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Abstract

We consider hadronic transitions from the hb(2P ) bottomonium resonance to lower

states of bottomonium with emission of either ω meson, or two pions, or η meson. For

the former two transitions the branching ratios are related to similar transitions from

χb1(2P ) and the recently measured by Belle fractions of the radiative decays of hb(2P ).

We argue that the fraction of the hb(2P ) total decay rate remaining for the annihilation

rate is on the verge of contradiction with the ‘parton’ picture of bottomonium anni-

hilation resulting in similarity between the decays of hb(1, 2P ) and χb1(1, 2P ). The

contradiction gets even stronger, if the transition hb(2P ) → Υ(1S) η has branching

fraction of a few percent or more. We argue that, although quite uncertain, the latter

fraction may indeed be that significant.



The spin-singlet P wave 1P1 states of bottomonium hb(1P ) and hb(2P ) provide ample

opportunities to study the QCD dynamics of heavy quarkonium. These resonances were

observed by Belle [1] in two-pion transitions from Υ(5S) and also an evidence of the transition

Υ(3S) → hb(1P ) π0 was presented by BaBar [2]. The theoretical expectations for the masses

and decay properties of these resonances were previously considered in the literature, and the

most detailed compilation and discussion can be found in Ref. [3]. The theoretical treatment

of the 1P1 states is facilitated by their relation, within the nonrelativistic description of

bottomonium, to the spin-triplet χbJ(1P ) and χbJ (2P ) states. The expected masses of the

hb resonances are determined by the ‘center of gravity’ of the corresponding triplet states

(and are in a remarkable agreement with the measured values), while the decay properties of

the hb(1P ) and hb(2P ) particles are most naturally related to those of the corresponding 3P1

bottomonium states χb1(1P ) and χb1(2P ). Indeed, these latter JPC = 1++ resonances are the

closest in mass to their spin-singlet counterparts, so that the kinematical differences in some

decays are minimal, and also they share the property of having relatively small annihilation

rates, since in the inclusive ‘parton’ picture of the annihilation both types of states annihilate

in the order α3
s: χb1 → qq̄g and hb → 3g, with g standing for gluon and q for a light

quark. The straightforward theoretical picture with a similarity between the decay properties

of the 1P1 and 3P1 has been recently put to test by the Belle data [4] on the dominant

radiative transitions from the hb resonances. The reported branching fraction for such decay

of the hb(1P ) resonance, B[hb(1P ) → ηb(1S) γ] = (49.2 ± 5.7+5.6
−3.3)% arguably compares

reasonably well (accounting also for a difference in the photon energy) with the known

similar fraction for the χb1(1P ) [5]: B[χb1(1P ) → Υ(1S) γ] = (33.9 ± 2.2)%. However, the

central values of the data [4] for the transitions form hb(2P ): B[hb(2P ) → ηb(1S) γ] = (22.3±

3.8+3.1
−3.3)% and B[hb(2P ) → ηb(2S) γ] = (47.5 ± 10.5+6.8

−7.7)% are significantly higher than for

the spin-triplet ‘analog’ χb1(2P ) [5]: B[χb1(2P ) → Υ(1S) γ] = (9.2±0.8)% and B[χb1(2P ) →

Υ(2S) γ] = (19.9 ± 1.9)%. Indeed, the reported central values of the radiative decay rates

for hb(2P ) indicate that the annihilation decay rate Γann[hb(2P )] of the hb(2P ) may be

significantly suppressed in comparison with the rate expected from the similarity relation

Γann[hb(2P )]/Γann[hb(1P )] = Γann[χb1(2P )]/Γann[χb1(1P )]. In this paper we quantify the

possible contradiction with the similarity and argue that it gets even stronger, if the hadronic

transitions from hb(2P ) to lower bottomonium states are taken into account. Namely, the

hb(2P ) resonance has the decay mode hb(2P ) → ηΥ(1S), which is kinematically forbidden

for the hb(1P ) and has no heavy-quark-spin analog for the χb1(2P ) state. We argue that
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the branching fraction for this decay, although uncertain, can be significant (up to O(10%)),

which would further reduce the fractional probability remaining for the annihilation decays

of hb(2P ).

The absolute rates of the transitions between the P - and S-wave states of the spin-singlet

bottomonium are related to those for the spin-triplet states by heavy quark spin symmetry

within the nonrelativistic description of the bb̄ system. The rates of the radiative electric-

dipole transitions are related as

Γ[hb(kP ) → ηb(nS) γ] =
ω3
kn1

ω3
kn3

Γ[χb1(kP ) → Υ(nS) γ] , (1)

where ωkn1 (ωkn3) is the photon energy in the transition between the spin-singlet (spin-triplet)

states. 1 Using Eq.(1) one readily estimates

Γ[hb(1P ) → ηb(1S) γ] ≈ 1.5 Γ[χb1(1P ) → Υ(1S) γ];

Γ[hb(2P ) → ηb(1S) γ] ≈ 1.25 Γ[χb1(2P ) → Υ(1S) γ];

Γ[hb(2P ) → ηb(2S) γ] ≈ 1.44 Γ[χb1(2P ) → Υ(2S) γ] . (2)

Unlike the 1P states, the heavier 2P ones also undergo hadronic transitions to lower

levels of bottomonium. Two types of such transitions, with emission of either ω resonance

or two pions, are common for χb1(2P ) and hb(2P ) and their absolute rates can be related:

Γ[hb(2P ) → ηb(1S)ω] =
pω1
pω3

Γ[χb1(2P ) → Υ(1S)ω] ≈ 2.6 Γ[χb1(2P ) → Υ(1S)ω] , (3)

where pω1 (pω3) is the ω momentum in the transition between the spin-single (spin-triplet)

states, and

Γ[hb(2P ) → hb(1P ) ππ] ≈ Γ[χb1(2P ) → χb1(1P ) ππ] . (4)

Indeed, both types of transitions are induced by the chromo-electric dipole interaction of the

heavy quark pair with soft gluon field. The former transition arises in the third order in this

interaction [6], while the two-pion emission arises in the second order [7]. In either process

the heavy quark spin decouples, and the relation (3) takes into account the difference in

the phase space of the S-wave processes, which difference is quite essential, since the decay

1In a strict sense, the account for the difference in the factor ω3 is beyond the accuracy of the lowest order

in the breaking of the heavy quark spin symmetry. However we follow the tradition of including this factor,

since this factor is dictated by the QED gauge invariance, and since the effect of the spin-dependence is

somewhat enhanced in this factor. Our conclusions would not change qualitatively, if this factor is omitted.
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χb1(2P ) → Υ(1S)ω is close to the threshold. In Eq.(4) any kinematical difference can be

neglected since the energy released in the two related decays is essentially the same within

the (small) experimental uncertainty. It can be also noted that, although the motivation for

the relations (3) and (4) starts in terms of the multipole expansion, one can expect these

relations to hold also for the higher states (such as the 2P resonances) where in a strict sense

the reliability of this expansion can be questioned due to a larger size of the bottomonium

states. Indeed, the discussed ω and ππ transitions can go without the interaction of the

heavy quark spin, as is illustrated by the corresponding terms in the multipole expansion.

In the limit, where the heavy quark spin decouples, the relations (3) and (4) result from the

heavy quark spin symmetry.

Using the relations (2), (3) and (4) one can readily find the estimates for the branching

fractions for the yet unobserved hadronic transitions in terms of the experimentally measured

quantities:

B[hb(2P ) → ηb(1S)ω] =

Γ[hb(2P ) → ηb(1S)ω]

Γ[χb1(2P ) → Υ(1S)ω]

Γ[χb1(2P ) → Υ(2S) γ]

Γ[hb(2P ) → ηb(2S) γ]

B[χb1(2P ) → Υ(1S)ω]

B[χb1(2P ) → Υ(2S) γ]
×

B[hb(2P ) → ηb(2S) γ] ≈ (7± 2)% , (5)

where the uncertainty is in fact dominated by the experimental errors in B[χb1(2P ) →

Υ(1S)ω], and

B[hb(2P ) → hb(1P ) ππ] =

Γ[hb(2P ) → hb(1P ) ππ]

Γ[χb1(2P ) → χb1(1P ) ππ]

Γ[χb1(2P ) → Υ(2S) γ]

Γ[hb(2P ) → ηb(2S) γ]

B[χb1(2P ) → χb1(1P ) ππ]

B[χb1(2P ) → Υ(2S) γ]
×

B[hb(2P ) → ηb(2S) γ] ≈ (1.5± 0.3)% , (6)

With these estimates one can evaluate the balance of the total widths of the discussed

bottomonium states and test whether the remaining fraction of the decays of the hb(2P )

resonance can be made compatible with the expected similarity between the annihilation

decay rates of the P -wave states. In doing so one can notice that for the lower P -wave

levels the annihilation decay and the discussed radiative transitions χb1(1P ) → Υ(1S) γ and

hb(1P ) → ηb(1S) γ exhaust the total probability of decay, modulo extremely minor decay

modes like e.g. χb1(1P ) → χb0 γ, or hb(1P ) → Υ(1S) π0, which can be safely neglected. For

the χb1(2P ) state the discussed hadronic transitions to lower bottomonium with emission

of ω or two pions also contribute to the total decay rate. However, their total contribution
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is at the level of about two percent and can be readily taken into account (or neglected

altogether). The counting is apparently somewhat different for the hb(2P ) state. Indeed, as

estimated in Eqs. (5) and (6) the ω and two-pion transitions can contribute together about

8.5% of the total decay rate, which is not negligible compared to the fraction remaining after

accounting for the radiative decays. Furthermore we will argue that a potentially significant

additional contribution can arise from the transition hb(2P ) → Υ(1S) η, further reducing

the estimated annihilation rate for the hb(2P ) resonance. We thus use here the following

numbers for the annihilation branching fraction Bann in the evaluation of the balance of

decay rates of the discussed P -wave states:

Bann[χb1(1P )] = 1− B[χb1(1P ) → Υ(1S) γ] = (66.1 ± 2.2)% ;

Bann[χb1(2P )] = 1− B[χb1(2P ) → Υ(1S) γ]− B[χb1(2P ) → Υ(2S) γ]

−B[χb1(2P ) → Υ(1S)ω]− B[χb1(2P ) → χb1(1P ) ππ] = (68.4± 2.1)% ;

Bann[hb(1P )] = 1− B[hb(1P ) → ηb(1S) γ] = (50.8± 8)% ;

Bann[hb(2P )] + B[hb(2P ) → Υ(1S) η] = 1− B[hb(2P ) → ηb(1S) γ]− B[hb(2P ) → ηb(2S) γ]

−B[hb(2P ) → ηb(1S)ω]− B[hb(2P ) → hb(1P ) ππ] ≈ (22± 15)% . (7)

Using these numbers and the relations (2) between the radiative decay rates one can

estimate the following ‘ratio of the ratios’ of the absolute decay rates:

r =
{Γann[hb(2P )] + Γ[hb(2P ) → Υ(1S) η]} /Γann[hb(1P )]

Γann[χb1(2P )]/Γann[χb1(1P )]
. (8)

The value of r corresponding to the current data can be estimated by rewriting it as

r =
{Bann[hb(2P )] + B[hb(2P ) → Υ(1S) η]} /B[hb(2P ) → ηb(2S) γ]

Bann[hb(1P )]/B[hb(1P ) → ηb(1S) γ]
×

Bann[χb1(1P )]/B[χb1(1P ) → Υ(1S) γ]

Bann[χb1(2P )]/B[χb1(2P ) → Υ(2S) γ]
×

Γ[hb(2P ) → ηb(2S) γ]

Γ[χb1(2P ) → Υ(2S) γ]

Γ[χb1(1P ) → Υ(1S) γ]

Γ[hb(1P ) → ηb(1S) γ]
≈ 0.25± 0.25 . (9)

The indicated error includes only the uncertainty in the experimental data. As discussed,

the possible corrections to the theoretical input, based on the relations (1), (3) and (4), are

likely smaller than the current experimental errors.

On the other hand, it can be expected on quite general grounds that the quantity r

should be equal to one if the rate of the decay hb(2P ) → Υ(1S) η is negligible, and should
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be greater than one otherwise. Indeed, in the picture of bottomonium annihilation at short

distances the similarity relation Γann[hb(2P )]/Γann[hb(1P )] = Γann[χb1(2P )]/Γann[χb1(1P )]

should hold up to corrections due to non-factorization of the spin and coordinate degrees of

freedom, which corrections are at least as small as v2/c2 in the nonrelativistic expansion and

should not exceed a few percent in bottomonium. The similarity relation is certainly exact

in the standard calculation of the annihilation rates (a discussion of the standard calculation

and further references can be found in Ref. [3]).

Clearly the estimate of r in Eq.(9) shows that the current data on the radiative decays

of hb(1P ) and (especially of) hb(2P ) are on the verge of a dramatic contradiction with the

similarity of annihilation processes of the P -wave states of bottomonium. The disagreement

may become even worse if the contribution of the decay hb(2P ) → Υ(1S) η in the last line

in Eq.(7) is not small.

Within the multipole expansion in QCD [7, 8] the transition hb(2P ) → Υ(1S) η arises as

a combined effect of the chromoelectric dipole (E1) and the chromomagnetic dipole (M1)

interaction described by the following terms in the effective Hamiltonian

HE1 = −
1

2
ξa ~r · ~Ea , HM1 = −

1

2mb

ξa (~∆ · ~Ba) , (10)

where ξa = ta1− ta2 is the difference of the color generators acting on the quark and antiquark

(e.g. ta1 = λa/2 with λa being the Gell-Mann matrices), ~r is the vector for relative position of

the quark and the antiquark, ~∆ = (~σb − ~σb̄)/2 is the difference of the spin operators for the

the quark and antiquark. Finally, ~Ea and ~Ba are the chromoelectric and chromomagnetic

components of the gluon field strength tensor. The assumed here normalization convention

is that the QCD coupling g is absorbed into the definition of the gluon field strength.

The presence of the heavy quark mass in the denominator inHM1 reflects the fact that the

spin-dependent chromomagnetic interaction is suppressed by the heavy quark spin symmetry.

In the considered process of emission of the η meson this suppression however is somewhat

compensated [9, 10] by the enhancement due to the axial anomaly relation [11, 12]:

ǫµνλσ 〈η|Ga
µνG

a
λσ|0〉 = 16π2

√

2

3
fη m

2

η , (11)

where fη is the η ‘decay constant’, equal to the pion decay constant fπ ≈ 130MeV in the

limit of exact flavor SU(3) symmetry, and Fη is likely to be larger due to effects of the SU(3)

violation.
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The calculation of the transition rate is fully analogous to that for the Υ(3S) → hb(1P ) π0

decay in Ref. [10] (also in the review [13]), and the resulting expression can be written as

Γ[hb(2P ) → Υ(1S) η] =

(

π2

27
fη m

2

η

)2

|I(2P → 1S)|2
pπ
3π

, (12)

where pη is the momentum of the η meson and I(2P → 1S) is the heavy quarkonium matrix

element:

I(2P → 1S) =
1

mb

〈1S|GS r + r GP |2P 〉 (13)

containing the partial-wave Green function of the heavy quark pair GS and GP in the color

octet state.

Currently the matrix element (13) cannot be evaluated with any reliability, and one has

to resort to indirect arguments. In particular, the rate of the discussed transition can be

compared to that of a similar decay Υ(3S) → hb(1P ) π0. The latter decay involves isospin

violation, which in terms of the chiral anomaly is expressed through the difference of the

masses of the u and d quarks. The relation between the rates of these two processes takes

the form

Γ[hb(2P ) → Υ(1S) η]

Γ[Υ(3S) → hb(1P ) π0]
=

1

3

(

mu +md

mu −md

fη m
2
η

fπ m2
π

)2
pη
pπ

∣

∣

∣

∣

∣

I(2P → 1S)

I(3S → 1P )

∣

∣

∣

∣

∣

2

≈

1.3× 103 ×

∣

∣

∣

∣

∣

I(2P → 1S)

I(3S → 1P )

∣

∣

∣

∣

∣

2

, (14)

where the numerical value corresponds to (md −mu)/(md +mu) = 0.3 and fη = fπ.

If the BaBar evidence [2] for the decay Υ(3S) → hb(1P ) π0 is taken at face value, their

signal corresponds to the absolute rate of this transition in the ballpark of 20 eV. Thus if the

matrix elements in Eq.(14) for the 2P → 1S and 3S → 1P transitions were the same, the

absolute rate of the decay hb(2P ) → Υ(1S) η would be about 25 keV and would thus exceed

the estimate [3] (∼ 15 keV) for the rate of the radiative transition hb(2P ) → ηb(2S) γ. One

can possibly argue, however, that the spatial size of the initial and the final bottomonium

states in the transition 2P → 1S is smaller than in 3S → 1P , so that the amplitude

I(2P → 1S) should be somewhat suppressed as compared to I(3S → 1P ) (although this

argument does not take into account the possible effect of an extra oscillation in the 3S wave

function). Allowing a factor of ∼ 1/2÷ 1/3 for this suppression one can very approximately

estimate the rate Γ[hb(2P ) → Υ(1S) η] to be about one quarter of Γ[hb(2P ) → ηb(2S) γ]

within a factor of two or so, corresponding to B[hb(2P ) → Υ(1S) η] ∼ O(10%).
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It is quite clear that the presented arguments involve a great uncertainty, and for this

reason it would be very interesting if the transition hb(2P ) → Υ(1S) η could be found in

the existing Belle data at the Υ(5S) energy, or an upper limit on the branching fraction

for this process could be established. As is argued in this paper, the current data result

in the estimate in Eq.(9) which is in a really poor agreement with the ‘parton’ picture of

annihilation of the P -wave bottomonium, even if the contribution of this decay is negligible.

An observation of the transition hb(2P ) → Υ(1S) η at a noticeable level would make the

situation with the (non)similarity of the annihilation of the spin-singlet and spin-triplet

J = 1 bottomonium states quite dramatic and present an interesting riddle for theoretical

interpretation.
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