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Abstract

We present results on both the restoration of the spontaneously broken chiral symmetry

and the effective restoration of the anomalously broken U(1)A symmetry in finite tempera-

ture QCD at zero chemical potential using lattice QCD. We employ domain wall fermions

on lattices with fixed temporal extent Nτ = 8 and spatial extent Nσ = 16 in a temperature

range of T = 139 − 195 MeV, corresponding to lattice spacings of a ≈ 0.12 − 0.18 fm. In

these calculations, we include two degenerate light quarks and a strange quark at fixed

pion mass mπ = 200 MeV. The strange quark mass is set near its physical value. We also

present results from a second set of finite temperature gauge configurations at the same

volume and temporal extent with slightly heavier pion mass. To study chiral symmetry

restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and

susceptibilities in several meson channels of different quantum numbers. To study U(1)A

restoration, we calculate spatial correlators in the scalar and pseudo-scalar channels, as well

as the corresponding susceptibilities. Furthermore, we also show results for the eigenvalue

spectrum of the Dirac operator as a function of temperature, which can be connected to

both U(1)A and chiral symmetry restoration via Banks-Casher relations.

PACS numbers: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

In the limit of vanishing up and down quark masses, Quantum Chromodynamics

(QCD) posseses a chiral SU(2)L × SU(2)R symmetry. However, the QCD vacuum

does not respect this symmetry. Instead the non-vanishing vacuum expectation value

of the SU(2)L × SU(2)R non-invariant operators ψlψl, for l = u, d reflect a smaller,

SU(2)V vacuum symmetry. This symmetry-breaking vacuum order is expected to

disappear at high temperature implying a phase transition separating a low temper-

ature chirally asymmetric phase from a high-temperature phase with restored chiral

symmetry. The chirally symmetric, high temperature phase of QCD was present dur-

ing the evolution of the early universe and is also expected to be created in heavy-ion

collision experiments. Thus, studies of chiral symmetry restoration at high temper-

atures are of great physical importance.

At the classical level QCD posseses an additional U(1)A symmetry which is broken

by the axial anomaly. This results in both the anomalous term in the conservation

law for the U(1)A axial current of Adler [1] and Bell and Jackiw [2] as well as ‘t

Hooft’s explicit violation of the global symmetry [3] arising from fermion zero modes

associated with topologically non-trivial gauge field configurations. At low tempera-

tures this anomalous U(1)A symmetry is also broken by the QCD vacuum. However,

above the QCD phase transition vacuum symmetry breaking has disappeared and

the effects of the axial anomaly can be studied directly.

Lattice QCD is ideally suited to study these symmetries and their degree of

restoration with increasing temperature. However, such studies are complicated

by the fermion doubling problem. This fundamental difficulty, present in any dis-

crete theory of fermions, sharply reduces the chiral symmetry that is present in a

lattice fermion formulation. The Wilson formulation shows chiral symmetry only in

the continuum limit. Staggered fermions are more successful and preserve a single,
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non-anomalous U(1) axial symmetry at finite lattice spacing.

In this paper, we employ the domain wall fermion (DWF) formulation of Ka-

plan [4] and Shamir [5] which, at the classical level, shows the full SU(2)L×SU(2)R×
U(1)A symmetry, with lattice symmetry breaking controlled by the size, Ls, of an

additional fifth dimension. For the results reported here Ls varies between 32 and

96 and is sufficiently large that the residual quark mass induced by lattice effects is

on the order of 10 MeV or smaller – sufficiently small that its effects can be easily

incorporated as an additive shift in the quark mass. Most previous lattice studies of

the chiral transition in QCD use staggered fermions, for which the issue of anomalous

symmetry is somewhat subtle, involving possible non-commutativity of the contin-

uum and chiral limits and the non-unitarity of the rooted theory at finite lattice

spacing [6–10]. In contrast, the DWF formulation posseses an easily understood

anomalous U(1)A symmetry [5], broken by the same topological effects which pro-

duce anomalous symmetry breaking in the continuum, with explicit lattice artifacts

appearing at order mresa
2. Thus, the degree of anomalous symmetry restoration with

increasing temperature is a natural focus of this paper.

At sufficiently high temperatures anomalous U(1)A symmetry breaking can be

studied using the dilute instanton gas approximation [11]. In this approximation

one finds exponential suppression of the instanton density as the gauge coupling de-

creases so that the U(1)A symmetry becomes exact in the limit T → ∞. When the

dilute instanton gas approximation is justified, the U(1)A symmetry breaking effects

it predicts are very small. With decreasing temperature, the semi-classical approxi-

mation underlying the dilute instanton gas picture becomes unreliable and the degree

of anomalous symmetry breaking becomes a non-perturbative question well suited

to a DWF lattice study. While one might imagine that anomalous U(1)A breaking

remains small as the temperature decreases from asymptotically large values, even

down to the critical temperature, Tc, it is also possible that new, non-perturbative
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phenomena emerge at lower temperatures leading to a significant topological charge

density and to large U(1)A symmetry breaking.

The degree of U(1)A symmetry breaking may have interesting physical conse-

quences. For example, if the U(1)A breaking is sufficiently large near the phase

transition for QCD with two massless flavors then this transition can be second or-

der, belonging to the three-dimensional O(4) universality class [12, 13]. On the other

hand, if the axial symmetry breaking is negligible then this O(4) universality class

is no longer appropriate for the larger symmetry of the long-distance variables and

the chiral transition is expected to be first order [12, 13], although in this case a

second-order transition is also allowed with a different symmetry breaking pattern,

U(2)L × U(2)R/U(2)V [14]. Hence, the nature of the chiral phase transition itself

may depend critically on the strength of the U(1)A symmetry breaking.

In heavy-ion collision experiments, it may also be possible to observe signatures

of U(1)A symmetry restoration through measurements of low-mass dileptons [15].

Moreover, an effective restoration of the axial U(1)A symmetry above Tc may lead

to softening of the η′ mass resulting in interesting experimental signatures [16–18].

In fact, recently it has been claimed that the results from the Relativistic Heavy-Ion

Collider (RHIC) suggest softening of the η′ mass indicating partial restoration of

the U(1)A symmetry in hot and dense matter [19]. Hence, studies related to U(1)A

symmetry restoration with increasing temperature have important theoretical and

phenomenological consequences.

As discussed above, chiral symmetry restoration, as well as the degree of U(1)A

symmetry breaking above Tc, are essentially non-perturbative in nature. At present,

lattice QCD, as the most reliable non-perturbative technique, is ideally suited for

such studies. In fact, extensive lattice QCD studies of chiral symmetry restoration

have been carried out. For a review and summary of recent lattice QCD results see

Refs. [20, 21]. Most of these lattice studies have been performed using staggered
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fermion discretization schemes. Staggered fermions have also been used to study the

degree of axial symmetry restoration in high temperature QCD [22–26]. However, as

described earlier, for staggered fermions at non-zero lattice spacing, chiral symme-

try, the axial anomaly and its relation to the index theorem suffer from significant

complications. Thus, a study using the DWF discretization scheme, which preserves

the full SU(2)L × SU(2)R symmetry and reproduces the correct anomaly even for

non-zero values of lattice spacing, is well motivated. To date, there have been only

a few fully dynamical calculations using chiral fermion formulations – domain wall

fermions [27, 28] and overlap fermions [29].

In this paper we study the chiral transition and degree of restoration of U(1)A

symmetry for T ≥ Tc by performing lattice QCD simulations using the DWF action

with two degenerate light (up and down) and one heavier (strange) quarks. We

employ lattices with spatial size Nσ = 16 and temporal extent Nτ = 8, with lattice

spacings in the range a ≈ 0.12 − 0.18 fm, corresponding to a temperature range of

T = 137 − 198 MeV. We work on a line of constant physics, i.e., the strange quark

mass is fixed to near its physical value, while for most of the results presented here

the two light quark masses have been chosen so that mπ ≈ 200 MeV. This extends

earlier studies of the QCD transition with domain wall fermions [27, 28] by going to

a lighter quark mass, using a gauge action optimized for the relatively large lattice

spacing needed for such an Nτ = 8 study, and exploring in more detail the chiral

aspects of the QCD transition. We also present a thorough study of the eigenvalue

spectrum of the Dirac operator employing a variant of the method of Giusti and

Lüscher [30] to convert the spectrum of the hermitian DWF Dirac operator to a

spectrum evaluated in the MS scheme which has a well-defined continuum limit.

This allows us to examine the density of eigenvalues near zero as a function of

temperature. This density can be directly related to both SU(2)L × SU(2)R and

U(1)A breaking and restoration through Banks-Casher type formulae.
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This paper is organized as follows. We start in Sec. II with a discussion of the

setup of our lattice calculation, including the choice of lattice action and the determi-

nation of the line of constant physics. In Sec. III we present details of our eigenvalue

calculations with DWF, including the methods used to convert the low-lying eigen-

value spectrum of the hermitian DWF Dirac operator to a spectrum meaningful in

the continuum limit. In Sec. IV we introduce the basic observables which we will use

to explore the chiral aspects of the QCD transition, emphasizing the role of the U(1)A

symmetry for the transition. Sec. V examines the restoration of SU(2)L × SU(2)R

chiral symmetry through the subtracted chiral condensate, disconnected chiral sus-

ceptibility, and vector and axial vector screening masses. Sec. VI deals with the

restoration of U(1)A symmetry by examining the scalar and pseudo-scalar screen-

ing correlators, their respective susceptibilities, and their relation to the topological

charge. We discuss our results and give conclusions in Sec. VII. Appendix A gives

further details on the normalization of the eigenvalue spectrum, Appendix B dis-

cusses the renormalization of the disconnected, staggered chiral susceptibility while

Appendix C gives the details of the evolution algorithms used to generate our gauge

field emsembles. Finally Appendix D examines a discrepancy between the topological

and disconnected ψγ5ψ susceptibilities and concludes that the combination of APE

smearing and improved gauge field operator [31] used here to determine the topolog-

ical charge contains large lattice artifacts when applied at non-zero temperatures on

the coarse ensembles studied in this paper.
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II. CALCULATION DETAILS

A. Fermion and Gauge Action

For this calculation, we use the domain wall fermion action. At the lattice spacings

at which we work, i.e., those appropriate to study the finite temperature transition

region with temporal extent Nτ = 8, the residual chiral symmetry breaking, parame-

terized by the residual mass mres, becomes quite large because of the proliferation of

localized topology-changing dislocations in the gauge field. This leads to eigenstates

of the five-dimensional transfer matrix with unit eigenvalue, mixing the left- and

right-handed chiral modes [5, 32]. Because mres acts as an additive renormalization

to the quark mass, a large mres makes it difficult to explore the transition region with

a reasonably small pion mass.

In this work, we have used two different approaches to reduce the residual chiral

symmetry breaking. The first is to choose a large value for the size of the fifth

dimension, Ls = 96. This is coupled with judicious choices for the input quark

masses, ml andms so that the total quark masses, i.e., (ml+mres) and (ms+mres) are

fixed in lattice units. (Throughout this paper we will express dimensional quantities

in lattice units unless physical units are explicitly specified.) This results in pion

masses of mπ ≈ 225− 275 MeV in the transition region. However, because mres only

falls linearly with Ls in this regime (mπ ∼ 1/
√
Ls), it is computationally very costly

to perform calculations at small mπ by simply increasing Ls [32].

An alternative to increasing Ls is to directly suppress the localized modes which

are the primary contribution to mres at coarse lattice spacings. This is done by aug-

menting our action with a ratio of determinants of the twisted-mass Wilson Dirac

operator. This determinant ratio, which we call the “Dislocation Suppressing Deter-

minant Ratio” (DSDR), suppresses those gauge field configurations which contribute
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most to the mixing between left and right-handed walls. This method is a further

development of earlier applications of the 4-d Wilson fermion determinant for this

purpose with both domain wall and overlap fermions [33–35].

For both approaches with and without the DSDR method, we employ the Iwasaki

gauge action [36] for the gauge links. The Iwasaki gauge action has been used

extensively in zero temperature calculations coupled with domain wall fermions [37–

40]. The RBC-UKQCD collaboration has also begun a large-scale study of zero

temperature physics using the Iwasaki gauge action and the DSDR method. Zero

temperature results with the DSDR method have been presented in [41–43].

B. Dislocation Suppressing Determinant Ratio

To lowest order in a2, the residual chiral symmetry breaking caused by the finite

extent in the fifth dimension acts as an additive renormalization to the bare quark

mass. This additive renormalization is known as the residual mass mres. At fixed

bare coupling, the dependence of mres on the extent of the fifth direction Ls can be

parameterized as [32]:

mres = c1ρH(λc)
e−λcLs

Ls
+ c2ρH(0)

1

Ls
, (1)

where ρH(λ) represents the density of eigenmodes of the effective 4-d Hamiltonian

H = − log(T ), where T is the transfer matrix in the fifth direction that controls

the mixing of chiral modes between the 4-d boundaries. The 4-d Hamiltonian, H
is closely related to the hermitian Wilson operator, HW = γ5DW (−M5), via H =

2 tanh−1 (HW/(2 +DW )), and it has been shown that the zero modes of H and HW

coincide [5].

The first term in Eq. (1) represents contributions from eigenmodes with eigenval-

ues λ greater than the mobility edge, λc. These modes have extended 4-d support
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and their contributions to mres are exponentially suppressed with Ls. The second

term corresponds to contributions from near zero eigenmodes of the 4-d Hamilto-

nian, or equivalently eigenmodes where the 5-d transfer matrix T is near unity, thus

allowing nearly unsuppressed mixing of the domain walls in the fifth direction. These

near-zero eigenmodes come largely from localized dislocations in the gauge field cor-

responding to topology change [44–46]. At strong coupling, gauge field dislocations

rapidly become more common, so that the dominant contribution to mres comes from

the near-zero eigenmodes of H and the second, power-suppressed term in Eq. (1).

One method to reduce the large residual chiral symmetry breaking is to augment

the gauge action with the determinant of the 4-d hermitian Wilson Dirac operator,

HW (−M5) = γ5DW (−M5) [33–35], where M5 is the domain wall height (M5 = 1.8 in

our calculation). Including this determinant as a factor in the path integral explicitly

suppresses those configurations which have a small eigenvalue of HW , and thus also

those configurations with near-zero modes of H.

Unfortunately, the suppression of the zero modes of HW also suppresses exactly

those configurations that change topology during a molecular dynamics evolution.

Therefore, in order to allow for the correct sampling of all topological sectors, we

augment the Wilson Dirac operator with a chirally twisted mass,

DW (−M5) → DW (−M5 + iǫγ5) . (2)

We then employ the following weighting factor on the gauge fields:

W(M5, ǫb, ǫf) =
det
[
D†

W (−M5 + iǫfγ
5)DW (−M5 + iǫfγ

5)
]

det
[
D†

W (−M5 + iǫbγ5)DW (−M5 + iǫbγ5)
] (3)

=
det
[
D†

W (−M5)DW (−M5) + ǫ2f

]

det
[
D†

W (−M5)DW (−M5) + ǫ2b

] .
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The bosonic and fermionic “twisted-mass” parameters ǫb, ǫf can be tuned so that

gauge field topology changes during HMC evolution, but the localized dislocations

which contribute to the residual mass are suppressed. We call the weighting factor

W(M5, ǫb, ǫf) the Dislocation Suppressing Determinant Ratio (DSDR). Employing

this ratio of determinants ensures that the ultraviolet modes of the theory are mini-

mally affected so that bare parameters such as β and the quark masses do not shift

significantly compared to those used with the standard domain wall fermion action.

C. Lattice Ensembles

1. Ls = 96 ensembles

The finite temperature ensembles that we generated with Ls = 96 all have spatial

volume of 163 and temporal extent Nt = 8. We generated nine different lattice

ensembles for temperatures in the range T ∈ [137, 198] MeV. The bare couplings

β ∈ [1.965, 2.10] span approximately the same range used in a previous study of

the transition region with domain wall fermions with Ls = 32 by the RBC-Bielefeld

Collaboration [28]. Since the only change in the lattice action on these ensembles

is the choice of the size of the fifth dimension, to leading order this mainly affects

residual chiral symmetry breaking and has a minimal affect on the bare coupling and

the lattice cut-off. We therefore use the same interpolation as in [28] to determine

the temperatures of each of our lattice ensembles.

The input light and strange quark masses, ml and ms are chosen so that the

total quark masses, including the contributions from the residual mass, are given

by ml + mres = 0.00675 and ms + mres = 0.045. However, these quark masses are

not along a line of constant physics. At β = 2.025, we can directly compare our

quark masses with the determination of mπ in [28]. Our choice gives mπ ≈ 250 MeV.
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The choice of a fixed bare light quark mass implies that mπ in physical units will

vary across the set of bare couplings that we use. The change in temperature from

β = 2.025 to the extremal points in our range suggests a 10% variation for mπ in

either direction. This gives a range of mπ ∈ [225, 275] MeV, with mπ being heavier

at higher temperatures.

Table I gives the details for these ensembles.

T (MeV) β ml ms mres Traj.

137 1.965 0.00045 0.0387 0.0063 1720

146 1.9875 0.00245 0.0407 0.0043 1640

151 2.00 0.00325 0.0415 0.0035 1540

156 2.0125 0.00395 0.0422 0.0028 1465

162 2.025 0.00435 0.0426 0.0024 1835

167 2.0375 0.00485 0.0431 0.0019 1690

173 2.05 0.00525 0.0435 0.0015 1570

188 2.08 0.00585 0.0441 0.0009 2006

198 2.10 0.00585 0.0441 0.0006 1648

TABLE I. Summary of the 163 × 8, Ls = 96 finite temperature ensembles without DSDR.

The total molecular dynamics time per trajectory is τ = 0.5. Quark masses were chosen so

that the ml +mres ≈ 0.00675 and ms +mres ≈ 0.045. Residual masses are estimated from

those reported in Ref. [28] assuming mres ∼ 1/Ls scaling. Note here and in the following

all dimensional quantities are expressed in lattice units unless other physical units are

specified.
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Finite Temperature Ensembles

Label T (MeV) β Nσ Nτ Ls ml ms mres mπ (MeV) Traj. 〈U�〉

1 139(6) 1.633 16 8 48 -0.00136 0.0519 0.00588(39) 191(7) 2996 0.46913(8)

2 149(5) 1.671 16 8 32 -0.00189 0.0464 0.00643(9) 199(5) 6000 0.48491(3)

3 149(5) 1.671 16 8 48 0.00173 0.0500 0.00295(3) 202(5) 7000 0.48407(2)

4 159(4) 1.707 16 8 32 0.000551 0.0449 0.00377(11) 202(3) 3659 0.49777(4)

5 168(4) 1.740 16 8 32 0.00175 0.0427 0.00209(9) 197(2) 3343 0.50912(4)

6 177(4) 1.771 16 8 32 0.00232 0.0403 0.00132(6) 198(2) 3540 0.51916(4)

7 186(5) 1.801 16 8 32 0.00258 0.0379 0.00076(3) 195(3) 4715 0.52845(3)

8 195(6) 1.829 16 8 32 0.00265 0.0357 0.00047(1) 194(4) 6991 0.53672(3)

Zero Temperature Ensembles

9 - 1.70 16 32 32 0.013 0.047 0.00420(2) 394(9) 1360 0.49510(3)

10 - 1.70 16 32 32 0.006 0.047 0.00408(6) 303(7) 1200 0.49509(3)

11 - 1.75 16 16 32 0.006 0.037 0.00188 - 1255 0.51222(3)

12 - 1.75∗ 32 64 32 0.0042 0.045 0.00180(5) 246(5) 1288 0.512203(7)

13 - 1.75∗ 32 64 32 0.001 0.045 0.00180(5) 172(4) 1560 0.512235(7)

14 - 1.82 16 32 32 0.013 0.040 0.00062(2) 398(9) 2235 0.53384(1)

15 - 1.82 16 32 32 0.007 0.040 0.00063(2) 304(7) 2134 0.53386(2)

TABLE II. Summary of zero and finite temperature ensembles with DSDR. Each lattice

ensemble is given a label for later reference. The total molecular dynamics time per tra-

jectory is τ = 1.0. The residual mass, mres and the average plaquette (〈U�〉) are also

tabulated.

∗The values given for β = 1.75 are zero temperature results from RBC-UKQCD [42, 43].
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2. DSDR ensembles

For the gauge action augmented with DSDR, we generated several ensembles at

zero temperature (Nτ = 32, Nσ = 16) in order to determine the bare couplings

and quark masses appropriate for exploring the transition region at Nτ = 8. For

the twisted mass coefficients in the determinant ratio, we found that the choice of

ǫf = 0.02 and ǫb = 0.5 allows for a reasonable rate of tunneling between topological

sectors while still suppressing residual chiral symmetry breaking [41]. At two values

of the coupling, β = 1.70 and 1.82 we generated ensembles with two different quark

masses, corresponding to mπ ≈ 300, 400 MeV respectively.

We have also used preliminary results from the RBC-UKQCD calculation with

Nσ = 32, Nτ = 64 at β = 1.75 to provide a better interpolation for the bare

parameters of our finite temperature ensembles.

At finite temperature, we produced ensembles at seven different temperatures in

the range 139 MeV ≤ T ≤ 195 MeV with Nτ = 8 and spatial extent Nσ = 16. The

quark masses are chosen so that the physical pion masses are fixed, mπ ≈ 200 MeV,

while the strange quark mass, ms, is chosen so that (ml+mres)/(ms+mres) = 0.088,

close to its physical value. Table II summarizes the parameters for both our finite and

zero temperature ensembles. Appendix C gives the details of the various evolution

algorithms used to generate these ensembles.

Except for the T = 139, 149 MeV ensembles, we use Ls = 32 for the extent of

the fifth dimension. Because of the rapid growth of the residual mass as one moves

to stronger coupling, the use of a negative input light quark mass becomes necessary

at the lowest temperatures so that the total light quark mass mtot = ml + mres

corresponds to a fixed physical pion mass, mπ ≈ 200 MeV.

In principle, the presence of a negative quark mass admits the possibility for a

singular fermion matrix, resulting in “exceptional configurations” that destroy the
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reliability of the calculation. However, the residual chiral symmetry breaking in our

calculation produces a dynamically generated mass, mres that additively renormalizes

our quark masses, theoretically moving one away from any singularities in the fermion

matrix. Of course, mres is only well-defined when one considers an ensemble average,

so if one uses a negative quark mass that is too large, i.e., |ml| ∼ mres, fluctuations

in the gauge configurations may induce the unwanted singularities even if mtot > 0.

For T = 139 MeV, we initially used a negative light quark mass ofml = −0.00786,

with mres ≈ 0.013 at Ls = 32. It was quickly discovered that this resulted in a

singular fermion matrix, signaled by the non-convergence of the conjugate gradient

inversion. As a result, we switched to Ls = 48 at this temperature, where a smaller,

but still negative light quark ml = −0.00136 could be used to achieve the desired

total light quark mass. At Ls = 48, we saw no exceptional configurations in our

ensemble.

At T = 149 MeV we produced configurations at both Ls = 32 and Ls = 48 in

order to verify that the use of a negative input quark mass had no effect on physical

observables, beyond small O(a2) effects. With Ls = 32, a negative input quark mass,

ml = −0.00189, is used, while at Ls = 48, we have ml = 0.00173. Both of these

ensembles (ensembles 2 and 3 in Tab. II) correspond to approximately the same phys-

ical pion mass, mπ ≈ 200 MeV. We did not see any large differences between these

two ensembles in quantities such as the disconnected chiral susceptibility, renormal-

ization coefficients, or eigenvalue spectrum. However, in the chiral condensate we did

see a significant difference in the two ensembles, presumably caused by the difference

in the leading-order ultraviolet divergent ml/a
2 term that enters in the calculation

of the chiral condensate on the lattice. Table II also shows a 0.2% difference in the

average plaquette value, as we should expect from the small change in the fermion

determinant caused by the increase in Ls from 32 to 48. (Recall that the ratio of the

physical fermion to Pauli-Villars DWF determinants should have an Ls → ∞ limit.)
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D. Line of constant physics

As discussed in the preceding subsection, the Ls = 96 ensembles do not lie on a

line of constant physics, but rather a line of constant bare quark mass. This results

in the pion mass changing from mπ ≈ 225 MeV at the lowest temperature in our

ensemble to mπ ≈ 275 MeV at the highest temperature.

For the DSDR ensembles, we have endeavored to move along a line of fixed physical

pion mass, mπ = 200 MeV. Table III summarizes our results for mπ, mρ, and r0 on

the zero temperature ensembles.

Label β ml r0 mρ mπ 1/a† (GeV)

9 1.70 0.013 2.895(11) 0.68(2) 0.310(1) -

10 0.006 2.992(27) 0.67(2) 0.238(1) -

Extrapolated -0.0040 3.13(7) 0.66(6) - 1.27(4)

12 1.75 0.0042 3.349(20) 0.57(2) 0.1810(3) -

13 0.0010 3.356(22) 0.56(2) 0.1264(3) -

Extrapolated -0.0018 3.36(4) 0.56(4) - 1.36(3)

14 1.82 0.013 3.743(28) 0.56(2) 0.255(2) -

15 0.007 3.779(37) 0.53(2) 0.195(2) -

Extrapolated -0.00064 3.83(9) 0.49(5) - 1.55(5)

TABLE III. Results for r0, mρ, mπ, and the lattice scale, a−1. At each value of β, we

perform simple linear extrapolations to ml = −mres, i.e., the chiral limit, for r0 and mρ.

The lattice scale is fixed using the extrapolated value for r0.
†Lattice scale determined

using r0 = 0.487(9) fm.

In order to determine the lattice scale, we have used the Sommer parameter r0,

determined from the static quark potential. The quantity r0, extrapolated to the
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chiral limit, can be related to the lattice scale using its physical value r0 = 0.487(9)

fm, determined using domain wall fermions [40]. The temperature is given by T =

1/Nτa. The values for r0/a in Tab. III allow us to determine the bare couplings

needed for finite temperature lattice ensembles in the transition region.

To describe T (β) in physical units, we use a modified form of the two-loop renor-

malization group running, which includes an extra term for theO(a2) lattice artifacts:

T (β) =
1

Nτa(β)
=
(
c0 + c1â

2(β)
) 1

â(β)
(4)

â(β) = exp

(
− β

12b0

)(
6b0
β

)−b1/(2b20)

; b0 =
9

(4π)2
; b1 =

64

(4π)4
, (5)

where â(β) is the continuum two-loop RG running for the lattice spacing. The left

panel of Fig. 1 shows the result of the fit of the β-dependence of the temperature

to both the lattice-corrected RG fit of Eq. (4), and to the continuum RG running,

i.e., the case where c1 = 0. As can be seen, the lattice-corrected fit provides a better

description of the data.

The zero temperature ensembles show that the residual mass is strongly dependent

on the lattice spacing. At coarser lattice spacings, the aforementioned dislocations

are more common and cause mres to increase rapidly as one moves from high to low

temperature. The right panel of Fig. 1 shows mres as a function of β. We find that

a simple exponential Ansatz describes the data well.

Finally, to ensure that we simulate along a line of fixed pion mass, we must account

for the running of the bare quark masses as the bare coupling is changed. Since the

residual chiral symmetry breaking results in an additive shift in the quark mass, to

leading order in chiral perturbation theory, the pion mass depends on the total quark

mass, mtot = ml +mres, as:

m2
π ∝ (ml +mres).

This linear quark mass dependence is a surprisingly good description of earlier
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FIG. 1. Left panel: temperature for Nτ = 8 is plotted versus β. The solid curve is the fit to

the continuum RG running; c0 = 25.2(3) MeV. The dashed curve is the result of the fit to

Eq. (4) which includes an added a2 correction; c0 = 29.7(2.9) MeV, c1 = −204(132) MeV.

Right panel: mresa is plotted versus β with an exponential fit: mres(β) = A exp (−Bβ);

A = 8.7(9.7) × 108, B = 15.4(6).

data [40] and sufficiently accurate for the present purpose.

This allows us to determine the bare quark masses required for a specific line of

constant physics on the zero temperature ensembles listed in Tab. III. Figure 2 shows

the quark masses required for mπ = 200 MeV. We also fit these results for mtot(β)

to the lattice-corrected two-loop running of the mass anomalous dimension:

mtot ≡ (ml +mres) =
(
A+Bâ2(β)

)(12b0
β

)4/9

(6)

The lattice-corrected fit provides a good interpolation that allows us to achieve a

line of constant physics on the finite temperature ensembles.

III. DETERMINING THE DIRAC EIGENVALUE SPECTRUM

The spectrum of eigenvalues of the hermitian Dirac operator provides important

insight into the physics of QCD. The Dirac spectrum depends dramatically on the
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FIG. 2. Total light quark mass for mπ = 200 MeV line of constant physics, with a fit to the

lattice-corrected mass anomalous dimension. Dashed curves represent the 1-σ error band.

temperature and is fundamentally connected with both spontaneous and anomalous

chiral symmetry breaking. These topics will be explored in detail in later sections of

this paper.

In this section we will explain how the continuum Dirac spectrum can be deter-

mined from the spectrum of the five-dimensional DWF Dirac operator, including a

method to determine its normalization. The Ritz method used to determine the low-

est 100 eigenvalues for each of our finite temperature ensembles will then be briefly

described as well as the numerical details of our determination of the normaliza-

tion of those eigenvalues. A derivation for this normalization method, following the

approach of Giusti and Lüscher [30], is given in Appendix A. The resulting Dirac

eigenvalue spectrum, computed and normalized following the methods described in

this section, will be presented and analyzed in Sec. VI, in an effort to determine the

temperature dependence and the origin of anomalous U(1)A symmetry breaking.
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A. Relating the continuum and DWF Dirac spectrum

The domain wall fermion formulation can be viewed as a five-dimensional theory

whose low energy properties accurately reproduce four-dimensional QCD. All low

energy Green’s functions and matrix elements are expected to agree with those of a

four-dimensional theory and it is only at high momenta or short distances that the five

dimensional character of the theory becomes visible. This perspective applies also to

the five-dimensional DWF Dirac operator whose small eigenvalues and corresponding

eigenstates should closely approximate those of a continuum four-dimensional theory.

This can be shown explicitly for the free theory, order-by-order in perturbation theory

and by direct numerical evaluation in lattice QCD. With the exception of gauge

configurations which represent changing topology, the modes with small eigenvalues

are literally four-dimensional with support concentrated on the four-dimensional left

and right walls of the original five-dimensional space.

Thus, we can learn about the continuum Dirac eigenvalue spectrum by directly

studying that of the DWF Dirac operator, DDWF, as defined by Eqs. 1-3 in Ref. [47].

Of course, just as with other regulated versions of the continuum theory, explicit

renormalization is needed to convert from a bare to a renormalized eigenvalue density.

Because the continuum Dirac operator, /D + m, is linear in the quark mass, we

should expect the Dirac eigenvalues to be related between different renormalization

schemes by the same factor Zm that connects the masses. If we have two regularized

theories which describe the same long distance physics with bare masses m and

m′ = Zm→m′m, then we should expect that their eigenvalue densities would be

related by:

ρ′(λ′) =
1

Zm→m′

ρ (λ′/Zm→m′) . (7)

Note this expectation is consistent with the form of the Banks-Casher relation,

〈ψψ〉 = πρ(0), as the equality of the mass term in equivalent theories requires
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〈ψ′
ψ′〉 = 〈ψψ〉/Zm→m′.

The renormalization of the bare input quark mass, mf , for DWF has been exten-

sively studied and the factor Zmf→MS(µ
2) needed to convert this input bare mass to a

continuum, MS value at the scale µ is accurately known [40]. However, in contrast to

the continuum theory or staggered or Wilson lattice fermions, the input quark mass

for DWF does not enter as an additive constant but instead appears as a coupling

strength between the two four-dimensional walls. Thus, for DWF the Dirac spectrum

and the quark mass will in general be related to their continuum counterparts by

different renormalization factors. To properly renormalize the DWF Dirac spectrum

we should begin with the hermitian operator γ5R5D
DWF and then add the identity

operator multiplied by the parameter mtw:

γ5R5D
DWF +mtw = γ5R5

(
DDWF + γ5R5mtw

)
. (8)

Here R5 performs a simple reflection in the fifth dimension, taking the point (x, s)

to the point (x, Ls − 1− s) where x is the space-time coordinate and 0 ≤ s ≤ Ls − 1

the coordinate in the fifth dimension. The renormalization factor, Ztw→MS, needed

to convert the DWF spectrum to the continuum, MS spectrum then relates this new

DWF pseudo-scalar operator to the corresponding MS continuum operator:

(
ψ(x)γ5ψ(x)

)MS ≈ 1

Ztw→MS

Ls−1∑

s=0

Ψ(x, s)γ5Ψ(x, Ls − 1− s), (9)

where Ψ(x, s) is the five-dimensional DWF field. These two operators, which appear

in different theories, are equated in Eq. (9) in the sense that they give the same

matrix elements when inserted in corresponding long-distance Green’s functions.

It is convenient to determine the renormalization constant Ztw→MS in two steps. In

the first we determine the constant Ztw→mf
which relates this reflected pseudo-scalar

term and the standard pseudo-scalar term belonging to the same chiral representation
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as the usual DWF mass term ψψ:

ψ(x)γ5ψ(x) =
1

Ztw→mf

Ψ(x)R5γ
5Ψ(x), (10)

where the operator on the right-hand side is the same as that in the right-hand side

of Eq. (9) with the explicit sum over the s coordinate suppressed.

Then in the second step we perform the well-understood conversion between the

standard DWF mass operator and a continuum, MS normalized mass operator using

Zmf→MS:

Ztw→MS = Zmf→MSZtw→mf
. (11)

After the first step, we can compare the eigenvalue density ρ(λ) for the lattice

DWF operator with the usual lattice result for the chiral condensate using the Banks-

Casher relation,

〈ψψ〉 = π

Ztw→mf

ρ(0), (12)

since both the left- and right-hand sides now use the same bare normalization con-

ventions. In the second step we are simply dividing both sides of Eq. (12) by the

common factor Zmf→MS to convert from lattice to MS normalization.

B. Calculation of Ztw→mf

Because the operators ψ(x)γ5ψ(x) and Ψ(x)R5γ
5Ψ(x)/Ztw→mf

are supposed to be

equivalent at long distances, we can determine the needed factor Ztw→mf
by simply

taking the ratio of equivalent Green’s functions, evaluated at distances greater than

the lattice spacing a, containing these two operators:

Ztw→mf
=

〈
O1 . . . OnΨ(x)R5γ

5Ψ(x)
〉

〈
O1 . . . Onψ(x)γ5ψ(x)

〉 , (13)

where the numerator and denominator in this expression are intended to represent

identical Green’s functions except for the choice of pseudo-scalar vertex.
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Label β T(MeV) Rπ

10 1.70 0 1.774(5)

11 1.75 0 1.570(4)

15 1.82 0 1.397(2)

2 1.671 149 1.905(6)

3 1.671 149 1.980(7)

4 1.707 159 1.725(8)

5 1.740 168 1.631(11)

6 1.771 177 1.476(4)

7 1.801 186 1.439(3)

8 1.829 195 1.365(3)

TABLE IV. Values for the renormalization factor Ztw→mf
obtained from the ratio of

pseudo-scalar correlators Rπ defined in Eq. (14).

We will now determine Ztw→mf
and test the accuracy to which the ratio given

in Eq. (13) defines a unique constant by studying the ratio of two type of matrix

elements. In the first we examine simple two-point correlators between each of the

pseudo-scalar densities in Eq. (13) and the operator Oπ(t) which creates a pion from

a Coulomb gauge fixed wall source located at the time t:

Rπ(t) =

〈∑
~xΨ(~x, t)R5γ

5Ψ(~x, t)Oπ(0)
〉

〈∑
~x ψ(~x, t)γ

5ψ(~x, t)Oπ(0)
〉 , (14)

which for large t is the ratio of matrix elements of our two pseudo-scalar operators

between a pion state and the vacuum. Results are presented in Tab. IV.

Second we examine off-shell, three-point Green’s functions evaluated in Landau

gauge which again contain each of the pseudo-scalar densities being compared and

a quark and an anti-quark field carrying momenta p1 and p2, allowing us to see the
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degree to which the ratio in Eq. (13) does not depend on the small external momenta

p1 and p2.

RMOM(p1, p2) =
Tr
〈∑

x2,x1
ei(p2x2−p1x1)ψ(x2)Ψ(0)R5γ

5Ψ(0)ψ(x1)
〉

Tr
〈∑

x1,x2
ei(p2x2−p1x1)ψ(x2)ψ(0)γ5ψ(0), ψ(x1)

〉 . (15)

Here we are using the well-studied methods of Rome/Southampton non-perturbative

renormalization [48] to compare the normalizations of the operators ΨR5γ
5Ψ and

ψγ5ψ. For a recent application of this method to other operators in a DWF context

see Ref. [49]. For both Eqs. (14) and (15), we expect the ratio to be independent of

t and of p1 and p2 respectively and to yield the same value Ztw→mf
.

When evaluating the momentum space Green’s functions in Eq. (15) we generate

the needed quark propagators using a series of volume sources [50]. For each specific

four-momentum p we evaluate twelve propagators, one for each spin and color, using

the sources

η(x, p)α,a;β,b = eip·xδαβδab, (16)

where α and a are the spin and color indices of the source η while β and b label

the spins and colors of the twelve sources evaluated for each four-momentum p. We

perform our calculation using both non-exceptional kinematics, p21 = p22 = (p1−p2)2,
and exceptional kinematics, p1 = p2. Results for the ratios Rnon−ex

MOM (p1, p2) and

Rex
MOM(p1, p2) for the three zero-temperature ensembles are presented in Tab. VI and

Fig. 3. The specific momentum components used to construct p1 and p2 are listed

in Tab. V.

The ratios presented in Tabs. IV and VI and plotted in Fig. 3 at a given value of

β are all expected to equal the common renormalization factor Ztw→mf
. However, as

is evident from these tables and figure this expectation is realized at only the 20%

level, suggesting the presence of significant O ((pa)2) errors and implying a similar

uncertainty in extracting a consistent value for the important quantity Ztw→mf
. In
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(pa)2 pAL/2π pBL/2π

0.308 (1,1,0,0) (0,1,1,0)

0.671 (1,1,1,1) (1,1,1,-1)

0.925 (2,1,1,0) (2,0,-1,1)

1.234 (2,2,0,0) (0,2,2,0)

1.542 (2,2,1,1) (2,-1,2,1)

2.467 (2,2,2,2) (2,2,2,-2)

2.776 (3,2,2,1) (3,2,-1,-2)

TABLE V. The components of the two momentum four-vectors pA and pB used to compute

the quantities RMOM(p1, p2) given in Tab. VI. For non-exceptional momenta, we use p1 =

pA and p2 = pB, while for exceptional momenta, only a single momentum, either p1 = p2 =

pA or p1 = p2 = pB is used. Here L = 16 is the spatial size of the lattice.

fact, the behavior of these results is consistent with an O ((pa)2) origin for these

discrepancies. The larger dependence on momentum of the non-exceptional ratio

Rnon−ex
MOM (p1, p2) than seen in Rex

MOM(p1, p2) and its larger deviation from the more

consistent quantities Rex
MOM(p1, p2) and Rπ is reasonable since the non-exceptional

kinematics were originally introduced to ensure that large momenta flow everywhere

in the corresponding Green’s function [49]. The better agreement between the quan-

tities Rex
MOM(p1, p2) and Rπ and the smaller momentum dependence of Rex

MOM(p1, p2)

is also consistent with the smaller internal momenta expected in these Green’s func-

tions with exceptional kinematics. Finally the decreasing differences between these

three quantities as β increases from 1.70 to 1.82 with the corresponding decrease

in a is also consistent with these violations of universality arising from finite lattice

spacing errors.
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β = 1.70 β = 1.75 β = 1.82

(pa)2 Rnon−ex
MOM Rex

MOM Rnon−ex
MOM Rex

MOM Rnon−ex
MOM Rex

MOM

0.308 1.673(5) 1.759(4) 1.507(5) 1.566(4) 1.352(2) 1.393(2)

0.617 1.591(5) 1.745(4) 1.450(5) 1.562(4) 1.320(2) 1.390(2)

0.925 1.536(3) 1.745(3) 1.418(3) 1.562(4) 1.312(1) 1.394(2)

1.234 1.508(2) 1.744(3) 1.412(2) 1.564(4 1.3165(7) 1.404(1)

1.542 1.493(2) 1.742(3) 1.406(1) 1.570(4) 1.3233(6) 1.416(1)

2.467 1.4933(10) 1.766(3) 1.4313(7) 1.613(3) 1.3670(4) 1.484(1)

2.776 1.4977(8) 1.796(3) - - - -

TABLE VI. Values for the ratio RMOM(p1, p2) defined in Eq. (15). For non-exceptional

momenta, the quantity Rnon−ex
MOM (p1 = pA, p2 = pB) is shown. For exceptional momenta, the

average of Rnon−ex
MOM (p1 = p2 = pA) and Rnon−ex

MOM (p1 = p2 = pB) is shown. The first column

shows the value of (p1a)
2 = (p2a)

2 = (pa)2. Results from 12, 20 and 21 configurations have

been averaged to give the values for β = 1.70, 1.75 and 1.82, respectively. The quark mass

values and lattice sizes used for these results are given in Tab. IV. The significant variation

among the results for a given value of β indicate large O
(
(pa)2

)
errors.

We therefore adopt the hypothesis that the discrepancies between these different

determinations of Ztw→mf
arise from finite lattice spacing effects and that the most

reliable value for Ztw→mf
will be obtained at smallest momentum. Hence, we use the

ratio Rπ to provide values for Ztw→mf
. This choice has the additional benefit that

we have evaluated this ratio on the finite temperature ensembles allowing us to use

Rπ to provide values of Ztw→mf
for each of our values of β, avoiding extrapolation.

Note that the discrepancy between the finite and zero temperature results for Rπ

shown in Tab. IV for the near-by β values β = 1.700, 1.707 and β = 1.820, 1.829
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FIG. 3. Plots of the results for the quantity Ztw→mf
given in Tabs. IV and VI for each of the

three values of β that were studied at zero temperature. The single value of Rπ is plotted

as an“ ×” in each panel and given the value (pa)2 = 0. (The scale on the left-most y-axis

applies to all three plots.) As discussed in the text, the discrepancies between Rnon-ex
MOM and

Rnon-ex
MOM are indicative of O

(
(pa)2

)
errors, so we use the value of Rπ for Ztw→mf

.

indicate remaining systematic a2 errors in our determination of Ztw→mf
that are on

the order of 5%.

C. Normalization conventions

Using the methods described above, we can convert our results for the quark mass,

chiral condensate, and Dirac spectrum into a single normalization scheme, allowing

a meaningful comparison between the eigenvalues in the Dirac spectrum and the

corresponding quark mass. We adopt the commonly-used MS scheme, normalized at

a scale µ = 2 GeV.

We use the DWF results for the continuum, µ = 2 GeV, MS quark masses
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Label T (MeV) Zmf→MS(2GeV)

1 139 1.47(14)

3 149 1.49(10)

4 159 1.51(7)

5 168 1.53(6)

6 177 1.55(6)

7 186 1.57(7)

8 195 1.58(9)

TABLE VII. Results for the factors Zmf→MS(2GeV) which convert a lattice quark mass,

m̃ into a mass normalized in the MS conventions at µ = 2 GeV.

determined in Ref. [40], mMS
s (2 GeV) = (96.2 ± 2.7)MeV and mMS

ud (2 GeV) =

(3.59 ± 0.21)MeV and the accurate linear dependence of m2
π and m2

K on the quark

masses in the region studied to convert a lattice light quark mass, m̃l = mf +mres

corresponding to a pion mass mπ(m̃l) into this same MS scheme using the relation:

mMS
l (2GeV) = (3.59 + 96.2)MeV

(
mπ(m̃l)

)2

2(mK)2
, (17)

where mK = 495 MeV denotes the physical value of the Kaon mass. The renormal-

ization factor is then given by:

Zmf→MS =
99.79 MeV

2m̃

(
mπ(m̃l)

495 MeV

)2

(18)

for each of our ensembles. Note the lattice quark mass, m̃, substituted in Eq. (18)

must be expressed in units of MeV to define a conventional, dimensionless value for

Zmf→MS. The resulting Zmf→MS factors for our seven ensembles are given in Tab. VII.

The factors given in Tab. VII will also be used to convert values of the chiral

condensate ψψ (when constructed from the usual 4-D surface, lattice operators) and

28



Dirac spectrum (when normalized with the same conventions as ψψ) into µ = 2 GeV,

MS values according to the relations:

(ψψ)MS =
(ψψ)lat

Zmf→MS

(19)

ρ(λ)MS =
ρlat(λ/Zmf→MS)

Zmf→MS

. (20)

Of course, because the quark masses and lattices scales that we use are interpo-

lated and extrapolated from only three zero temperature ensembles, there is signif-

icant uncertainty in our determination of the renormalization factors. However, for

the purposes of the present paper, we believe that these renormalization factors in

Tab. VII have sufficient accuracy.

D. Determining DWF Dirac eigenvalues and eigenvectors

We directly diagonalize the five dimensional hermitian DWF Dirac operatorDH =

R5γ5D
DWF using the Kalkreuter-Simma (KS) version of the Ritz method [51]. De-

tails of this method have been described in [52] and [47].

At each KS iteration, we use the conjugate gradient method to find the lowest

Neig eigenvalues of D2
H and corresponding eigenvectors one by one, by minimizing

the Ritz functional,

µ(Ψ) =
〈Ψ|D2

H|Ψ〉
〈Ψ|Ψ〉 . (21)

We can then calculate the eigenvalues of DH by diagonalizing DH in the subspace

spanned by the eigenvectors of D2
H previously obtained. The precision of the KS

method is controlled by the maximum relative change of all the eigenvalues between

each KS iteration.

A spurious eigenmode problem may arise in the Jacobi diagonalization of DH ,

if only one of the paired eigenvectors is included in the subspace. The spurious
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eigenmode’s corresponding vector is the linear combination of two almost degenerate

eigenvectors with eigenvalues of opposite signs. We resolve this problem by applying

DH to the problematic vector and find the proper linear combination of the resulting

vector and the original problematic vector which is the true eigenvector.

Using these methods we have computed the 100 eigenvalues with the smallest

magnitude of the DWF Dirac operator on the seven finite temperature ensembles

in the temperature range 149 MeV ≤ T ≤ 195 MeV as well as the β = 1.75, zero

temperature ensemble discussed below. Tab. VIII identifies the configurations that

were used in these calculations.

E. Normalized spectral density

The results for the Dirac spectrum at finite temperature obtained using these

methods are presented and analyzed in Sec. VI, where the restoration of UA(1) sym-

metry is studied. In this section we examine the Dirac spectrum obtained on the

zero temperature ensemble labeled # 11, with volume 164 and β = 1.75.

The discussion in the present section has three objectives. First we explicitly

apply the normalization factors to convert the bare eigenvalues of the DWF Dirac

operator into the MS scheme. The resulting spectral density is expressed in physical

units and can easily be compared with both physical and simulated MS values of the

quark masses as well as with the QCD scale, ΛQCD ∼ 300 MeV. Second, we convert

the spectrum of the hermitian DWF Dirac operator, which includes the effects of

the non-zero quark masses to the more conventional spectrum from which the mass

has been removed, a step which depends critically on the normalization procedure

and is sensitive to finite lattice spacing errors. Finally we examine the Banks-Casher

relation between the resulting spectrum and the chiral condensate.

Fig. 4 shows histograms of the Dirac eigenvalues measured on 340 configurations
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Label T (MeV) Nstart Ncfg R RΛ0 ml +mres

2 149 300 340 1.905 0.00632 0.00459

3 149 300 340 1.980 0.00606 0.00469

4 159 300 408 1.725 0.00828 0.004321

5 168 300 239 1.631 0.01334 0.00384

6 177 300 246 1.476 0.02170 0.00364

7 186 300 374 1.439 0.03131 0.00334

8 195 302 1140 1.365 0.03837 0.00311

11 0 300 252 1.568 0.00489 0.00488

TABLE VIII. List of the configurations used in the Dirac spectrum calculation as well

as the results for the average smallest normalized eigenvalue (RΛ0). Here Nstart is the

first configuration number on which the spectrum was computed, while Ncfg gives the

total number of configurations on which the spectrum was determined. In each case these

configurations were separated by 5 time units. (The sequence of trajectories used for run

#8 contained one anomaly: samples 430 and 431 were separated by three instead of five

time units.)

from the zero-temperature, 164 ensemble #11 in Tab. VIII. In the left-hand panel

of this figure, the histogram of eigenvalues Λ is obtained by converting the eigenval-

ues of the lattice DWF Dirac operator, as described above, to the MS scheme with

µ = 2 GeV. On each configuration the 100 eigenvalues of smallest magnitude have

been determined. Figure 4 shows histograms of these 34,000 eigenvalues. The right-

most vertical line in both panels identifies the minimum value from the set of the

100th largest eigenvalues on each of the 340 configurations. For eigenvalues less than

this “minmax” value the histogram accurately represents the complete spectrum,
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FIG. 4. Histogram of the spectrum of eigenvalues Λ of the hermitian DWF Dirac operator

normalized in the MS scheme at the scale µ = 2 GeV (left). These eigenvalues are calculated

on the zero-temperature ensemble labeled #11. The right hand panel shows a histogram

of the eigenvalues λ =
√

Λ2 − (mf +mres)2 from which the quark mass has been removed.

In the this panel, the region λ > 0 shows those values for which Λ2 > (mf +mres)
2, i.e., λ

is purely real, a condition that should be obeyed in the continuum limit. The region λ < 0

shows those eigenvalues with Λ2 < (mf + mres)
2, i.e., λ pure imaginary, plotted on the

negative part of the x-axis as λ = −|
√

Λ2 − (mf +mres)2|. These unphysical values give a

visible measure of the finite lattice spacing distortions to the region of small λ > 0.

undistorted by our cutoff of 100 eigenvalues per configuration.

Here, Λ denotes an eigenvalue of the full hermitian DWF Dirac operator. These

eigenvalues include the effect of the quark mass and in the continuum limit would

have the form

Λ =
√
λ2 + m̃2. (22)

The left-hand panel of Fig. 4 demonstrates the effect of using a consistent normal-

ization scheme for the quark masses. The two left-most vertical lines in that plot

correspond to the simulated light and strange quark masses, m̃l and m̃s, in the same
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MS normalization. The expected coincidence between the peak in the Λ distribution

at the smallest eigenvalues and the vertical line representing the light quark mass

occurs only after the relative normalization R = 1.570 from Tab. VIII between the

DWF operator and the conventional input quark mass discussed above has been

applied.

In the continuum theory the mass is conventionally removed from the Dirac op-

erator before its eigenvalues are determined so that the usual eigenvalue distribution

is given for the quantity λ in Eq. (22). In our case, the transformation to this more

usual eigenvalue distribution requires converting each eigenvalue Λn into a corre-

sponding λn =
√
Λ2

n − m̃2
l . Unfortunately, this step is vulnerable to finite lattice

spacing effects which allow an occasional value of Λn to be smaller than m̃l, leading

to an unphysical, imaginary result for λn. This should become increasingly rare in

the limit a→ 0 of vanishing lattice spacing. In this limit, the quantity m̃l accurately

corresponds to the light quark mass describing the long distance physics determined

by our lattice theory. Likewise, the arguments given in Appendix A imply that in

this limit, the spectral density ρ(Λ) also approaches a continuum limit which requires

Λ ≥ m̃l.

However, in the calculation presented here the lattice spacing a is relatively large

and deviations from the inequality Λ ≥ m̃l should be expected. In order to present

the more conventional eigenvalue distribution ρ(λ) while at the same time displaying

the imperfections arising from finite a, we choose to plot the eigenvalue histograms

in a hybrid form. For each of the original eigenvalues Λ we compute the derived

eigenvalue λn =
√

Λ2 − m̃2
l . If λn is real, it is included in the histogram in the

normal way, along the positive x-axis. However, if λn is imaginary it is displayed in

the same histogram along the negative x-axis in a bin corresponding to −|λ|.

This has been done in the right-hand panel of Fig. 4. The histogram for λ > 0 is
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the conventional eigenvalue distribution, normalized in the µ = 2 GeV, MS scheme.

The histogram bins for λ < 0 are unphysical and directly result from finite lattice

spacing artifacts. By showing both on the same plot, we make it easy to recognize

the magnitude of the errors inherent in ρ(λ), λ > 0 introduced by lattice artifacts.

For example, it is likely that a majority of the gap in ρ(λ) for λ positive but near

zero in the right-hand panel of Fig. 4 would be filled in as a → 0 by the imaginary

values of λ plotted as −|λ| < 0, and should not be attributed to the effects of finite

volume.

An interesting test of these methods can be made by comparing the spectrum

shown in the right-hand panel of Fig. 4 with the predictions of the Banks-Casher

formula which relates the eigenvalue density ρ(λ) at λ = 0 and the chiral condensate

〈ψψ〉 when both are evaluated in the limit of infinite volume and vanishing quark

mass,

〈ψψ〉 = πρ(0). (23)

The right and left-hand sides of Eq. (23) can be compared by examining the right-

hand panel of Fig. 4 where we have superimposed the quantity 〈ψψ〉/π as horizontal

lines on the histogram. Two values for 〈ψψ〉/π are shown. The upper line corresponds

to 〈ψlψl〉/π with finite light quark mass ml = 0.003. The lower horizontal line

corresponds to the quantity ∆l,s/π given by

∆l,s = 〈ψlψl〉 −
ml

ms
〈ψsψs〉. (24)

The subtraction is an attempt to remove a portion of the large, ultraviolet diver-

gent contribution to 〈ψψ〉, of the form m/a2, expected for non-zero mass and finite

Ls. This subtracted quantity is a more realistic estimate of 〈ψψ〉/π in the massless

limit. To test the Banks-Casher relation, we compare the value of ∆l,s/π with ρ(λ)

for small λ, as can be seen in the right panel of Fig. 4. This shows a value for
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∆l,s/π about 30% lower than ρ(0), probably indicating that our 163 lattice results

are significantly distorted by finite volume effects.

However, for the case of domain wall fermions there will be a residual mixing

between the two fermion chiralities on the left and right walls when their separation,

Ls, is finite. For long-distance quantities, this just results in an additive renormal-

ization of the quark masses by mres. However, as suggested by the results in [28],

the effects of residual chiral symmetry breaking on the dimension three operator ψψ

may come from higher energies and be more perturbative than those contributing

to mres, and therefore may fall off exponentially with Ls rather than as a power

law. If that is also the case for the present ensembles with Ls ≥ 32, the residual

contribution to 〈ψψ〉 is not very large and the subtraction in Eq. (24) may remove

the dominant contributions to 〈ψψ〉 from short-distance modes. However, the use

of the DSDR action enhances the contribution of the exponential- relative to the

power-suppressed residual chiral symmetry breaking, so neglecting mres in Eq. (24)

may not be as accurate on the DSDR ensembles as it would be on DWF ensembles

where DSDR is not employed.

IV. OBSERVABLES PROBING THE CHIRAL SYMMETRIES OF QCD

In this section we introduce some observables used in our finite temperature cal-

culations and discuss their connections to the SU(2)L × SU(2)R symmetry and the

anomalous U(1)A symmetry of QCD.

The most basic observable indicating chiral symmetry restoration is the chiral

condensate. In the chirally symmetric phase this quantity should vanish in the chiral

limit. The single flavor light and strange quark chiral condensates are defined as

〈ψ̄qψq〉 =
T

V

∂ lnZ

∂mq
=

1

N3
σNτ

〈TrM−1
q 〉 , q = l, s (25)
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whereMq is the single-flavor Dirac matrix1. As discussed in the previous section, the

leading ultra-violet divergent part in the chiral condensate is of the form ∼ mq/a
2.

Thus, in order to eliminate this ultra-violet divergent contribution we construct the

subtracted chiral condensate, ∆l,s, as defined in Eq. (24).

Chiral symmetry restoration can also be probed by studying various two-point

functions. For computational simplicity, we will focus on various integrated two-

point functions, i.e., susceptibilities, instead of the two-point correlations functions

themselves.

The flavor non-singlet (δ) and the flavor singlet (σ) two-point scalar correlators

are given by

Gδ(x) = −tr〈M−1
l (x, 0)M−1

l (0, x) 〉 and (26)

Gσ(x) = Gδ(x) + 〈trM−1
l (x, x)trM−1

l (0, 0)〉 − 〈trM−1
l (x, x)〉 〈trM−1

l (0, 0)〉 , (27)

where the vacuum contribution to the σ correlator has been explicitly subtracted.

By integrating these quantities over the four-volume one obtains the corresponding

susceptibilities

χδ =
∑

x

Gδ(x) = χcon and (28)

χσ =
∑

x

Gσ(x) = χcon + χdisc , (29)

where the quark-line disconnected and the quark-line connected parts of the chiral

susceptibilities2 can be written respectively by

χdisc =
1

N3
σNτ

{
〈
(
TrM−1

l

)2〉 − 〈TrM−1
l 〉2

}
and (30)

χcon = −tr
∑

x

〈M−1
l (x, 0)M−1

l (0, x) 〉 ≡ − 1

N3
σNτ

〈TrM−2
l 〉 . (31)

1 For simplicity, we assign the quantity 〈ψ̄ψ〉 a positive sign corresponding to using the mass term

−mψ̄ψ in the Dirac Hamiltonian.
2 These quantities are referred to as chiral susceptibilities since they are related to the fluctuations

of the quantity whose expectation value is the chiral condensate.
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The notation ‘tr’ indicates traces over spinor and color indices only, while ‘Tr’ also

includes a trace over the discrete points x = (x0, ~x) in the four-volume. Tables IX and

X summarize our results for the chiral condensates and disconnected chiral suscep-

tibility, for the Ls = 96 and the DSDR ensembles, respectively. For both ensembles,

the chiral condensates were obtained from a stochastic approximation in which the

trace in Eq. (25) is estimated by the average over the diagonal matrix elements of

M−1
l evaluated on ten Gaussian random sources at every fifth molecular dynamics

time unit. To compute the disconnected susceptibility, the term 〈
(
TrM−1

l

)2〉 in Eq.

30 is calculated by averaging on each configuration only the product of matrix ele-

ments coming from different random sources. This insures that the noise introduced

by the Gaussian random vectors does not bias our estimate of χdisc. (This strategy

was also employed in computing the disconnected susceptibility, χ5,disc, given later

in Tab. XII).

T (MeV) β
〈
ψ̄lψl

〉
/T 3

〈
ψ̄sψs

〉
/T 3 χdisc/T

2

137 1.965 15.1(2) 37.6(1) 20(2)

146 1.9875 13.2(1) 35.99(7) 26(4)

151 2.00 12.0(2) 35.26 (9) 24(4)

156 2.0125 10.3(2) 33.92(12) 30(5)

162 2.025 10.1(2) 33.44(10) 24(4)

167 2.0375 8.0(2) 31.99(10) 29(3)

173 2.05 7.4(2) 31.48(10) 20(3)

188 2.08 6.2(2) 29.84(10) 21(3)

198 2.10 5.2(2) 28.68(10) 16(3)

TABLE IX. Chiral condensates and the disconnected light-quark chiral susceptibility for

the Ls = 96 ensembles.
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Label T(MeV)
〈
ψ̄ψ
〉
l
/T 3

〈
ψ̄ψ
〉
s
/T 3 ∆l,s/T

3 χbare
disc /T

2 χMS
disc/T

2

1 139 9.23(14) 41.00(5) 10.30(14) 37(3) 17.2(1.4)

2 149 6.26(12) 36.42(5) 7.74(12) 44(3) 19.9(1.0)

3 149 8.39(10) 38.30(3) 7.06(10) 41(2) 18.5(0.9)

4 159 5.25(17) 33.81(6) 4.83(17) 43(4) 18.8(1.8)

5 168 4.03(18) 30.66(7) 2.78(18) 35(5) 14.9(2.1)

6 177 3.16(15) 27.88(6) 1.56(15) 25(4) 10.4(1.7)

7 186 2.44(9) 25.43(4) 0.71(9) 11(4) 4.5(1.6)

8 195 2.07(9) 23.24(5) 0.34(9) 5(3) 2.0(1.2)

TABLE X. Chiral condensates and the disconnected light-quark chiral susceptibility for

the DSDR ensembles.

Chiral symmetry restoration implies a massless σ meson at the transition tem-

perature. However, the δ meson is expected to remain massive unless the U(1)A

symmetry also becomes restored at that temperature. Thus, at the chiral transition

χσ will diverge, while χδ remains finite. This implies (see Eqs. (29) and (28)) that

the disconnected part of the chiral susceptibility χdisc diverges at the chiral transition

while the connected part χcon remains finite. At the chiral transition the diverging

disconnected chiral susceptibility is expected to be related to the O(4) scaling prop-

erties of the chiral transition. This in turn suggests that for non-zero light quark

mass (or finite volume) the chiral crossover temperature can be naturally identified

by locating the maximum of the disconnected chiral susceptibility as a function of

the temperature.

We also introduce flavor non-singlet (π) and singlet (η) pseudo-scalar two-point
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screening correlation functions,

Gπ(x) = tr〈 γ5M−1
l (x, 0)γ5M

−1
l (0, x) 〉 and (32)

Gη(x) = Gπ(x)− 〈tr
[
γ5M

−1
l (x, x)

]
tr
[
γ5M

−1
l (0, 0)

]
〉 . (33)

Integrating these correlation functions over the four-volume we obtain the corre-

sponding pseudo-scalar susceptibilities

χπ =
∑

x

Gπ(x) ≡ χ5,con and (34)

χη =
∑

x

Gη(x) ≡ χ5,con − χ5,disc. (35)

Table XI summarizes the details of our screening correlator measurements on the

DSDR ensembles.

Label T (MeV) Trajectories Step

1 139 200-2990 10

3 149 300-7000 5

4 159 300-3650 10

5 168 300-3410 10

6 177 300-1780 10

7 186 300-4360 10

8 195 302-2447 5

2450-6000 5

TABLE XI. Summary of screening correlator measurements. All measurements are with a

point source and point sink with the source located at (x, y, z, t) = (0, 0, 0, 0).

The scalar and pseudo-scalar correlation functions introduced above are related

through SU(2)L×SU(2)R flavor transformations, as illustrated by the horizontal lines
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FIG. 5. Symmetry transformations relating scalar and pseudo-scalar mesons in flavor

singlet and non-singlet channels.

in Fig. 5. Hence, utilizing Eqs. (29), (28), (34) and (35), chiral symmetry restoration

is manifested through the following degeneracies among the susceptibilities of the

two-point correlation functions:

χπ = χσ =⇒ χπ − χδ = χdisc , and (36)

χδ = χη =⇒ χπ − χδ = χ5,disc . (37)

In the limit of two massless flavors, the anomalous U(1)A symmetry cannot be

probed with a local expectation value such as the chiral condensate. In this case

it is necessary to use two-point correlation functions, as introduced above [53–55].

Since the U(1)A transformation does not change the flavor quantum numbers, a

restoration of U(1)A symmetry will be manifested by the equalities between the

following susceptibilities,

χπ = χδ and χσ = χη . (38)

Thus, the susceptibility difference χπ −χδ can be used to study restoration of U(1)A

symmetry at high temperatures. Note, while both the susceptibilities χπ and χδ

individually contain an additive ultra-violet divergent term ∼ 1/a2, their difference

is free of this divergence. Furthermore, in the chirally symmetric phase of QCD one
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can use Eqs. (36) and (37) to obtain

χπ − χδ = χdisc = χ5,disc , for T ≥ Tc , ml → 0 . (39)

Hence, in the chirally symmetric phase (in the chiral limit) the disconnected chiral

susceptibility itself can be used to probe the restoration of the U(1)A symmetry.

This conclusion exemplifies the importance of the disconnected chiral susceptibil-

ity as a probe of the character of the QCD phase transition. If U(1)A symmetry is

broken above Tc and the transition belongs to the O(4) universality class then we

expect singular behavior for χdisc as T → T+
c :

χdisc ∼ (T − Tc)
−γ (40)

formq = 0 and T > Tc where γ = 1.453 [56]. If instead U(1)A symmetry is essentially

restored above Tc, i.e. all anomaly-related breaking effects can be neglected, then

χdisc must vanish for T > Tc while for T < Tc it must diverge as mq → 0 because of

the existence of massless pions. Thus, χdisc must again show singular behavior at Tc.

Further information about χπ−χδ can be obtained by comparing to the topological

charge, Qtop. Qtop is defined as

Qtop =
g2

32π2

∫
d4xF a

µν(x)F̃
a
µν(x). (41)

On a smooth gauge configuration, if lattice artifacts are small, the topological charge

and the integrated pseudo-scalar bilinear can be related:

Qtop = ml

∫
d4xψ̄l(x)γ5ψl(x). (42)

If this relation is squared, averaged over the gauge field and divided by the space-

time volume V we obtain a relation between the topological susceptibility and the

disconnected pseudo-scalar susceptibility:

χtop =
〈Q2

top〉
V

= m2
l χ5,disc. (43)
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This equation can be obtained in the continuum theory by integrating the anomalous

conservation law for the axial current over space-time, squaring the result, dividing

by the space-time volume and ignoring possible ambiguities in the operator product

appearing in Q2
top. If we assume SU(2)L×SU(2)R symmetry and substitute Eq. (39)

into Eq. (43) we can directly relate the measure of U(1)A symmetry breaking χπ−χδ

and the topological susceptibility:

χπ − χδ =
1

m2
l

χtop. (44)

Finally, the eigenvalue spectrum of the Dirac operator is also intimately connected

with the chiral and anomalous axial symmetry. The symmetry breaking quantities
〈
ψ̄ψ
〉
and χπ − χδ can both be expressed in terms of the eigenvalue spectrum of the

Dirac operator in the following way:

〈ψ̄lψl〉 =
∫ ∞

0

dλ
2ml ρ(λ)

m2
l + λ2

, (45)

χπ − χδ =

∫ ∞

0

dλ
4m2

l ρ(λ)

(m2
l + λ2)

2 . (46)

Equation (45) is the basis of the Banks-Casher relation [57] which connects the chiral

condensate to the density of zero eigenvalues limml→0〈ψ̄lψl〉 = πρ(0). While in the

chirally broken phase a non-zero value of the chiral condensate demands ρ(0) 6= 0,

in the chirally symmetric phase a vanishing chiral condensate leads to ρ(0) = 0.

However, Eq. (46) shows that a non-zero anomalous symmetry breaking difference

χπ − χδ in the limit of massless quarks requires complex behavior for ρ(λ) as λ

approaches zero [58]. This required behavior is very different, for example, from that

found in the case of a free field at finite temperature. For the free field case there is

a gap in the spectrum between zero and the Matsubara frequency πT : ρ(λ) = 0 for

0 ≤ λ < πT . This question is studied in detail in Section VI .
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V. SU(2)L × SU(2)R RESTORATION

We now turn to a discussion of SU(2)L×SU(2)R chiral symmetry restoration. We

will first discuss the chiral transition using conventional observables such as the chiral

condensate and the related chiral susceptibility. We then will turn to a discussion of

several hadronic susceptibilities.

In Fig. 6 we show results for the light quark chiral condensate calculated on the

163×8 ensembles in the temperature range 139 MeV ≤ T ≤ 195 MeV. In this figure,

we also show the subtracted chiral condensate ∆l,s introduced in Eq. (24). The values

plotted at the lower two temperatures, T = 139 and 149 MeV were obtained using

Ls = 48 while the values at the five higher temperatures use Ls = 32. As discussed

in Sec. II, the ultraviolet divergent piece of the chiral condensate, ml/a
2 is sensitive

to the bare light quark mass. This results in the irregular behavior for the light

quark chiral condensate seen in Fig. 6 and the different values for this quantity for

ensembles #2 and #3 given in Tab. X. As also should be expected, this short distance

contribution to
〈
ψ̄ψ
〉
is substantially reduced in the subtracted quantity ∆l,s, which

agrees between Ls = 32 and 48 at T = 149 MeV at the 10% level.

As described in Sec. IV we can use the fluctuations found in our calculation of the

expectation values of ψ̄ψ and ψ̄γ5ψ to construct the disconnected part of the chiral

susceptibility. The upper panel of Fig. 7 shows our results for the disconnected chiral

susceptibility from both the Ls = 96 and the Ls = 32 and 48 results calculated with

the DSDR gauge action. The discrepancy between the two results for T ≤ 170

MeV can be explained by the different values of the light quark mass used in the

two calculations. The Ls = 96 calculation was performed with the quark mass

fixed in lattice units and the resulting zero-temperature pion mass decreasing from

approximately 275 MeV to 225 MeV as the temperature decreases from the highest

to the lowest value. In contrast, the DSDR calculation was performed at a fixed 200
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FIG. 6. The light quark chiral condensate, as well as the subtracted chiral condensate

plotted as a function of temperature. As discussed in the text, the values plotted for

T = 139 and 149 MeV were computed using Ls = 48 while those at higher temperatures

used Ls = 32.

MeV pion mass. Since the disconnected chiral susceptibility is expected to increase as

the pion mass decreases for T ≤ Tc, a larger value should be expected from the DSDR

calculation in this temperature range. For temperatures above the transition, the

chiral condensate and to some degree its fluctuations are suppressed by a decreasing

physical quark mass, causing the DSDR values for χdisc to fall below those of the

Ls = 96 ensemble.

In the lower panel of Fig. 7 we compare the DSDR, DWF results with those

obtained previously using the asqtad and HISQ staggered fermions by the HotQCD

collaboration [59]. In order to make a comparison between different fermion actions,

one must convert the unrenormalized results for the disconnected chiral susceptibility

into a common renormalization scheme, e.g. the MS scheme that was discussed in
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FIG. 7. In the upper panel, the unrenormalized, disconnected chiral susceptibility for DWF

DSDR Ls = 32, 48 is compared with the DWF results with Ls = 96. In the lower panel, the

renormalized chiral susceptibilities, converted to the MS scheme are compared between the

DWF DSDR calculation and the HISQ and asqtad results from the HotQCD Collaboration,

corresponding to a pseudo-Goldstone pion mass of 161 and 179 MeV, respectively.
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Sec. III. The renormalized chiral susceptibility is given by:

χMS
disc =

(
1

Zmf→MS(µ
2)

)2

χbare
disc , (47)

where an expression for Zmf→MS(µ
2) is given in Eq. (18). The values of Zmf→MS(µ

2)

are tabulated for the DWF+DSDR action with µ = 2 GeV in Tab. VII. Details for

converting the staggered results to the MS scheme are discussed in Appendix B.

The difference between the DWF and staggered results shown in the lower panel of

Fig. 7 may arise from more than one source. While the staggered results are obtained

with nominally lighter pion masses (the Nt = 12 HISQ and asqtad results have

mπ = 161 and 179 MeV respectively) this is the mass of the lightest Goldstone pion

and taste breaking leads to a range of masses for the other 15 taste-split pions, some of

which are considerably larger. In contrast the DWF calculation has three degenerate

200 MeV pions. However, the staggered calculations are performed at much larger

physical volumes than the DWF work reported here, with linear dimensions twice the

size of those in the DWF calculation. In fact, a finite volume scaling study of an O(4)

symmetric quark-meson model of the phase transition [60] suggests that the height

of the peak in the chiral susceptibility associated with the transition should become

smaller as the volume is increased, which provides a second possible explanation of

the discrepancy between the DWF and staggered results found in Fig. 7.

To obtain the connected part of the various susceptibilities we have calculated

hadronic correlation functions in different quantum number channels (for a more

detailed discussion see Sec. IV). The sink position of these two-point correlation

functions is then integrated over the full space-time volume to obtain the correspond-

ing susceptibility. For example, the integral over the scalar point-point correlation

function gives the connected part of the chiral susceptibility χl,con ≡ χδ, with χδ

introduced in Eq. (28).
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We find that susceptibilities calculated from connected correlation functions do

not show significant temperature dependence. This is quite similar to what has been

found in calculations performed with staggered fermions. While dramatic temper-

ature dependence is expected in the connected susceptibilities, for example in χπ

associated with the small pion mass below Tc, these quantities are likely dominated

by the 1/a2 divergence associated with the coincidence of the source and sink points

when the correlation function is integrated over space-time.
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2
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FIG. 8. The SU(2)L × SU(2)R-breaking differences between the disconnected pseudo-

scalar and disconnected scalar susceptibilities and between the flavor-triplet pseudo-scalar

and flavor singlet scalar susceptibilities.

In the chiral limit the restoration of chiral flavor symmetry can also be seen in

the vanishing of the susceptibilities differences χπ −χσ and χdisc−χ5,disc as shown in

Eq. (39). We show these two measures of chiral symmetry breaking in Fig. 8 where

one sees a decrease with increasing temperature that is even more rapid than that

found in Fig. 6 for the subtracted chiral order parameter ∆l,s.

The two differences χπ − χσ and χdisc − χ5,disc provide information on chiral sym-

metry restoration that is consistent with the observed peak in the disconnected
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chiral susceptibility. All three observables suggest that the transition to the chi-

rally symmetric, high temperature phase occurs at a temperature of about T ∼
(160 − 170) MeV. We should stress, however, that this result has been obtained at

a single value of the lattice cut-off and from simulations performed in a rather small

physical volume, NL/NT = V 1/3T = 2. In an O(4) scaling study of a model of

the transition, Braun et al. [60] find that the pseudo-critical transition temperature

shifts to larger values when the volume is increased. As mentioned above, these finite

volume effects also are expected to account for the larger height of the susceptibility

peak found when comparing our DWF calculations to the larger-volume staggered

results.

VI. ANOMALOUS U(1)A BREAKING ABOVE TC

In this section we examine the strength of anomalous axial symmetry breaking

as a function of temperature and attempt to determine its origin. For tempera-

tures below Tc the non-vanishing light-quark chiral condensate, 〈ψlψl〉 which breaks

the non-anomalous SU(2)L × SU(2)R chiral symmetry also breaks the anomalous

symmetry. This large vacuum U(1)A asymmetry obscures other possible sources of

anomalous symmetry breaking so that the effects of the axial anomaly are rather

subtle, appearing, for example in the splitting between the mass of the SU(3) flavor

singlet η′ meson and the SU(3) flavor octet of pseudo-Goldstone bosons. However,

as the temperature is increased above Tc this vacuum symmetry breaking disappears

(as discussed in Section V) so that the remaining U(1)A symmetry breaking must

come from the axial anomaly present in the underlying quantum field theory.

At high temperatures the anomalous symmetry breaking can be described using a

semi-classical expansion known as the dilute instanton gas approximation (DIGA). In

the DIGA, the Euclidean finite temperature path integral is described as an integral
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over quantum fluctuations about a series of classical Yang-Mills background fields

constructed from a superposition of widely separated instanton and anti-instanton

classical solutions. Here the (anti-)instanton size will be on the order of or smaller

than 1/T and the one-loop quantum corrections imply an instanton-anti-instanton

density ∝ m
Nf

l exp{−8π2/g(T )2} [61]. The integer Nf is the number of light flavors,

which have a small common mass ml, and g(T ) is the running Yang-Mills coupling

constant evaluated at the momentum scale µ ∼ T . The non-zero topological charge

density, (g2/32π2)F µν(x)F̃ µν(x) in the DIGA can be directly related to the anoma-

lous breaking of U(1)A symmetry through the familiar anomaly equation:

∂µ

Nf∑

i=1

ψiγ
5γµψi = 2ml

Nf∑

i=1

ψiγ
5ψi +Nf

g2

16π2
F µνF̃ µν . (48)

The detailed mechanism of anomalous symmetry breaking which realizes the con-

sequences of Eq. (48) is well understood as the effects of infra-red singularities associ-

ated with the Nf fermion near-zero modes that are located at each of the instantons

and anti-instantons in this semi-classical description. For example, in Eq. (46) the

U(1)A-asymmetric difference between the isovector pseudo-scalar and scalar suscep-

tibilities, χπ−χδ is expressed in terms of an integral over the Dirac eigenvalue density

ρ(λ), divided by an infrared-singular denominator vanishing as ml and λ approach

zero. The DIGA in the case of Nf degenerate light flavors implies the existence of

Dirac near-zero modes whose contribution to the eigenvalue spectrum should be well

approximated by:

ρ(λ) ≈ c(T )mNf δ(λ). (49)

The use of the delta function δ(λ) neglects the small splitting from zero for these

near-zero modes which results from the interactions between the widely separated

instantons and anti-instantons in the “dilute” gas. Although Eq. (46) contains two

powers of the fermion mass and naively vanishes in the chiral limit, this infrared
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divergent denominator (λ2 + m2)2, when combined with the eigenvalue density in

Eq. (49), implies a non-zero value for χπ − χδ = 2c(T ) for the case of two light

flavors in the limit of vanishing quark mass.

While the DIGA is expected to be the correct description of QCD thermodynamics

at high temperature, one might imagine a more complex mechanism for anomalous

symmetry breaking when the temperature is lower and this semi-classical, pertur-

bative treatment of widely separated instantons and anti-instantons is invalid. For

example, at lower temperatures still above Tc one might imagine a non-perturbative

accumulation of small eigenvalues which leads to a density ρ(λ,m) = mνmλνλ . For

T > Tc the vanishing of the chiral condensate and the Banks-Casher relation requires

νm+νλ > 0. However, examining Eq. (46) we see that the U(1)A-breaking difference

χπ −χδ will remain finite in the limit of vanishing quark mass for the present case of

two light flavors if νm+νλ ≤ 1. Similar possible U(1)A-symmetry breaking behaviors

have been discussed previously [23, 58, 62].

We will now examine our numerical results for anomalous symmetry breaking and

their correlation with gauge- field topology as well as the Dirac eigenvalue spectrum

itself. In particular, we will discuss the anomalous symmetry breaking differences in

both connected and disconnected susceptilities as well as in the underlying Green’s

functions evaluated in position space. We will also compare our results with the

predictions of the high-temperature DIGA and search for possible new mechanisms

for U(1)A symmetry breaking at temperatures closer to Tc.

A. Connected and disconnected susceptibilities

As discussed in Section IV, an accessible observable to examine is the U(1)A sym-

metry breaking difference χπ−χδ. In that Section we also showed in Eq. (39) that the

difference χπ − χδ, the disconnected chiral susceptibility χdisc, and the disconnected
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pseudo-scalar susceptibility χ5,disc all become equal in the chiral limit for T ≥ Tc as

a direct consequence of SU(2)L ×SU(2)R symmetry. In addition, χπ −χδ is directly

related to the Dirac eigenvalue density through Eq. (46).
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FIG. 9. The disconnected scalar (chiral) and pseudo-scalar susceptibilities plotted ver-

sus temperature as crosses and squares respectively. The circles show the U(1)A-breaking

difference χπ − χδ, which in the chiral limit will become equal to both disconnected sus-

ceptibilities above Tc. Finally the triangles represent the topological susceptibility divided

by the square of the total bare quark mass, mf +mres, a combination which should equal

the pseudo-scalar susceptibility at all temperatures, as in Eq. 43. The large discrepancy

between χtop/(mf +mres)
2 and χ5,disc is believed to arise from large lattice artifacts in the

determination of χtop as discussed below and in Appendix D

These three observables are plotted in Fig. 9 and their numerical values for the

DSDR ensembles are given in Tabs. X and XII. All three, χdisc, χ5,disc and χπ −
χδ, agree within errors for T > 168 MeV suggesting both a restoration of vacuum

SU(2)L × SU(2)R symmetry and that our ∼ 10 MeV quark mass and resulting 200

MeV pion introduce a sufficiently small explicit chiral symmetry breaking that its

effects are not visible at our level of accuracy. Especially interesting is the fact that
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Label T (MeV) χπ/T
2 χδ/T

2 (χπ − χδ)/T
2 χ5,disc/T

2 χtop/T
2

1 139 283(11) 78(6) 205(16) 113(7) 6.6(3) ×10−3

2 149 178(3) 87(1) 91(4) 89(6) 3.7(1) ×10−3

4 159 177(7) 99(6) 78(9) 55(6) 1.7(1) ×10−3

5 168 139(7) 85(6) 55(10) 37(5) 0.95(10) ×10−3

6 177 113(9) 77(6) 36(14) 24(4) 0.49(5) ×10−3

7 186 93(2) 87(1) 6(2) 9(3) 0.24(6) ×10−3

8 195 88(2) 79(2) 8(4) 5(4) 0.13(3) ×10−3

TABLE XII. Our results for the susceptibilities χπ, χδ, χπ − χδ, χ5,disc, and χtop.

the U(1)A breaking difference, χπ−χδ, is non-zero throughout the temperature range

considered here. This suggests that U(1)A remains explicitly broken even after chiral

symmetry is restored. Furthermore, since the symmetry breaking effects of the non-

zero quark mass produce no visible discrepancies between χdisc, χ5,disc and χπ − χδ,

it is reasonable to expect that the difference between χπ and χδ arises from the axial

anomaly — not the non-zero quark mass.

Also shown in Fig. 9 is the combination χtop/(mf +mres)
2 which is expected to

be equal to the pseudo-scalar susceptibility χ5,disc, following Eq. 43. As can be seen

in the figure this expectation is badly violated, with these two quantities differing by

more than a factor of two at the lowest temperature. As is discussed in greater detail

in Appendix D, we have examined our results for these two quantities carefully and

believe that our calculation of χtop is not reliable at the large lattice spacings and non-

zero temperatures being explored here. The quantity χ5,disc is determined directly

from the Dirac propagator on the lattice and has a well-understood continuum limit.

In contrast, the topological susceptibility is obtained from an empirically justified
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procedure of gauge link smearing steps followed by the evaluation of an improved

combination of links chosen to approximate the topological charge density FF̃ . As

shown in Appendix D, these two quantities do not agree at non-zero temperature,

despite the fact that there is good agreement at zero temperature, even at our coarsest

lattice spacings.

B. Position-space corrrelators

Additional understanding of this U(1)A symmetry violation comes from examining

the spatial correlators themselves. We begin by writing the iso-vector scalar and

pseudo-scalar correlators (those for the δ and the π) in terms of their left- and right-

handed components,

Gπ/δ(x) =
〈
ūLdR(x)d̄RuL(0) + ūRdL(x)d̄LuR(0)

〉

±
〈
ūLdR(x)d̄LuR(0) + ūRdL(x)d̄RuL(0)

〉
.

(50)

Here the left- and right-handed parts are defined as

uL/R(x) =

(
1∓ γ5

2

)
u(x), dL/R(x) =

(
1∓ γ5

2

)
d(x), (51)

ūL/R(x) = ū(x)

(
1± γ5

2

)
, d̄L/R(x) = d̄(x)

(
1± γ5

2

)
(52)

In Eq. (50), the terms on the first line are invariant under U(1)A rotations. These

occur with the same sign for both the δ and the π correlators. By contrast the terms

on the second line, which occur with opposite signs for the two correlators, are not

invariant under U(1)A transformations and their expectation value should therefore

vanish in a U(1)A-symmetric theory.

The invariant and non-invariant parts of these correlators may be isolated by

taking the sum and difference respectively of the two correlators. These are shown

in Fig. 10 for all the temperatures. Actually, what are plotted are the screening
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correlators C(z), which are related to the corresponding point-to-point correlators

by

CH(z) =
∑

x,y,τ

GH(x, y, z, τ), H = π, δ, ρ, etc. (53)

We see that the difference Cπ(z)− Cδ(z) is always nonzero. For source-sink separa-

tions within a few lattice spacings of zero, this non-zero value is dwarfed by the much

larger non-anomalous contribution to Cπ(z) and Cδ(z) and this disparity grows with

increasing temperature. However, while its magnitude decreases as T is increased,

the difference is always comparable to the sum Cπ(z)+Cδ(z) at the largest source-sink

separations viz. x ≈ Nσ/2. This suggests a significant breaking of U(1)A symmetry

for this long-distance quantity, even with increasing temperature. However, studies

with a varying quark mass are required to establish this as an effect of the anomaly.

C. Correlation with topology

The connection between the U(1)A-breaking difference χπ−χδ and the topology of

the gauge fields can be studied by comparing the Monte Carlo time histories for these

two quantities. Figure 11 contains plots of the time histories of the measurements

whose average gives the connected susceptibility difference χπ−χδ and the topological

charge Qtop. On our finite temperature gauge configurations, Qtop is computed on

each gauge configuration using the five loop improved (5Li) gauge field operator

introduced in [31]. Qtop is measured after the gauge fields are smoothed by applying

60 APE smearing steps [63] with smearing coefficient ǫ = 0.45, so that Qtop gives

near-integer values. We see that U(1)A is not broken “on average” but rather only

on specific configurations. These tend to be the configurations with Qtop 6= 0.

However, as discussed in Appendix D, the use of the 5Li method and cooled gauge

fields to compute Qtop is contaminated by significant lattice artifacts, particularly
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FIG. 10. (Left) The sum of the spatial π and the δ correlators. The temperature increases

from T = 139 MeV to 195 MeV as one moves downward along the y-axis. (Right) The

difference Cπ(z) − Cδ(z). The temperatures are identified by the same symbols as in the

sum. The monotonic decreasing behavior seen with increasing temperature in the left panel

is not seen for the highest temperatures in the right panel where the T = 195 MeV data

lies slightly above that for T = 186. However, this apparent diminished rate of decrease

with increasing temperature may be an artifact of insufficient statistics since the statistical

errors on this signal, which, as discussed in Sec. VIC, arises from infrequent spikes in the

data, may be underestimated.

at stronger coupling. This is reflected by the less than perfect correlation between

Qtop and contributions to χπ − χδ in Fig. 11. On a few configurations with Qtop

apparently non-zero there is no evident contribution to χπ −χδ while on some other

configurations with Qtop = 0, there is a non-zero contribution to χπ − χδ.

Despite the imperfections in Qtop, the correlation between U(1)A-breaking and

gauge field topology can still be qualitatively observed in our data. This connection

is similar to that predicted by the DIGA. However, in that picture U(1)A-breaking

is connected with the total number of instantons and anti-instantons, NI +NI , not

their difference, NI − NI , which is determined by the gauge-field topology. For
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FIG. 11. The time histories for the topological charge (blue lines) and the integrated

correlator χπ−χδ (red lines) for T = 168–195 MeV. These time histories have been labeled

with the quantities that result when those histories are time averaged.

example, we should expect to occasionally see a configuration containing a widely

separated instanton and anti-instanton in which the resulting two near-zero modes

produce a large spike in the time history of χπ − χδ but which does not appear

in the time history of the topology. It is not obvious that there are examples of

such a phenomena in Fig. 11. Of course, our volume may be too small for multiple

instantons/anti-instantons. This is also suggested by the preponderance of three
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topological charges 0, ±1 and reflected in the direct determination of the density

of Dirac near-zero modes presented in the following section. Note, the fluctuations

seen in the time histories of χπ − χδ shown in Fig. 11 arise in part from the method

used to calculate this quantity and have only an indirect physical meaning. At least

a portion of these fluctuations arise from the occasional coincidence between the

space-time location of the fixed point-source used in computing χπ and χδ and the

random location of a localized near-zero mode, rather than from an increased number

of near-zero modes.

D. Dirac eigenvalue density

Since the infra-red structure of QCD underlies the anomalous breaking of U(1)A

symmetry, we expect that much can be learned from explicitly examining the eigen-

value spectrum of the Dirac operator near zero eigenvalue. For earlier studies of the

Dirac eigenvalue spectrum using staggered and overlap fermions see Refs. [26, 64–68].

Knowing the Dirac spectrum, we can directly examine the eigenvalue density ρ(λ),

discussed in Section III, looking for the behavior as λ → 0 necessary to produce a

U(1)A-breaking difference χπ − χδ from Eq. (46). We can compare our calculated

density of eigenvalues ρ(λ) with what is expected in the case of a dilute instanton

gas and look for possible new, U(1)A-breaking behaviors as T approaches Tc from

above. In this subsection we will first present our numerical results and then discuss

possible behaviors for ρ(λ,m) as the light quark mass ml and Dirac eigenvalue λ

approach zero.

57



1. Numerical results for ρ(λ)

In Figs. 12, 13 and 14 we present our results for the ρ(λ), with both ρ and λ

normalized in the µ = 2 GeV, MS scheme, determined from the 100 lowest eigenvalues

calculated at each of six temperatures using the methods explained in Section III. The

number of configurations used in each case varied from 239 to 1140 and is listed in

Tab. VIII. Here we are presenting the lattice analogue of the usual Dirac eigenvalue

λ from which the quark mass has been removed, λ =
√
Λ2 − (mf +mres)2. As

explained in Section III, at finite lattice spacing this assumed mass dependence for

the full Dirac eigenvalues Λ is only approximate and in some cases the argument of

the square root is negative. In those cases the resulting λ is placed on the histogram

at the unphysical position −|λ|, allowing this type of a2 error to be recognized.

At both T = 149 and 159 MeV, the spectrum appears to be approaching a non-

zero intercept as λ approaches zero until λ ∼ 10 MeV, when the eigenvalue density

decreases rapidly toward zero. As is suggested by the behavior of the chiral conden-

sate in Fig. 6 and the disconnected chiral susceptibility in Fig. 7, both the 149 and

159 MeV temperatures lie close to the crossover temperature and well within the

transition region, broadened by the effects of finite size and finite quark mass. Thus,

it appears difficult to determine the character of either SU(2)L × SU(2)R or U(1)A

symmetry restoration at these temperatures without examining larger volumes and

smaller quark masses.

For the temperatures T = 168 and 177 MeV the small λ behavior has qualitatively

changed. The pronounced shoulder near λ = 10 MeV has disappeared and instead

the spectral density is approaching zero in a more linear fashion. Looking carefully

at the region λ ≈ 0 for T = 168 MeV, one sees what appears to be essentially linear

behavior as λ→ 0. At T = 177 MeV similar behavior can be seen, although because

of our limited statistics, ρ(λ) could vanish with a higher-than- linear power. For
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T = 186 MeV the behavior has changed again, with very few eigenvalues found below

20 MeV. At T = 195 MeV, where larger statistics better populate this interesting

region, ρ(λ) decreases to a minimum near 20 MeV and then increases to a peak near

λ = 0.

This behavior at T = 195 MeV is consistent with that expected from the DIGA.

However, integrating over this small peak for λ ≤ 20 MeV and including those

eigenvalues plotted to the left of zero, we find an average number of near-zero modes

of 0.06/MeV. With such a low density of near zero modes, we expect that the spectral

broadening arising from the simultaneous presence of instantons and anti-instantons

will be unimportant. Thus, it appears likely that the spread of eigenvalues about

zero seen for T = 195 MeV is the result of finite lattice spacing. This conclusion

is consistent with the approximately equal number of eigenvalues Λ slightly above

ml + mres (giving λ > 0) and the number slightly below (giving λ imaginary and

plotted as −|λ| to the left of zero. If this is correct, then we should expect that

at T = 195 MeV and for a volume of spatial size L ≈ 2 fm, ρ(λ) will accurately

approach a delta function, δ(λ) as a→ 0.

In summary, our study of the Dirac eigenvalue spectrum has provided limited but

interesting results. For our≈ 10 MeV quark mass and 2 fm spatial box, the transition

region appears sufficiently broad that the spectral density found at T = 149 and 159

MeV is strongly influenced by finite volume effects. At T = 168 and 177 MeV

interesting, possibly non-perturbative behavior is seen in the low-lying eigenvalue

spectrum, ρ(λ) ∼ λα with α ∼ 1−2, very different from the behavior of the free Dirac

spectrum at finite temperature. Determining whether this behavior can support the

breaking of U(1)A symmetry will require exploration with larger volumes and smaller

masses.

Finally, a cluster of near-zero modes can be identified at the highest T = 186 and

195 MeV temperatures; see the insets in Fig. 14. Counting the number of near-zero
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modes in each of these clusters gives a density of zero modes of 0.0022(6)/fm4 and

0.0059(8)/fm4 for T = 186 and 195 MeV respectively. If these near zero modes can

be described by a mass-dependent density of the DIGA form, ρ(λ) = c0m
2δ(λ), then

the densities found for T = 186 and 195 MeV can be used to determine values for

c0. Using Eq. 46, one can then calculate the resulting contributions to (χπ −χδ)/T
2,

finding 6(2) and 17(2) for T = 186 and 195 MeV, respectively. These numbers

compare reasonably well with the values of 6(2) and 8(4) determined directly from

the integrated hadron correlators shown in Tab. XII.
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FIG. 12. Renormalized Dirac spectrum 149 MeV Ls = 32 (left) and 159 MeV (right).

2. Possible behaviors for ρ(λ,m)

Given the range of behaviors seen above for the function ρ(λ) for T above the

transition region, T ≥ 168 MeV, it may be useful to discuss the consequences of

possible functional forms of ρ(λ,m) for the chiral condensate, the susceptibilities

χπ, χδ, their difference, χπ − χδ, and the disconnected chiral susceptibility χdisc.

In addition to the Banks-Casher relation given in Eq. (45), and Eq. (46) for the

difference χπ − χδ, we can also relate χπ to the eigenvalue density ρ(λ) by inserting
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FIG. 13. Renormalized Dirac spectrum 168 MeV (left) and 177 MeV (right).
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an eigenmode expansion in the expression for χπ and obtain:

χπ =

∫ ∞

0

dλ ρ(λ,m)
2

m2 + λ2
=

〈ψ̄ψ〉
m

. (54)
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Finally the full chiral susceptibility χσ = χcon + χdisc is given by

∂

∂m
〈ψ̄ψ〉 =

∫ ∞

0

dλ ρ(λ,m)
∂

∂m

[
2m

m2 + λ2

]
(55)

+

∫ ∞

0

dλ
∂

∂m
[ρ(λ,m)]

2m

m2 + λ2
,

≡ χcon + χdisc. (56)

We will now use these equations to determine the behavior of ψ̄ψ, χπ, χδ and

χdisc in the limit m → 0 for three different assumed behaviors of ρ(λ,m). The first

is the behavior predicted by the DIGA, ρ(λ,m) = C0m
2δ(λ). Next we consider the

hypothesis that above Tc the density of eigenvalues is an analytic function of the

quark mass and eigenvalue. To linear order, this gives two possible terms for T ≥ Tc

since the constant term ρ(0, 0) must vanish:

ρ(λ,m) = C1λ+ C2m+O(λm) + . . . (57)

Table XIII lists the behavior for each of these four quantities that results from each

Ansatz.

Ansatz 〈ψ̄ψ〉 χπ χδ χπ − χδ χdisc

m2δ(λ) m 1 −1 2 2

λ −2m ln(m) −2 ln(m) −2 ln(m) 2 0

m πm π 0 π π

TABLE XIII. Limiting behavior of various thermodynamic quantities as m → 0 for three

possible forms of ρ(λ,m) for smallm and λ. Note that the results in the right-hand columns

have the correct multiplicative coefficients, given the ansätze for ρ(λ,m) in the leftmost

column.

The ansatz ρ(λ,m) ∝ λ yields a finite χπ − χδ in the chiral limit. However the

mechanism by which it does so is somewhat unusual. The chiral condensate of this
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theory vanishes asm lnm in the chiral limit. The logarithm shows up as a divergence

in the susceptibilities χπ and χδ. However it cancels out in the difference, leading to

a finite χπ − χδ. Lastly, since there is no m dependence in the spectral density, the

disconnected chiral susceptibility vanishes according to Eq. (56) and χπ −χδ 6= χdisc.

As we have already seen in Eq. (39), the failure of this equality would imply the

breaking of SU(2)L × SU(2)R symmetry for T > Tc.

By contrast, the ansatz ρ(λ,m) ∝ m does not give rise to logarithmic divergences.

The chiral condensate vanishes linearly in the quark mass, the susceptibilities χπ and

χπ − χδ both remain finite and furthermore χπ − χδ = χdisc as well. Interestingly

however, the susceptibility χδ vanishes in the chiral limit. The equality χπ−χδ = χdisc

is therefore just the equality χπ = χdisc.

The contrasting possibilities shown in Tab. XIII suggest that future studies of

these susceptibilities in the limit of small quark mass will also reveal which of these

behaviors for ρ(λ,m) is present and the underlying mechanism of U(1)A symmetry

breaking as a function of temperature for T ≥ Tc.

Complications from limited statistics, distortion of the small eigenvalue spectrum

caused by lattice artifacts, and the fact that we have examined only a single light

quark mass limit our ability to test for the behaviors compared in Tab. XIII in the

present calculation. As noted above we do see evidence for the near zero mode

contributions described in the first row of Tab. XIII and rough consistency between

these spectral results and the values of χπ −χδ obtained from the integrated hadron

correlators. It is also tempting to compare the apparent linear behavior of ρ(λ),

seen with the least ambiguity at T=168 MeV, with the expectations from Tab. XIII.

We find the coefficient c1 in Eq. 57 to have the value (362(12) MeV)2 This results

in a contribution 9(1) to (χπ − χδ)/T
2 at T = 168 MeV, compared with 36(14)

obtained from direct integration of the relevant hadronic correlators. (Note that the

value of (362(12) MeV)2 is much too large to be explained as an effect of explicit
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chiral symmetry breaking which should be on the order of c1 ≈ (m +mres)ΛQCD ≈
(10 MeV)(300 MeV), roughly thirty times too small.

VII. CONCLUSION

The finite temperature properties of QCD are immediately accessible to standard,

Euclidean-space calculations in lattice QCD. In fact, lattice QCD has provided valu-

able, ab initio information and insights into QCD thermodynamics since its inception.

However, the need to work in the large-volume, thermodynamic limit makes this a

challenging application for lattice methods. The needed large physical volumes are

achieved by working at relatively large lattice spacing, making QCD thermodynam-

ics calculations especially vulnerable to finite lattice spacing errors and restricting

the range of lattice spacings available to carry out a reliable continuum limit. As

a result, it is important to examine the thermodynamic properties of QCD using a

variety of lattice actions, as the effects of lattice discretization errors are likely to

vary between different choices of lattice action.

An appealing fermion action to use when studying the QCD chiral phase transi-

tion is the domain wall action which accurately respects the chiral symmetry whose

vacuum breaking and restoration drives this transition. Unfortunately, the large lat-

tice spacings which are needed for thermodynamics studies are a special problem

for the domain wall formulation where the rough gauge fields characteristic of large

lattice spacing induce sizable explicit chiral symmetry breaking unless the size of the

fifth dimension is made very large. As a result, earlier studies of QCD thermody-

namics using domain wall fermions [27, 28] have been compromised by the resulting

large residual chiral symmetry breaking effects. Because the residual chiral symmetry

breaking increases at the larger lattice spacing associated with lower temperatures,

these effects can potentially distort the observed temperature dependence seen in the

64



transition region.

In the calculation reported here, we have succeeded in controlling these effects.

First we have shown results from a brute force approach using a very large fifth-

dimensional extent of Ls = 96. Second, we have employed the carefully tuned DSDR

gauge action where the short distance structure has been chosen to suppress the

gauge field dislocations which induce explicit chiral symmetry breaking. As a result,

we are able to report a systematic study of the transition region on a line of constant

physics with a pion mass of 200 MeV. This has been achieved using the DSDR gauge

action, Ls = 32 or 48 and a small input bare quark mass which varies from positive

to negative as the temperature is decreased below 159 MeV.

Using this chirally symmetric lattice fermion formulation we have been able to

confirm the expected chiral behavior of the QCD phase transition seen using stag-

gered fermions. Specifically, in a lattice formulation with three degenerate light pions

of fixed physical mass possessing the SU(2)L×SU(2)R chiral symmetry found in Na-

ture, we see a crossover behavior going from the low temperature region, T ≤ 159

MeV, with vacuum chiral symmetry breaking to a chirally symmetric phase at higher

temperature, T ≥ 168 MeV in which the large, low-temperature chiral condensate

has dramatically decreased and the spatial Green’s functions and screening lengths

show good chiral symmetry.

We have explored this phenomena microscopically by examining the spectrum of

the fermion Dirac operator, normalized using standard MS conventions. We find

the expected non-zero eigenvalue density for small eigenvalues at low temperature

required by vacuum chiral symmetry breaking and the Banks-Casher relation. As

the temperature increases, this density at small eigenvalue decreases dramatically

until T = 186 and 195 MeV where we find a striking absence of small eigenvalues. In

fact, except for a small density near zero, which may be attributed to semi-classical

instanton effects, one might identify a gap in the spectrum below 20 MeV at these
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two highest temperatures. In the important region closer to Tc, 159 MeV < T < 177

MeV, the behavior of the eigenvalue spectrum remains uncertain. While one might

assign linear behavior, ρ(λ) ∝ λ, at small λ to the T = 168 MeV spectrum shown in

Fig. 13, the picture could also change dramatically with increased volume.

Of particular interest in the current study is the degree to which the anomalous

UA(1) symmetry is found to be broken at high temperature. For temperatures below

the chiral transition, both the anomalous and non-anomalous axial symmetries are

broken by the vacuum, making the effects of the axial anomaly difficult to see.

(Only the relatively heavy η′ meson stands out at low energy as a consequence of the

axial anomaly.) However, above the QCD phase transition, the three non-anomalous

axial symmetries are explicitly realized in a Wigner mode and the effects of the

axial anomaly on the potential UA(1) symmetry can be easily explored. We find

rapidly decreasing U(1)A-breaking susceptibilities and susceptibility differences with

increasing temperature. Our results at the two highest temperatures of 186 and 195

MeV, are consistent with a picture in which U(1)A symmetry is largely realized with

the small remaining asymmetries appearing to arise from relatively rare gauge field

configurations carrying non-trivial topology. The dearth of small Dirac eigenvalues at

high temperatures mentioned above supports this picture of effective UA(1) symmetry

restoration.

It should be emphasized that the calculations reported here have been carried out

on a relative small, 163× 8 physical volume. This aspect ratio of spatial to temporal

size of 2 is much smaller than that in the typical staggered fermion calculation and

introduces important uncertainties in our results. While the disconnected chiral sus-

ceptibility as a function of temperature shown in Fig. 7 shows interesting deviations

from the results in earlier staggered work, we expect that at least part of this differ-

ence is caused by our small lattice volume. Fortunately, while calculations on larger

spatial volumes are difficult when using the five-dimensional DWF formulation, the
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scale of computer resources now becoming available for these calculations will allow

an increase in lattice volume from the present 163 to 323 and 483. Thus, over the

next one to two years, the methods introduced and demonstrated here can be used

to study appropriately large volumes allowing both a careful comparison with earlier

staggered fermion results and important exploration of those symmetry and spectral

properties which are best examined with a chiral fermion formulation.
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Appendix A: Normalization of DWF Dirac spectrum

In this appendix we repeat the arguments of Giusti and Lüscher [30] to demon-

strate that Dirac eigenvalue density ρ(λ) has a scheme-dependent continuum limit
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which transforms under a change of conventions as shown in Eq. (7). Using these

methods we then determine how such a “physical” spectral density, ρ(λ), can be

determined from the eigenvalue distribution found for the DWF Dirac operator.

Following Giusti and Lüscher we consider a single flavor of fermion with field

variables q(x) and q(x) which in a continuum formulation would have the Euclidean

action density q(x)(γνDν + m)q(x). This single fermion flavor is then replicated,

creating k doublet fields qj(x) and qj(x), 1 ≤ j ≤ k. Finally a twisted mass term is

added to the continuum action giving

L(x) =
k∑

j=1

qj(x)
(
γνDν +m+ iµγ5τ 3

)
qj(x), (A1)

where τ 3 is one of the standard Pauli matrices τ i acting on the implicit doublet

degrees of freedom of qj(x).

This generalized action is then used to define the Green’s function

σ3(µ) = −
6∏

n=1

〈
P+
1,2(x1)P

−
2,3(x2)P

+
3,4(x3)P

−
4,5(x4)P

+
5,6(x5)P

−
6,1(x6)

〉
, (A2)

where P±
ll′ = (P 1

ll′ ± P 2
ll′)/2 and the operators P i

ll′ are defined by

P i
ll′ = q l(x)τ iql

′

(x). (A3)

The Green’s function given in Eq. (A2) can be defined for the case of six doublets,

k = 6 and can easily be generalized to define σk/2(µ). The structure of Eq. (A2)

insures that the fermions flow in a single loop constructed from the product of six

fermion propagators which can be evaluated directly in QCD perturbation theory.

The brackets 〈. . .〉 in Eq. (A2) describe the gauge average appropriate to the original

theory. Thus, no fermion determinant should be introduced for any of the k fermion

fields appearing in these Green’s functions.
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By design, the Green’s function defined in Eq. (A2) also can be written as a

path integral over the gauge degrees of freedom of a product of fermion propagators,

evaluated in each gauge background:

σ3(µ) =

〈
tr





1
(
(γ5D)2 + µ2

)3





〉
, (A4)

where γ5D = γ5γνDν + γ5m is the hermitian Euclidean Dirac operator and the

γ5 matrices which appear in the vertex operators P±
ll′ have been combined into the

operators appearing in the propagators resulting in the simple trace of products

shown in Eq. (A4).

Finally the connection between σ3(µ) and the eigenvalue density ρ(λ) can es-

tablished if, for each gauge configuration in the average appearing in Eq. (A4), we

evaluate the trace of products of Dirac propagators in the basis of eigenstates of the

hermitian Dirac operator γ5D:

σ3(µ) =

〈
∑

n

1
(
λ2n + µ2

)3

〉
(A5)

=

∫ ∞

−∞

dλρ(λ)
1

(
λ2 + µ2

)3 , (A6)

where the λn are the eigenvalues of γ5D on each gauge configuration over which the

average is being performed. In the final step we have made the usual replacement

∑

n

f(λn) =

∫ ∞

−∞

dλ

(
∑

n

δ(λ− λn)

)
f(λ) (A7)

for an arbitrary function f(λ) and adopted the usual definition

ρ(λ) =

〈
∑

n

δ(λ− λn)

〉
. (A8)
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The transform given in Eq. (A6) determining σ3(µ) in terms of ρ(λ) can be in-

verted, allowing ρ(λ) to be defined from the Green’s function σ3(µ). Since the oper-

ators P±
ll′ and the related twisted mass term qγ5τ 3q can be given a meaning in the

continuum limit, σ3(µ) and hence ρ(λ) can be defined in the continuum limit as well.

If we work with a second regularization scheme, the corresponding mass operators

P ′
ll′

i will have long distance matrix elements related to those of the first scheme by

P ′i
ll′ =

1

Zm→m′

P i
ll′. (A9)

We can exploit this equation to relate the corresponding Green’s functions σ′
3(µ) and

σ3(µ):

σ′
3(µ

′) =
1

(Zm→m′)6
σ3(µ

′/Zm→m′) (A10)

which in turn implies that ρ′(λ′) and ρ(λ) are related by Eq. (7).

We can now easily generalize this approach to the case of domain wall fermions.

We need only identify three operators which are the DWF analogue of the P i
ll′ defined

above. Since the product of the usual DWF Dirac operator DDWF with γ5 and the

reflection operator R5 defined in Sec. III is hermitian, we define:

PDWF,i
ll′ (x) =

Ls−1∑

s=0

Ψl(x, s)γ
5τ iΨl′(x, Ls − 1− s). (A11)

where, as above, we have introduced k doublet five-dimensional fields Ψl(x), 1 ≤ l ≤
k in precise analogy with the generic treatment of Giusti and Lüscher above. As above

we can use PDWF,i
ll′ (x) to define a corresponding Green’s function σDWF

3 (µ) which, as

above, is directly related to the spectrum of DWF Dirac eigenvalues which we can

obtain by numerically diagonalizing DDWFγ5R5. Again, as above, we can relate this

spectrum to the Dirac spectrum found in a different lattice regularization or in a

continuum scheme if we determine the needed normalization factor Ztw connecting

the operators PDWF,i
ll′ (x) and those for the second scheme.
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Appendix B: Renormalization of staggered chiral susceptibilities

In order to compare the chiral susceptibility between the DWF and staggered

actions, we must also calculate the renormalization factors for the HISQ and Asqtad

actions used in [59]. The ensembles used in that work lie on slightly different lines

of constant physics, given by mπr0 = 0.381 and mπr0 = 0.425 for the HISQ and

Asqtad actions, respectively. This corresponds to mπ = 161 MeV and mπ = 179

MeV if one converts to physical units using r0 = 0.468 fm, the value for the Sommer

parameter determined from staggered calculations. Using the MS massesml = 3.2(2)

MeV and ms = 88(5) MeV at µ = 2 GeV determined in [69], we can calculate the

renormalization factors necessary to convert to MS scheme:

Zm =
91.2MeV

2m̃

( mπ

495MeV

)2
. (B1)

The renormalized, one-flavor susceptibility is then given by:

χrenorm
1f /T 2 =

1

4

(
1

Zmf→MS(µ
2)

)2

χbare
2f /T 2, (B2)

where χbare
2f is the bare two-flavor susceptibility tabulated in [59], and the factor of

1/4 in Eqn. (B2) converts to the one-flavor normalization used in this work.

Appendix C: RHMC ensemble generation algorithms

Here we give a brief description of the specific evolution algorithms used to gener-

ate the DSDR gauge field ensembles used in this paper. Recall that these ensembles

are generated using the Iwasaki gauge action, the DSDR action formed from the ra-

tio of twisted-mass Wilson determinants given in Eq. (3) and the ratio of the DWF

determinants for two flavors of light quarks with mass ml and one strange quark

flavor with mass ms divided by three corresponding DWF Paul-Villars deteminants
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with mass mf = 1. These DWF determinants are constructed from the following

ingredients.

A quotient fermion action is derived from the following fermion determinant

det

(
M †(m)M(m)

M †(1)M(1)

)
=

∫
Dφ†Dφ exp

(
−φ†M(1)

1

M †(m)M(m)
M †(1)φ

)
, (C1)

where M is the five-dimensional DWF Dirac operator. The Hasenbusch factoriza-

tion [70] rewrites the above quotient action as a product of quotient actions by

introducing k intermediate masses

det

(
M †(m)M(m)

M †(1)M(1)

)
=

k+1∏

i=1

det

(
M †(mi−1)M(mi−1)

M †(mi)M(mi)

)
(C2)

=

k+1∏

i=1

∫
Dφ†

iDφi exp

(
−φ†

iM(mi)
1

M †(mi−1)M(mi−1)
M †(mi)φi

)
, (C3)

where m = m0 < m1 < · · · < mk+1 = 1.

In the following the symbol SQ(m1, m2) is used to represent the quotient fermion

action

SQ(m1, m2) = φ†M(m2)
1

M †(m1)M(m1)
M †(m2)φ, (C4)

where Q means “quotient”. Note that each quotient action has a different pseud-

ofermion field φ. This fact is not represented in Eq. (C4).

The quotient action discussed above accounts for two degenerate sea quarks. This

is used to simulate the two light quarks in the hybrid Monte Carlo algorithm. For

simulating the strange quark, the rational approximation needs to be used:

det

(
M †(m)M(m)

M †(1)M(1)

)1/2

(C5)

=

∫
Dφ†Dφ exp

(
−φ†

(
M †(1)M(1)

)1/4 1

(M †(m)M(m))1/2
(
M †(1)M(1)

)1/4
φ

)
,

where rational approximations to x1/4 and x−1/2 are used to evaluate the non-integer

powers of these matrices. In the following, the symbol SR(m1, m2) is used to represent
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this rational action

SR(m1, m2) = φ†
(
M †(m2)M(m2)

)1/4 1

(M †(m1)M(m1))
1/2

(
M †(m2)M(m2)

)1/4
φ,

(C6)

where fractional powers such as x1/4 and x−1/2 are understood to be shorthand

notations for their corresponding rational approximations. The “R” in SR means

“rational”.

The final Hamiltonian used in the RHMC evolution contains the following parts:

H = T (p) + SG + SDSDR + SR(ms, 1) + SQ(ml, 1), (C7)

Here SG and SDSDR represent the gauge action and the DSDR action, while T (p) is

the kinetic term. We split SQ(ml, 1) into a few quotient actions using the Hasenbusch

factorization as in Eqs. (C2) and (C3). A single quotient action can also be replaced

by two rational actions given in Eq. (C5) using the “Nroots” acceleration method.

When evolving the above action, we use multiple levels of nested integrators to

separate different parts of the action. At each level we use an Omelyan QPQPQ or

force gradient QPQPQ integrator. A general multi-level Sexton-Weingarten integra-

tion scheme can be written as follows

H = T ′
0 =T

′
1 + S1 (C8)

T ′
i =T

′
i+1 + Si+1 i = 1, 2, · · · , N − 1, (C9)

where T ′
i , i = 0, 1, N − 1 is the Hamiltonian to be integrated at level i. The ith-level

Hamiltonian T ′
i is further split into T ′

i+1 and Si, which are the Q and P parts used

by the Omelyan or force gradient integrator. The Hamiltonian T ′
N at the last level is

the kinetic term T (p). The above equations separate the entire action into N levels.

The details of the RHMC algorithms used in this paper are listed in the following

two tables. The column labeled level(i) in these tables contains the integer ni which
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specifies the number of T ′ steps in the Sexton-Weingarten integration scheme for

each level while Si specifies the part of the action in Eq. (C7) included in each level.

level(i) Si integrator type ni

1 SQ(ml, 0.01) + SQ(0.01,ms) Omelyan QPQPQ 1

2 SR(ms, 1) + SR(ms, 1) + SR(ms, 1) Omelyan QPQPQ 4

3 SDSDR Omelyan QPQPQ 6

4 SG Omelyan QPQPQ 1

TABLE XIV. Scheme 1 with a total of N = 4 levels of nested integrators. The quotient

action SQ(ml, 1) is split into SQ(ml, 0.01) + SQ(0.01,ms) + SR(ms, 1) + SR(ms, 1). Note

that two copies of the rational action SR(ms, 1) are used to replace a single quotient

action SQ(ms, 1). Ensembles 4 (159MeV), 5 (168MeV), 6 (177MeV) and 7 (186MeV) were

generated using this scheme, using top level step size 1/4. The light and strange quark

masses ml and ms can be found in Tab. II.

Appendix D: Comparison of χtop and χ5,disc

In this appendix we investigate the large discrepancy between the topological

susceptibility χtop and the pseudo-scalar susceptibility m2
l,totχ5,disc shown in Fig. 9

and described in Sec. VIA. The relation between χtop and m
2
l,totχ5,disc given in Eq. 43

is often viewed as providing a good definition of χtop since the fermionic quantity has

a better understood continuum limit [30, 72–74]. However, we compute χtop using a

widely used method which usually gives consistent results so the discrepancy found

here caused us to look carefully at our code and to seek further tests of our results

for both χtop and χ5,disc.

For both quantities our computational procedures appear to be robust. We in-
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level(i) Si integrator type ni

1
∑6

i=1 SQ(mi−1,mi) + SR(ms, 1) Omelyan/FG QPQPQ 4

2 SDSDR Omelyan/FG QPQPQ 1

3 SG Omelyan/FG QPQPQ 1

TABLE XV. Scheme 2 with a total of N = 3 levels of nested integrators. Ensemble 1

(139MeV), 2 & 3 (149MeV) and 8 (195MeV) were generated using this scheme. Ensemble

1 2 and 3 used the force gradient QPQPQ integrator [71] with top level step size 1/7, while

8 used the Omelyan QPQPQ integrator with top level step size 1/8. Here mi, i = 0, 1, · · · 6,

represent different Hasenbusch masses, with m0 = ml, m1 = 0.01, m2 = 0.06, m3 = 0.18,

m4 = 0.37, m5 = 0.67 and m6 = 1. The masses ml and ms can be found in Tab. II.

creased the number of random sources used to determine χ5,disc from ten to 100

and saw only the expected decease in statistical errors. Independent code gave con-

sistent results. We increased the number of smearing steps performed before the

determination of χtop from 60 to 150 and saw no systematic change in the result.

We cannot make a meaningful comparison of the relationship given in Eq. 42 on

individual configurations because at least the right side of this relation takes on its

continuum meaning only after a gauge average is performed. Because both sides are

parity odd, a gauge average will give a non-zero result only if the equation is squared,

leading us back to the relation we are trying to test. However, more information can

be obtained by examining other products of similar parity-odd operators. Specifically
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we examine χtop and the four additional quantities:

Xl = m2
l,totχ

5
l,disc (D1)

Xs =
1

V
m2

s,tot

〈(∫
d4xψs(x)γ

5ψs(x)
)(∫

d4yψs(y)γ
5ψs(y)

)〉
(D2)

Xl,s =
1

V
ml,totms,tot

〈(∫
d4xψl(x)γ

5ψl(x)
)(∫

d4yψs(y)γ
5ψs(y)

)〉
(D3)

Xl,top =
1

V
ml,tot

〈(∫
d4xψl(x)γ

5ψl(x)
)(
Qtop

)〉
, (D4)

all five of which should agree. The results are shown in Tab. XVI.

While the errors on the strange quark susceptibilities Xs are too large to allow a

meaningful test, the light quark susceptibilities Xl and the light-strange product Xl,s

agree within their 10% to 20% errors. This reaffirms the consistency of the results

computed directly from the fermion fields and supports the view that the fermionic

quantities, which are the basis of most of the results in this paper, are behaving as

expected. Note, this includes the interpretation of the total bare quark mass as the

sum of the input plus the residual massmf+mres since the ratio ofmres tomf various

substantially among the rows in Tab. XVI. However, those susceptibilities are much

smaller than χtop at temperatures near or below the transition region (see also Fig. 9).

This discrepancy is not visible at higher temperatures or for the zero-temperature

ensembles.

The right-most column in Tab. XVI offers some insight into this discrepancy.

Comparing the Xl and Xl,top columns shows agreement between the pure fermionic

susceptiblity Xl and the cross, fermion-topological susceptibility Xl,top within their

10% to 20% errors for all the ensembles. This suggests the presence of unphysical

fluctuations in the gauge field observable Qtop at lower temperatures. These unphys-

ical fluctuations are uncorrelated with the fermionic degrees of freedom and hence

do not pollute the cross correlator Xl,top. However, they do add to the fluctuations
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# T (MeV) Xl Xs Xl,s χtop Xl,top

1 139 36(3) 51(20) 42(5) 107(5) 37(3)

2 149 27(3) 35(20) 29(4) 54(2) 26(2)

3 149 31(2) 44(19) 33(4) 57(2) 30(2)

4 159 16(2) 6(12) 15(3) 27(2) 15(2)

5 168 9(2) −11(12) 6(2) 15(2) 9(2)

6 177 5(1) −1(8) 4(2) 7.6(9) 4.8(8)

7 186 1.7(7) −3(6) 1(1) 4(1) 2.0(8)

8 195 1.4(5) 4(7) 1.3(9) 2.2(5) 1.5(5)

10 − 50(9) 67(22) 55(12) 49(7) 44(8)

11 − 54(8) 33(56) 43(16) 62(6) 47(6)

15 − 20(3) 2(20) 16(53) 23(4) 21(4)

TABLE XVI. Results for five different susceptibilities computed on both finite and zero

temperature ensembles. All the values are given in lattice units with a factor of 10−6

removed.

77



in Qtop, leading to an unphysical increase in χtop. At T = 140 MeV these unphysical

fluctuations appear to have the same size as those which are physical.
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