 1.0808(42)(33)[11–15] 1.0328(102)(79)[16–25] 0.7339(56)(15)[19–22]

mc2 1.4401(42)(70)[8–16] 1.3976(76)(69)[9–15] 1.0643(41)(35)[11–15] 1.0136(98)(62)[16–25] 0.7258(56)(15)[19–22]

Ξc
mc1 1.5333(24)(28)[8–15] 1.5120(31)(20)[8–15] 1.1438(37)(21)[14–18] 1.1115(37)(47)[14–27] 0.7747(48)(10)[26–29]

mc2 1.5174(24)(27)[8–15] 1.4871(31)(21)[8–15] 1.1274(37)(19)[14–18] 1.0922(33)(20)[14–27] 0.7665(48)(10)[26–29]

Σc
mc1 1.5521(40)(30)[8–11] 1.5286(50)(54)[8–16] 1.1703(43)(25)[11–16] 1.1351(80)(78)[13–23] 0.7968(32)(54)[13–22]

mc2 1.5359(40)(30)[8–11] 1.5028(50)(51)[8–16] 1.1530(43)(29)[11–16] 1.1134(74)(52)[13–23] 0.7883(32)(54)[13–22]

Σ∗c
mc1 1.6178(43)(48)[7–11] 1.5760(91)(44)[9–15] 1.1979(83)(53)[13–19] 1.1731(105)(167)[13–20] 0.8055(83)(29)[19–24]

mc2 1.6020(43)(50)[7–11] 1.5516(91)(42)[9–15] 1.1812(82)(55)[13–19] 1.1569(97)(76)[13–20] 0.7975(83)(29)[19–24]

Ξ′c
mc1 1.5878(60)(78)[12–23] 1.5820(55)(54)[11–18] 1.1925(51)(14)[16–22] 1.1682(49)(34)[15–21] 0.8089(23)(22)[12–23]

mc2 1.5717(60)(86)[12–23] 1.5564(55)(51)[11–18] 1.1753(50)(15)[16–22] 1.1471(44)(16)[15–21] 0.8005(22)(23)[12–23]

Ξ∗c
mc1 1.662(3)(14)[8–18] 1.6388(58)(41)[10–14] 1.2314(65)(41)[15–21] 1.2060(54)(48)[14–21] 0.8328(54)(17)[20–24]

mc2 1.646(3)(14)[8–18] 1.6142(57)(39)[10–14] 1.2157(64)(39)[15–21] 1.1896(51)(9)[14–21] 0.8248(53)(17)[20–24]

Ωc
mc1 1.6487(69)(16)[16–24] 1.6393(22)(24)[8–14] 1.2280(45)(17)[19–23] 1.2129(28)(3)[15–19] 0.8341(25)(25)[18–24]

mc2 1.6322(69)(16)[16–24] 1.6138(22)(24)[8–14] 1.2112(45)(16)[19–23] 1.1919(25)(3)[15–19] 0.8262(24)(24)[18–24]

Ω∗c
mc1 1.6960(38)(52)[11–20] 1.6882(27)(29)[8–14] 1.2567(64)(34)[19–26] 1.2493(32)(17)[14–19] 0.8567(24)(24)[15–30]

mc2 1.6805(38)(52)[11–20] 1.6638(27)(28)[8–14] 1.2408(64)(29)[19–26] 1.2313(29)(7)[14–19] 0.8489(23)(25)[15–30]

Ξcc
mc1 2.2349(33)(42)[11–25] 2.2194(67)(61)[15–22] 1.6628(21)(13)[6–16] 1.6413(46)(17)[17–25] 1.1298(25)(12)[19–29]

mc2 2.2037(33)(39)[11–25] 2.1701(66)(56)[15–22] 1.6394(48)(50)[6–16] 1.6070(39)(21)[17–25] 1.1139(25)(12)[19–29]

Ξ∗cc
mc1 2.3053(26)(27)[8–16] 2.2455(115)(72)[15–19] 1.6381(55)(47)[18–26] 1.6801(66)(37)[17–22] 1.1570(91)(32)[32–41]

mc2 2.2744(25)(27)[8–16] 2.1970(114)(73)[15–19] 1.6808(29)(44)[18–26] 1.6459(56)(27)[17–22] 1.1416(91)(34)[32–41]

Ωcc
mc1 2.2893(28)(9)[17–26] 2.2739(22)(12)[15–27] 1.7008(18)(2)[18–26] 1.6786(33)(14)[24–28] 1.1562(14)(4)[19–29]

mc2 2.2580(28)(10)[17–26] 2.2247(21)(12)[15–27] 1.6677(18)(3)[18–26] 1.6417(28)(6)[24–28] 1.1403(14)(4)[19–29]

Ω∗cc
mc1 2.3385(66)(29)[11–19] 2.3178(31)(19)[15–23] 1.7331(43)(10)[23–29] 1.7180(38)(23)[20–26] 1.1796(21)(6)[26–31]

mc2 2.3078(66)(29)[11–19] 2.2694(31)(19)[15–23] 1.7001(43)(9)[23–29] 1.6799(35)(16)[20–26] 1.1641(21)(6)[26–31]

Ωccc
mc1 2.9621(16)(9)[16–24] 2.9466(15)(17)[16–24] 2.1953(15)(7)[32–39] 2.1788(18)(2)[21–28] 1.4921(22)(8)[38–43]

mc2 2.9161(16)(8)[16–24] 2.8753(15)(17)[16–24] 2.1472(16)(8)[32–39] 2.1239(17)(2)[21–28] 1.4690(23)(4)[38–43]

TABLE VI: Charmed-baryon masses for the five ensembles in lattice units, statistical and fitting window systematic
uncertainties, and fitting windows.

m0
Λc/m

0
Ω ∆0

ΛcΣc/m
0
Ω ∆0

ΛcΣ∗c
/m0

Ω σ̄Λc σ̄Σc σ̄Σ∗c g2
3 g2

2 ca χ2 d.o.f. Q

1.352(33) 0.112(30) 0.162(72) 1.3(1.7) 1.2(5.2) 1(15) 0.2(4.9) 0(16) 0.0042(71) 6.4 6 0.4

TABLE VII: Results of SU(2) HHχPT LECs from fits of the {Λc,Σc,Σ∗c} multiplet masses, χ2, the number of
degrees of freedom, and the goodness of the fit Q(d) (as defined in Sec. II B).

same multiplet to have the same behavior.

In order to stabilize our fits, we evaluate the splittings {∆ΛcΣc ,∆ΣcΣ∗c
,∆ΛcΣ∗c

} for each ensemble and extrapolate
them to the physical pion mass with the assumption that their lattice-spacing dependence is suppressed. The resulting
splittings serve as input to the chiral function in Eq. 11. In addition, when minimizing χ2 we require the axial couplings
to be real, g2 > 0. This requirement assures that the HHχPT Lagrangian is Hermitian, and it reduces the parameter
space of the minimization routine, thereby resulting in smaller uncertainties while leaving the mean values of the
extrapolated masses unchanged. The scale µ is set to 700 MeV; we do not observe a difference in the results when µ

is varied among {600 MeV, 700 MeV, 800 MeV}. Using the physical value of mphys
Ω /fphys

π = 12.796(37), we find the
LECs shown in Table VII. In Fig. 9 we display our fits at the continuum (a = 0) along with the value of mH/mΩ for
each ensemble as a function of mπ/mΩ. From Fig. 9, one sees all masses are within 1.1 σ of the experimental values.
From Table VII, it is evident that only the leading-order term in the chiral expression is determined well.
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FIG. 9: NLO HHχPT and continuum simultaneous extrapolations of {Λc,Σc,Σ∗c} masses. The red line depicts the
fit of the data that has been extrapolated to a = 0. The blue band includes the statistical and systematic errors
added in quadrature.

m0
Ξc/m

0
Ω ∆0

ΞcΞ′c
/m0

Ω ∆0
ΞcΞ∗c

/m0
Ω σ̄Ξc σ̄Ξ′c σ̄Ξ∗c g2

3 g2
2 ca χ2 d.o.f. Q

1.477(45) 0.054(63) 0.11(16) 0.73(60) 0.1(6.7) −0.4(5.1) 3.0(7.1) 0.0(6.4) 0.006(10) 5.2 6 0.5

TABLE VIII: Results of SU(2) HHχPT LECs from fits of the {Ξc,Ξ′c,Ξ∗c} masses.

Next consider the multiplet {Ξc,Ξ′c,Ξ∗c}:

mΞc

mΩ
=
m0

Ξc

m0
Ω

+
σ̄Ξcm

2
π

(4πfπ)mΩ
− 3

2

g2
3

(4πfπ)2mΩ

(
1

3
F(mπ,∆ΞcΞ′c

, µ) +
2

3
F(mπ,∆ΞcΞ∗c

, µ)

)
+ ca(mphys

Ω a)2 (11)

mΞ′c

mΩ
=
m0

Ξc
+ ∆ΞcΞ′c

m0
Ω

+
σ̄Ξ′c

m2
π

(4πfπ)mΩ
− 1

2

g2
3

(4πfπ)2mΩ
F(mπ,−∆ΞcΞ′c

, µ) +
3

8

g2
2

(4πfπ)2mΩ

(
4

9
F(mπ, 0, µ) +

8

9
F(mπ,∆Ξ′cΞ

∗
c
, µ)

)
+ca(mphys

Ω a)2

mΞ∗c

mΩ
=
m0

Ξc
+ ∆ΞcΞ∗c

m0
Ω

+
σΞ∗c

m2
π

(4πfπ)mΩ
− 1

2

g2
3

(4πfπ)2mΩ
F(mπ,−∆ΞcΞ∗c

, µ) +
3

8

g2
2

(4πfπ)2mΩ

(
10

9
F(mπ, 0, µ) +

2

9
F(mπ,−∆Ξ′cΞ

∗
c
, µ)

)
+ca(mphys

Ω a)2.

The values obtained for the LECs are shown in Table VIII, and Fig. 10 displays our fits at the continuum. From
Fig. 10 it is clear that the extrapolated masses are within 1.1 σ from the experimental values. Furthermore, we are
not able to resolve any lattice-spacing dependence for this multiplet, and the chiral extrapolation is close to a constant
for Ξ′c and Ξ∗c .
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FIG. 10: NLO HHχPT and continuum extrapolations of {Ξc,Ξ′c,Ξ∗c} masses. The red line depicts the fit of the data
that has been extrapolated to a = 0. The blue band includes the statistical and systematic errors added in
quadrature.

m0
Ξcc/m

0
Ω ∆0

ΞccΞ∗cc
/m0

Ω σ̄Ξcc σ̄Ξ∗cc g2
πΞccΞ∗cc

ca χ2 d.o.f. Q

2.147(35) 0.025(24) −0.00002(55) 0.00057(60) 0.00008(52) 0.013(19) 6.3 4 0.2

TABLE IX: Results of SU(2) HHχPT LECs from fits of the {Ξcc,Ξ∗cc} multiplet masses.

For the multiplet {Ξcc,Ξ∗cc} we use the previously determined expressions [63] to perform the chiral extrapolation

mΞcc

mΩ
=
m0

Ξcc

m0
Ω

+
σ̄Ξccm

2
π

(4πfπ)mΩ
−

g2
πΞccΞ∗cc

(4πfπ)2mΩ

[
1

9
F(mπ, 0, µ) +

8

9
F(mπ,∆ΞccΞ∗cc , µ)

]
+ ca(mphys

Ω a)2 +O(m4
π) (12)

mΞ∗cc

mΩ
=
m0

Ξcc
+ ∆ΞccΞ∗cc

m0
Ω

+
σ̄Ξ∗cc

(4πfπ)
m2
πmΩ −

g2
πΞccΞ∗cc

(4πfπ)2mΩ

[
5

9
F(mπ, 0, µ) +

4

9
F(mπ,−∆ΞccΞ∗cc

, µ)

]
+ ca(mphys

Ω a)2 +O(m4
π).

The results for the LECs are shown in Table IX, and Fig. 11 displays our fits at the continuum. It is remarkable in
Fig. 11 that the m2

π-dependence of mΞcc is surprisingly small compared to that of mΞ∗cc
. From Fig. 11, one can also

observe that our value of mΞcc is about 1.7 σ above the experimentally observed mass.

Lastly, the SU(2) HHχPT extrapolation formula for all isosinglet states, Ωc,Ω
∗
c ,Ωcc,Ω

∗
cc, and Ωccc, is given by

mΩc

mΩ
=
m0

Ωc

m0
Ω

+
σ̄Ωcm

2
π

(4πfπ)mΩ
+ ca(mphys

Ω a)2 +O(m4
π). (13)

In Table X, we summarize the fitted LECs of the five isosinglet states. Figure 12 shows the continuum extrapolation
of the yet-to-be-observed {Ωcc,Ω∗cc,Ωccc} states along with the value of the ratio of their masses to mΩ for each
ensemble.
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FIG. 11: NLO HHχPT and continuum extrapolations of {Ξcc,Ξ∗cc} masses. The red line depicts the fit of the data
that has been extrapolated to a = 0. The blue band includes the statistical and systematic errors added in
quadrature. The dashed line indicates the physical point mπ/mΩ = 0.083453(25).

Hadron m0
H/m

0
Ω σ̄H ca χ2 d.o.f Q

Ωc 1.612(24) −0.49(66) −0.005(18) 0.57 2 0.57

Ω∗c 1.670(23) −0.78(62) −0.005(18) 1.32 2 0.27

Ωcc 2.206(30) −0.27(81) 0.010(24) 0.58 2 0.56

Ω∗cc 2.247(33) −0.17(88) 0.010(26) 0.81 2 0.44

Ωccc 2.857(38) −0.7(1.0) 0.019(29) 1.16 2 0.31

TABLE X: LO SU(2) χPT LECs of isosinglet states Ωc,Ω
∗
c ,Ωcc,Ω

∗
cc, and Ωccc.

B. Systematics

In performing the continuum and chiral extrapolation, we added five systematic errors in addition to the fitting-
window error. The first of these arises from the uncertainty in determining mπ and the lattice spacing. We derive this
uncertainty by simultaneously varying mπ and the lattice spacing within their corresponding uncertainties (shown in
Tables I and II, respectively) when extrapolating the masses to the physical point. This gives an ensemble of energies,
and we obtain a systematic uncertainty from the standard deviation of this ensemble.

The second uncertainty is due to finite-volume (FV) corrections. The dominant finite-volume effects for baryon
with light degrees of freedom from the FV counterpart of self-energy diagrams depicted in Fig. 8, and in the p-regime
these scale like e−mπL/(mπL) [64]. More specifically, up to an overall O(1) constant, they can be written as [64]

δmFV,l
H ∼ m3

π

8πf2
π

∑
~n 6=~0

e−L|~n|mπ

mπL|~n|
. (14)

Note, the overall constant depends on the axial coupling, which we have found to be consistent with zero (see
Tables VII, VIII and IX). For hadrons with no light degrees of freedom, FV effects come in at O(m4

π) in the chiral
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FIG. 12: Chiral and continuum extrapolations of {Ωcc,Ω∗cc,Ωccc} masses. The red line depicts the fit of the data
that has been extrapolated to a = 0. The blue band includes the statistical and systematic errors added in
quadrature. The dashed line indicates the physical point mπ/mΩ = 0.083453(25).

expansion, and therefore are further suppressed by a factor of mπ/Λχ, where Λχ ∼ 700 MeV is the chiral symmetry-
breaking scale,

δmFV,h
H ∼ m4

π

8πf2
πΛχ

∑
~n 6=~0

e−L|~n|mπ

mπL|~n|
. (15)

In Table XI we evaluate both of these FV effects for hadrons with and without light degrees of freedom.
In performing the chiral and continuum extrapolation we have taken into account terms coming in atO(a2,m2

π,m
3
π, 1/mQ)

and neglected O(m4
π, a

2mπ) terms. In order to account for O(m4
π) corrections we add a systematics of the form [37]

δmχPT
H ∼ m4

π

(4πfπ)3
, (16)

which contributes at the MeV level for our ensembles.
In general, quantities obtained using mixed action have discretization errors arising from artifacts of both the sea

and the valence actions. From mixed-action EFT (MAEFT) we know that leading order (LO) these artifacts can be
parametrized in terms of two quantities, a2∆Mix and a2∆sea, the LO mixed meson mass correction and sea action
lattice artifact, respectively 3 [65–67]. These contributes to the LO a-dependence of the valence pion mass, which have
been accounted for in our continuum extrapolation. These splittings also give rise to NLO corrections to the MAEFT
extrapolation formulas. In Ref. [68], Orginos and Walker-Loud evaluated a2∆Mix for Domain-Wall valence quarks
on the asqtad improved MILC lattices with a ≈ 0.125 fm and found it to be (316(4) MeV)2, which is smaller than
the corresponding value of a2∆sea = (450 MeV)2. To this day, a2∆Mix has not been determined for clover-Wilson

3 It was pointed out in the literature that mixed meson masses acquire an additional O(a2)-correction which depends on the sea action,
a2∆′Mix [65]. Because we have taken into account all O(a2) corrections and since we are only interested in using power counting counting
argument to give an estimate for high order corrections, we do not make a distinction between these two quantities.
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δmFV,l
H [MeV] δmFV,h

H [MeV] δmχPT
H [MeV] δmMA

H [MeV] δms
H [MeV]

A1 1.3 0.6 2.1 9.1 0.2

A2 0.5 0.2 1.0 8.6 0.7

B1 1.3 0.6 2.3 1.4 0.6

B2 0.3 0.1 0.6 1.4 2.3

C1 1.3 0.6 2.1 0.1 2.1

TABLE XI: Shown are estimates for the systematic errors for each ensemble. From left to right column, they are the
systematic errors due to finite-volume effects for baryons with light degrees of freedom, finite-volume effects for
hadrons with no light degrees of freedom, the truncation of the χPT extrapolation formulas, corrections in the
MAEFT expansion, and the sea/valence strange-mass mismatch, respectively.

fermions on HISQ MILC lattices. Assuming additional lattice artifacts are at most on the same order as a2∆sea, we
can use power-counting arguments to estimate the O(a2mπ, a

3) corrections,

δmMA
H ∼ (m2

π + a2∆sea)3/2 −m3
π

(4πfπ)2
. (17)

The values of the a2∆sea splittings, which is the mass difference between the Goldstone Kogut-Susskind sea pion and
the staggered taste-singlet meson, have been determined numerically by the MILC Collaboration for the ensembles
we are using [38, 39]. From these values we obtain the δmMA

H shown in Table XI. Note, the overall O(1) constants
present in this correction depend on the axial coupling.

Furthermore, since we have used the strange mass to set the scale, we need to account for possible mismatch
between the sea and valence strange-quark masses. We use power-counting arguments to estimate the leading-order
correction:

δms
H ∼

∣∣(m2
K)val − (m2

K)sea

∣∣
(4πfK)

, (18)

where fK = 156.1(9) MeV is the kaon decay constant. One can certainly include a similar error for the light-quark
mismatch, but this would be below our level of precision (0.1 MeV).

We then add these five sources of systematics for each ensemble and extrapolate them to the physical point, which
is shown as the third uncertainty of the physical masses in Table XII.

V. DISCUSSION AND CONCLUSION

In this work we presented the first unquenched continuum determination of the low-lying charmed-baryon spectrum.
The calculation uses a relativistic heavy-quark action for the valence charm quark, clover-Wilson fermions for the
valence light and strange quarks, and HISQ sea quarks generated by the MILC Collaboration [38, 39]. The spectrum
is calculated with a lightest pion mass around 220 MeV, and three lattice spacings (a ≈ 0.12 fm, 0.09 fm, and 0.06 fm)
are used to extrapolate to the continuum. At each ensemble, we interpolate the charm-quark mass to the physical

one by matching the charmonium 1S spin average through the ratio (mphys
ηc + 3mphys

J/ψ )/(4mphys
Ω ) = 1.83429(56); the

rest of the hadron (composed of charm quarks) ratios mH/mΩ are linearly interpolated in amc to the physical charm
point.

In order to determine the lattice spacing for the five ensembles, we chose to use the Ω mass due to its weak mπ-
dependence. This was done by extrapolating the value of amΩ over all ensembles with the same value of β to the
physical pion mass. We then obtained the lattice spacing by dividing amΩ by the physical Ω mass. The resulting
values of the lattice spacing are shown in Table II.

The main result of this work is the charmed hadron spectrum shown in Table XII, which was obtained by ex-

trapolating measurements from the five ensembles to the physical point defined by mphys
π /mphys

Ω = 0.083453(25) and
a = 0 [20]. When performing the chiral and continuum extrapolation we use HHχPT up to O(m3

π, 1/mc, a
2). The

three uncertainties of the masses shown correspond to statistics, fitting-window error, and systematics from other
lattice artifacts, such as lattice-scale setting and pion-mass determination (as discussed in Sec. IV B).
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Experiment
Briceno et al. (Nf =2+1+1, Cont. Ext.)
Liu et al. (Nf =2+1, a~0.12fm, direct)
Liu et al. (Nf =2+1, a~0.12fm, splitting)
Na et al. (Nf =2+1, a~0.09fm)
ETM Collaboration (Nf =2, Cont. Ext.)

Experiment
Briceno et al. (Nf =2+1+1, Cont. Ext.)
Na et al. (Nf =2+1, a~0.09fm)
ETM Collaboration (Nf =2, Cont. Ext.)

FIG. 13: A survey of previous unquenched lattice calculations [13–17, 30], along with the results of this paper
labeled as “Briceno et al.” Calculations that have evaluated the spectrum at multiple lattice spacings and have
extrapolated quantities to the continuum limit [a→ 0] are labeled “Cont. Ext.”, while the other calculations are
labeled by their lattice spacing. The statistical uncertainty is shown as a thick inner error bar, while the statistical
and systematic uncertainties added in quadrature are shown as a larger thin outer error bar. Our systematic
uncertainties include errors originating from the fitting window and scale setting. The experimentally determined
masses are shown for comparison [20].

Hadron Latt. Pred. [MeV] Exp. [MeV] Hadron Latt. Pred. [MeV] Exp. [MeV]

ηc 2995(26)(12)(5) 2980.3(1.2) Σc 2481(24)(15)(7) 2454.02(2)

J/ψ 3092(27)(13)(6) 3096.916(11) Σ∗c 2559(30)(15)(7) 2518.4(6)

χc0 3397(31)(15)(6) 3414.75(31) Ξ′c 2568(25)(12)(6) 2575.6(3.1)

χc1 3540(38)(19)(5) 3510.66(7) Ξ∗c 2655(26)(6)(7) 2645.9(6)

hc 3559(37)(18)(6) 3525.41(16) Ωc 2681(31)(12)(5) 2685.2(1.7)

∆1S 110.9(1.1)(1.4)(5.3) 116.6(1.2) Ω∗c 2764(30)(14)(5) 2765.9(2.0)

Ds 1960(17)(18)(5) 1968.45(33) Ξcc 3595(39)(20)(7) 3518.9(9)

Ds − ηc/2 468.7(4.8)(5.6)(5.8) 478.30(69) Ξ∗cc 3648(42)(18)(7) —

K+ 488.7(5.3)(5.3)(5.6) 493.677(16) Ωcc 3679(40)(17)(5) —

Λc 2291(37)(22)(7) 2286.46(14) Ω∗cc 3765(43)(17)(5) —

Ξc 2439(29)(25)(7) 2467.8(6) Ωccc 4761(52)(21)(6) —

TABLE XII: Results for the charmed-hadron spectrum after extrapolating the masses in Tables IV and VI to the
physical point. The first uncertainty is due to statistics, the second to the fitting-window error, and the third
corresponds to scale setting, finite-volume effects, O(m4

π, a
2mπ) corrections to the expressions used to extrapolate to

the physical point, and strange-mass tuning errors added in quadrature (as discussed in Sec. IV B).
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FIG. 14: Comparison of our results (LQCD) for the masses of the lightest doubly and triply charmed baryons, with
the theoretical prediction from other models: QCD sum rules (QCDSR) [10, 69], the nonrelativistic quark model
(QM) [7], the relativistic three-quark model (RTQM) [8], the relativistic quark model (RQM) [9], heavy-quark
effective theory (HQET) [11], and the Feynman-Hellmann theorem (FHT) [12].

To test our tuning and extrapolation procedure, we verify that our calculation reproduces the well known low-lying
ls̄, cs̄, cc̄ spectrum. Since we use the strange-quark mass to set the scale, we first determine the kaon mass. As
shown in Fig. 2, after extrapolating to the physical point we obtain mK+ = 488.7(5.3)(5.3)(5.7) MeV, which is in
perfect agreement with experiment and displays minimal lattice-spacing dependence. The remaining results for the
cs̄, cc̄ spectrum are shown in Figs. 5 and 6, and it is evident that we recover the physical spectrum in the mesonic
sector. Two particularly interesting quantities are the Ds-ηc/2 splitting and the ∆1S , both of which show significant a
dependence. The fact that we only obtain agreement with experiment after extrapolating to the continuum confirms
the necessity of performing calculations of the charmed spectrum at multiple lattice spacings.

In Fig. 13 we display the results for the charmed-baryon spectrum, along with a survey of previous unquenched
lattice calculations [13–17, 30] and corresponding experimental values for comparison [20]. Liu et al. [13–15] evaluated
the charmed-baryon spectrum for four different pion masses (with lowest mπ ≈ 290 MeV) and a single lattice spacing
a ≈ 0.125 fm. Na et al. [16, 17] evaluated the charmed-baryon spectrum at three different lattice spacings (a ≈ 0.15 fm,
0.12 fm, and 0.09 fm) but have yet to present extrapolated values of the masses as well as an estimate of their systematic
uncertainties. The European Twisted Mass (ETM) Collaboration recently presented determined the masses of Λc,
Σc, Σ∗c , Ξcc, Ξ∗cc, and Ωccc, using Nf = 2 dynamical sea quarks with a lightest pion mass of 260 MeV and three
lattice spacings a ∈ {0.056(1), 0.0666(6), 0.0885(6)} fm [30]. The use of Nf = 2 dynamical quarks, introduces a source
of systematic error that is hard to quantify and has not been addressed by the ETM Collaboration. That being
said, Fig. 13 shows that the masses calculated by the ETM Collaboration are in agreement with our results with the
exception of the controversial Ξcc, where our result is about 1.6 σ above the value obtained by the ETM Collaboration.

All previous calculations of the charmed-baryon spectrum have been performed with light-quark masses corre-
sponding to mπ ≥ 260 MeV, placing our calculation closest to the physical point. Perhaps the most pertinent of
the results presented is the Ξcc mass, 3595(39)(20)(6) MeV. Unlike all previous calculations, we performed a coupled
extrapolation of the {Ξcc,Ξ∗cc} doublet to the physical point. Although this led to a mΞcc closer to the experimentally
observed value in comparison to our previous work [31], our mean value of mΞcc is still above the mass observed
by the SELEX Collaboration by about 76 MeV [1, 2] and our combined uncertainty for this particle is 44 MeV.
Therefore, despite the fact that we see no strong disagreement with the SELEX result, our result does not agree with
their experimentally observed mass. This is in contrast with the recently published result by the ETM Collaboration,
mΞcc = 3513(23)(14) MeV [30], which is the only unquenched LQCD calculation to be in agreement with the SELEX
Collaboration.

Therefore, it remains true that the Ξ+
cc requires further investigation both from the experimental and the theoretical

communities. In particular, from the experimental side it would be desirable to obtain a clear determination of the
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isospin doublet (Ξ+
cc,Ξ

++
cc ) masses as well as identification of the quantum numbers of such states. Although the

SELEX Collaboration has confirmed their observation of Ξ+
cc(3520), the BABAR [4], BELLE [5], and FOCUS [6]

experiments observed no evidence for either state of the doublet. From the theoretical side, we expect to be able
to perform calculations closer to or at the physical pion mass in the near future, thereby reducing the contribution
from lattice artifacts. In Fig. 14 we compare our results for the masses of doubly and triply charmed baryons with
predictions from theoretical models. In particular, we show results obtained using QCD sum rules (QCDSR) [10, 69],
the nonrelativistic quark model (QM) [7], the relativistic three-quark model (RTQM) [8], the relativistic quark model
(RQM) [9], heavy-quark effective theory (HQET) [11], and the Feynman-Hellmann theorem (FHT) [12]. Our result
for mΞcc is 3595(39)(20)(6) MeV, and from Fig. 14 we estimate the overall theoretical prediction for this mass to
be 3550–3650 MeV. These figures can guide experimentalists on the quest for the doubly and triply charmed-baryon
masses. Finally, we predict the yet-to-be-discovered doubly and triply charmed-baryon masses Ξ∗cc, Ωcc, Ω∗cc, Ωccc to
be 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV, 3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.

Acknowledgment

We thank MILC Collaboration and PNDME Collaboration for sharing their HISQ lattices and light clover propa-
gators with us. RB thanks Martin Savage for fruitful discussions, and for his feedback on the first manuscript of this
paper. RB and DB thank Joseph Wasem and Amy Nicholson for many useful discussions. These calculations were
performed using the Chroma software suite [70] on Hyak clusters at the University of Washington managed by the
UW Information Technology, using hardware awarded by NSF grant PHY-09227700. The authors were supported by
the DOE grant DE-FG02-97ER4014.

[1] M. Mattson et al. (SELEX Collaboration), Phys.Rev.Lett. 89, 112001 (2002), arXiv:hep-ex/0208014.
[2] J. Russ (SELEX Collaboration)(2002), arXiv:hep-ex/0209075.
[3] A. Ocherashvili et al. (SELEX Collaboration), Phys.Lett. B628, 18 (2005), arXiv:hep-ex/0406033.
[4] B. Aubert et al. (BABAR Collaboration), Phys.Rev. D74, 011103 (2006), arXiv:hep-ex/0605075.
[5] R. Chistov et al. (BELLE Collaboration), Phys.Rev.Lett. 97, 162001 (2006), arXiv:hep-ex/0606051.
[6] C. Riccardi (FOCUS Collaboration), 648(2002).
[7] W. Roberts and M. Pervin, Int.J.Mod.Phys. A23, 2817 (2008), arXiv:0711.2492 [nucl-th].
[8] A. Martynenko, Phys.Lett. B663, 317 (2008), arXiv:0708.2033 [hep-ph].
[9] D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, Phys.Rev. D66, 014008 (2002), arXiv:hep-ph/0201217 [hep-ph].

[10] Z.-G. Wang, Eur.Phys.J. A45, 267 (2010), arXiv:1001.4693 [hep-ph].
[11] J. Korner, M. Kramer, and D. Pirjol, Prog.Part.Nucl.Phys. 33, 787 (1994), arXiv:hep-ph/9406359 [hep-ph].
[12] R. Roncaglia, D. Lichtenberg, and E. Predazzi, Phys.Rev. D52, 1722 (1995), arXiv:hep-ph/9502251 [hep-ph].
[13] L. Liu, H.-W. Lin, K. Orginos, and A. Walker-Loud, Phys.Rev. D81, 094505 (2010), arXiv:0909.3294 [hep-lat].
[14] H.-W. Lin, S. D. Cohen, L. Liu, N. Mathur, K. Orginos, et al., Comput.Phys.Commun. 182, 24 (2011), arXiv:1002.4710

[hep-lat].
[15] L. Liu, H.-W. Lin, and K. Orginos, PoS LATTICE2008, 112 (2008), arXiv:0810.5412 [hep-lat].
[16] H. Na and S. A. Gottlieb, PoS LAT2007, 124 (2007), arXiv:0710.1422.
[17] H. Na and S. Gottlieb, PoS LATTICE2008, 119 (2008), arXiv:0812.1235 [hep-lat].
[18] J. Flynn, F. Mescia, and A. S. B. Tariq (UKQCD Collaboration), JHEP 0307, 066 (2003), arXiv:hep-lat/0307025.
[19] N. Mathur, R. Lewis, and R. Woloshyn, Phys.Rev. D66, 014502 (2002), arXiv:hep-ph/0203253.
[20] K. Nakamura et al. (Particle Data Group), J.Phys.G G37, 075021 (2010).
[21] G. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K. Hornbostel, Phys.Rev. D46, 4052 (1992), arXiv:hep-lat/9205007

[hep-lat].
[22] A. S. Kronfeld, Nucl.Phys.Proc.Suppl. 129, 46 (2004), arXiv:hep-lat/0310063 [hep-lat].
[23] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys.Rev. D55, 3933 (1997), arXiv:hep-lat/9604004.
[24] S. Aoki, Y. Kuramashi, and S.-i. Tominaga, Prog.Theor.Phys. 109, 383 (2003), arXiv:hep-lat/0107009.
[25] N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007), arXiv:hep-lat/0608006.
[26] H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007), arXiv:hep-lat/0608005.
[27] R. Lewis, N. Mathur, and R. Woloshyn, Phys.Rev. D64, 094509 (2001), arXiv:hep-ph/0107037.
[28] T.-W. Chiu and T.-H. Hsieh, Nucl.Phys. A755, 471 (2005), arXiv:hep-lat/0501021.
[29] M. Papinutto, J. Carbonell, V. Drach, and C. Alexandrou (ETM Collaboration), PoS LATTICE2010, 120 (2010),

arXiv:1012.2786 [hep-lat].
[30] C. Alexandrou, J. Carbonell, D. Christaras, V. Drach, M. Gravina, et al.(2012), arXiv:1205.6856 [hep-lat].
[31] R. A. Briceno, D. Bolton, and H.-W. Lin(2011), arXiv:1111.1028 [hep-lat].
[32] M. B. Wise, Phys.Rev. D45, 2188 (1992).

http://dx.doi.org/10.1103/PhysRevLett.89.112001
http://arxiv.org/abs/hep-ex/0208014
http://arxiv.org/abs/hep-ex/0209075
http://dx.doi.org/10.1016/j.physletb.2005.09.043
http://arxiv.org/abs/hep-ex/0406033
http://dx.doi.org/10.1103/PhysRevD.74.011103
http://arxiv.org/abs/hep-ex/0605075
http://dx.doi.org/10.1103/PhysRevLett.97.162001
http://arxiv.org/abs/hep-ex/0606051
http://dx.doi.org/10.1142/S0217751X08041219
http://arxiv.org/abs/0711.2492
http://dx.doi.org/10.1016/j.physletb.2008.04.030
http://arxiv.org/abs/0708.2033
http://dx.doi.org/10.1103/PhysRevD.66.014008
http://arxiv.org/abs/hep-ph/0201217
http://dx.doi.org/10.1140/epja/i2010-11004-3
http://arxiv.org/abs/1001.4693
http://dx.doi.org/10.1016/0146-6410(94)90053-1
http://arxiv.org/abs/hep-ph/9406359
http://dx.doi.org/10.1103/PhysRevD.52.1722
http://arxiv.org/abs/hep-ph/9502251
http://dx.doi.org/10.1103/PhysRevD.81.094505
http://arxiv.org/abs/0909.3294
http://dx.doi.org/10.1016/j.cpc.2010.07.004
http://arxiv.org/abs/1002.4710
http://arxiv.org/abs/1002.4710
http://arxiv.org/abs/0810.5412
http://arxiv.org/abs/0710.1422
http://arxiv.org/abs/0812.1235
http://arxiv.org/abs/hep-lat/0307025
http://dx.doi.org/10.1103/PhysRevD.66.014502
http://arxiv.org/abs/hep-ph/0203253
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.46.4052
http://arxiv.org/abs/hep-lat/9205007
http://arxiv.org/abs/hep-lat/9205007
http://dx.doi.org/10.1016/S0920-5632(03)02506-4
http://arxiv.org/abs/hep-lat/0310063
http://dx.doi.org/10.1103/PhysRevD.55.3933
http://arxiv.org/abs/hep-lat/9604004
http://dx.doi.org/10.1143/PTP.109.383
http://arxiv.org/abs/hep-lat/0107009
http://dx.doi.org/10.1103/PhysRevD.76.074505
http://arxiv.org/abs/hep-lat/0608006
http://dx.doi.org/10.1103/PhysRevD.76.074506
http://arxiv.org/abs/hep-lat/0608005
http://dx.doi.org/10.1103/PhysRevD.64.094509
http://arxiv.org/abs/hep-ph/0107037
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.090
http://arxiv.org/abs/hep-lat/0501021
http://arxiv.org/abs/1012.2786
http://arxiv.org/abs/1205.6856
http://arxiv.org/abs/1111.1028
http://dx.doi.org/10.1103/PhysRevD.45.R2188


22

[33] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. Lin, et al., Phys.Rev. D46, 1148 (1992).
[34] G. Burdman and J. F. Donoghue, Phys.Lett. B280, 287 (1992).
[35] P. L. Cho, Phys.Lett. B285, 145 (1992), arXiv:hep-ph/9203225 [hep-ph].
[36] M. J. Savage, Phys.Lett. B359, 189 (1995), arXiv:hep-ph/9508268 [hep-ph].
[37] B. C. Tiburzi, Phys.Rev. D71, 034501 (2005), arXiv:hep-lat/0410033 [hep-lat].
[38] A. Bazavov et al. (MILC collaboration), Phys.Rev. D82, 074501 (2010), arXiv:1004.0342 [hep-lat].
[39] A. Bazavov et al., PoS LATTICE2010, 320 (2010), arXiv:1012.1265 [hep-lat].
[40] R. J. Dowdall et al. (HPQCD), Phys. Rev. D85, 054509 (2012), arXiv:1110.6887 [hep-lat].
[41] E. Follana et al. (HPQCD Collaboration, UKQCD Collaboration), Nucl.Phys.Proc.Suppl. 129&130, 384 (2004), arXiv:hep-

lat/0406021 [hep-lat].
[42] E. Follana et al. (HPQCD Collaboration, UKQCD Collaboration), Phys.Rev. D75, 054502 (2007), arXiv:hep-lat/0610092

[hep-lat].
[43] A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar, et al., Rev.Mod.Phys. 82, 1349 (2010), arXiv:0903.3598 [hep-lat].
[44] A. Hasenfratz and F. Knechtli, Phys.Rev. D64, 034504 (2001), arXiv:hep-lat/0103029 [hep-lat].
[45] H.-W. Lin, S. D. Cohen, T. Bhattacharya, R. Gupta, and A. Joseph, PoS LATTICE2011, 273 (2011).
[46] R. Gupta, T. Bhattacharya, A. Joseph, H.-W. Lin, and S. D. Cohen, PoS LATTICE2011, 271 (2011), arXiv:1202.1320

[hep-lat].
[47] T. Bhattacharya, R. Gupta, A. Joseph, H.-W. Lin, and S. D. Cohen, PoS LATTICE2011, 272 (2011), arXiv:1203.6843

[hep-lat].
[48] T. A. DeGrand, A. Hasenfratz, and T. G. Kovacs, Nucl.Phys.Proc.Suppl. 73, 506 (1999), arXiv:hep-lat/9809099 [hep-lat].
[49] K. Orginos, D. Toussaint, and R. Sugar (MILC Collaboration), Phys.Rev. D60, 054503 (1999), arXiv:hep-lat/9903032

[hep-lat]; K. Orginos and D. Toussaint (MILC collaboration), ibid. D59, 014501 (1999), arXiv:hep-lat/9805009 [hep-lat];
D. Toussaint and K. Orginos (MILC Collaboration), Nucl.Phys.Proc.Suppl. 73, 909 (1999), arXiv:hep-lat/9809148 [hep-
lat]; J. Lagae and D. Sinclair, Phys.Rev. D59, 014511 (1999), arXiv:hep-lat/9806014 [hep-lat]; G. P. Lepage, ibid. D59,
074502 (1999), 7 pages, arXiv:hep-lat/9809157 [hep-lat].

[50] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno, et al., Phys.Rev. D79, 114502 (2009), arXiv:0903.2990
[hep-lat].

[51] P. Chen, Phys.Rev. D64, 034509 (2001), arXiv:hep-lat/0006019.
[52] B. C. Tiburzi and A. Walker-Loud, Phys. Lett. B669, 246 (2008), arXiv:0808.0482 [nucl-th].
[53] A. Roessl, Nucl.Phys. B555, 507 (1999), ph.D. Thesis, arXiv:hep-ph/9904230 [hep-ph].
[54] C. McNeile and C. Michael (UKQCD Collaboration), Phys.Rev. D70, 034506 (2004), arXiv:hep-lat/0402012 [hep-lat].
[55] L. Levkova and C. DeTar, Phys.Rev. D83, 074504 (2011), arXiv:1012.1837 [hep-lat].
[56] G. S. Bali, S. Collins, and C. Ehmann, Phys.Rev. D84, 094506 (2011), arXiv:1110.2381 [hep-lat].
[57] S. Okubo, Phys.Lett. 5, 165 (1963); G. Zweig(1964), CERN report TH-412 (unpublished); J. Mandula, J. Weyers, and

G. Zweig, Ann.Rev.Nucl.Part.Sci. 20, 289 (1970); J. Iizuka, Prog.Theor.Phys.Suppl. 37, 21 (1966).
[58] D. Mohler and R. M. Woloshyn, Phys. Rev. D84, 054505 (2011), arXiv:1103.5506 [hep-lat].
[59] Y. Namekawa (PACS-CS Collaboration)(2011), arXiv:1111.0142 [hep-lat].
[60] T. Burch, C. DeTar, M. Di Pierro, A. El-Khadra, E. Freeland, et al. (Fermilab Lattice and MILC Collaborations), Phys.Rev.

D81, 034508 (2010), arXiv:0912.2701 [hep-lat].
[61] K. Bowler et al. (UKQCD Collaboration), Phys.Rev. D54, 3619 (1996), arXiv:hep-lat/9601022 [hep-lat].
[62] M. J. Savage, Phys.Lett. B325, 488 (1994), arXiv:hep-ph/9401273 [hep-ph].
[63] T. Mehen and B. C. Tiburzi, Phys. Rev. D74, 054505 (2006), arXiv:hep-lat/0607023.
[64] S. R. Beane, Phys. Rev. D70, 034507 (Aug 2004).
[65] J.-W. Chen, M. Golterman, D. O’Connell, and A. Walker-Loud, Phys.Rev. D79, 117502 (2009), arXiv:0905.2566 [hep-lat].
[66] O. Bar, C. Bernard, G. Rupak, and N. Shoresh, Phys.Rev. D72, 054502 (2005), arXiv:hep-lat/0503009 [hep-lat].
[67] O. Bar, G. Rupak, and N. Shoresh, Phys.Rev. D67, 114505 (2003), arXiv:hep-lat/0210050 [hep-lat].
[68] K. Orginos and A. Walker-Loud, Phys.Rev. D77, 094505 (2008), arXiv:0705.0572 [hep-lat].
[69] Z.-G. Wang, Eur.Phys.J. C68, 459 (2010), arXiv:1002.2471 [hep-ph].
[70] R. G. Edwards and B. Joo (SciDAC Collaboration, LHPC Collaboration, UKQCD Collaboration), Nucl. Phys. Proc. Suppl.

140, 832 (2005), arXiv:hep-lat/0409003.

http://dx.doi.org/10.1103/PhysRevD.46.1148, 10.1103/PhysRevD.55.5851
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1016/0370-2693(92)91314-Y
http://arxiv.org/abs/hep-ph/9203225
http://dx.doi.org/10.1016/0370-2693(95)01060-4
http://arxiv.org/abs/hep-ph/9508268
http://dx.doi.org/10.1103/PhysRevD.71.034501
http://arxiv.org/abs/hep-lat/0410033
http://dx.doi.org/10.1103/PhysRevD.82.074501
http://arxiv.org/abs/1004.0342
http://arxiv.org/abs/1012.1265
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://arxiv.org/abs/1110.6887
http://arxiv.org/abs/hep-lat/0406021
http://arxiv.org/abs/hep-lat/0406021
http://dx.doi.org/10.1103/PhysRevD.75.054502
http://arxiv.org/abs/hep-lat/0610092
http://arxiv.org/abs/hep-lat/0610092
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://arxiv.org/abs/0903.3598
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://arxiv.org/abs/hep-lat/0103029
http://arxiv.org/abs/1202.1320
http://arxiv.org/abs/1202.1320
http://arxiv.org/abs/1203.6843
http://arxiv.org/abs/1203.6843
http://dx.doi.org/10.1016/S0920-5632(99)85119-6
http://arxiv.org/abs/hep-lat/9809099
http://dx.doi.org/10.1103/PhysRevD.60.054503
http://arxiv.org/abs/hep-lat/9903032
http://arxiv.org/abs/hep-lat/9903032
http://dx.doi.org/10.1103/PhysRevD.59.014501
http://arxiv.org/abs/hep-lat/9805009
http://dx.doi.org/10.1016/S0920-5632(99)85241-4
http://arxiv.org/abs/hep-lat/9809148
http://arxiv.org/abs/hep-lat/9809148
http://dx.doi.org/10.1103/PhysRevD.59.014511
http://arxiv.org/abs/hep-lat/9806014
http://dx.doi.org/10.1103/PhysRevD.59.074502
http://arxiv.org/abs/hep-lat/9809157
http://dx.doi.org/10.1103/PhysRevD.79.114502
http://arxiv.org/abs/0903.2990
http://arxiv.org/abs/0903.2990
http://dx.doi.org/10.1103/PhysRevD.64.034509
http://arxiv.org/abs/hep-lat/0006019
http://dx.doi.org/10.1016/j.physletb.2008.09.054
http://arxiv.org/abs/0808.0482
http://dx.doi.org/10.1016/S0550-3213(99)00336-3
http://arxiv.org/abs/hep-ph/9904230
http://dx.doi.org/10.1103/PhysRevD.70.034506
http://arxiv.org/abs/hep-lat/0402012
http://dx.doi.org/10.1103/PhysRevD.83.074504
http://arxiv.org/abs/1012.1837
http://dx.doi.org/10.1103/PhysRevD.84.094506
http://arxiv.org/abs/1110.2381
http://dx.doi.org/10.1016/S0375-9601(63)92548-9
http://dx.doi.org/10.1146/annurev.ns.20.120170.001445
http://dx.doi.org/10.1143/PTPS.37.21
http://dx.doi.org/10.1103/PhysRevD.84.054505
http://arxiv.org/abs/1103.5506
http://arxiv.org/abs/1111.0142
http://dx.doi.org/10.1103/PhysRevD.81.034508
http://arxiv.org/abs/0912.2701
http://dx.doi.org/10.1103/PhysRevD.54.3619
http://arxiv.org/abs/hep-lat/9601022
http://dx.doi.org/10.1016/0370-2693(94)90044-2
http://arxiv.org/abs/hep-ph/9401273
http://dx.doi.org/10.1103/PhysRevD.74.054505
http://arxiv.org/abs/hep-lat/0607023
http://dx.doi.org/10.1103/PhysRevD.70.034507
http://dx.doi.org/10.1103/PhysRevD.79.117502
http://arxiv.org/abs/0905.2566
http://dx.doi.org/10.1103/PhysRevD.72.054502
http://arxiv.org/abs/hep-lat/0503009
http://dx.doi.org/10.1103/PhysRevD.67.114505
http://arxiv.org/abs/hep-lat/0210050
http://dx.doi.org/10.1103/PhysRevD.77.094505
http://arxiv.org/abs/0705.0572
http://dx.doi.org/10.1140/epjc/s10052-010-1357-8
http://arxiv.org/abs/1002.2471
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://arxiv.org/abs/hep-lat/0409003

	Charmed-Baryon Spectroscopy from Lattice QCD with Nf=2+1+1 Flavors
	Abstract
	Introduction
	Lattice Formulation 
	Light-Quark Action 
	Correlation Functions and Fitting Method 
	Charm-Quark Action 
	Lattice-Spacing Determination and Discussion of mH/m Ratios 

	Charmonium Spectrum
	Charmed-Baryon Spectrum 
	Chiral and Continuum Extrapolation
	Systematics 

	Discussion and Conclusion 
	Acknowledgment

	References


