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Abstract
We discuss the minimal supersymmetric U(1)B−L × U(1)R extension of the standard model.

Gauge couplings unify as in the MSSM, even if the scale of U(1)B−L × U(1)R breaking is as

low as order TeV and the model can be embedded into an SO(10) grand unified theory. The

phenomenology of the model differs in some important aspects from the MSSM, leading potentially

to rich phenomenology at the LHC. It predicts more light Higgs states and the mostly left CP-even

Higgs has a mass reaching easily 125 GeV, with no constraints on the SUSY spectrum. Right

sneutrinos can be the lightest supersymmetric particle, changing all dark matter constraints on

SUSY parameter space. The model has seven neutralinos and squark/gluino decay chains involve

more complicated cascades than in the MSSM. We also discuss briefly low-energy and accelerator

constraints on the model, where the most important limits come from recent Z ′ searches at the

LHC and upper limits on lepton flavour violation.
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I. INTRODUCTION

Within the minimal supersymmetric extension of the standard model (MSSM) the gauge

couplings unify nearly perfectly around an energy scale of approximately mG ≃ 2×1016 GeV,

if SUSY particles exist with masses of the order of O(1) TeV. Extending the MSSM with

non-singlet superfields tends to destroy this attractive feature, unless (a) the additional fields

come in complete SU(5) multiplets or (b) the standard model gauge group is extended too.

Here we study a model in which the SM group is enlarged to SU(3)c×SU(2)L×U(1)B−L ×
U(1)R. It is a variant of the models first proposed in [1] and later discussed in more detail

in [2].

Our main motivation for studying this model can be summarized as: (i) It unifies, in the

same way the MSSM does, even if the scale of U(1)B−L × U(1)R breaking is as low as the

electro-weak scale; (ii) it can be easily embedded into an SO(10) grand unified theory; (iii)

it has the right ingredients to explain neutrino masses (and angles) by either an inverse [3]

or a linear [4, 5] seesaw; (iv) it allows for Higgs masses significantly larger than the MSSM

without the need for a very heavy SUSY spectrum [6] and (v) it potentially leads to rich

phenomenology at the LHC.

With the data accumulated in 2011 both ATLAS [7] and CMS [8] have seen some in-

dications for a Higgs boson with a mass of roughly mh ∼ 125 GeV. This result, perhaps

unsurprisingly, has triggered an avalanche of papers studying the impact of such a relatively

hefty Higgs on the supersymmetric parameter space [9–43]. The general consensus seems to

be, that the MSSM can generate mh ∼ 125 GeV only if squarks and gluinos have masses in

the multi-TeV range. While this is, of course, perfectly consistent with the lower bounds on

SUSY masses obtained from ET/ searches at the LHC [44, 45], such a heavy spectrum could

make it quite difficult indeed for the LHC to find direct signals for SUSY.

There are, of course, several possibilities to circumvent this conclusion. First of all, it is

well-known that the loop corrections to h0 are dominated by the top quark-squark loops.

Thus, little or no constraints on sleptons and on squarks of the first two generations can in

fact be derived from Higgs mass measurements, once the assumption of universal boundary

conditions for the soft SUSY parameters is abandoned. Second, in the next-to-minimal SSM

(NMSSM) the h0 can be heavier than in the MSSM due to the presence of new F-terms

from the additional singlet Higgs [18, 43], especially in models with non-universal boundary

conditions for the (soft) Higgs mass terms [25] or in the generalized NMSSM [26, 27]. And,

third, in models with an extended gauge group additional D-terms contribute to the Higgs

mass matrices, relaxing the MSSM upper limit considerably [46–50]. This latter possibility is

the case we have studied in a previous paper [6] using the minimal U(1)B−L×U(1)R models

of [1]. Here, we extend the analysis of [6], including both Higgs and SUSY phenomenology.

Due to the extended gauge structure the model necessarily has more Higgses than the

MSSM. Near D-flatness of the U(1)B−L × U(1)R breaking then results in one additional

light Higgs, h0
BLR [6]. Mixing between the MSSM h0 ≡ h0

L and h0
BLR enhances the mass

of the mostly MSSM Higgs and, potentially, affects its decays. This is reminiscent to the
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situation in the NMSSM, where an additional light and mostly singlet Higgs state seems to

be preferred [18, 43] if the signals found by ATLAS [7] and CMS [8] are indeed due to a 125

GeV Higgs.

The MSSM-like h0
L in our model can have some exotic decays. For example, the h0

L will

decay to two lighter Higgses, if kinematically possible, although this decay can never be

dominant due to constraints coming from LEP. The model also includes right-handed neu-

trinos with electro-weak scale masses and there is a small but interesting part in parameter

space where mZ0 ≤ mνR ≤ mh0
L
, where the Higgs decays to two neutrinos. These decays

always lead to one light and one heavy neutrino, with the latter decaying promptly to either

W±l∓ or Z0ν. (Mostly right) sneutrinos can be lighter than the h0
L, in which case the Higgs

can have invisible decays.

The SUSY spectrum of the model is also richer than the MSSM: It has seven neutralinos

and nine sneutrino states. These additional sneutrinos can easily be the lightest supersym-

metric particle (LSP) and thus change all the constraints on SUSY parameter space, usually

derived from the requirement that the neutralino be a good dark matter candidate with the

correct relic density [51]1. Even though the lightest sneutrino can also be the LSP in the

MSSM, direct detection experiments have ruled out this possibility a long time ago [52].

In SUSY decays, within the MSSM right squarks decay directly to the bino-like neutralino,

leading to the standard missing momentum signature of supersymmetry. Due to the ex-

tended gauge group, right squarks can decay also to heavier neutralinos, leading to longer

decay chains and potentially to multiple lepton edges2. Decays of the heavier neutralinos

also produce Higgses, both the h0
L and the h0

BLR appear, with ratios depending on the right

higgsino content of the neutralinos in the decay chains.

The rest of this paper is organized as follows. In the next section we discuss the setup of

the model, its particle content, superpotential and soft terms and the symmetry breaking.

The phenomenologically most interesting mass matrices of the spectrum are given in section

III where we also discuss numerical results on the SUSY and Higgs mass eigenstates. Here,

we focus on Higgs and slepton/sneutrino masses, which are the phenomenologically most

interesting. In section IV we define some benchmark points for the model and discuss their

phenomenologically most interesting decay chains. We then close with a short summary.

In the appendix we give mass matrices not presented in the text, formulas for the 1-loop

corrections in the Higgs sector and more information about the calculation of the RGEs,

including anomalous dimensions as well as the 1-loop β functions for gauge couplings and

gauginos.

1 Also for the case of a neutralino LSP, constraints on the SUSY parameter space from dark matter can

change in case the right Higgsino is light.
2 Longer SUSY cascades from larger number of neutralino states have also been discussed in [53, 54].
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Superfield SU(3)c × SU(2)L × U(1)R × U(1)B−L Generations

Q̂ (3,2, 0,+1
6 ) 3

d̂c (3,1,+1
2 ,−1

6) 3

ûc (3,1,−1
2 ,−1

6) 3

L̂ (1,2, 0,−1
2 ) 3

êc (1,1,+1
2 ,+

1
2) 3

ν̂c (1,1,−1
2 ,+

1
2) 3

Ŝ (1,1, 0, 0) 3

Ĥu (1,2,+1
2 , 0) 1

Ĥd (1,2,−1
2 , 0) 1

χ̂R (1,1,+1
2 ,−1

2) 1

ˆ̄χR (1,1,−1
2 ,+

1
2) 1

TABLE I: The Matter and Higgs sector field content of the U(1)R × U(1)B−L model. Generation

indices have been suppressed. The Ŝ superfields are included to generate neutrino masses via the

inverse seesaw mechanism. Under matter parity, the matter fields are odd while the Higgses are

even.

II. THE MODEL: SU(3)c × SU(2)L × U(1)B−L × U(1)R

In this section we present the particle content of the model, its superpotential and discuss

the symmetry breaking. We consider the simplest model based on the gauge group SU(3)c×
SU(2)L × U(1)R × U(1)B−L. We will call this the mBLR model below. As has been shown

in [1] it can emerge as the low-energy limit of a certain class of SO(10) GUTs broken along

the “minimal” left-right symmetric chain [55, 56]

SO(10) → SU(3)c × SU(2)L × SU(2)R × U(1)B−L (1)

→ SU(3)c × SU(2)L × U(1)R × U(1)B−L.

The main virtue of this setting is that an MSSM-like gauge coupling unification is achieved

with a sliding U(1)R × U(1)B−L breaking scale, i.e. this last stage can stretch down even

to the electro-weak scale. Different from the previous works [1, 2], we assume that the first

two breaking steps down to U(1)R × U(1)B−L happen both at (or sufficiently close to) the

GUT scale. This assumption is used only for simplifying our setup, it does not lead to any

interesting changes in phenomenology.

A. Particle content, superpotential and soft terms

The transformation properties of all matter and Higgs superfields of the model are sum-

marized in table I. Apart from the MSSM fields, in the matter sector we have ν̂c and Ŝ.
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The former are necessary in the extended gauge group for anomaly cancellation,3 while the

fields Ŝ are included to explain neutrino masses by either an inverse [3] or a linear [4, 5]

seesaw mechanism. Our Higgs sector, including the new fields χ̂R and ˆ̄χR, is the minimal

one for the breaking of U(1)B−L × U(1)R to U(1)EM .

The fields χR and χ̄R can be viewed as the (electric charge neutral) remnants of SU(2)R
doublets, which remain light in the spectrum when the SU(2)R gauge factor is broken by

the vev of a B−L neutral triplet down to the U(1)R [1]. The presence of χ̂R and ˆ̄χR makes

it necessary to introduce an extra ZM
2 matter parity, since otherwise R-parity is broken in

a potentially disastrous way, once these scalars acquire vacuum expectation values. This

ZM
2 is not a particular feature of our setup; it is always needed in models where U(1)B−L is

broken with doublets [57]. 4

Models with a sliding U(1)R×U(1)B−L scale and (B−L)-even Higgses can be constructed

as well. These would simply require that the fields χ̂R (and its partner) are replaced by fields

which transform as (1, 1, 1/2,±1). These can be understood as the neutral components of

SU(2)R triplets, remaining light in the spectrum when SU(2)R is broken to U(1)R. Such a

construction has the advantage that R-parity is automatically conserved, different from the

model we study here, which needs the introduction of matter parity to guarantee the stability

of the LSP. However, the disadvantage of these models is that they necessarily lead to a

type-I seesaw instead of an inverse seesaw. Note that such a low-scale type-I seesaw would

overshoot experimental bounds on neutrino masses, unless the neutrino Yukawa couplings

are assummed to be tiny, O(10−6) or smaller. 5

For the particle content of table I the relevant R-parity and ZM
2 conserving superpotential

is given by

W = WMSSM +WS. (2)

Here,

WMSSM = YuûcQ̂Ĥu − Ydd̂cQ̂Ĥd − YeêcL̂Ĥd + µĤuĤd (3)

WS = Yν ν̂cL̂Ĥu + Ysν̂cχ̂RŜ − µR ˆ̄χRχ̂R + µSŜŜ.

where Ye, Yd and Yu are the usual MSSM Yukawa couplings for the charged leptons and the

quarks. In addition there are the neutrino Yukawa couplings Yν and Ys; the latter mixes the

νc fields with the S fields giving rise to heavy SM-singlet pseudo-Dirac mass eigenstates. The

term µR is completely analogous to the MSSM µ term. Note that the term µS is included

to generate non-zero neutrino mass with an inverse seesaw mechanism. However, as always

is done in inverse seesaw, we assume that µS is much smaller than all other dimensionful

parameters of the model. Apart from neutrino masses themselves it will therefore not affect

any of the mass matrices (or decays) of our interest.

3 ν̂c is automatically part of the theory due to its SO(10) origin.
4 In the normalization of [57] doublets have U(1)B−L = 1, i.e are “odd” under B-L.
5 For discussion of R-parity in LR-models see [58–60].
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Note that, besides the role it plays in neutrino physics, the Ys coupling is relevant also

for the Higgs phenomenology at the loop level as it enters the mixing of χR and χ̄R Higgs

fields with the SU(2)L Higgs doublets as well as the RGEs for χR, see below.

Following the notation and conventions of [61] the soft SUSY breaking Lagrangian reads

Vsoft =
∑

ij

m2
ijφ

∗
iφj +

(

∑

a

Maλaλa + Tuũ
∗
RQ̃Hu − Tdd̃

∗
RQ̃Hd + Tν ν̃

∗
RL̃Hu

−Teẽ
∗
RL̃Hd +BµHuHd −BµR

χ̄RχR + Tsν̃
∗
RχRS̃ +BµS

S̃S̃ + h.c.
)

. (4)

The first sum contains the scalar masses squared and the second sum runs over all gauginos

for the different gauge groups (called λBL, λR, λ
i
L and λα

G in the following) and the second one

contains the scalar masses squared. While BµS
is in principle a free parameter, a naive order

of magnitude expectation for it is BµS
∼ µSmSUSY . Thus, one expects that BµS

is much

smaller than all other soft terms and can be safely neglected, see discussion of sneutrinos

below.

To reduce the number of free parameters, in our numerical studies we will consider a

scenario motivated by minimal supergravity. This means that we assume a GUT unification

of all soft-breaking sfermion masses as well as a unification of all gaugino mass parameters

m2
0δij = m2

Dδij = m2
Uδij = m2

Qδij = m2
Eδij = m2

Lδij = m2
νcδij (5)

M1/2 = MBL = MR = M2 = M3

Also, for the trilinear soft-breaking coupling, the ordinary mSugra conditions are assumed

Ti = A0Yi, i = e, d, u, ν, s . (6)

The GUT scale is chosen as the unification scale of gBL, gR and gL, while we allow g3 to be

slightly different, exactly as in the MSSM. A complete unification is assumed to happen due

to GUT threshold corrections. For the remaining soft parameters in the Higgs sector, m2
Hd
,

m2
Hu

, m2
χR
, m2

χ̄R
and µ,Bµ, µR and BµR

, we have implemented two different options. These

are discussed in section IIB.

The presence of two Abelian groups gives rise to gauge kinetic mixing

−χabF̂
B−L,µνF̂R

µν . (7)

This is allowed by gauge and Lorentz invariance [62], as F̂B−L,µν and F̂R,µν are gauge

invariant, see e.g. [63]. Even if U(1)R and U(1)B−L are orthogonal in SO(10) the kinetic

mixing term will be induced during the RGE running below the SU(2)R breaking scale

because the light fields remaining below the GUT scale can’t be arranged in complete SO(10)

multiplets: while all matter fields form three generations of 16-plets, χ̂R and ˆ̄χR induce off-

diagonal elements already in the 1-loop matrix of the anomalous dimensions defined by

γRBL = 1
16π2TrQRQB−L. The matrix reads

γ =
1

16π2
N

(

15
2

−1
2

−1
2

9
2

)

N. (8)

6



N = diag(1,
√

3
2
) contains the GUT normalization of the two Abelian gauge groups. Our

implementation follows the description of [64], where it is shown that terms of the form as

in eq. (7) can be absorbed in the covariant derivative by a re-definition of the gauge fields.

Therefore, we are going to work in the following with covariant derivatives of the form

Dµ = ∂µ − iQT
ΦGAµ , (9)

where QT
Φ is a vector containing the charges of the field Φ with respect to the two Abelian

gauge groups and G is the gauge coupling matrix

G =

(

gR gRBL

gBLR gBL

)

. (10)

Aµ contains the gauge bosons Aµ = (AR
µ , A

BL
µ )T . Since the off-diagonal elements in eq. (8)

are negative and roughly one order smaller than the diagonal ones, it can be expected that

the off-diagonal gauge couplings at the SUSY scale are positive but also much smaller than

the diagonal ones. This is in some contrast to models in which kinetic mixing arises due to

the presence of U(1)Y × U(1)B−L [65]. In addition, a mixing term of the form

MBLRλBLλR (11)

between the two gaugino λBL and λR will be present [66]. Since we have chosen the SU(2)R
breaking scale to be very close to the GUT scale we demand as additional boundary condi-

tions that the new parameters arising from kinetic mixing vanish at the GUT scale, i.e.

gRBL = gBLR = 0 , MBLR = 0 . (12)

For more details on U(1) mixing and its physical impact we refer the interested reader also

to recent papers [65, 67–69]. Our focus will be on the additional terms in the scalar mass

matrices due to the presence of non-diagonal couplings.

B. Tadpole equations and boundary conditions

The U(1)R×U(1)B−L gauge symmetry is spontaneously broken to the hypercharge U(1)Y
by the vevs vχR

and vχ̄R
of the scalar components of the χ̂R and ˆ̄χR superfields while the

SU(2)L⊗U(1)Y → U(1)Q is governed by the vevs vd and vu of the neutral scalar components

of the SU(2)L Higgs doublets Hd and Hu up to gauge kinetic mixing effects. One can write

χR =
1√
2
(σR + iϕR + vχR

) , χ̄R =
1√
2
(σ̄R + iϕ̄R + vχ̄R

) , (13)

H0
d =

1√
2
(σd + iϕd + vd) , H0

u =
1√
2
(σu + iϕu + vu) , (14)

where the generic symbols σ and ϕ denote the CP-even and CP-odd components of the

relevant fields, respectively.
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The minimum conditions for the four different vevs can be written at tree-level as

td = −Bµvu + vd

(

m2
Hd

+ |µ|2 + 1

8
ALR,3(v

2
d − v2u) +

1

8
ALR,2(v

2
χ̄R

− v2χR
)

)

(15)

tu = −Bµvd + vu

(

m2
Hu

+ |µ|2 − 1

8
ALR,3(v

2
d − v2u)−

1

8
ALR,2(v

2
χ̄R

− v2χR
)

)

(16)

tχ̄R
= −BµR

vχR
+ vχ̄R

(

m2
χ̄R

+ |µR|2 +
1

8
ALR,1(v

2
χ̄R

− v2χR
) +

1

8
ALR,2(v

2
d − v2u)

)

(17)

tχR
= −BµR

vχ̄R
+ vχR

(

m2
χR

+ |µR|2 −
1

8
ALR,1(v

2
χ̄R

− v2χR
)− 1

8
ALR,2(v

2
d − v2u)

)

(18)

where we defined

ALR,1 = g2BL + g2R + g2BLR + g2RBL − 2gRgBLR − 2gBLgRBL

ALR,2 = g2R + g2RBL − gRgBLR − gBLgRBL

ALR,3 = g2L + g2R + g2RBL . (19)

For the vacuum expectation values we use the following parameterization:

v2R = v2χR
+ v2χ̄R

, v2 = v2d + v2u (20)

tanβR =
vχR

vχ̄R

, tan β =
vu
vd

.

The tadpole equations can analytically be solved for either (i) (µ,Bµ, µR, BµR
) or (ii)

(µ,Bµ, m
2
χR
, m2

χ̄R
) or (iii) (m2

Hd
, m2

Hu
, m2

χR
, m2

χ̄R
). Option (i) can be considered the minimal

version. We call this option CmBLR (constrained mBLR), since it allows to define boundary

conditions for all scalar soft masses, m2
Hd

= m2
Hu

= m2
0 and m2

χR
= m2

χ̄R
= m0 at mGUT ,

reducing the number of free parameters by four. This assumption, however, leads to some

important constraints on the parameter space, as we will discuss next. Options (ii) and

(iii) are more flexible. Option (ii) is similar to the CMSSM with non-universal soft masses

(NUHM) [70–72], albeit the non-universality is only in the B − L sector. We will call this

the χRmBLR (non-universal χR masses mBLR), and most of our numerical results are based

on this option. We mention option (iii) for completeness, but we have not used it in our

numerical studies.

As will be shown in section IIIA, the mass of the Z ′-boson in the mBLR model is

approximately given by

m2
Z′ ≃ 1

4
ALR,1v

2
R (21)

We can use this expression and eqs (15)-(18) to obtain an approximate relation between mZ′

and µR, m
2
χR
, m2

χ̄R
and tanβR. This leads to

m2
Z′ ≃ −2(|µR|2 +m2

χ̄R
) +

g2R
4
v2 cos(2β)

tanβ2
R + 1

tanβ2
R − 1

+ ∆m2
χR

2 tanβ2
R

tanβ2
R − 1

(22)
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FIG. 1: Constraints on the CmBLR parameter space from the condition of correct symmetry

breaking, to the left: vR = 5 TeV, to the right vR = 8 TeV. In both plots M1/2 = 1000 GeV,

tan β = 10 and A0 = 0. Just above the lines for µR = −200 GeV |µR|2 = 0, i.e. larger values

of tan βR do not lead to consistent solutions of the tadpole equations (for fixed m0 and A0). For

detailed explanation see text.

where ∆m2
χR

= m2
χ̄R

− m2
χR
. We can roughly estimate ∆m2

χR
, if we make a mSugra-like

assumption for the boundary conditions, m2
χ̄R

= m2
χR

= m2
0 at the GUT scale. The running

value of ∆m2
χR

can then be found by a one-step integration of the RGEs at 1-loop level as:

∆m2
χR

≃ 1

4π2
Tr(YsY

†
s )(3m

2
0 + A2

0) log

(

mGUT

MSUSY

)

(23)

with Ts ≃ A0Ys. As eq.(23) shows, with these assumptions ∆m2
χR

> 0 and the condition

that mZ′ of eq.(22) has to fulfill the experimental lower bound will define an excluded area

in the 3-dimensional parameter space [Tr(YsY
†
s ), tan βR, m

2
RGE ], where m

2
RGE = (3m2

0+A2
0).

If we assume in addition that Ys is small enough to remain perturbative anywhere between

the weak and the GUT scale, a lower bound on m2
RGE as a function of tan βR − 1 will result

in the CmBLR.

This can be understood in more details as follows. In the CmBLR ∆m2
χR

≥ 0, as shown

by eq. (23) and the last term in eq. (22) is positive only if tan βR > 1. Since cos(2β) < 0

the second term in eq. (22) is positive only if tan βR < 1. If ∆m2
χR

>∼ | g
2
R

4
v2 cos(2β)|, only

solutions with tan βR > 1 can be found. Since finally |µR|2 must be |µR|2 > 0 and m2
χ̄R

> 0

in the CmBLR we get the constraints on the parameter space shown in fig. 1. Here we show

for two choices of vR contour lines of µR in the plane (tan βR, m0). Just above the lines for

µR = −200 GeV |µR|2 = 0, i.e. larger values of tan βR do not lead to consistent solutions

of the tadpole equations (for fixed m0 and A0). This restricts the model to values of tan βR

very close to 1, as is clearly demonstrated in the figure. Note that for low values of m0 the

constraints on the viable region of tanβR actually becomes stronger. 6

6 tanβR ≃ 1 is also needed for a spectrum without tachyons since the additional D-terms can give large
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No such constraint on m0 and A0 exists in the χRmBLR, since here ∆m2
χR

is a free

parameter. However, if (∆m2
χR
/m2

χR
) ≪ 1, values of tan βR very close to 1 are preferred by

eq. (22) in both, the CmBLR and the χRmBLR.

III. MASSES

In this section we give the most important mass matrices of the model at tree-level. In

the numerical calculations we take also the 1-loop corrections [73] into account, see appendix

for more details. The numerical implementation of the model has been done using SPheno

[74, 75], for which the necessary subroutines and input files were generated using the package

SARAH [76–78]. The used model files are included in the public version 3.1.0 of SARAH.

A. Gauge bosons

In the basis (W 0, BB−L, BR) the mass matrix for the neutral gauge bosons reads at tree-

level

M2
V V =

1

4







g2Lv
2 −gLgRBLv

2 −gLgRv
2

−gLgRBLv
2 g2RBLv

2 + g̃2BLv
2
R gRgRBLv

2 − g̃Rg̃BLv
2
R

−gLgRv
2 gRgRBLv

2 − g̃Rg̃BLv
2
R g2Rv

2 + g̃2Rv
2
R






(24)

where

g̃BL = (gBL − gRBL) , g̃R = (gR − gBLR) . (25)

From eq. (24) the masses of the photon, the Z and the Z ′ can be calculated analytically

mγ = 0 , m2
Z,Z′ =

1
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Av2 +Bv2R ∓ v2R

√

−4C

(

v2

v2R

)

+

(

A

(

v2

v2R

)

+B

)2


 (26)

with

A = g2L + g2R + g2RBL

B = g2BL + g2R + g2BLR + g2RBL − 2gBLRgR − 2gRBLgBL

C = g2L(gR − gBLR)
2 + g2BL(g

2
L + g2R)− 2gBL(g

2
L + gBLRgR)gRBL + (g2BLR + g2L)g

2
RBL .

(27)

Expanding eq. 26 in powers of v2/v2R, we find up to first order

m2
Z =

Cv2

4B
, m2

Z′ =
(AB − C)v2 +B2v2R

4B
. (28)

In the limit gBLR = 0 and gRBL = 0 we then get

m2
Z =

(g2BLg
2
L + g2BLg

2
R + g2Lg

2
R)v

2

4(g2BL + g2R)
, m2

Z′ =
g4Rv

2

4(g2BL + g2R)
+

1

4
(g2BL + g2R)v

2
R . (29)

negative contributions to the sfermion masses, see below.
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ATLAS has recently published updated lower limits on Z ′ searches [79]. Our Z ′ corresponds

to the Zχ in the notation of [80], i.e. [79] gives a lower limit of Z ′ >∼ 1.8 TeV, which

corresponds to roughly vR >∼ 5 TeV for our choice of couplings7, see, however, the discussion

in section IVC.

Mixing between Z and Z ′ states lead to a shift in the ρ-parameter [81], measured very

accurately at LEP [82]. Expanding eq. 26 up to second order, we estimate the shift to be

of order

∆ρ =
v2/v2R

v2/v2R +B2/(C − 2AB)
. (30)

For our choice of couplings gL, gR and gB−L (fixed by the experimental inputs and gauge

coupling unification) this leads to a lower limit of roughly vR >∼ 3.3 TeV, similar to but less

stringent than the direct search bound.

B. Higgs bosons

1. Pseudoscalar Higgs bosons

At the tree level we find that in the (ϕd, ϕu, ϕ̄R, ϕR) basis the pseudoscalar sector has a

block-diagonal form and reads in Landau gauge

M2
AA =

(

M2
AA,L 0

0 M2
AA,R

)

(31)

with

M2
AA,L = Bµ

(

tan β 1

1 cot β

)

, M2
AA,R = BµR

(

tanβR 1

1 cot βR

)

. (32)

From these four states two are Goldstone bosons which become the longitudinal parts of

the massive neutral vector bosons Z and a Z ′. In the physical spectrum there are two

pseudoscalars A0 and A0
R with masses

m2
A = Bµ(tan β + 1/ tanβ) , m2

AR
= BµR

(tanβR + 1/ tanβR) . (33)

7 The condition that the gauge couplings reproduce correctly the standard model hypercharge, plus the

assumption of unification lead to values of roughly gBL ∼ 0.57, gR ∼ 0.45, gBLR ∼ 0.014 and gRBL ∼ 0.012

at the SUSY scale.
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2. Scalar Higgs bosons

The tree-level CP-even Higgs mass matrix in the (σd, σu, σ̄R, σR) basis reads

M2
hh =

(

m2
LL m2

LR

m2,T
LR m2

RR

)

, (34)

where

m2
LL =

(

(g2Z + 1
4
g2RBL)v

2c2β +m2
As

2
β −1

2

(

m2
A + (g2Z + 1

4
g2RBL)v

2
)

s2β
−1

2

(

m2
A + (g2Z + 1

4
g2RBL)v

2
)

s2β (g2Z + 1
4
g2RBL)v

2s2β +m2
Ac

2
β

)

, (35)

m2
LR =

1

4

(

(g̃RgR − g̃BLgRBL)vvRcβcβR
−(g̃RgR − g̃BLgRBL)vvRcβsβR

−(g̃RgR − g̃BLgRBL)vvRsβcβR
(g̃RgR − g̃BLgRBL)vvRsβsβR

)

, (36)

m2
RR =

(

g̃2ZR
v2Rc

2
βR

+m2
AR

s2βR
−1

2

(

m2
AR

+ g̃2ZR
v2R
)

s2βR

−1
2

(

m2
AR

+ g̃2ZR
v2R
)

s2βR
g̃2ZR

v2Rs
2
βR

+m2
AR

c2βR

)

, (37)

sx = sin(x), cx = cos(x) (x = β, βR, 2β, 2βR), g2Z = (g2L + g2R)/4, g̃
2
ZR

= (g̃2BL + g̃2R)/4.

The matrix m2
LL contains the standard MSSM doublet mass matrix. To see this explicitly

one has to integrate out the additional Higgs fields in the vR → ∞ limit which yields a

shift in the gauge couplings such that the MSSM limit is achieved. m2
RR corresponds to

the U(1)R ×U(1)B−L Higgs bosons and m2
LR provides the essential mixing between the two

sectors.

Note that it is straightforward to show that the determinant of the mass matrix eq. (34)

goes to zero, whenever one of the parameters ((tanβ − 1), mA, (tanβR − 1), mAR
) goes to

zero. One can also calculate analytically that in the limit of vR → ∞ the lightest eigenvalue

of eq. (34) obeys the MSSM tree-level limit for h0. For finite vR corrections to m2
LL appear,

of the order of g2Rv
3/vR, which lead to a shift in the lightest eigenvalue. Thus the MSSM

tree-level upper bound of mtree
h0 ≤ mZ0 for the lightest Higgs can be violated.

3. Numerical examples

In fig. 2 we show the two lightest Higgs boson masses (to the left) together with

R2
Li ≡ R2

i1 + R2
i2 (38)

(to the right) as a function of vR. Here i = 1, 2 labels the light Higgs scalars in the model

and Rij is the rotation matrix which diagonalizes the CP-even Higgs sector. Note that the

quantity R2
Li, which reaches one in the MSSM limit, is a rough measure of how much the

corresponding Higgs with index i resembles an MSSM Higgs boson. We will call this leftness.

Roughly speaking, the smaller this quantities is, the smaller is the i-th Higgs coupling to

the Z- and W -bosons, implying a reduced production cross sections at LEP, Tevatron and

the LHC.
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FIG. 2: Example plot for the masses (left) and “leftness” (right) of two lightest eigenvalues of the

CP-even Higgs sector as a function of vR for fixed choices of the other parameters: m0 = 250 GeV,

M1/2 = 800 GeV, tan β = 10, A0 = 0, tan βR = 0.94, µR = −800 GeV, mAR
= 2350 GeV.
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FIG. 3: Example plot for the masses (left) and “leftness” (right) of two lightest eigenvalues of

the CP-even Higgs sector as a function of tan βR for fixed choices of the other parameters: m0 =

250 GeV, M1/2 = 800 GeV, tan β = 10, A0 = 0, vR = 6000 GeV, µR = −800 GeV, mAR
=

2350 GeV

Since the MSSM Higgs and the two additional Higgs χR and χ̄R are both charged under

U(1)R the two lightest Higgs states mix due to additional D-terms in the CP-even Higgs

matrix (see eq. (35)). Thus, both the masses and the mixing of the two lightest Higgs h1

and h2 depend strongly on vR, see fig. 2. In this example, up to approximately vR=6 TeV

h1 is mostly the singlet Higgs whereas h2 is the MSSM-like Higgs. For larger vR a level-

crossing occurs and the situation is reversed. Note that, although m0, M1/2 and A0 have

rather moderate values in this example, h2 has a mass of the order of mh2
≃ 125 GeV for

vR ≃ 5 − 6 TeV, i.e. the D-terms have shifted the MSSM-like Higgs mass into the region

preferred by ATLAS and CMS.

In fig. 3 masses and “leftness” of the two lightest Higgs eigenstates are plotted against

tan βR. For tanβR close to tan βR = 1 one gets a very light singlet Higgs as expected, see

discussion above. As is the case when varying vR a level-crossing appears also when tan βR
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FIG. 4: Example plot for the masses (left) and “leftness” (right) of two lightest eigenvalues of the

CP-even Higgs sector as a function of µR for fixed choices of the other parameters: m0 = 250 GeV,

M1/2 = 800 GeV, tan β = 10, A0 = 0, vR = 6000 GeV, tan βR = 0.94, mAR
= 2350 GeV

is changed. In this figure the χRmBLR version was used, thus we can put tanβR < 1. Note,

however, that the masses of h1 and h2 show a behavior which is symmetric with respect to

| tanβR− 1|. Again the figure demonstrates that the MSSM limit of the lightest Higgs mass

can be violated at the expense of a reduced coupling of the MSSM-like state to SM gauge

bosons.

1-loop corrections play in general an important role, not only for the MSSM-like Higgs but

also in the singlet sector. This can be seen in fig. 4, where we plot masses and mixings of h1

and h2 versus the parameter µR. Increasing or decreasing µR, respectively, changes the mass

of the mostly-singlet Higgs by considerable factors. In fact, for larger values of |µR| one can
get easily a negative mass squared for h1, which is of course forbidden phenomenologically.

The importance of µR stems from 1-loop contributions to the Higgs mass matrix with a

higgsino-right in the loop. Loop corrections for the mostly-singlet Higgs are, in fact, even

more important numerically than for the MSSM-like Higgs and many points which are

allowed at tree-level lead to tachyonic states, once 1-loop corrections are taken into account.

Finally we note, that in the plots in this section we have not shown the regions excluded

by LEP or the LHC searches, since we were interested only in showing the parameter de-

pendencies of our numerical results. In the study points of the next section, however, we

have taken care that our points survive all known experimental constraints.

C. Neutrinos

The mBLR model contains beside the usual three left-handed neutrinos six additional

states which are singlets with respect to the SM group. The corresponding mass matrix is
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in the basis (νL, ν
c, S) given by

mν =







0 1√
2
vuY

T
ν 0

1√
2
vuYν 0 1√

2
vχR

Ys

0 1√
2
vχR

Y T
s µS






. (39)

This matrix is diagonalized by Uν :

Uν,∗mνU
ν,† = mdia

ν . (40)

Eigenvalues for the three light (and mostly left-handed) neutrinos can be found in the seesaw

approximation as:

meff
ν = − v2u

v2R
Y T
ν (Y T

s )−1µSY
−1
s Yν . (41)

Neutrino data implies that either Yν and/or µS is small and in inverse seesaw the smallness

of neutrino mass is attributed to the smallness of the latter. As we will discuss in section

IVA, the bounds on rare lepton decays imply that the off-diagonal terms of Ys and Yν have

to be small compared to their diagonal entries, unless their diagonal values are small too.

The smallness of µS implies that the six heavy states form three “quasi-Dirac” pairs. For

vanishing off-diagonal entries in Ys and Yν a good estimate of the masses of the heavy states

is:

mνh,ii ≃ ±
√

|Yν,ii|2v2u + |Ys,ii|2v2χR
. (42)

D. Sparticles

1. Neutralinos

The mass matrix of the neutralinos reads in the basis (λBL, λ
0
L, h̃

0
d, h̃

0
u, λR, ˜̄χR, χ̃R):

Mχ̃0 =

























MBL 0 −1
2
gRBLvd

1
2
gRBLvu

MBLR

2
1
2
vχ̄R

g̃BL −1
2
vχR

g̃BL

0 M2
1
2
gLvd −1

2
gLvu 0 0 0

−1
2
gRBLvd

1
2
gLvd 0 −µ −1

2
gRvd 0 0

1
2
gRBLvu −1

2
gLvu −µ 0 1

2
gRvu 0 0

MBLR

2
0 −1

2
gRvd

1
2
gRvu MR −1

2
vχ̄R

g̃R
1
2
vχR

g̃R
1
2
vχ̄R

g̃BL 0 0 0 −1
2
vχ̄R

g̃R 0 −µR

−1
2
vχR

g̃BL 0 0 0 1
2
vχR

g̃R −µR 0

























.

(43)

The eigenvalues of this matrix are not completely arbitrary. Since U(1)B−L×U(1)R is broken

in such a way as to produce correctly the SM group U(1)Y in the limit of v << vR the matrix

contains one state which corresponds to the MSSM bino, B̃, which is a superposition of λBL

and λR. In addition the matrix contains an orthogonal state, which we will call B̃⊥ in the

following.
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For CMSSM like boundary conditions, MBL = M2 = MR = M1/2, the bino is usually the

lightest of the three gaugino like states, with the W̃ being approximately twice as heavy.

The B̃⊥ is very often mixed with one of the right higgsinos, and, since MBL at low energies

is much smaller than vR this mixing is often important. In addition, there is the standard

quasi-Dirac pair of “left” higgsinos, plus two more states which are mostly right higgsinos.

Of the latter one is usually rather heavy, while the other can be light, if µR is small.

In fig. 5 the neutralino masses and R2
⊥i for CmBLR are plotted against vR for some

arbitrary choice of other parameters. As discussed, there are in total seven eigenstates. Of

special interest is the B̃⊥, so in the plot on the right we show the percentage of B̃⊥ (R2
⊥i)

in the corresponding mass eigenstate. Here R2
⊥i = 1 means that the i-th neutralino is a

pure B̃⊥. As one can see in fig. 6 the masses and mixing of the three new states depend

strongly on vR. For small vR all three states mix to each other. Increasing vR leads to

a decoupling of the lighter higgsino-right from the B̃⊥ which decreases in mass since µR

becomes smaller for large vR while the masses of the two remaining states get large. Since

the MSSM Neutralinos mix very little with the new states, there are four eigenvalues which

show almost no dependence on the parameters vR and µR.

In fig. 6 the neutralino masses and R2
⊥i are plotted against vR for the case of χRmBLR.

In this calculation, µR and mAR
can take fixed values while vR is varied freely. Two of

the three new Neutralino states are a mixture of the higgsino-right and B̃⊥ and therefore

depend on vR. Since the lighter higgsino-right hardly mix to the B̃⊥ it has a constant mass

at mh̃R
≃ |µR| = 1700 GeV in this example. The lighter of the two new states that show

dependence on vR is mostly a B̃⊥, whereas the one with larger mass is mostly a higgsino-

right. The smaller vR the smaller the mixing between these two states and thus the larger

the coupling of the mostly B̃⊥-state to the MSSM particles. This will be important when

we discuss LHC phenomenology in section IVE.

The dependence of the neutralino masses and R2
⊥i on µR is shown in fig. 7. Since the

higgsino-right and the B̃⊥ mix, all three states show a dependence on µR. The state which

hardly mixes to the B̃⊥ decreases in mass for small |µR|. So we can easily have a higgsino-

right as LSP choosing µR close to zero. The state which is mostly the B̃⊥ gets a smaller

mass for large |µR|, while the one which is mostly a higgsino-right increases in mass.

2. Sleptons and sneutrinos

In models in which lepton number is broken, the scalar neutrinos split into a real and an

imaginary part with slightly different masses [83]. Since we assume that the smallness of

neutrino masses is due to the smallness of the parameter µS (and, therefore, BµS
is supposed

to be small too), this splitting between sneutrino mass eigenstates is too small to be of any

relevance, except neutrino masses themselves.
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FIG. 5: Neutralino masses (left) and R2
⊥i (right) versus vR for otherwise fixed choice of parameters:

m0 = 1000 GeV, M1/2 = 1000 GeV, tan β = 10, A0 = −600, tan βR = 1.04. This plot uses the

CmBLR version of the model.
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Neglecting µS and BµS
the sneutrino mass matrix is given by

M2
ν̃ =









m2
LL,ν̃

1√
2
vu(T

†
ν − Y †

ν cot βµ) 1
2
vuvχR

Y †
ν Ys

1√
2
vu(Tν − Yν cot βµ

∗) m2
RR,ν̃

1√
2
vχR

(Ts − Ys cotβRµ
∗
R)

1
2
vuvχR

Y †
s Yν

1√
2
vχR

(T †
s − Y †

s cot βRµR) m2
S +

v2χR

2
Y †
s Ys









(44)

where

m2
LL,ν̃ = m2

L +
v2u
2
Y †
ν Yν −

1

8

(

(g2BL + g2BLR − gBLgRBL)(v
2
χ̄R

− v2χR
) + (g2L + g2R + gBLgRBL)(v

2
d − v2u)

)

1

m2
RR,ν̃ = m2

ν +
v2u
2
YνY

†
ν +

v2χR

2
Y †
s Ys+

1

8

(

(g2BL + g2R + g2BLR + g2RBL − 2gBLgRBL − 2gRgBLR)(v
2
χ̄R

− v2χR
)+

(g2R + g2RBL − gBLgRBL − gRgBLR)(v
2
d − v2u)

)

1 (45)

For charged sleptons one gets:

M2
l̃
=

(

m2
LL,l̃

1√
2
vd(T

†
l − Y †

l tanβµ)
1√
2
vd(Tl − Yl tanβµ

∗) m2
RR,l̃

)

(46)

where

m2
LL,l̃

= m2
L +

v2d
2
Y †
l Yl −

1

8

(

(g2BL + g2BLR − gBLgRBL − gRgBLR)(v
2
χ̄R

− v2χR
)

− (g2L − gBLgRBL − gRgBLR)(v
2
d − v2u)

)

1

m2
RR,l̃

= m2
E +

v2d
2
YlY

†
l +

1

8

(

(g2BL − g2R + g2BLR − g2RBL)(v
2
χ̄R

− v2χR
)

− (g2R + g2RBL + gBLgRBL + gRgBLR)(v
2
d − v2u)

)

1 (47)

In fig. 8 sneutrino and slepton masses are plotted against vR, tan βR and µR. The figures

on the left show a zoom into the region of the lightest states, whereas the figures on the right

show a larger range of masses for a better understanding of the overall behavior. To see

which particle is the LSP, while varying vR, tan βR and µR, we included in all plots on the

left the mass of the lightest neutralino state. This state is always a Bino, except for the plot

against µR. Here the LSP becomes a higgsino-right for |µR| < 250 GeV. The plots show that

the masses depend strongly on the choice of vR and tan βR. In the case of charged sleptons

the dependence on vR and tan βR comes only from additional D-terms at the tree level. This

is different for sneutrinos. Here we can have an interplay between new D-terms and terms

coming from the coupling Ys which both depend on vR and tanβR. The additional D-terms

force left sparticle to become light for tanβR < 1 while for tan βR > 1 right sparticle masses

18



decrease. Up to vR = 6 TeV ν̃1 is a right handed sneutrino and therefore the mass increase

for increasing vR. For vR > 6 TeV the mass of ν̃1 drops down again since here it is mainly

a left handed sneutrino. Thus, increasing vR leads to a level-crossing in the mass spectrum

of left and right handed sneutrinos. The same holds for the sleptons. In the plot against vR
the mass of the right sneutrino decreases much faster for vR < 6 TeV than the mass of the

right sleptons. This is due to the off-diagonal terms proportional to Ys, which contain also

µR in the sneutrino mass matrix. These terms mix the scalar component of Ŝ to ν̃R. Thus

for low values of vR in this example the LSP is neutral, which is allowed, whereas for larger

values of vR (with left sleptons being light) there are parts of the parameter space, where

the lightest slepton is charged, which is phenomenologically forbidden. Whether in the left

sector charged or neutral states are lighter, depends heavily on the choice of parameters.

Varying tanβR the right slepton masses decrease faster than the right sneutrino masses for

tan βR > 0.95 due the additional sneutrino mixing. Since the sneutrino and slepton masses

depend strongly on the choice of vR, tanβR and µR one obtains limits on combination on

these parameters. On the one hand, one has to avoid tachyonic states and on the other hand

one has to take care not to get charged sleptons as LSP. The combination of both conditions

forces us to choose tanβR close to one and gives us an upper limit on vR and |µR| as function
of | tanβR − 1|.

IV. CONSTRAINTS, SAMPLE SPECTRA AND DECAYS

In this section we discuss several interesting phenomenological aspects which potentially

allow the BLR model to be discriminated from the MSSM at the LHC and exemplify the most

important features for a few study points. We include a discussion of the direct production

of new states and characteristic changes in the cascade decays of supersymmetric particles.

For brevity we will call these benchmark points BLRSP1- BLRSP5, the corresponding

input parameters are listed in table II. All of these points have been calculated with the

χRmBLR version of the model. However, note that for BLRSP5 the input is chosen to be

consistent with the CmBLR variant.

A few comments on the input parameters and the resulting mass spectra are in order,

before we discuss the phenomenology in detail. As shown below, the bounds on rare lepton

flavour violating decays require Yν and Ys to be essentially flavour-diagonal, unless these

couplings are very small. Therefore we have chosen Yν and Ys diagonal as starting point

implying that all points satisfy trivially the LFV constraints. A correct explanation for the

neutrino angles then requires flavour violating entries in the parameter µS, which we do not

give in table II, since they are irrelevant for collider phenomenology.

The input values of table II lead to the mass spectrum shown in tables III and IV. We

give the masses and in brackets the particle character. In case of mixed states the two

largest components, for example (W̃ , h̃L), are given where the first entry accounts for the

larger contribution. If the ordering in the composition changes like in the case of mũ5,6
we

use squared brackets. Therefore we have (c̃L, ũL) for mũ5
and (ũL, c̃L) for mũ6

. In all cases
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FIG. 8: Lightest slepton (and neutralino) masses as function of vR, tan βR and µR for a fixed

but arbitrary choice of other parameters: m0 = 220 GeV, M1/2 = 630 GeV, tan β = 10, A0 = 0,

tan βR = 0.95, vR = 6000, µR = −850 GeV, mAR
= 2200 GeV, Ys,ii = 0.3. Plots on the left show

a zoom into the light mass region, such that mass differences between the lightest sneutrino and

the lightest charged slepton are resolved, figures to the right show the overall dependence, for a

discussion see text.

input parameters have been chosen such, that the squark and gluino masses are outside the

region currently excluded by pure CMSSM searches at ATLAS [44] and CMS [45]. Since

(a) we expect the missing momentum signal to be smaller in these points than in a true

CMSSM spectrum and (b) our squark spectra are less degenerate than the CMSSM case,

we believe this is a conservative choice. Two of the points have a sneutrino LSP (BLRSP1

and BLRSP3), while three points have a neutralino LSP (for BLRSP2 and BLRSP5 mostly

a bino, for BLRSP4 a state which is mostly a h̃R).
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

cMSSM

m0 [GeV] 470 1000 120 165 500

M1/2 [GeV] 700 1000 780 700 850

tan β 20 10 10 10 10

A0 0 -3000 -300 0 -600

Extended gauge sector

vR [GeV] 4700 6000 6000 5400 5000

tan βR 1.05 1.025 0.85 1.06 1.023

µR [GeV] -1650 -780 -1270 260 (-905)

mAR
[GeV] 4800 7600 800 2350 (1482)

Yukawas

Yν,11 0.04 0.1 0.1 0.1 0.1

Yν,22 0.04 0.1 0.1 0.1 0.1

Yν,33 0.04 0.1 0.1 0.1 0.1

Ys,11 0.04 0.042 0.3 0.3 0.3

Ys,22 0.05 0.042 0.3 0.3 0.3

Ys,33 0.05 0.042 0.3 0.3 0.3

TABLE II: Parameters of the various study points. In BLRSP1-BLRSP4 µR and mAR
are input

whereas in BLRSP5 the constrained version of the model has been used and, thus, these two

parameters are output. For a discussion of these points see text.

Note that the ordering of sfermion mass eigenstates does in many cases not follow the

standard CMSSM patterns: mτ̃1 ≤ mµ̃R
≃ mẽR < mµ̃L

≃ mẽL ≤ mτ̃2 and mt̃1 ≤ mc̃R ≃
mũR

< mc̃L ≃ mũL
≤ mt̃2 (similar for sdowns). These patterns are distorted in the study

points due to the unconventional D-terms of the model and this feature gets enhanced for

larger | tanβR − 1| and/or larger values of vR. We note also that for sneutrinos and charged

sleptons many states are quite degenerate. For example µ̃R and ẽR have practically the same

mass in all points. While these degeneracies are always true in CMSSM spectra, in our case

this is not necessarily so, but simply reflects the fact that both Yν and Ys have been chosen

generation independent in all points, except BLRSP1. As this point shows, even a rather

moderate generation dependent value of Ys can lead to large mass splittings in the sneutrino

sector. A generation dependent value of Yν would not only split sneutrino masses but also

charged slepton masses.
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

Sneutrinos and Sleptons

mν̃1 [GeV] 102.3 (ν̃R) 797.0 (ν̃R) 91.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.4 (ν̃R, ν̃L)

mν̃2 [GeV] 102.3 (ν̃R) 797.0 (ν̃R) 92.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.9 (ν̃R, ν̃L)

mν̃3 [GeV] 203.0 (ν̃R) 797.0 (ν̃R) 92.6 (ν̃R, ν̃L) 542.3 (ν̃R, ν̃L) 753.9 (ν̃R, ν̃L)

mν̃4 [GeV] 573.8 (ν̃R) 1120.1 (ν̃R, ν̃L) 253.4 (ν̃L, ν̃R) 585.4 (ν̃L, ν̃R) 785.5 (ν̃L, ν̃R)

mν̃5,6 [GeV] 604.4 (ν̃R) 1120.3 (ν̃R, ν̃L) 258.2 (ν̃L, ν̃R) 586.7 (ν̃L, ν̃R) 789.0 (ν̃L, ν̃R)

mν̃7 [GeV] 725.2 (ν̃L) 1220.0 (ν̃L, ν̃R) 1374.0 (ν̃L, ν̃R) 953.4 (ν̃R) 950.1 (ν̃R)

mν̃8,9 [GeV] 734.1 (ν̃L) 1236.6 (ν̃L, ν̃R) 1374.0 (ν̃R) 953.4 (ν̃R) 950.1 (ν̃R)

mẽ1 [GeV] 484.1 (τ̃R) 1013.9 (τ̃R) 254.7 (τ̃L, τ̃R) 263.0 (τ̃R) 580.4 (τ̃R)

mẽ2,3 [GeV] 512.7 (µ̃R)/(ẽR) 1055.3 (µ̃R)/(ẽR) 265.6 (µ̃L)/(ẽL) 270.5 (µ̃R)/(ẽR) 592.3 (µ̃R)/(ẽR)

mẽ4 [GeV] 732.1 (τ̃L) 1222.4 (τ̃L) 447.7 (τ̃R, τ̃L) 591.6 (τ̃L) 788.0 (τ̃L)

mẽ5,6 [GeV] 738.8 (µ̃L)/(ẽL) 1237.9 (µ̃L)/(ẽL) 450.6 (µ̃R)/(ẽR) 592.2 (µ̃L)/(ẽL) 790.9 (µ̃L)/(ẽL)

Squarks

mũ1
[GeV] 1144.0 (t̃R, t̃L) 1185.4 (t̃R, t̃L) 1247.0 (t̃R, t̃L) 1111.3 (t̃R, t̃L) 1316.0 (t̃R, t̃L)

mũ2
[GeV] 1392.1 (t̃L, t̃R) 1851.9 (t̃L, t̃R) 1526.9 (t̃L, t̃R) 1361.4 (t̃L, t̃R) 1643.2 (t̃L, t̃R)

mũ3,4
[GeV] 1456.0 (c̃R)/(ũR) 2154.7 (c̃R)/(ũR) 1565.9 (c̃R)/(ũR) 1392.4 (c̃R)/(ũR) 1728.0 (c̃R)/(ũR)

mũ5,6
[GeV] 1509.0 [c̃L, ũL] 2227.3 [c̃L, ũL] 1634.0 [c̃L, ũL] 1448.8 [c̃L, ũL] 1795.8 [c̃L, ũL]

md̃1
[GeV] 1359.2 (b̃L, b̃R) 1819.2 (b̃L) 1409.8 (b̃R, b̃L) 1326.3 (b̃L) 1611.8 (b̃L)

md̃2
[GeV] 1464.0 (b̃R, b̃L) 2148.1 (b̃R) 1462.3 (s̃R) 1420.1 (b̃R) 1724.5 (b̃R)

md̃3
[GeV] 1489.8 (s̃R) 2175.9 (s̃R) 1462.3 (d̃R) 1426.2 (s̃R) 1734.8 (s̃R)

md̃4
[GeV] 1489.8 (d̃R) 2175.9 (d̃R) 1496.2 (b̃L, b̃R) 1426.2 (d̃R) 1734.8 (d̃R)

md̃5,6
[GeV] 1509.0 [s̃L, d̃L] 2228.9 [s̃L, d̃L] 1635.9 [s̃L, d̃L] 1450.9 [s̃L, d̃L] 1795.8 [s̃L, d̃L]

Neutralinos

mχ0
1
[GeV] 282.2 (B̃) 416.7 (B̃) 312.9 (B̃) 258.5 (h̃R) 346.6 (B̃)

mχ0
2
[GeV] 552.3 (W̃ , h̃L) 780.0 (h̃R) 615.3 (W̃ , h̃L) 279.7 (B̃) 679.5 (W̃ , h̃L)

mχ0
3
[GeV] 828.9 (h̃L) 817.5 (W̃ ) 1086.6 (h̃L) 549.0 (W̃ , h̃L) 902.7 (h̃R)

mχ0
4
[GeV] 838.9 (h̃L, W̃ ) 1865.5 (h̃L) 1092.8 (h̃L, W̃ ) 844.9 (h̃L) 1133.1 (h̃L)

mχ0
5
[GeV] 1230.4 (B̃⊥, h̃R) 1865.7 (h̃L) 1232.2 (h̃R, B̃⊥) 856.8 (h̃L, W̃ ) 1139.4 (h̃L, W̃ )

mχ0
6
[GeV] 1650.9 (h̃R) 2017.6 (B̃⊥, h̃R) 1811.3 (B̃⊥, h̃R) 1639.0 (B̃⊥, h̃R) 1489.8 (B̃⊥, h̃R)

mχ0
7
[GeV] 2608.3 (h̃R, B̃⊥) 2392.3 (h̃R, B̃⊥) 2741.4 (h̃R, B̃⊥) 2174.6 (h̃R, B̃⊥) 2056.5 (h̃R, B̃⊥)

TABLE III: Susy spectra of our study points, for discussion see text. (ν̃R) is a nearly maximal

mixture of the right sneutrinos and the S-fields.
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BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

Light higgses (1-loop/2-loop)

mh1
[GeV] 59.1/59.6 119.2/125.4 92.7/93.1 100.8/102.6 18.8/18.8

mh2
[GeV] 119.0/124.1 139.7/140.4 114.5/120.1 121.0/124.8 115.7/121.8

R2
L1 0.05/0.04 0.90/0.83 0.07/0.04 0.33/0.22 0.001/0.001

R2
L2 0.95/0.96 0.10/0.17 0.93/0.96 0.67/0.78 0.999/0.999

Heavy scalars/pseudoscalars

mh3
[GeV] 971.5 2176.5 1268.2 948.2 1345.6

mh4
[GeV] 5074.9 7883.3 2268.2 3024.7 2227.2

mA1
[GeV] 972.8 2177.5 796.3 949.2 1346.8

mA2
[GeV] 4789.4 7581.1 1269.3 2345.1 1477.8

TABLE IV: Higgs spectra of our study points, for discussion see text.

A. Lepton decays and LFV

To explain the measured neutrino mixing angles by the mass matrix given in eq. (39)

the Yukawa couplings Yν , Ys and/or the the bilinear term µS have to contain off-diagonal

elements. In case that the neutrino mixing is explained by the form of Yν or Ys also lepton

flavor violation in the charged lepton sector will be induced. On the one hand the contri-

butions of Yν to the RGE evaluation branching ratios of Ye and to the soft-breaking terms

in the lepton sector open decay channels like li → ljγ and li → 3lj similarly to high-scale

seesaw type I–III [84–86]. On the other hand, in inverse seesaw the entries of Yν can be po-

tential large and the dominant contributions to LFV decays can come from diagrams which

are proportional to (YνY
†
ν )ij. For a long time it has been assumed that the most stringent

bounds on (YνY
†
ν )ij come from the radiative decay µ → eγ while the photonic contributions

to µ → 3e are always smaller and therefore Br(µ → eγ) > Br(µ → 3e) must hold. How-

ever, recently it has been pointed out that in presence of new Yukawa couplings like Yν the

Z-penguin contributions to Br(µ → 3e) can dominate [87]. These are less suppressed then

the photonic contributions by a factor
(

MSUSY

MZ

)4

. As consequence, the experimental limits

on the decay into two charged electrons can be much more constraining than the radiative

decay in case of a heavy SUSY spectrum. We can see this by parametrizing the neutrino

Yukawa coupling as

Yν = f







0 0 0

a a −a

b 1 1






, (48)

with

a =
(

∆m2
⊙/∆m2

A

)
1

4 ∼ 0.4 and b = 0.23. (49)
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FIG. 9: Branching ratios of lepton flavour violating processes as a function of f for tan β = 10,

A0 = 0, vR = 5000 GeV, tan βR = 1.05, µR = −500 GeV, mAR
= 1000 GeV and three (m0,M1/2)

combinations. The dashed blue line is the upper limit for µ → eγ and the dashed-dotted blue line

for µ → 3e.

Here, ∆m2
⊙ and ∆m2

A
are the mass differences measured in solar and athmospheric neutrino

oscillations. The value of b accommodates for sin2 θ13 = 0.026.

Br(µ → eγ) and Br(µ → 3e) as function of f are depicted in fig. 9, and we show also the

most recent, experimental limits of [51, 88]

Br(µ → eγ) < 2.4 · 10−12 , Br(µ → 3e) < 1.0 · 10−12 (50)

For the plot we chose three different points for (m0, M1/2). Since Br(µ → 3e) hardly

depends on SUSY masses for mSUSY ≫ mZ all three lines lie very close together in contrast

to Br(µ → eγ). For light SUSY spectra Br(µ → eγ) is dominant whereas the heavier the

SUSY particles the more important gets Br(µ → 3e). As shown in BLRSP1 and BLRSP2

we can have light right-handed neutrinos such that contributions from the W -graph to LFV

can not be neglected anymore. In fig. 10 Br(µ → eγ) and Br(µ → 3e) are plotted as a

function of mνR . For masses below 300 GeV contributions from right-handed neutrinos start

to dominate. The minimum in Br(µ → 3e) comes from a cancelation between the right-

handed neutrino and the corresponding SUSY graph. In the limit of large mνR Br(µ → eγ)

and Br(µ → 3e) converge to the value coming from SUSY contributions.

However, it is possible to circumvent these bounds by assuming that Yν and Ys are

diagonal and the entire neutrino mixing is explained by µS. Of course, this will not only

reduce Br(µ → 3e) but also Br(µ → eγ).

B. Higgs physics, direct production

In all study points of table II there is one Higgs boson with mass between 120 and

125 GeV. In addition, there is a second state with masses varying between 19 and 140 GeV.

In BLRSP1, BLRSP3 and BLRSP5 the mass eigenstate h2 is SM-like, with R2
L2 > 0.9. In
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FIG. 10: Branching ratios of lepton flavour violating processes as a function of mνR for m0 =

800 GeV, M1/2 = 1200 GeV, tan β = 10, A0 = 0, vR = 10 TeV, tan βR = 1.05, µR = −500 GeV,

mAR
= 1000 GeV. The dashed red line is the upper limit for µ → eγ and the dashed blue line for

µ → 3e.

BLRSP2 it is h1, which has a large content of Hd and Hu and BLRSP4 is a case where

h1 and h2 have large mixing. Since we have often a mass eigenstate below the LEP limit

of 115 GeV for a standard model Higgs boson, we have checked the consistency of these

eigenstates with data using HiggsBounds 3.4.0beta [89, 90]. All points are allowed by

accelerator constraints, but sometimes very close to existing bounds, especially BLRSP4

and also BLRSP2. As an indication for the theoretical uncertainties in the mass calculation

we give the masses using the complete 1-loop formulas and the ones adding the dominant

2-loop corrections to the MSSM sector [91–96].

In BLRSP1 and BLRSP5 h1 is so light that the decay h2 → h1h1 is kinematically allowed.

However, the mixing between both sectors is so small that for BLRSP1 the corresponding

branching ratio is about 1 per-cent whereas for BLRSP5 it is a few per-mile. The smallness

of this decay is a direct consequence of the bounds imposed by LEP and the decay h2 → h1h1

can never be dominant in the BLR model. The h2 can also decay into a combination of

heavy and light neutrinos with a branching ratio of a few per-cent, as for example in case

of BLRSP1 leading to the final states

h2 → νiνk → νil
±W∓ (51)

h2 → νiνk → νiνjZ (52)

with i, j = 1, 2, 3 and k = 4, . . . , 9. These final states can also be obtained via intermediate

states containing an off-shell vector boson, e.g. WW ∗ and ZZ∗. However, their existence

implies that ratio of quark versus lepton final states will not correspond to the branching

ratios of the vector bosons. Note, however, that for hadronic W-boson decays the invariant

mass of jj+lepton system would show a peak at the heavy neutrino mass, which allows to

identify this signature, in principle. Apart from these decays, the h2 can also decay to two

scalar neutrinos and, if kinematically allowed, this decay can become dominant, leading to
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a (nearly) invisible Higgs boson.

The hint for a 125 GeV Higgs boson [7, 8], see also [44] and [45], indicates a slightly larger

than expected branching ratio into the two-photon final state. In [18] it was shown that

the NMSSM can, in principle, explain such an enhanced di-photon rate, due to a possible

mixing of the singlet and the Higgs, which reduces the coupling of the Higgs to bottom

quarks, thus reducing the total width, without affecting the production cross section. In the

case of the BLR model, such a construction is not possible, since our singlets are charged

under U(1)R and the mixing between SM and BLR sectors is controlled by tan βR. Since

we have to choose tanβR close to one, the singlets mix to the up and down components of

the Higgs equally. Therefore a reduction of h → bb̄ causes a reduction of the coupling for

gluon fusion as well. Thus, a sizeable enhancement of Br(h → γγ) by reducing simply the

total width is not possible in the BLR model. Currently the discrepancy of the data with

expectations is only at the level of about 1 σ c.l. However, should future data show indeed

an enhanced rate for the γγ final state, this would be hard to explain in the BLR model.

In the four points (BLRSP1, BLRSP3-BLRSP5) h1 has approximately the same branching

ratios for the decays into SM-fermions as a SM Higgs boson of the same mass. However,

the corresponding widths are suppressed by the mixing with the usual MSSM sector which

reduces the width by a factor between 102 and 104. At the LHC the main production of

this particle is via SUSY cascade decays, e.g. it appears in the decays of ν̃4,5,6 (BLRSP1,

BLRSP3), χ̃0
3 (BLRSP4) or in the decays of the heavy neutrinos which are produced via the

Z ′ (BLRSP1, BLRSP4) as discussed in section V. However, in case of BLRSP5 LHC will

miss h1 as it only appears in the decays of the heavy Higgs bosons which have masses in the

TeV range.

Study point BLRSP2 differs from the others as here h1 is the MSSM-like Higgs boson

and h2 has a mass of 140 GeV which could explain the slight excess in this region observed

by ATLAS and CMS in the early data [97, 98]. In this region of the parameter space the

Higgs at 125 GeV is made as in the MSSM, implying a rather heavy SUSY spectrum. This

is due to the fact that a 140 GeV Higgs with reduced couplings can only be the hBLR, i.e.

this points exist to the right of the level-crossing region shown in fig. 2. Due to the choice

of a rather small Ys in this point the heavy neutrinos masses are below the mass of h2. This

leads to non-standard decays into the heavy neutrinos which dominantly decay to a lepton

and a W-boson.

C. Z ′ physics

As already mentioned in sect. IIIA, our Z ′ corresponds essentially to the Zχ in the nota-

tion of [80]. In previous studies usually two assumptions have been made in the construction

of mass bounds: (i) the Z ′ decays only into the known SM particles [99] and (ii) the effects

of gauge kinetic mixing are neglected. Both assumptions are not truly valid in the BLR

model. For a recent study of Z ′ bounds without these assumptions see [100]. As shown in

table V we find in all our points that the heavy neutrinos appear as final states beside the
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TABLE V: Branching ratios of the dominant Z ′ decay modes. Here we have summed over the

generations in case of the charged fermions and sfermions. For the neutrinos we have splitted this

sum into a sum over the light (heavy) states denoted by νl (νh).

final state BLRSP1 BLRSP2 BLRSP3 BLRSP4 BLRSP5

BR(dd) 0.31 0.35 0.35 0.37 0.43

BR(uu) 0.06 0.07 0.07 0.07 0.08

BR(ll) 0.12 0.14 0.14 0.14 0.16

BR(νlνl) 0.10 0.11 0.12 0.12 0.12

BR(νhνh) 0.27 0.30 0.13 0.11 0.13

BR(ν̃ν̃) 0.05 — 0.05 0.03 —

BR(l̃l̃) — — 0.05 0.03 —

BR(χ̃+
2 χ̃

−
2 ) — — — 0.02 —

BR(χ̃0
4χ̃

0
5) — — — 0.02 —

cL cR

d − i
6

(

−3gLZ
13 + gBLZ

23 + gBLRZ
33
)

− i
6

(

(gBL − 3gRBL)Z
23 + (gBLR − 3gR)Z

33
)

u − i
6

(

3gLZ
13 + gBLZ

23 + gBLRZ
33
)

− i
6

(

(gBL + 3gRBL)Z
23 + (gBLR + 3gR)Z

33
)

l i
2

(

gLZ
13 + gBLZ

23 + gBLRZ
33
)

i
2

(

(gBL + gRBL)Z
23 + (gBLR + gR)Z

33
)

ν

i
2

[

∑3
x=1 Z

j3+x,∗
ν Zi3+x

ν

(

(−gBL + gRBL)Z
23

+(gR − gBLR)Z
33
)

+
∑3

x=1 Z
jx,∗
ν Zix

ν

(

gBLZ
23 − gLZ

13 + gBLRZ
33
)

]

− i
2

[

∑3
x=1 Z

i3+x,∗
ν Zj3+x

ν

(

(−gBL + gRBL)Z
23

+(gR − gBLR)Z
33
)

+
∑3

x=1 Z
ix,∗
ν Zjx

ν

(

gBLZ
23 − gLZ

13 + gBLRZ
33
)

]

TABLE VI: Coefficients cfL and cfR for the coupling between ZR and two leptons or quarks. Here,

Z is the rotation matrix diagonalizing the neutral gauge boson mass matrix and Zν is the neutrino

mixing matrix.

SM-fermions. Moreover, in all but BLRSP5 also supersymmetric particles appear as decay

products, in particular sneutrinos and sleptons. On the other hand, gauge kinetic effects are

in this model less important and were only important if one could measure the branching

with a precision of 1 per-cent or better.

The Z ′ couples to leptons and quarks as follows

Z ′
µf̄γ

µ(cfLPL + cfRPR)f (53)

The different coefficients are given in table VI.

Note, that in the couplings to the u-quarks a partial cancellation occurs in contrast to

the ones to d-quarks, which get enhanced. Moreover, the same feature appears in the vertex

q̃-q-B̃⊥ which leads to some interesting consequences discussed in section IVE.

We find that the decays into the heavy neutrino states are always possible and have a

sizable branching ratio provided Tr(|Ys|) <∼ 1. In table V we summarize the most important

final states of the Z ′ for the different scenarios. As can be seen the heavy neutrino final
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FIG. 11: Cross section of pp → Z ′ → µ+µ− near the Z ′ peak as function of mZ′ taking into

account a K-factor of 1.3 [106]. For the black, dotted line the Z ′ width has been calculated

allowing only SM final states, while the blue solid includes also right-handed neutrinos and SUSY

states. The red line shows the ATLAS exclusion limit [79]. We have used as input BLRSP1 and

varied vR = [4.1, 5.1] TeV.

states have always a sizable branching ratios with up to about 30 per-cent when summing

over the generations. But even for rather heavy neutrinos as in BLRSP5 own finds for this

channel a 15 per-cent branching ratio. In several cases also channels into SUSY particles are

open, in particular in scenarios with sneutrino LSPs. In case of supersymmetric particles

the final states containing sleptons or sneutrinos have the largest branching ratios. Channels

into neutralinos or charginos are suppressed. They proceed either via the mixing with the

Z which is rather small or via the projection of the higgsino-right onto the corresponding

neutralino state.

The appearance of additional final states leads to a reduction of the event numbers in

the most sensitive search channels, i.e. reducing cross section times branching ratio, and,

thus, the bounds obtained by the LHC collaborations [79, 101, 102] are less constraining

in the BLR model. This is depicted in fig. 11 where we show the production cross section

σ(pp → µ+µ−) arround the Z ′ resonance. 8 In case that the width of the Z ′ is calculated

using only SM final states the cross section is increased roughly by a factor 1.6 in comparison

to the case where also right handed neutrinos and SUSY particle contribute to the width of

Z ′. With this choice of parameters, the main effect is due to R-neutrinos. We attribute the

remaining difference to the official ATLAS result to slightly different values in the couplings

and slightly different branching ratios of the final states. Our results agree also with the

ones of ref. [80]. We conclude that, although in our benchmark points we take always

mZ′ > 1.8 TeV, a significantly lower mass is possible consistent with data.

8 For the calculation of the cross section we used WHIZARD [103, 104] and implemented the model using the

SUSY Toolbox [105].
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D. Heavy neutrinos

As discussed above, the heavy neutrino states can be produced via the Z ′ with a con-

siderable branching ratio of about 30 per-cent when summing over all heavy neutrinos.

Moreover, see below, they can also be produced in the cascade decays of supersymmetric

particles. These heavy neutrinos mix with the light neutrino states implying a reduction

of the couplings of the light neutrinos to the Z-boson and, thus, also a reduction of the

invisible width of the Z-boson. Taking the data from ref. [51] this can be translated into

the following condition on the 3× 3 sub-block Uν
ij , i, j ≤ 3, of the neutrino mixing matrix:

∣

∣

∣

∣

∣

∣

1−
3
∑

ij=1,i≤j

∣

∣

∣

∣

∣

3
∑

k=1

Uν
ikU

ν,∗
jk

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

< 0.009 (54)

at the 3-σ level. We have checked that all our benchmark points fullfill this condition.

The main decay modes of the heavy neutrinos are9

νj → W±l∓ (55)

νj → Zνi (56)

νj → hkνi (57)

where j ≥ 4, i ≤ 3, k = 1, 2 and l = e, µ, τ , provided they are kinemtically allowed.

If there is no kinematical suppression we find in general the branching ratios scale like

BR(νj → W±l∓) : BR(νj → Zνi) : BR(νj → hkνi) ≃ 0.5 : 0.25 : 0.25 where we have

summed over the light Higgs bosons, the light neutrinos and leptons, respectively. We stress

that these states are quasi-Dirac neutrinos and, thus, for six heavy neutrinos at LHC the

existence of up to three new particles could be established. Note, that the final states

containing a W -boson allow for a direct mass measurement.

Beside the above decay modes, also decays into SUSY particle are possible if kinematics

allow for it. For example we find that for BLRSP4 the decay into ν̃1,2,3χ̃
0
1 are possible and

have branching ratios of about 3 per-cent. In scenarios like BLRSP3, BLRSP4 and BLRSP5

the main production of the heavy neutrinos is via the Z ′ and, thus, a high luminosity will

be required to observe such final states.

E. SUSY cascade decays

In this section we point out several features which distinguish the BLR model from the

usual MSSM. For the sake of preparing the ground, let us first summarize the main features

of the MSSM relevant for the LHC, focusing for the time being on scenarios where the gluino

is heavier than the squarks: (i) The gluino decays dominantly into squarks and quarks. (ii)

9 For related discussions see e.g. [107–109] and references therein.
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L-squarks and L-sleptons decay dominantly into the chargino and the neutralino which are

mainly SU(2)L-gauginos. Apart from kinematical effects the branching ratio for decays into

the charged wino divided by the branching ratio into the neutral wino is about 2:1. (iii)

R-squarks and R-sleptons decay dominantly into the bino-like neutralino with a branching

ratio often quite close to 100 per-cent. (iv) In case of third generation sfermions also decays

into higgsinos are important.

In the BLR model one has two main new features: (i) there are additional neutralinos

and (ii) the sneutrino sector is enlarged as well. The latter implies that sneutrino LSPs

are possible consistent with all astrophysical constraints and direct dark matter searches

[110–116]. This feature is for example realised in study points BLRSP1 and BLRSP310.

Let us start the discussion with BLRSP1. In this point the four lighter neutralinos are

the usual MSSM neutralinos with the standard hierarchy. The fifth state corresponds to

the additional U(1)-gaugino, which we call B̃⊥, whereas the two additional states are the

additional higgsinos. Note that the lighest neutralino is not stable anymore but decays

into final states containing all nine neutrinos as well as the three lightest sneutrinos. Of

the latter ones the second lightest is so long lived that it will lead to a displaced vertex

in a typical collider detector. The third sneutrino decays dominatly via three-body decays

into l+l−ν̃i and νkνlν̃i with i = 1, 2 and k, l = 1, 2, 3. As discussed in section IVD the

heavy neutrinos decay dominantly into W -bosons and charged leptons, thus the decays of

the lightest neutralino are not invisible.

B̃⊥ appears for example in the decays of d̃R and s̃R with branching ratios BR(qχ̃0
1) ≃ 0.8

and BR(qχ̃0
5) ≃ 0.2. For completeness we remark that the decays of ũR and c̃R into χ̃0

5 is

suppressed as the corresponding coupling is supressed as are the couplings of Z ′ to u-type

quarks in this model. χ̃0
5 decays dominantly into sleptons and sneutrinos. Combining all

the above together one gets a much richer structure for the decays of the R-squarks, e.g. the

following decay chains:

q̃R → qχ̃0
1 → qνkν̃1 → qνjZν̃1 (58)

q̃R → qχ̃0
1 → qνkν̃1 → ql±W∓ν̃1 (59)

q̃R → qχ̃0
1 → qνkν̃3 → ql±W∓l̃′+l′−ν1 (60)

q̃R → qχ̃0
5 → ql±l̃∓i → ql±l∓χ̃0

1 → ql±l∓νkν̃1 → ql±l∓l′±W∓ν̃1 (61)

with k ∈ {4, 5, 6, 7, 8, 9} and j ∈ {1, 2, 3}. Of course, several other combinations are possible

as well.

From equations (58) to (61) one sees immediatly that the standard signature of R-squarks,

namely jet and missing energy, is only realized in a few cases in this study point, e.g. if in

eq. (58) the Z decays into neutrinos. Interestingly, the chain via χ̃0
5 into sleptons leads to

a characteristic edge in the invariant mass of the lepton which can be used to determine

10 We note for completeness, that the relic abundance is actually somewhat too large in this point but can

easily be adjusted by changing for example in BLRSP1 tanβR from 1.05 to 1.0475 without changing the

collider features of BLRSP1.
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the corresponding masses once combined with information from other decay chains. Also

in the study points BLRSP2 and BLRSP5 d̃R and s̃R decay into heavy neutralinos, which

contain sizable content of the extra U(1) gaugino, with a sizable branching ratio. However,

there the situation is somewhat less involved as in these study points the lightest bino-like

neutralino is the LSP.

Another interesting feature is, that χ̃0
5 decays also into the heavier sneutrinos which

themselves decay into the LSP plus h1. Similarely h1 can be produced in the decays of the

heavy neutrinos implying that this state can be produced with sizable rate in SUSY cascade

decays. However, as the corresponding final states are quite complicated a dedicated Monte

Carlo study will be necessary to decide if this is indeed a discovery channel for h1.

From the point of view of SUSY cascade decays BLRSP2 looks essentially like a standard

MSSM point. Inspection of the spectrum shows that χ̃0
2 is essentially a higgsino correspond-

ing to the extended U(1) sector but it shows hardly up in the cascade decays. Its main

production channel is via an s-channel Z ′ but even in this case the corresponding cross

section is so low that it will not be dedected at the LHC even with an integrated luminosity

of 300 fb−1. Another interesting feature shows up in the decays of χ̃0
3 which is mainly the

neutral wino and gets copiously produced in the decays of the L-squarks: it decays with

about 77 (15) per-cent into h1 (h2), implying that the cascade decays are an important

source of Higgs bosons.

In case of BLRSP3 one has sneutrino LSPs like in BLRSP1 but with a different hierar-

chy in the spectrum, as the three lightest sleptons are lighter then the lighest neutralino.

Therefore the χ̃0
1 has also sizable decay rates into charged sleptons which sum to about 30

per-cent. The sleptons decay then further into W−ν̃1,2,3 and ν2,3 via 3-body decays into

f f̄ -pairs. The latter, however, are rather soft due to the small mass difference. In addition

we have the decay channel into a light neutrino and one of the heavier sneutrinos which

themselves decay into a lighter sneutrino and either one of the Higgs boson or the Z-boson.

Putting again all these decays together one obtains for the χ̃0
1 decays

χ̃0
1 → l±l̃∓ → l±W∓ν̃1 (62)

χ̃0
1 → l±l̃∓ → l±W∓ν̃2,3 → l±W∓f f̄ ν̃1 (63)

χ̃0
1 → νj ν̃2,3 → ν1,2,3f f̄ ν̃1 (64)

χ̃0
1 → νj ν̃1 (65)

χ̃0
1 → νj ν̃k → νjh1,2ν̃1 (66)

χ̃0
1 → νj ν̃k → νjh1,2f f̄ ν̃1 (67)

with j = 1, 2, 3 and k = 4, 5, 6. This implies that the decays of the R-squarks show again

a more complicated structure compared to the usual CMSSM expectations. Channels (66)

and (67) give h1 in about 15 per-cent of the final states of χ̃0
1. Moreover, χ̃0

2 and χ̃+
1 decay

dominantly into sleptons and sneutrinos. Here a new feature is found for χ̃+
1 , as also the
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following chains

χ̃+
1 → l+ν̃5,6 → l+Zν̃1 (68)

χ̃+
1 → l+ν̃5,6 → l+h1,2ν̃1 (69)

gives rise to sharp edge structures. However, as the main final states of Z and h1,2 are two

jets, the feasability still needs to be investigated.

In BLRSP4 we have chosen µR = 260 GeV in order to construct an LSP which is essen-

tially a h̃R. Here, the R-sleptons are lighter than χ̃0
2, which is essentially bino-like in this

point, giving rise to the following decay chain of the down-type R-squarks

d̃R → dχ̃0
2 → dl±l̃∓ → dl±l∓χ̃0

1 (70)

Nearly all cascade decays end in a χ̃0
2 or one of the lighter sleptons. Due to the fact, that in

this particular case the additional sneutrino states are hardly produced, it might be difficult

to disthinguish it from the NMSSM, at least as long as the Z ′ is not discovered. The heavier

L-sleptons do not show up in the cascade decays of squarks and gluinos but can be produced

via the Z ′ as discussed in section V.

BLRSP5 is similar to BLRSP1 but compatible with pure GUT conditions, e.g. µR and

mAR
are not input in this case put derived quantities. To fullfill the tadpole equations we

have to choose Ys = 0.3 and tan βR = 1.03 if we want a relatively low m0 = 500 GeV

while M1/2 = 850 GeV. The choice of Ys leads automatically to large masses for the heavy

neutrinos such that the lightest Higgs can not decay into those states. As in BLRSP1 the

down-type R-squarks decay not only into χ̃0
1 but also into χ̃0

6 with a branching ratio of about

13 per-cent. For completeness, we note that here χ̃0
3 ≃ h̃R. However this state gets hardly

produced in any of the SUSY decays or via the Z ′. Therefore, it is likely that LHC will miss

it and also at a linear collider such as ILC or CLIC it will be difficult to study, due to the

small production cross section.

V. CONCLUSIONS

We have studied the minimal supersymmetric U(1)B−L×U(1)R extension of the standard

model. The model is minimal in the sense that the extended gauge symmetry is broken with

the minimal number of Higgs fields. In the matter sector the model contains (three copies

of) a superfield ν̂c, to cancel anomalies. Adding three singlet superfields Ŝ allows to generate

small neutrino masses with an inverse seesaw mechanism.

The phenomenology of the model differs from the MSSM in a number of interesting

aspects. We have foccused on the Higgs phenomenology and discussed changes in SUSY

spectra and decays with respect to the MSSM. The model is less constrained then the

CMSSM from the possible measurement of a Higgs with a mass of the order of 125 GeV. If

the hints found in LHC data [7, 8] is indeed correct our model predicts two relatively light

states should exist, with the second h0 corresponding (mostly) to the lightest of the “right”

Higgses, added to break the extended gauge group.
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It is interesting, as we have discussed, that very often a right sneutrino is found to be the

LSP. This will affect all constraints on CMSSM parameter space derived from constraints on

the dark matter abundance. In fact, if the right sneutrino is indeed the LSP in our model,

no constraint on any CMSSM parameters can be derived from DM constraints.

The model has new D-terms in all scalar mass matrices, which can lead to sizeable

changes in the SUSY spectra, of potential phenomenological interest. We have discussed a

few benchmark points, covering a number of features which could allow to distinguish the

model from the CMSSM. Obviously this includes the discovery of a Z ′ at the LHC where we

have shown that the current bounds from LHC data depend on the details of the particle

spectrum. Also the cascade decays of supersymmetric particles can be significantly more

involved than in the usual CMSSM as the additional neutralinos, neutrinos and sneutrinos

lead to enhancement of the multiplicities in the final states. This implies that the existing

limits on the CMSSM parameter space get modified as standard final states have reduced

branching ratios and at the same time additional final states are present. In case that the

mBLR model is indeed realized these new cascade decays will offer additional kinematical

information on the particle spectrum.
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Appendix A: Appendix

1. Mass matrices

Here we list the tree-level mass matrices of the model not given in the main text.

• Mass matrix for Down-Squarks, Basis:
(

d̃L, d̃R

)

m2
d̃
=





m2
LL

1√
2

(

vdT
†
d − vuµY

†
d

)

1√
2

(

vdTd − vuYdµ
∗
)

m2
RR



 (A1)
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m2
LL = m2

q +
v2d
2
Y †
d Yd −

1

24

((

g2BL + g2BLR − gBLRgR − gBLgRBL

)(

v2χR
− v2χ̄R

)

+
(

3g2L + gBLgRBL + gBLRgR

)(

v2d − v2u

))

1 (A2)

m2
RR = m2

d +
v2d
2
YdY

†
d

+
1

24

((

g2BL + g2BLR − 4(gBLRgR + gBLgRBL) + 3(g2R + g2RBL)
)(

v2χR
− v2χ̄R

)

+
(

gBLgRBL + gBLRgR − 3(g2R + g2RBL)
)(

v2d − v2u

))

1 (A3)

• Mass matrix for Up-Squarks, Basis: (ũL, ũR)

m2
ũ =





m2
LL

1√
2

(

− vdµY
†
u + vuT

†
u

)

1√
2

(

− vdYuµ
∗ + vuTu

)

m2
RR



 (A4)

m2
LL = m2

q +
v2u
2
Y †
uYu −

1

24

((

g2BL + g2BLR − gBLRgR − gBLgRBL

)(

v2χR
− v2χ̄R

)

+
(

3g2L − gBLgRBL − gBLRgR

)(

v2u − v2d

))

1 (A5)

m2
RR = m2

u +
v2u
2
YuY

†
u

+
1

24

((

g2BL + g2BLR + 2(gBLRgR + gBLgRBL)− 3(g2R + g2RBL)
)(

v2χR
− v2χ̄R

)

+
(

gBLgRBL + gBLRgR + 3(g2R + g2RBL)
)(

v2d − v2u

))

1 (A6)

• Mass of the Charged Higgs boson: One obtains the same expression as in the

MSSM:

m2
H+ = Bµ (tan β + cotβ) +m2

W (A7)

• Mass matrix for Charginos, Basis:
(

W̃−, H̃−
d

)

,
(

W̃+, H̃+
u

)

mχ̃− =

(

M2
1√
2
gLvu

1√
2
gLvd µ

)

(A8)

2. Calculation of the mass spectrum

We are going to present now the basic steps to calculate the mass spectrum. As starting

point we use electroweak precision data to get the gauge and Yukawa couplings: the SM-

like Yukawa couplings are calculated from the fermion masses and the one-loop relations

of ref. [73] which have been adjusted to our model. Similarly, also the standard model

gauge couplings are calculated by the same procedure presented in ref. [73], but again,

including all new contributions of the mode under consideration. Since the entire RGE
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running is performed in the basis SU(3)C × SU(2)L × U(1)R × U(1)B−L, the value of the

GUT normalized gBL and gR are matched to the GUT normalized hypercharge coupling gY
by

gR =cRY gY , (A9)

gBL =
5gBLRgRBLgR −

√
6gRBLg

2
Y +

√

(3g2BLR − 2
√
6gBLRgR + 2g2R)(5(g

2
R + g2RBL − 3g2Y )g

2
Y

5g2R − 3g2Y
.

(A10)

This is nothing else then an inversion of the well known relation between the gauge couplings

for U(1)R×U(1)B−L → U(1)Y including the off-diagonal gauge couplings given in eq. (A11).

We are using the SO(10) GUT normalization of
√

3
5
for U(1)Y and

√

3
2
for U(1)B−L. To

get the correct values of cRY as well as gRBL and gBLR an iterative procedure is used: cRY is

calculated as ratio of the gY and gBL when running down from the GUT scale and applying

gY =

√

5(gBLgR − gBLRgRBL)2

3(g2BL + gBLR) + 2(g2R + g2RBL)− 2
√
6(gRgBLR + gBLgRBL)

(A11)

When the gauge and Yukawa couplings are derived, the RGEs are then evaluated up

to the GUT scale where the corresponding boundary conditions of eqs. (5), (6) and (12)

are applied. Afterwards a RGE running of the full set of parameters to the SUSY scale

is performed. We use always 2-loop RGEs which include the full effect of kinetic mixing

[64, 117].

The running parameters are then used to calculate the tree level mass spectrum. However,

it is well known that the one-loop corrections can be very important for particular particles

and have to be taken into account. The best known example is the light MSSM Higgs

boson which get shifted by up to 50% per-cent in case of heavy stops. Similar effects can

be expected in the extended Higgs sector especially since these can be very light at tree-

level. Similarly, the gauginos arising in an extended gauge sector can be potentially light

and receive important corrections at one-loop [65]. To take these and all other possible

effects into account we use a complete one-loop correction of the entire mass spectrum. Our

procedure to calculate the one-loop masses is based on the method proposed in Ref.[73]:

first, all running DR parameters are calculated at the SUSY scale and the SUSY masses

at tree-level are derived. The EW vevs vd and vu are afterwards re-calculated using the

one-loop corrected Z mass and demanding

m2
Z + δm2

Z =
(g2BLg

2
L + g2BLg

2
R + g2Lg

2
R)v

2

4(g2BL + g2R)
(v2d + v2u) (A12)

in addition with the running value of tanβ. Note that δm2
Z as well as all other self-energies

include the corrections originated by all particles present in the mBLR. These calculations

are performed in DR scheme and ’t Hooft gauge. Also the complete dependence on the

external momenta are taken into account. The re-calculated vevs are afterwards used to
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solve the tree-level tadpole equations again and to re-calculate the tree-level mass spectrum

as well as all vertices entering the one-loop corrections. Using these vertices and masses, the

one-loop corrections δti to the tadpole equations are derived and we use as renormalization

condition

ti − δti = 0 . (A13)

These one-loop corrected tadpole equations are solved with respect to the same parameter

as at tree level resulting in new parameters µ(1), B
(1)
µ , µ

(1)
R , B

(1)
µR respectively µ(1), B

(1)
µ , m

2,(1)
χR ,

m
2,(1)
χ̄R

. The final step is to calculate all self-energies for different particles and to use those

to get the one-loop corrected mass spectrum.

1. Real scalars: for a real scalar φ, the one-loop corrections are included by calculating

the real part of the poles of the corresponding propagator matrices [73]

Det
[

p2i1−m2
φ,1L(p

2)
]

= 0, (A14)

where

m2
φ,1L(p

2) = m̃2
φ,T − Πφ(p

2). (A15)

Equation (A14) has to be solved for each eigenvalue p2 = m2
i which can be achieved

in an iterative procedure. This has to be done also for charged scalars as well as the

fermions. Note, m̃2
T is the tree-level mass matrix but for the parameters fixed by the

tadpole equations the one-loop corrected values X(1) are used.

2. Complex scalars: for a complex scalar η field we use at one-loop level

m2,η
1L (p

2
i ) = m̃2,η

T − Πη(p
2
i ), (A16)

While in case of sfermions m̃2,η
T agrees exactly with the tree-level mass matrix, for

charged Higgs bosons µ(1) and B
(1)
µ or m

(1)
Hd

and m
(1)
Hd

has to be used depending on the

set of parameters the tadpole equations are solved for.

3. Majorana fermions: the one-loop mass matrix of a Majorana χ fermion is related

to the tree-level mass matrix by

Mχ
1L(p

2
i ) = Mχ

T − 1

2

[

Σ0
S(p

2
i ) + Σ0,T

S (p2i ) +
(

Σ0,T
L (p2i ) + Σ0

R(p
2
i )
)

Mχ
T

+M χ̃0

T

(

Σ0,T
R (p2i ) + Σ0

L(p
2
i )
)

]

, (A17)

where we have denoted the wave-function corrections by Σ0
R, Σ

0
L and the direct one-

loop contribution to the mass by Σ0
S.

4. Dirac fermions: for a Dirac fermion Ψ one has to add the self-energies as

MΨ
1L(p

2
i ) = MΨ

T − Σ+
S (p

2
i )− Σ+

R(p
2
i )M

Ψ
T −MΨ

T Σ
+
L(p

2
i ). (A18)
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Note, this procedure agrees with the method implemented in SPheno 3.1.10 to calculate

the loop masses in the MSSM as well as with the code produced by SARAH 3.0.39 or later.

However, there are small differences to earlier versions of SPheno as well as other spectrum

calculators: the MSSM equivalent of condition eq (A12) is often solved in an iterative way

using the one-loop corrected parameters from the tadpole equations to calculate δm2
Z until

m2
Z + δm2

Z has converged. In this context also µ(1) and B
(1)
µ are used in the vertices entering

the one-loop corrections. However, these steps mix tree- and one-loop level and break

therefore gauge invariance: when we tried this approach the relation between Goldstone and

gauge bosons mass is violated. However, the numerical differences in case of the MSSM

turned out to be rather small.

As example we give the necessary formulae to calculate the one-loop corrections to the

tadpole equations and the scalar Higgs masses in appendix A3.

3. 1-loop corrections of the Higgs sector

As discussed in section A2 we have calculated the entire mass spectrum at one-loop.

For that purpose it is necessary to calculate all possible 1-loop diagrams for the one- and

two-point functions. As example we here give the corresponding expressions for the one-

loop corrections of the tadpoles as well as the self-energy for the scalar Higgs fields. For all

other self-energies we refer to the output of SARAH11. The results are expressed via Passarino

Veltman integrals [73]. The basic integrals are

A0(m) = 16π2Q4−n

∫

dnq

i (2π)n
1

q2 −m2 + iε
, (A19)

B0(p,m1, m2) = 16π2Q4−n

∫

dnq

i (2π)n
1

[

q2 −m2
1 + iε

][

(q − p)2 −m2
2 + iε

] , (A20)

with the renormalization scale Q. All the other, necessary functions can be expressed by A0

and B0. For instance,

B1(p,m1, m2) =
1

2p2

[

A0(m2)−A0(m1) + (p2 +m2
1 −m2

2)B0(p,m1, m2)

]

, (A21)

and

F0(p,m1, m2) =A0(m1)− 2A0(m2)− (2p2 + 2m2
1 −m2

2)B0(p,m1, m2) , (A22)

G0(p,m1, m2) =(p2 −m2
1 −m2

2)B0(p,m1, m2)−A0(m1)−A0(m2) (A23)

The numerical evalution of all loop-integrals is performed by SPheno. With this conventions

we can write the one-loop tadpoles as

δt(1)σi
= +

3

2
A0

(

m2
Z

)

Γσi,Z,Z +
3

2
A0

(

m2
ZR

)

Γσi,ZR,ZR
+ 3A0

(

m2
W−

)

Γσi,W+,W−

11 To get the model files of the mBLR which is not yet part of the public version of SARAH please send a mail

to the authors.
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+ 16A0

(

m2
ν1

)

Γσi,ν1,ν1m
2
ν1
−

2
∑

a=1

A0

(

m2
H−

a

)

Γσi,H
+
a ,H−

a

+ 4
2
∑

a=1

A0

(

m2
χ̃−

a

)

ΓL
σi,χ̃

+
a ,χ̃−

a
m2

χ̃−

a
+ 12

3
∑

a=1

A0

(

m2
da

)

ΓL
σi,d̄a,da

m2
da

+ 4
3
∑

a=1

A0

(

m2
ea

)

ΓL
σi,ēa,ea

m2
ea + 12

3
∑

a=1

A0

(

m2
ua

)

ΓL
σi,ūa,ua

m2
ua

− 1

2

4
∑

a=1

A0

(

m2
A0,a

)

Γσi,A0,a,A0,a
− 1

2

4
∑

a=1

A0

(

m2
ha

)

Γσi,ha,ha
− 3

6
∑

a=1

A0

(

m2
d̃a

)

Γσi,d̃∗a,d̃a

−
6
∑

a=1

A0

(

m2
ẽa

)

Γσi,ẽ∗a,ẽa − 3
6
∑

a=1

A0

(

m2
ũa

)

Γσi,ũ∗

a,ũa

+ 2

7
∑

a=1

A0

(

m2
χ̃0
a

)

ΓL
σi,χ̃0

a,χ̃
0
a
m2

χ̃0
a
−

9
∑

a=1

A0

(

m2
ν̃a

)

Γσi,ν̃∗a,ν̃a

+ 2

9
∑

a=1

A0

(

m2
νa

)

Γσi,νa,νam
2
νa (A24)

with σi = (σd, σu, σR, σ̄R)
T
i . Γxyz denotes the vertex of the three particles x, y z, while

Γwxyz will be used for four-point interactions. For chiral couplings we use ΓL as coefficient

of the left and ΓR as coefficient of the right polarization operator. For instance, Γσd,Z,Z is

the coupling of a pure down-type Higgs to a Z boson while ΓL
σR,χ̃0

2
,χ̃0

2

corresponds to the

left-chiral part of the interaction of a R-Higgs to a neutralino of the second generation. The

expressions for all vertices can be obtained with SARAH.

Using these conventions the self-energy for the scalar Higgs fields reads

Πσi,σj
(p2) =

7

4
B0

(

p2, m2
Z , m

2
Z

)

Γ∗
σj ,Z,Z

Γσi,Z,Z

+
7

2
B0

(

p2, m2
Z , m

2
ZR

)

Γ∗
σj ,ZR,ZΓσi,ZR,Z +

7

4
B0

(

p2, m2
ZR

, m2
ZR

)

Γ∗
σj ,ZR,ZR

Γσi,ZR,ZR

+
7

2
B0

(

p2, m2
W−, m2

W−

)

Γ∗
σj ,W+,W−Γσi,W+,W− + 2A0

(

m2
Z

)

Γσi,σi,Z,Z + 2A0

(

m2
ZR

)

Γσi,σi,ZR,ZR

+ 4A0

(

m2
W−

)

Γσi,σi,W+,W− −
2
∑

a=1

A0

(

m2
H−

a

)

Γσi,σi,H
+
a ,H−

a

+

2
∑

a=1

2
∑

b=1

B0

(

p2, m2
H−

a
, m2

H−

b

)

Γ∗
σj ,H

+
a ,H−

b

Γσi,H
+
a ,H−

b

− 2

2
∑

a=1

mχ̃+
a

2
∑

b=1

B0

(

p2, m2
χ̃−

a
, m2

χ̃−

b

)

mχ̃−

b

(

ΓL∗
σj ,χ̃

+
a ,χ̃−

b

ΓR
σi,χ̃

+
a ,χ̃−

b

+ ΓR∗
σj ,χ̃

+
a ,χ̃−

b

ΓL
σi,χ̃

+
a ,χ̃−

b

)

+

2
∑

a=1

2
∑

b=1

G0

(

p2, m2
χ̃−

a
, m2

χ̃−

b

)(

ΓL∗
σj ,χ̃

+
a ,χ̃−

b

ΓL
σi,χ̃

+
a ,χ̃−

b

+ ΓR∗
σj ,χ̃

+
a ,χ̃−

b

ΓR
σi,χ̃

+
a ,χ̃−

b

)
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− 6
3
∑

a=1

md̄a

3
∑

b=1

B0

(

p2, m2
da , m

2
db

)

mdb

(

ΓL∗
σj ,d̄a,db

ΓR
σi,d̄a,db

+ ΓR∗
σj ,d̄a,db

ΓL
σi,d̄a,db

)

+ 3
3
∑

a=1

3
∑

b=1

G0

(

p2, m2
da , m

2
db

)(

ΓL∗
σj ,d̄a,db

ΓL
σi,d̄a,db

+ ΓR∗
σj ,d̄a,db

ΓR
σi,d̄a,db

)

− 2
3
∑

a=1

mēa

3
∑

b=1

B0

(

p2, m2
ea , m

2
eb

)

meb

(

ΓL∗
σj ,ēa,eb

ΓR
σi,ēa,eb

+ ΓR∗
σj ,ēa,eb

ΓL
σi,ēa,eb

)

+
3
∑

a=1

3
∑

b=1

G0

(

p2, m2
ea , m

2
eb

)(

ΓL∗
σj ,ēa,eb

ΓL
σi,ēa,eb

+ ΓR∗
σj ,ēa,eb

ΓR
σi,ēa,eb

)

− 6
3
∑

a=1

mūa

3
∑

b=1

B0

(

p2, m2
ua
, m2

ub

)

mub

(

ΓL∗
σj ,ūa,ub

ΓR
σi,ūa,ub

+ ΓR∗
σj ,ūa,ub

ΓL
σi,ūa,ub

)

+ 3
3
∑

a=1

3
∑

b=1

G0

(

p2, m2
ua
, m2

ub

)(

ΓL∗
σj ,ūa,ub

ΓL
σi,ūa,ub

+ ΓR∗
σj ,ūa,ub

ΓR
σi,ūa,ub

)

− 1

2

4
∑

a=1

A0

(

m2
A0,a

)

Γσi,σi,A0,a,A0,a
− 1

2

4
∑

a=1

A0

(

m2
ha

)

Γσi,σi,ha,ha

+
1

2

4
∑

a=1

4
∑

b=1

B0

(

p2, m2
A0,a

, m2
A0,b

)

Γ∗
σj ,A0,a,A0,b

Γσi,A0,a,A0,b

+
1

2

4
∑

a=1

4
∑

b=1

B0

(

p2, m2
ha
, m2

hb

)

Γ∗
σj ,ha,hb

Γσi,ha,hb
− 3

6
∑

a=1

A0

(

m2
d̃a

)

Γσi,σi,d̃∗a,d̃a

−
6
∑

a=1

A0

(

m2
ẽa

)

Γσi,σi,ẽ∗a,ẽa − 3
6
∑

a=1

A0

(

m2
ũa

)

Γσi,σi,ũ∗

a,ũa

+ 3
6
∑

a=1

6
∑

b=1

B0

(

p2, m2
d̃a
, m2

d̃b

)

Γ∗
σj ,d̃∗a,d̃b

Γσi,d̃∗a,d̃b
+

6
∑

a=1

6
∑

b=1

B0

(

p2, m2
ẽa, m

2
ẽb

)

Γ∗
σj ,ẽ∗a,ẽb

Γσi,ẽ∗a,ẽb

+ 3
6
∑

a=1

6
∑

b=1

B0

(

p2, m2
ũa
, m2

ũb

)

Γ∗
σj ,ũ∗

a,ũb
Γσi,ũ∗

a,ũb

−
7
∑

a=1

mχ̃0
a

7
∑

b=1

B0

(

p2, m2
χ̃0
a
, m2

χ̃0
b

)

mχ̃0
b

(

ΓL∗
σj ,χ̃0

a,χ̃
0
b
ΓR
σi,χ̃0

a,χ̃
0
b
+ ΓR∗

σj ,χ̃0
a,χ̃

0
b
ΓL
σi,χ̃0

a,χ̃
0
b

)

+
1

2

7
∑

a=1

7
∑

b=1

G0

(

p2, m2
χ̃0
a
, m2

χ̃0
b

)(

ΓL∗
σj ,χ̃0

a,χ̃
0
b
ΓL
σi,χ̃0

a,χ̃
0
b
+ ΓR∗

σj ,χ̃0
a,χ̃

0
b
ΓR
σi,χ̃0

a,χ̃
0
b

)

−
9
∑

a=1

A0

(

m2
ν̃a

)

Γσi,σi,ν̃∗a ,ν̃a +
9
∑

a=1

9
∑

b=1

B0

(

p2, m2
ν̃a, m

2
ν̃b

)

Γ∗
σj ,ν̃∗a ,ν̃b

Γσi,ν̃∗a ,ν̃b

−
9
∑

a=1

mνa

9
∑

b=1

B0

(

p2, m2
νa , m

2
νb

)

mνb

(

ΓL∗
σj ,νa,νb

ΓR
σi,νa,νb

+ ΓR∗
σj ,νa,νb

ΓL
σi,νa,νb

)
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+
1

2

9
∑

a=1

9
∑

b=1

G0

(

p2, m2
νa , m

2
νb

)(

ΓL∗
σj ,νa,νb

ΓL
σi,νa,νb

+ ΓR∗
σj ,νa,νb

ΓR
σi,νa,νb

)

+ 2
2
∑

b=1

Γ∗
σj ,W+,H−

b

Γσi,W+,H−

b
F0

(

p2, m2
H−

b

, m2
W−

)

+
4
∑

b=1

Γ∗
σj ,γ,A0,b

Γσi,γ,A0,b
F0

(

p2, m2
A0,b

, 0
)

+
4
∑

b=1

Γ∗
σj ,Z,A0,b

Γσi,Z,A0,b
F0

(

p2, m2
A0,b

, m2
Z

)

+
4
∑

b=1

Γ∗
σj ,ZR,A0,b

Γσi,ZR,A0,b
F0

(

p2, m2
A0,b

, m2
ZR

)

(A25)

4. RGEs

The calculation of the renormalization group equations performed by SARAH is based on

the generic expression of [117]. In addition, the results of [64] are used to include the effect

of kinetic mixing.

The β functions for the parameters of a general superpotential written as

W (φ) =
1

2
µijφiφj +

1

6
Y ijkφiφjφk (A26)

can be easily obtained from the shown results for the anomalous dimensions by using the

relations [118, 119]

βijk
Y = Y p(ijγp

k) , (A27)

βij
µ = µp(iγp

j) . (A28)

For the results of the other parameters as well as for the two-loop results which we skip here

because of their length we suggest to use the function CalcRGEs[] of SARAH.

a. Anomalous dimensions

γ
(1)
q̂ =

1

12

(

12
(

Y †
d Yd + Y †

uYu

)

−
(

18g2L + 32g2s + g2BL + g2BLR

)

1
)

(A29)

γ
(1)

l̂
= −3

4

(

2g2L + g2BL + g2BLR

)

1+ Y †
e Ye + Y †

v Yv (A30)

γ
(1)

Ĥd
=

1

2

(

2Tr
(

YeY
†
e

)

− 3g2L + 6Tr
(

YdY
†
d

)

− g2R − g2RBL

)

(A31)

γ
(1)

Ĥu
=

1

2

(

2Tr
(

YvY
†
v

)

− 3g2L + 6Tr
(

YuY
†
u

)

− g2R − g2RBL

)

(A32)

γ
(1)
χ̂R

=
1

4

(

− 2g2R − 2g2RBL + 2
√
6gBLgRBL + 2

√
6gBLRgR − 3g2BL − 3g2BLR + 4Tr

(

YsY
†
s

))

(A33)
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γ
(1)
ˆ̄χR

=
1

4

(

− 2
(

g2R + g2RBL

)

+ 2
√
6gBLgRBL + 2

√
6gBLRgR − 3g2BL − 3g2BLR

)

(A34)

γ
(1)

Ŝ
= Y †

s Ys (A35)

γ
(1)
û =

1

12

(

24Y ∗
u Y

T
u −

(

2
√
6gBLgRBL + 2

√
6gBLRgR + 32g2s + 6g2R + 6g2RBL + g2BL + g2BLR

)

1
)

(A36)

γ
(1)

d̂
=

1

12

(

24Y ∗
d Y

T
d −

(

− 2
√
6gBLgRBL − 2

√
6gBLRgR + 32g2s + 6g2R + 6g2RBL + g2BL + g2BLR

)

1
)

(A37)

γ
(1)
ν̂ =

1

4

(

−
(

2
(

g2R + g2RBL

)

− 2
√
6gBLgRBL − 2

√
6gBLRgR + 3g2BL + 3g2BLR

)

1

+ 4
(

2Y ∗
v Y

T
v + Y ∗

s Y
T
s

))

(A38)

γ
(1)
ê =

1

4

(

−
(

2
(

g2R + g2RBL

)

+ 2
√
6gBLgRBL + 2

√
6gBLRgR + 3g2BL + 3g2BLR

)

1+ 8Y ∗
e Y

T
e

)

(A39)

b. Gauge Couplings

β(1)
gBL

=
1

4

(

27g3BL − 2
√
6g2BLgRBL + gBL

(

27g2BLR + 30g2RBL −
√
6gBLRgR

)

+ gBLR

(

30gR −
√
6gBLR

)

gRBL

)

(A40)

β(1)
gR

=
1

4

(

27gBLgBLRgRBL + 27g2BLRgR − 2
√
6gBLRg

2
R + 30g3R + 30gRg

2
RBL

−
√
6gBLgRgRBL −

√
6gBLRg

2
RBL

)

(A41)

β(1)
gBLR

=
1

4

(

g2BL

(

27gBLR −
√
6gR

)

+ gBL

(

30gRgRBL −
√
6gBLRgRBL

)

+ gBLR

(

27g2BLR − 2
√
6gBLRgR + 30g2R

))

(A42)

β(1)
gRBL

=
1

4

(

27g2BLgRBL + 30gRBL

(

g2R + g2RBL

)

+ gBL

(

27gBLRgR

−
√
6
(

2g2RBL + g2R

))

−
√
6gBLRgRgRBL

)

(A43)

β(1)
gL

= g3L (A44)

β(1)
gs = −3g3s (A45)
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c. Gaugino Mass Parameters

β
(1)
MBL

=
1

2

(

27g2BLMBL − gBL

(

− 27gBLRMBR + 2
√
6gRBLMBL +

√
6gRMBR

)

+ gRBL

(

30gRBLMBL + 30gRMBR −
√
6gBLRMBR

))

(A46)

β
(1)
MR

=
1

2

(

27g2BLRMR + 30gR

(

gRBLMBR + gRMR

)

+ gBL

(

27gBLR −
√
6gR

)

MBR

−
√
6gBLR

(

2gRMR + gRBLMBR

))

(A47)

β
(1)
MBR

=
1

4

(

27g2BLMBR + 27g2BLRMBR −
√
6gBLR

(

2gRMBR + gRBL

(

MBL +MR

))

+ 30
(

g2RMBR

+ g2RBLMBR + gRgRBL

(

MBL +MR

))

+ gBL

(

27gBLR

(

MBL +MR

)

−
√
6
(

2gRBLMBR + gR

(

MBL +MR

))))

(A48)

β
(1)
M2

= 2g2LM2 (A49)

β
(1)
M3

= −6g2sM3 (A50)
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