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Abstract: Non-extremal solution with warped resolved-deformed conifold back-

ground is important to study the infrared limit of large N thermal QCD. Earlier

works in this direction have not taken into account all the back-reactions on the

geometry, namely from the branes, fluxes, and black-hole carefully. In the present

work we make some progress in this direction by solving explicitly the supergrav-

ity equations of motions in the presence of the backreaction from the black-hole.

The backreactions from the branes and the fluxes on the other hand and to the or-

der that we study, are comparatively suppressed. Our analysis reveal, among other

things, how the resolution parameter would depend on the horizon radius and how

the RG flows of the coupling constants should be understood in these scenarios, in-

cluding their effects on the background three-form fluxes. We also study the effect of

switching on a chemical potential in the background and, in a particularly simplified

scenario, compute the actual value of the chemical potential for our case.



1. Introduction

Much of what is known about the phases of strongly coupled gauge theories (and

in particular, QCD) comes from a variety of techniques, each of which accompanied

by its attendant limitations. Perturbative (i.e. weak coupling) computations can

probe a large part of the parameter space of the theory, like allowing one to deal

with varying number of colors N , flavors Nf . However, these results are valid only at

temperatures well above the deconfinement temperature Tc, and at large values of the

baryon number chemical potential µ in order for the QCD coupling to be small, and

thus the perturbation valid. These exclusions put almost all of the interesting region

of the parameter space explored by RHIC data beyond the reach of perturbative

computations.

Lattice gauge theory, which provides a rigorous non-perturbative starting point

for QCD, is not without its limitations as well. It is difficult to incorporate realistic

quark masses, and results from the traditional lattice simulations are limited to the

regime near Tc, and µ very small1. Nonetheless, a combination of such conventional

methods of analysis (including insights from effective theories like chiral models)

suggest that the gauge theory possesses a color superconductivity phase at asymp-

totically large value of the baryon number chemical potential µ. The literature is

replete with conjectures for the phase diagram of QCD in the (T, µ) plane, especially

for small values of T and large values of µ (see for example [2, 1]).

In recent years, there has been a considerable advance in understanding the be-

havior of U(N) gauge theories at finite temperature using the gauge/gravity duality.

That this development is more than timely is beyond dispute, as the new and inter-

esting results from RHIC have provided a glimpse into a wide variety of interesting

phenomena arising in the strong coupling regime of QCD. For instance, the quark-

gluon plasma (identified as a new state of matter) displays many properties of a

fluid with low (shear) viscosity, explanations for which are difficult to obtain from

traditionally available tools in perturbative QCD.

Many (perhaps most!) analytic results coming from gauge-gravity duality are

derived for gauge theories with N = 4 supersymmetry and with N very large, and

in the limit of the theory possessing exact conformal symmetry. One may thus

genuinely be concerned about their applicability to QCD for which all these are not

true. Recent progress in this area, however, has provided us with strong hints to

overcome these limitations, and move towards models of gauge-gravity duality that

are not supersymmetric, and are non-conformal (in a sense that will be made precise

later).

The first set of models that managed to expand the original AdS/CFT con-

struction to incorporate renormalization group runnings are [9, 10] that connected

1Recent improvements in lattice simulations allow one to access temperature as high as 5Tc, see

for example the review [1]. We thank the referee for pointing this out to us.
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conformal fixed points at IR and UV, and [11] that connected the UV N = 4 confor-

mal fixed point to a N = 1 confining theory. The next set of models, that we would

be mostly interested in, do not have any fixed points (or fixed surfaces) in the paths

of the RG flows. The key example in this set is the Klebanov-Strassler (KS) model

[12] (with an extension by Ouyang [13] to incorporate fundamental matters) that

provided an IR dual of, although not exactly QCD, but at least its closest cousin:

large N supersymmetric QCD. The UV of the original Klebanov-Strassler model is

now known to have some issues, like the divergences of the Wilson loops at high en-

ergies, and additional Landau poles once fundamental matters have been introduced.

This means that UV completion is necessary, and to have the full gravity dual of the

corresponding gauge theory that behaves well at high energies, the KS geometry has

to be augmented by a proper asymptotic manifold.

Other extensions to the original KS model quickly followed. For example in

[23, 15] the cascading picture of the original KS model was extended to incorporate

black-hole without any fundamental matter, which was then further extended to

incorporate matter in [16]. However none of the above models actually considered

the full UV completion as most of the analysis of these works were directed towards

unravelling the IR physics. Therefore issues like UV divergences of Wilson loops and

Landau poles were not investigated.

In a series of works [6, 25, 30, 27] done over the last couple of years, we tried

to address these concerns. Our aim therein was to incorporate the backreactions

from the black-hole, fluxes, and branes consistently so as to have a well defined UV

completion that not only allow us to get rid of all the poles etc., but also give us

a model that could come closest to what we might have expected from a large N

thermal QCD. We did manage to at least successfully generate such a UV completed

dual picture, but many of the backreactions turned out to be too difficult to incor-

porate fully. One aim of this paper is to make progress in this direction. In sec.

2.1 we will show how exactly to incorporate the backreactions from the black-hole

in IR regime of our theory to lowest orders in string coupling, and color-to-flavor

ratio. Interestingly, to this order, the backreactions from branes and fluxes could be

consistenly ignored. We will demonstrate this in sec. 2.1.1, and relevant EOMs will

be solved in sec. 2.1.2 and in Appendix C.

Although to the order that we study the IR regime of our theory allows us to

ignore the backreactions of the fluxes, we will in-fact work out the detailed fluxes in

sec. 2.2. The backreactions from the black hole and the flavor seven-branes will be

fully incorporated in the fluxes. It will also be clear from sec. 2.2 as to how these

backreactions conspire to make the three-form fluxes non-ISD.

One persistent problem associated with thermal QCD is the interpretation of

beta function of the theory. There is a long history on the subject starting with the

classic work by Collins and Perry [19]. In sec. 2.3 we discuss briefly how we should

interpret the running of couplings from the gravity dual. Our work strongly suggest
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one framework, although alternative interpretation could possibly be entertained.

We end sec. 2 by taking a short detour. In sec. 2.4 we study the dipole and non-

commutative deformations of the seven-brane theory on the gravity side. This detour

is not without its merit. Dipole deformations are known to increase the masses of

the KK states, so that a dipole-deformed theory will have a slightly different KK

spectra. We again make very brief speculations of the underlying physics, leaving

most of the details for future work.

Thus sec. 2 prepares us with a backreacted metric, and with backreacted fluxes.

One may now go on with this to fill up rest of the missing steps left in [6, 25, 30, 27].

These issues however will be addressed in future works. Here we aim for more modest

return. In sec. 3 we present a small computation on the chemical potential. The

reason for choosing this computation over other possible interesting ones is two-fold.

One: its simple enough computation that carries sufficiently interesting physics, and

two: we use this to show in sec. 3.2 how an alternative way of getting the chemical

potential, via say duality chasing, may be inherently flawed. In sec. 3.3 we compute

the chemical potential for our model. In Appendices A, and B we speculate more

on the duality chasing techniques. We conclude in sec. 4 with some discussions.

2. Analysis of the background

Before discussing the details of the UV complete dual geometry, let us first review the

Klebanov-Tseytlin (KT), Klebanov-Strassler (KS) and Ouyang-Klebanov-Strassler

(OKS) geometry without the black hole. The supergravity description arises as the

low energy limit of brane excitations placed in conifold geometry. In particular, the

Klebanov-Tseytlin geometry arises from the following brane configuration: Embed

N D3 branes and M D5 branes in ten dimensional manifold with the metric

ds210 = −dt2 + d−→x 2 + ds26 (2.1)

where ds26 is given by

ds26 = dr2 + r2ds2T 1,1 (2.2)

The metric of the base T 1,1 is given by

ds2T 1,1 =
1

9

[
dψ +

2∑

i=1

cosθidφi

]2
+

1

6

2∑

i=1

[
dθ2i + sin2θ1dφ

2
i

]
(2.3)

That is we have four dimensional Minkowski space along with six dimensional coni-

fold. The D3 branes live in the flat four dimensional space and and are placed at the

tip of the conifold at fixed radial location r = 0. The D5 branes wrap the shrinking

two cycle S2 at the tip of the conifold and extend in four Minkowski directions.
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The excitations of the massless open strings ending on these D branes are

described by gauge fields and complex matter fields Ai, Bi, i = 1, 2 which trans-

form as bi-fundamental fields under the gauge group SU(N +M) × SU(N). Note

that the matter fields A1, A2 transform under global SU(2) and so do B1, B2 un-

der another SU(2) and we also have global U(1) phase rotation. Thus we have

SU(2) × SU(2) × U(1) global symmetry, which is also the symmetry of the coni-

fold.This is not surprising as these fields describe motion of the D branes [7] and the

branes move in the conifold direction. Thus the fields Ai, Bi are really coordinates

of the conifold

At the lowest energies, the entire setup of branes and their interaction with the

gravitons can be captured by supergravity with only fluxes and metric and no branes.

This geometry arising from supergravity is referred to as the dual geometry. For the

brane configuration just described, the dual geometry is the warped regular cone

with the following metric

ds2 =
1√
hKT

(
−dt2 + dx2 + dy2 + dz2

)
+
√
hKT

[
dr2 + r2ds2T 1,1

]

hKT =
L4

r4

[
1 +

3gsM
2

2πN
logr

]
(2.4)

The above warped geometry is known as the Klebanov-Tseytlin (KT) solution [8].

Right away, one observes that the warp factor hKT becomes negative for small r and

the geometry is not well defined. In fact classical gravity description breaks down

for small r and the solution (2.4) is only valid for large r.

Since r is related to the energy scale of the gauge theory, to understand what

happens for small r, we can look at the IR limit of the gauge group SU(N +M) ×
SU(N). If N = kM , k is a natural number, then at the IR, the gauge theory

cascades down to SU(M) under a Seiberg duality cascade. At the IR, the gauge

theory develops a non-perturbative superpotential and the vacuum solution gives

non-trivial expectation values for the gauge invariant operatorNij = AiBj , i, j = 1, 2.

This means detNij = ǫ2 6= 0. Since Ai, Bj are also cone coordinates, detNij = ǫ2 also

gives the cone embedding equation. However, ǫ 6= 0 just means we no longer have a

regular cone, but a deformed cone. This way the field theory analysis indicates that

the dual geometry must be a deformed cone.

Thus to resolve the small r singularity of the metric (2.4), we must replace

the warped regular cone with the deformed warped cone. This is the essence of the

Klebanov-Strassler (KS) proposal [12] and the dual geometry of the warped deformed

cone has the following metric:

ds2 =
1√
hKS

[
− dt2 + dx2 + dy2 + dz2

]
+
√
hKS ḡmndx

mdxn
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Field SU(N+M)×SU(N) SU(Nf)×SU(Nf ) SU(2)× SU(2)

q (N+M, 1) (Nf , 1) (1,1)

q̃ (N+M, 1) (1,Nf) (1,1)

Q (1,N+M) (Nf ,1) (1,1)

Q̃ (1,N+M) (1,Nf) (1,1)

A1,2 (N+M,N+M ) (Nf ,Nf ) (2,1)

B1,2 (N+M,N+M ) (Nf ,Nf ) (1,2)

Table 1: The field content and their representation under symmetry groups.

hKS(ρ) = α
22/3

4

∫ ∞

ρ

dx
x cothx− 1

sinh2x
(sinh(2x)− 2x)1/3 (2.5)

where α = O(g2sM
2) and ḡmn is the metric of the deformed cone

ḡmndx
mdxn =

1

2
a4/3K(ρ)

[ 1

3K3(ρ)

(
dρ2 + (g5)2

)
+ cosh2

(ρ
2

) [
(g3)2 + (g4)2

]

+sinh2
(ρ
2

) [
(g1)2 + (g2)2

] ]
(2.6)

where a is a constant, gi, i = 1, .., 5 are one forms given by

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5

e1 ≡ −sinθ1 dφ1, e2 ≡ dθ1

e3 ≡ cosψ sinθ2 dφ2 − sinψ dθ2,

e4 ≡ sinψ sinθ2 dφ2 + cosψ dθ2,

e5 ≡ dψ + cosθ1 dφ1 + cosθ2 dφ2 (2.7)

and K(ρ) is defined as:

K(ρ) =
(sinh(2ρ)− 2ρ)1/3

21/3sinhρ
(2.8)

For ρ large, we can make the following transformation r3 ∼ a2 eρ. Then one obtains

that the metric (2.5) and (2.4) become identical as r becomes very large. While KT

solution has singularities at small r, KS geometry is regular for all radial distances

and becomes KT geometry for large radial distance.

In both KS and KT solutions, there are no fundamental matter. To introduce

fundamental matter, one has to embedd D7 branes in the geometry and compute
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the backreaction of the axio-dilaton field sourced by the D7 branes. For holomorphic

embedding of D7 branes in KT geometry or equivalently embedding D7 branes in

large r regime of KS geometry, the effect of the axio-dilaton field on the metric was

computed by Ouyang [13]. The resulting Ouyang-Klebanov-Strassler (OKS) metric

up to linear order in gsNf is,

ds2 =
1√
hOKS

(
−dt2 + dx2 + dy2 + dz2

)
+
√
hOKS

[
dr2 + r2ds2T 1,1

]

hOKS =
L4

r4

[
1 +

3gsM
2

2πN
logr

{
1 +

3gsNf

2π

(
logr +

1

2

)
+
gsNf

4π
log

(
sin

θ1
2
sin

θ2
2

)}]

(2.9)

In addition to the bi-fundamental fields Ai, Bi, introduction of the D7 branes give

rise to flavor symmetry group SU(Nf )× SU(Nf ) and matter fields q, q̃, Q, Q̃ which

transform as fundamental under the gauge group SU(N +M) × SU(N) [13]. In

Table 1.1, we list the various matter fields and their representation under local and

global symmetry groups for the OKS model.

Therefore with a clear understanding of the distinction between KT, KS and OKS

geometry, let us come back to the model that we studied in [6]. The IR physics is

captured by the Ouyang-Klebanov-Strassler-black-hole (OKS-BH) geometry, namely,

the small r physics is determined by a warped resolved-deformed conifold with fluxes,

seven-branes and a black hole in the ten-dimensional spacetime. On the other hand

the UV physics is conformal, and is captured by an asymptotically AdS geometry

with fluxes and seven-branes.

As discussed in [25], these two geometries, namely the asymptotic AdS and OKS,

can be connected by an intermediate configuration with brane sources and fluxes.

These branes sources were elaborated in details in [25], although many coefficients

in the background geometry were left undetermined therein. In the following we will

fill up some of these missing steps.

Let us begin with the basic ansatze for the metric in the three regions. For all

the three regions we assume that the radial coordinate r spans b < r < rmin for

Region 1 where we expect all the confining dynamics to take place; rmin < r < ro
for the intermediate region called Region 2; and ro < r < ∞ for Region 3 which

captures the asymptotically conformal region. The minimum radius r = b, which

signifies the cut-off coming from the blown-up S3 (as well as S2, although for most

of the calculations in this paper we will only consider a warped resolved conifold

instead of a warped resolved-deformed conifold), maps to the expectation of the

gluino condensates of the dual gauge theory at zero temperature. Considering all

these regions, the non-extremal metric takes the following form:

ds2 =
1√
h

[
− g1(r)dt

2 + dx2 + dy2 + dz2
]
+
√
h
[
g2(r)

−1dr2 + dM2
5

]
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≡ −e2A+2Bdt2 + e2Aδijdx
idxj + e−2A−2B g̃mndx

mdxn (2.10)

where gi(r) are the black-hole factors and we have taken g1 = g2, the components go

as i, j = 1, 2, 3 and m,n = 4, ..., 9, the warp factors A,B are defined as:

A = − 1

4
log h, B =

1

2
log g1 (2.11)

dM2
5 is typically the metric of warped resolved-deformed conifold and h is the warp

factor that behaves differently in the three regions as shown in [25].

Observe that in the extremal limit, g1 = g2 ≈ 1 and the extremal metric is dual

to the low temperature confining phase of the gauge theory. To see this, note that

in the absence of any seven branes, Region 1 of the geometry of [25] in the extremal

limit is identical to the IR geometry of Klebanov-Strassler (KS) model [12]. If seven

branes are placed far away from Region 1, that is rmin ≫ b, we can neglect their

back-reactions and consider the axion-dilaton field to be effectively constant as in

[12]. Hence in the extremal limit, Region 1 of [25] is identical to the IR region of KS

which, in turn, is dual to the low temperature confining phase of the SU(M) gauge

theory wherein chiral symmetry is broken. The extremal geometry can incorporate

temperature of the field theory once we analytically continue to Euclidean signature

with it → τ and impose periodic and anti-periodic boundary conditions for the

bosons and fermions on the closed time circle. Furthermore, in extremal case the

entropy will vanish. This is expected as the entropy from the dual geometry arises

from the fluxes which are at least O(Neff), where Neff is effective brane charge. As

the deformed cone represents confinement of charge, we expect to get Neff = 0 from

the dual geometry. This is indeed what happens as energy scale for a thermal field

theory is set by the temperature and at low temperature, only the IR degrees of

freedom are excited. This means in the dual geometry, all we need is the region near

r ∼ b of the deformed cone − but in this region the five-form flux vanishes [12] and

we get Neff = 0.

As the temperature is increased, we expect that the non-extremal solution will

have less free energy than the extremal solution, just as in the case for the AdS-black

holes [14], and Hawking-Page phase transition will take place [20]. The focus of this

work will be to analyze the non-extremal solution which is dual to the deconfined

phase of large N thermal QCD, while a detailed analysis of phase transitions will be

presented in a follow up paper[21].

The non-extremal solutions we present in this paper are precisely dual to the

high temperature regime of the gauge theory − where chiral symmetry is restored

and the light degrees of freedom are deconfined. However, heavy quarkonium states

arising from the seven branes placed in the UV region can coexist with the chirally

symmetric phase above the deconfinement temperature. But as temperature is raised

even further, the heavy quarkonium states will eventually melt [29, 30].
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For both extremal and non-extremal cases, typically h would have logarithmic

factors in Region 1 whereas it would have inverse r behavior in Region 3. In the

intermediate region, the warp factor will typically have both the logarithmic and

the inverse r behavior. Therefore to summarise, the background should satisfy the

following properties:

• Fluxes are non imaginary self-dual i.e non-ISD, and become ISD once the black-

hole factors gi in the metric are removed. Therefore the deviation for ISD property

is proportional to the horizon radius rh.

• The gravity dual of the deconfined phase is given by resolved warped-deformed

conifold with a black-hole. In the limit where the deformation parameter is small,

the background can be succinctly captured by a resolved conifold with fluxes and

black hole.

• The resolution parameter is no longer constant because of the various back-reactions.

In fact the resolution parameter becomes function of rh/r as well as gsNf , and

gsM
2/N where gs is the string coupling, M is the number of bi-fundamental matter,

N is the number of colors, and Nf is the number of fundamental flavors.

From the above set of arguments, we can use the following ansatze for the internal

metric:

g̃mndx
mdxn = dr2 + r2e2B

[
A(dψ + cos θ1dφ1 + cos θ2dφ2)

2 +O(gsM
2/N, r4h/r

4)

+B(dθ21 + sin2θ1dφ
2
1) +

1

6
(1 + F )(1 + G)

(
dθ22
1 + G + sin2θ2dφ

2
2

)]
(2.12)

+ 2fb

[
cos ψ(dθ1dθ2 + sin θ1 sin θ2dφ1dφ2)− sin ψ(sin θ2dφ2dθ1 − sin θ1dφ1dθ2)

]

where we will only consider the resolved conifold limit, with F being related to the

resolution parameter (whose value will be determined later). In other words, we take:

fb → 0, F ≡ 6a2

r2
, G → 0

A =
1

9
+O(gsM

2/N, r4h/r
4), B =

1

6
+O(gsM

2/N, r4h/r
4) (2.13)

where the numerical factor of 6 is inserted to bring certain expressions in a better

format. As we will see, this F (or equivalently a) determines the squashing factor

between the two spheres, and we can consistently keep the second squashing factor,

G, to be zero.

The resolution parameter discussed above needs a bit more elaboration. First of

all, as we mentioned earlier, a2 is not a constant in our model. As we will show in

(2.63), the resolution parameter takes the following form:

a2 = a20 + r2hO(gsM
2/N) + r4hO(g2sM

2Nf/N) (2.14)
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where we have switched on a bare resolution parameter a20 to allow for the theory to

have a baryonic branch [17]. However even if we switch off the bare resolution param-

eter, the background EOMs will still generate a resolution parameter proportional to

the horizon radius rh. This not a contradiction with the result of [18] wherein it was

argued that one may not be able to simultaneously resolve and deform a Calabi-Yau

cone. The fact that our metric is non-Kähler takes us away from the constraints

imposed in [18].

In the following section we will argue for these parameters and their dependences

on the horizon radius by analysing the non-extremal limit of the warped resolved-

deformed conifold background2.

2.1 Derivation of the non-extremal BH solution for the Klebanov-Strassler

model

We first compute the non-extremal metric arising from Type IIB supergravity action

given, in the notations of [22], in the following way3:

SIIB =
1

2κ210

∫
d10x

√−g
[
R− ∂aτ∂

aτ̄

2|Imτ |2 − G3 · Ḡ3

12Imτ
− F̃ 2

5

4 · 5!

]

+
1

8iκ210

∫
C4 ∧G3 ∧ Ḡ3

Imτ
+ Sloc (2.15)

where Sloc is the action for all the localized sources in ten dimensional geometry

i.e five-branes and seven-branes mostly from Region 2 onwards. Our aim is to re-

analyse the non-extremal Klebanov-Strassler solution. Recall that for Klebanov-

Tseytlin model the non-extremal solutions were analyzed in [23], while in [6] there

have been studies of gravity duals of finite temperature cascading gauge theory with

fundamental matters4. However in [6] precise background fluxes and the warp factors

taking into the backreactions of the BH geometry were only conjectured. Here we

will derive the non-extremal metric dual to a UV complete gauge theory that mimics

features of large N QCD at the lowest energies, justifying the proposals made in

[6, 25]. One immediate outcome of this would be the verification of the conjectured

dependence of the resolution parameter a2 on the horizon radius rh.

Our ansatz for the metric is (2.10). We look for solutions with regular Schwarzschild

horizon at r = rh. This is achieved by imposing eB(rh) = 0 and considering solutions

to A such that eA(rh) 6= 0, which guarantees a non-singular horizon [23]. By solving

2We will continue calling this background as the Klebanov-Strassler background as they all fall

in the same class of supergravity solution.
3Although in this section we will use the Einstein frame to express the metric, we will however

not distinguish between the two frames in later sections because the dilaton will be considered

constant, unless mentioned otherwise.
4See also [24] where somewhat similar analyses were also done.
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the Einstein equations along with the flux equations with these boundary conditions,

we will find the non-extremal solutions with regular horizons.

Observe that we have warped Minkowski four directions, a non-compact radial

direction r and a compact five manifold M5. The back reactions of the fluxes G3, F̃5

and axion-dilaton field τ will modify the warp factor eA+B while g̃mn will be al-

tered due to the presence of a black hole and the various sources. In particular g̃mn
will be a warped resolved-deformed conifold with a bare resolution parameter a0.

Note however that only the warp factor eA+B will be essential to analyze the con-

finement/deconfinement mechanism for the boundary field theory [25]. The linear

confinement of quarks and the string breaking mechanism which eventually describes

the deconfinement of QQ pair, is only sensitive to the warp factor. The exact solu-

tions for the internal metric in the non-extremal limit taking into account the back

reaction of the various fluxes is not essential to study free energy of the QQ pair.

Nevertheless we will find the exact form of the internal metric up to linear order in

resolution function F .

We restrict to fluxes and axion-dilaton field τ which only depend on xm and not

on the Minkowski coordinates xµ. Then the Einstein equations can be written as

Rµν = −gµν
[
G3 · Ḡ3

48 Imτ
+

F̃ 2
5

8 · 5!

]
+
F̃µabcdF̃

abcd
ν

4 · 4! + κ210

(
T loc
µν − 1

8
gµνT

loc

)

Rmn = −gmn
[
G3 · Ḡ3

48 Imτ
+

F̃ 2
5

8 · 5!

]
+
F̃mabcdF̃

abcd
n

4 · 4! +
G bc
m Ḡnbc

4 Imτ
+
∂mτ∂nτ̄

2 |Imτ |2

+ κ210

(
T loc
mn −

1

8
gmnT

loc

)
(2.16)

where F̃5 is given by the following self dual form

F̃5 = (1 + ∗10)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.17)

with α = e4A and T loc being the trace of

T loc
ab = − 2√−g

δSloc

δgab
(2.18)

Using the form of the five-form flux (2.17), the first equation in (2.16) becomes

Rµν = −gµν
[
G3 · Ḡ3

48 Imτ
+
e−8A−2B∂mα∂

mα

4

]
+ κ210

(
T loc
µν − 1

8
gµνT

loc

)
(2.19)

On the other hand, the Ricci tensor in the Minkowski direction takes the following

simple form

Rµν = −1

2

[
∂m(g

mn∂ngµν) + gmnΓMnM∂mgµν − gmngν
′µ′∂mgµ′µ∂ngν′ν

]
(2.20)
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where ν ′, µ′ = 0, .., 3 and ΓMnM is the Christoffel symbol. Now using the ansatz (2.10)

for the metric, (2.20) can be written as

Rtt = e4(A+B)
[
▽̃

2(A+B)− 3g̃mn∂nB∂m(A +B)
]

Rij = −ηije2(2A+B)
[
▽̃

2A− 3g̃mn∂nB∂mA
]

(2.21)

where we have defined the Laplacian as:

▽̃
2 = g̃mn∂m∂n + ∂mg̃

mn∂n +
1

2
g̃mng̃pq∂ng̃pq∂m (2.22)

The set of equations can be simplified by taking the trace of the first equation in

(2.16) and using (2.21). Doing this we get

▽̃
2(4A+B)− 3g̃mn∂nB∂m(4A+B) = e−2A−2BGmnpḠ

mnp

12Imτ
+ e−10A−4B∂mα∂

mα

+
k210
2
e−2A−2B(Tmm − T µ

µ
)loc (2.23)

On the other hand using (2.19) in (2.21), one gets

Rt
t − Rx

x = 0 (2.24)

which in turn would immediately imply

▽̃
2B − 3g̃mn∂mB∂nB = 0 (2.25)

Minimizing the action (2.15) also gives the Bianchi identity for the five-form flux,

namely

dF̃5 = H3 ∧ F3 + 2κ210T3ρ3 (2.26)

where ρ3 is the D3 charge density from the localized sources [22]. Using (2.17) in

(2.26) and subtracting it from (2.23) one gets the following

▽̃
2(e4A+B − α) =

e2A−B

6Imτ
|iG3 − ∗6G3|2 + e−6A−3B|∂(e4A+B − α)|2

+3e−2A−2B∂mB∂
m(e4A+B − α) + local source (2.27)

The Ricci tensor, on the other hand, for the xm, m = 4, .., 9 directions takes the

following form

Rmn = R̃mn + g̃mn▽̃
2 (A+B)− 3g̃mng̃

λk∂λB∂k (A+B)

+ 3▽̃m∂nB + ∂mB∂nB − 8∂mA∂nA− 2∂(mA∂n)B (2.28)

where ▽̃m is the covariant derivative given by

▽̃mVc = ∂mVc − Γ̃bmcVb (2.29)
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for any vector Vb. Here R̃mn is the Ricci tensor and Γ̃bmc is the Christoffel symbol for

the metric g̃mn. The equation for R̃mn is given by:

R̃mn = −gmn
G3 · Ḡ3

24Imτ
+
Gmab · Ḡab

n

4Imτ
+

∂mτ∂nτ̄

2 | Imτ |2

+
FmabcdF

abcd
n

4 · 4! + gmn
FµabcdF

µabcd

16 · 4! + 8∂mA∂nA

−3▽̃m∂nB − ∂mB∂nB + 2∂(mA∂n)B (2.30)

which means, in general, this could lead to twenty different equations in six-dimensions

(including another one for the trace). On the other hand the equation of motion for

G3 can be expressed in terms of a seven-form Λ7 ≡ ∗10G3− iC4 ∧G3 in the following

way:

dΛ7 +
i

Imτ
dτ ∧ ReΛ7 = 0 (2.31)

where typically Λ7 would study the deviations from the ISD behavior. For example,

using our metric ansatz we can express Λ7 as

Λ7 =
[
e4A+B ∗6 G3 − iαG3

]
∧ dt ∧ dx ∧ dy ∧ dz (2.32)

The above choice of Λ7 leads us to three different classes of solutions from the G3

EOM (2.31). These three classes can be tabulated in the following way:

• If α = e4A+B in (2.32) and Λ7 = dΛ7 = 0 then G3 must be ISD. When B = 0 then

this is the same as GKP solution [22], and in this case τ is not restricted5.

• If α 6= e4A+B then we can take Λ7 6= 0 but keep dΛ7 = 0 and dτ = 0. This means

Λ7 is closed but not necessarily exact, and τ is a constant6.

• If α 6= e4A+B then we can again take Λ7 6= 0 but now dΛ7 6= 0 and dτ 6= 0 such that

(2.31) is satisfied. This means both axion and the dilaton could run in this scenario.

In this paper we are taking α = e4A, so we have to consider the last two cases.

Expressing Λ7 as Λ7 = T3 ∧ dt ∧ dx ∧ dy ∧ dz we have eB ∗6 G3 − iG3 = T3 where

T3 is non-zero as long as B is non-zero. A simple solution then would be to restrict

oneself to the second case, i.e

dT3 = 0, τ = constant (2.33)

5One can find solutions for α = e4A+B case when B 6= 0, but this solution doesn’t have correct

conformal limit, i.e. when we switch off G3, it doesn’t reduce to the KW solution. In the dual

gauge theory the charge obviously varies with the temperature which is not the case in the ordinary

gauge theory.
6Or τ = dλ

−1 i.e d of a (−1)-form. The functional form for the (−1)-form is non-trivial, so this

option is more cumbersome to use.
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Notice also that at far infinity, i.e r → ∞, B → 0, therefore T3 → 0 as well7. Using

the above argument, G3 can then be expressed in terms of T3 as

G3 =
eB ∗6 T3 + iT3

1− e2B
(2.34)

Since τ = constant, this means the closure of G3 will involve a non-trivial constraint

connecting the internal metric components with B and T3. However in this paper

we will not be solving these equations explicitly but approximating G3 by Ouyang-

Klebanov-Strassler flux G
(0)
3 which is ISD in their metric. This approximation suffices

for our case, as we show below.

Let us substitute G3 = G
(0)
3 and α = e4A into (2.32). This will convert Λ7 to a

simpler seven-form in the following way:

Λ7 = e4A(eB ∗6 G0
3 − iG0

3) ∧ dt ∧ dx ∧ dy ∧ dz
≈ 3e4A(e2B − 1)grrǫ de

rabc G
(0)
rde dx

a ∧ dxb ∧ dxc ∧ dt ∧ dx ∧ dy ∧ dz

≈

3r4h
N
grrǫ de

rabc G
(0)
rde dx

a ∧ dxb ∧ dxc ∧ dt ∧ dx ∧ dy ∧ dz (2.35)

At large N the right hand side is small and therefore deviation from OKS flux

is of O(rh, 1/N) so one may consider Λ ≈ 0. This means G3 = G
(0)
3 is a good

approximation. Additionally, since F5 is self-dual, R̃mn can be simplified as

R̃mn = −gmn
G3 · Ḡ3

24Imτ
+
Gmab · Ḡab

n

4Imτ
+

∂mτ∂nτ̄

2 | Imτ |2 + 8(1− e−2B)∂mA∂nA

−3▽̃m∂nB − ∂mB∂nB + 2∂(mA∂n)B (2.36)

We see the first two terms are suppressed by gsM
2/N and the third term is removed

because τ is a constant. So we can ignore these contributions for the time being.

Then, assuming A and B only depends on r, (2.36) will lead to

R̃rr = 8(1− e−2B)∂rA∂rA− 3▽̃r∂rB − ∂rB∂rB + 2∂(rA∂r)B

R̃ab = −3

2
∂rg̃ab∂rB (2.37)

where (a, b) denote the angular directions. We now see that for r > rh, the R̃ab

contribution is suppressed equivalently as the R̃rr contribution, therefore we need to

keep both the parts. This conclusion can also be extended to Rmn in (2.28), which

implies that the Rrr and Rab contributions are equally suppressed. All this then

further implies that we need to solve the twenty-one metric equations. This is a

formidable exercise. Is there a way by which we can avoid doing this?

7This is of course without considering the UV completion. With UV completion the large r

behavior is non-trivial as discussed in [6, 25].
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A possible way out would be to study the relative suppressions of various terms

in the system of equations. This criteria was already anticipated in [6]. For example,

as we discussed in [6], we can equivalently take:

(gs, N,M,Nf) → (ǫc, ǫ−a, ǫ−b, ǫ−d) (2.38)

This would clearly show that (gsN, gsM) are very large but (gsNf , gsM
2/N, g2sMNf )

as well as M/N are suppressed in the following way:

(gsN, gsM) → (ǫc−a, ǫc−b)

(gsNf , gsM
2/N, g2sMNf ,M/N) → (ǫc−d, ǫc−2b+a, ǫ2c−b−d, ǫa−b) (2.39)

provided (a, b, c, d) satisfy the following inequalities8:

a > b > c > d, a+ c > 2b, 2c > b+ d (2.40)

Let the smallest scale in our problem be the ratioM/N . Then if the argument of the

relative suppressions of various terms in Rmn has to make sense, one would require

the precise range of r where our approximations hold water. This gives us:

r ≥ rh

(
N

M

)1/4

(2.41)

Thus if we are in this range, we can see that the curvature terms simplify drastically.

This would give us a hint that if we solve the simplest trace equation along with

the flux equations (2.25), (2.26), and (2.27) we would be reasonably close to the

correct answer because the other twenty component equations would only change

the results9 to O(r4h/r
4). So once we are in the range (2.41) the only corrections to

our simplified trace equation will be to O(gsM
2/N) and O(r4h/r

4). This is not so

bad because if we choose ǫ in (2.38) to be ǫ = 0.1, then

N = 108, M = 103, Nf = 10, gs = 0.0032, r > 17.78rh (2.42)

which means for r beyond 17.78rh the contributions coming from the individual

component equations to the solution generated using only the trace equation will

not be too drastic.

Therefore, once the dust settles, tracing the second equation in (2.16), using

(2.23), (2.25) and (2.28), we get

R̃

6
+

4

3
g̃mn∂mA∂nA

(
e−2B − 1

)
+
g̃mn

6

(
3▽̃m∂nB + ∂mB∂nB

)

8A solution to the inequalities is a = 8, b = 3, c = 5/2, d = 1, as given in [6]. One can of course

allow other values of (a, b, c, d) that satisfy the inequalities.
9This in particular means that not only the coefficients of all the terms of the internal metric

will change to O(r4h/r
4) but also any new component will appear to O(r4h/r

4). This is exactly how

we choose our initial metric ansatze (2.12) and therefore the system is self-consistent.
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− g̃mn

3
∂(mA∂n)B =

g̃mn∂mτ∂nτ̄

12|Imτ |2 (2.43)

where R̃ = g̃mnR̃mn and we have ignored all local sources.

Our goal now is to solve the system of four equations (2.25), (2.26), (2.27) and

(2.43) and find solutions for the warp factors A,B, the internal metric g̃mn and the

fluxes. In obtaining the solutions, we will be working in the limit where there is no

local sources, G3 is closed while the explicit form of the fluxes that solve the flux

equations are described in the following subsection10. As we mentioned earlier, if we

choose α = e4A, (2.27) will imply that G3 is ISD, in the extremal limit i.e eB = 1.

On the other hand, G3 is not ISD on a deformed cone in the presence of a black

hole, and the terms in G3 which make it non-ISD are precisely proportional to the

blackhole horizon and the deformation function F that appears in g̃mn. With these

considerations and our choice of internal metric g̃mn we get

|iG3 − ∗6G3|2 =
∣∣∣
i ∗6 T3 + T3

1 + eB

∣∣∣
2

∼ O(F 2, r8h/r
8) (2.44)

Thus with a choice of α = e4A +O(F 2), (2.27) can be solved exactly. But if F ≪ 1,

we can ignore O(F 2) terms which means up to linear order in F , (2.27) becomes

▽̃
2(e4A+B − e4A) = e−6A−3B|∂(e4A+B − e4A)|2 + 3e−2A−2B∂mB∂

m(e4A+B − e4A)

(2.45)

Thus ignoring O(F 2) in (2.27)11, we are essentialy solving (2.25), (2.26), (2.43) and

(2.45). In fact we will show that (2.26) dictates F ≪ 1 and our explicit numerical

solutions will also be consistent with this assumption, justifying our perturbative

analysis.

Now only considering up to linear order terms in F , we get α = e4A which relates

the warp factor to the five-form field strength which in turn depends on G3 by the

Bianchi identity (2.26). Thus eA depends on the non-ISD G3 as G3 is modified in the

presence of a black hole. But the choice of α = e4A also means that the dependence of

G3 on blackhole horizon rh appears in the form of a resolution parameter a = a(rh),

a crucial fact that was first conjectured in [6] and will be further illustrated in the

next subsection.

As already mentioned, equation (2.26) determining eA also depends on the in-

ternal metric g̃mn. In the absence of any flux and axion-dilaton field, g̃mn is the

10It is of course possible to consider additional sources to obtain a UV complete solution as done

in [25]. But for the purpose of the current section, which is to analyze the non-extremal limit for

the IR geometry, we will ignore local sources and discuss their effects briefly towards the end.
11The term in (2.44) appearing in (2.27) contributes as ∼ O(F 2(gsM

2/N)l), l ≥ 1 which can

be easily obtained by using e−4A ∼ O(gsN)
[
1 +O(gsM

2/N)
]
. As gsM

2/N ≪ 1, we can ignore

O(F 2gsM
2/N) terms. See also (2.38), (2.39) and (2.40) for more details on the various scaling

limits.
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metric of base of the deformed conifold T 1,1 which has the topology of S2 × S3. In

the presence of a black hole horizon and various sources, the internal metric will be

modified in the following way:

g̃mn = g̃[0]mn + g̃[1]mn (2.46)

where g̃
[0]
mn is the metric of a resolved deformed cone (or more appropriately, here, the

resolved cone) with base T 1,1 and therefore g̃
[1]
mn denotes all the corrections due the

black hole and all other sources. This means that g̃
[1]
mn contains all the informations of

the resolution factor and its subsequent dependence on the horizon radius etc. Note

also that, as we have a horizon at r = rh with M units of fluxes12 and Nf number of

seven branes, g̃
[1]
mn must at least be of O(M,Nf , r

4
h/r

4). We will evaluate eA and g̃
[1]
mn

to lowest order in gsM2

N
and gsNf which in turn will drastically simplify our analysis.

Our choice of g̃
[0]
mn and g̃

[1]
mn will be such that we have (2.12) for the internal metric.

The Bianchi identity for the five-form flux, in the absence of any three-brane

sources, reads

dF̃5 = H3 ∧ F3 (2.47)

where F3 and H3 are the RR and the NS three-form fluxes. They are given as

F3 = F
(0)
3 +O(F ), H3 = H

(0)
3 +O(F ) (2.48)

where F
(0)
3 , H

(0)
3 are the fluxes in the absence of any squashing, that is for F = 0

(we expressed this earlier as G
(0)
3 ≡ F

(0)
3 − τH

(0)
3 ). For the regular cone, taking into

account the running of the τ field, F
(0)
3 and G

(0)
3 are exactly the Ouyang fluxes [13],

while the exact form of the fluxes in a deformed conifold were discussed in [5] [12].

Now from the form of the fluxes on deformed cone13 one gets that

F3 ∼ M [1 +O(F )], H3 ∼ gsM [1 +O(F )] (2.49)

Using this and (2.48) one readily gets that

H3 ∧ F3 = F
(0)
3 ∧H(0)

3 +O(M2F ) (2.50)

An immediate question is: what can be said about the squashing function F ? In the

absence of the three-form fluxes, i.e M = 0, there is no squashing as the Klebanov-

Witten solution [28] with running dilaton [13] needs no squashing. This remains true

even when we introduce temperature. To see this, observe that the non-extremal limit

of Klebanov-Witten(KW) model does not require any modification of the internal

space: which means F = 0 with e2B = 1−r̄4h/r4 and the internal space is exactly T 1,1.

There could be squashing due to the running of τ field in the KW blackground, but

squashing would be at O(g2sN
2
f ), so we can ignore it as we will only consider up to

linear order in gsNf . These behaviors indicate that F must be at least proportional

to M . In the following subsection, we will justify this claim.
12In the intermediate region, i.e Region 2 of the geometry, we will also have (p, q) five-brane

sources.
13See section 2.2 for more details.
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2.1.1 Behavior of F and various scaling limits

Let us go to the case when there is no blackhole but we have non-zero three-form flux

i.e M 6= 0. For this case we are back to Klebanov-Strassler-Ouyang background with

no squahing and F = 0. This means, F must also be proportional to the blackhole

horizon rh. Combining this with the form of the Ouyang fluxes, taking into account

of the back reactions of the seven branes, we expect

F ∼ O(a20, rhgsM
α/Nβ, rhg

2
sN

2
f ) (2.51)

with a0 being the bare resolution parameter discussed earlier and (α, β) are some

integers. Notice that we have inserted a suppression factor of N−β assuming β > 0

in anticipation of a possible perturbative expansion. Therefore using our ansatz

(2.51) in (2.50) gives us

F3 ∧H3 = F
(0)
3 ∧H(0)

3 +O(a40, r
2
hg

2
sM

α+2/Nβ+1, r2hg
2
sN

2
f ) (2.52)

implying that up to quadratic order in M , we only need Ouyang fluxes to solve

(2.47). But to guarantee that we only need to consider up to quadratic order in M ,

we must show that higher order i.e O(g2sM
α+2/Nβ+1) terms are small compared to

the gsM
2/N terms coming from F

(0)
3 ∧ H

(0)
3 . This will indeed be the case once we

solve (2.47) up to O(M2) 14. We will see F ∼M/N where N ≫M and this justifies

ignoring the second term in (2.52). In fact solving (2.47) with our ansatz for the warp

factor shows that 1
gsN

(F3 ∧H3) is the relevant term that enters into the equaton of

motion (see Appendix C). Hence in solving (2.47) with our choice of warp factor,

we are really ignoring O(gsM
3/N2) and keeping terms only up to O(gsM

2/N). This

truncation is consistent for N ≫ M which is achievable as we showed in (2.38) and

(2.39). However one might question the suppression terms in (2.51) and in (2.52)

if (α, β) exponents are arbitrary compared to the range that (2.38) would impose.

That this will not be the case will become apparent from the following discussions.

To start then we shall continue using the following five-form flux:

F̃5 = (1 + ∗10)dα ∧ d4x (2.53)

With this form of F̃5 and α = e4A = 1/h, (2.47) becomes an equation involving h,

e2B and F . We already know that in the AdS limit e2B = 1− r̄4h/r
4. In our non-AdS

geometry we expect:

e2B = 1− r̄4h
r4

+G (2.54)

14If the solution to (2.47) up to O(M2) tells us that F > 1, then we cannot ignore the second

term in (2.52) and therefore have to include O(M3) and higher in solving (2.47). But, as we will

argue soon, our solutions show that F ≪ 1, which justifies our truncation.
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where G is at least O(M,Nf). Using this expansion for e2B, along with the precise

form of the Ouyang three-form fluxes F
(0)
3 , H

(0)
3 and only considering up to O(M2)

terms 15, (2.47) reads
[
∂r∂rh

1 +
1

g
∂θi
(
ḡθiθi0 ∂θih

1
)
+
r4h/r

4

g
∂θi
(
ḡθiθi0 ∂θih

0
)
]
r5 + 5r4∂rh

1 = 4L4∂rF (2.55)

where ḡmn0 is proportional to the deformed conifold metric (see Appendix C), h =

h0 + h1 with h0 being the Ouyang warp factor

h0 =
L4

r4

{
1 +

3gsM
2

2πN
logr

[
1 +

3gsNf

2π

(
logr +

1

2

)]

+
3g2sM

2Nf

8π2N
logr log

(
sin

θ1
2
sin

θ2
2

)}
(2.56)

and h1 is the contribution due to the presence of the black hole.

We can readily see from (2.55) why F ∼M/N . First note that the non-extremal

limit of Klebanov-Witten model has an exact solution, h = L4/r4 with h1 = 0. h1

is only non-trivial due to the presence of three form fluxes, the black hole and other

sources. Thus, h1 ∼ O(M, gsNf , r
4
h/r

4). On the other hand L4 = gsNα
′2 and thus

one gets from (2.55) that F ∼ O(M/N, gsM
2/N). But L4/α′2 ≫ 1 and we can

choose it large enough such that N ≫ M which guarantees that F ≪ 1. This is of

course consistent with (2.38)16.

The key point in the above argument came from L4/α′2 ≫ 1 appearing in the

Ouyang solution, which is on a regular cone while we have a deformed cone. How

can we use the form of h0 as given by (2.56) for the case of a deformed cone? The

answer lies in the fact that for large radial distances, the deformed cone coincides

with the regular cone. The Klebanov-Strassler solution in the large r regime behaves

as the Klebanov-Tseytlin solution, i.e the warp factor for KS model becomes

hKS ∼ α′2

r4

[
g2sM

2log

(
r

r∗

)]

=
α′2

r4

[
g2sM

2log b+ g2sM
2log

(
r

br∗

)]

15Again in ignoring higher order terms in M , we are assuming that F,G ∼ O(M/N) < 1, which

will be consistent with our solution. On the other hand, the O(M2) term that enters into (2.55)

from the Ouyang warp factor should be understood to be of O(gsM
2/N). Terms of O(M3) in (2.55)

come from products of gsM
2/N with F and since F ∼ O(M/N) < 1, the O(M3) ≪ O(M2) can be

ignored. Thus we have sometimes ignored the 1/N factor or gs/N factor, but they can always be

inserted back in appropriate context.
16Note that the third term in (2.55), because of the θi derivative, is suppressed as g3sM

2Nf . Using

(2.38) and footnote 8 this would go to zero as ǫ1/2. Also comparing this term with gsM , the fall-of

is g2sMNf which from (2.39) goes to zero as ǫ. Therefore from all criteria in (2.55), h1 ∼ O(M)

seems consistent.
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=
L4

r4

[
1 +

gsM
2

N
log

(
r

r0

)]
(2.57)

where b is some scale and L4 = gsNα
′2 with N = gsM

2log b, r0 = br∗. The above

expansion shows that the KS warp factor in the deformed cone can really coincide

with the Klebanov-Tseytlin solution. Once back-reactions of the flavor D7 branes are

taken into account, KS solution in the deformed cone background will take the form

of the Ouyang solution. We can of course choose log b ≫ 1 such that L4/α′2 ≫ 1,

so our argument that M/N ≪ 1 holds even if we started with KS solution and not

the Ouyang solution17. Hence it is justified to use the Ouyang solution even for the

deformed cone.

Also note that, although there were no D3 branes in the KS solution, an effective

N = gsM
2log b reappears in the warp factor of KS model in the large r region. This

N can be identified with the N appearing in the Ouyang solution which also justifies

using the Ouyang solution on the deformed cone background for large r region. For

small radial distances, we cannot use the h0 as given in (2.56) − hence the non-

extremal solutions we consider are only valid for large radial distances. This also

means, we are considering large horizon rh and the geometry is dual to the high

temperature regime of the gauge theory. A conclusion that is consistent with our

earlier works.

2.1.2 Analysis of the full background with backreactions

Once the behavior of F and the suppression orders for various terms are laid out, we

are ready to tackle the backreactions to order gsNf and gsM
2/N . We start from the

equation of motion for τ given in the following way:

▽̃
2τ ∼ g̃mn∂mτ∂nτ̄ (2.58)

However, the underlying F-theory picture [26] on which we based our solution [25],

dictates that ∂τ ∼ O(gsNf) and therefore we will ignore terms of O(g2sN
2
f ). So the

precise form of τ will not appear in any of the equations (2.55), (2.25), (2.43) and

(2.45).

Thus with our ansatz for the metric (2.10), (2.12) and choice of fluxes, we have

four equations (2.55), (2.25), (2.43) and (2.45) that we need to solve and three un-

known functions h1, G and F . However, it is more convenient to write h1 ∼ A1L4/r4

and then from (2.55) one readily sees that

A1 ∼ O(M/N) ≪ 1, with F ∼ O(M/N) +O(gsM
2/N) +O(g2sM

2Nf/N) ≪ 1

(2.59)

and so the third term in F is even more suppressed. Now what can we say about G?

As already pointed out, G ∼ O(M, gsNf ). But using the form of F as given above

17Incidentally, using (2.38), we would require b to go to infinity as exp
(
ǫ−9/2

)
.
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in (2.59), one readily gets from expanding (2.25), that

G = O(F ) ∼ O(M/N) +O(gsM
2/N) +O(g2sM

2Nf/N) ≪ 1 (2.60)

Thus it is reasonable to consider only up to linear order terms in A1, G and F . But

(2.45) is a trivial equation up to linear order (see Appendix C) and hence the only

non-trivial equations we are solving are (2.55), (2.25) and (2.43). Thus we have a

system of three equations and three functions A1, G and F − which can be easily

solved.

Note that once the above three equations are solved, the corrections from all the

other Einstein equations are automatically suppressed, as long as we are in the range

(2.41), and the precise functional form of the axion-dilaton field τ and the non-ISD

three-form flux G3 do not influence the four equations up to linear order in A1, G

and F . This is because (2.55) is obtained from (2.26) which is identical to (2.23)

(up to linear order in A1, G and F ) which in turn is obtained by tracing Einstein

equations in the Minkowski directions. On the other hand, (2.43) is obtained from

tracing the Einstein equations in the internal directions. Hence a solution to (2.55)

and (2.43) along with the background Ouyang warp factor h0 and three form fluxes

G3 minimizes the action (2.15) where only Ricci scalar and the flux strength appear

for the radial range (2.41). Thus solving (2.55) and (2.43) really means putting the

action on shell which guarantees that individual Einstein equations change the metric

only to order r4h/r
4 as depicted in (2.12).

The form of the solutions to the three equations along with the boundary condi-

tions that dictate the behavior of the warp factor A,B near the horizon is discussed

in Appendix C. Here we only quote the functional form of the solutions

h1 =
L4

r4
(
A0 + A1 log r + A2 log2r

)

e2B ≡ g = 1− r̄4h
r4

+G ≡ 1− r̄4h
r4

+ g0 + g1 log r + g2 log2r

F = F0 + F1 log r + F2 log2r (2.61)

where Ai, gi, Fi for i = 0, 1, 2 are in general functions of r and the internal coordi-

nates θj , φj, ψ, with j = 1, 2. In Appendix C we have worked out the simplest case

where Ai, gi, Fi are assumed to be functions of r only by neglecting O(gsNf ) terms18.

This is a reasonable assumption for small number of flavors. Furthermore, the ther-

modynamics of the field theory is dictated by the behaviour of the dual geometry

near the black hole horizon (2.41). If we keep all the seven branes away from the

black hole, we can ignore running of τ near the black hole. On the other hand, for

constant τ we expect a Klebanov-Strassler type solution which essentially means the

warp factors A,B and squashing factor F are only functions of r. Hence, as long as

18It should also be clear that Ai ∼ O(M/N) from (2.59).

– 20 –



we are dealing with the light degrees of freedom that arise from the deformed cone

ignoring the back reaction of seven branes, we can neglect the contributions from the

seven branes far away from the black hole and consider the solution in (2.61) to be

functions of r only.

To account for the heavy quarks, we have to include O(gsNf) terms but our

ansatz (2.61) remains the same with the understanding that now Ai, gi, Fi are addi-

tionally funtions of the internal coordinates. Interestingly, however, to analyze the

melting of the heavy quarkonium states, we can consider string world sheets that are

fixed in the internal directions which results in evaluating the warp factors A,B only

for fixed values of the angles θj , φj, ψ. This means our above analysis would suffice.

Hence, even for the study of linear confinement and melting of heavy QQ pairs, it

is sufficient enough to treat the solutions in (2.61) as being functions of the radial

coordinate only (see [40, 41] for related works in this direction).

In Figures 1, 2 and 3 we have plotted g(u), A0(u) and F0(u) where u ≡ r/r̄h
using the numerical solutions to equations (2.55), (2.25) and (2.43). As discussed in

Appendix C, at the lowest order of perturbation, only keeping up to linear order

terms in gsM
2/N , equations (2.55), (2.25) and (2.43) drastically simplify. We obtain

a solution with only A0, g0 and F0 non trivial while A1 = A2 = g1 = g2 = F1 = F2 =

0. For the plots, we have chosen 3gsM
2/2πN = 1/2 and the following boundary

conditions19

A0(∞) = 0, A′
0(∞) = 0

g0(∞) = 0, g′0(∞) = 0

F0(∞) = 0, F ′
0(∞) = 0 (2.62)

Note that g(1.04) ∼ 0, indicating that the horizon has shifted from the AdS black

hole value of r̄h and we have obtained a larger black hole with horizon rh ∼ 1.04 r̄h.

Our numerical results shows that g0, A0, |F0| < 1 which validates our perturbative

analysis. The fact that the black hole is of larger size than the AdS limit is consistent

with the underlying gauge theory structure20. The presence of the fractional branes

has increased the effective mass of the black hole. In fact, the black hole entropy is

larger than the corresponding AdS limit since A0(rh) > 0 and using Walds formula,

one readily gets that s/T 3 ∼ N2
eff > N2 where we have defined gsNeff = r4hh(rh).

Finally, note that the identification of F with a2 in (2.13) implies that the reso-

19Let us assume, for simplicity and for performing the numerical analysis, 3gsM
2/2πN = 1/2 to

be the smallest scale in the theory (instead of M/N that we took earlier). Then the argument used

earlier in (2.41) will imply that we should trust our result for r > 1.19rh.
20Also note that the result is consistent with the first law of black hole thermodynamics which

states that the increase in horizon radius is related to the increase in the mass of the black hole.

The addition of five-branes have increased the effective mass of the black hole compared to the AdS

limit.
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Figure 1: The blackhole factor g as a function of u ≡ r/r̄h. We have plotted g along the

y-axis and u along the x-axis. Using above considerations, one may trust the result for

u > 1.02.
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Figure 2: Non-extremal contribution to the warp factor given by A0 plotted as a function

of u ≡ r/r̄h. A0 is plotted along y-axis, and u is still along the x-axis and our analysis is

valid for u > 1.02.

lution parameter is given by

a2 = a20 +
5gsM

2p11r
2
h

32πN
+
gsM

2

N

r2h
4π

[
p12log r + p13log

2r
]

+
1

4π

(
gsM

2

N

)
(gsNf) r

4
h

(
p14

log r

r2
+
p15
r2

)
log

(
sin

θ1
2
sin

θ2
2

)
(2.63)

where we show the bare resolution parameter21 in F and a2. The coefficients pij

21In the limit where the bare resolution parameter vanishes, which is the Klebanov-Tseytlin

solution, we see that the gsM
2/N corrections actually make the small r regions non-singular creating

an apparent resolution parameter proportional to the horizon radius.
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Figure 3: The squashing factor given by the resolution function F0 as a function of

u ≡ r/r̄h. Note that F0 is always negative for all distances outside the black hole horizon.

We plot F0 along the y-axis, and u is along x-axis, as before with validity from u > 1.02.

are constant numbers that could be determined from (2.61) and Appendix C. The

above representation of the resolution parameter is perfectly consistent with our

conjecture in [6]: the resolution parameter will pick up dependence on the horizon

radius rh. Interestingly we now have managed to get the leading order gsM2

N
log r

corrections to the result.

However there is one issue that might be confusing the reader. From Figure 3

we see that F0 is always negative for all values of r in the range rh ≤ r < ∞. Our

identification of F with a2 would then imply a to be a purely imaginary number.

However surprisingly this does not create a problem. As we will show in the next

subsection, all the fluxes etc. are completely expressed in terms of a2, so that a does

not appear anywhere. Even terms with logarithms, for example (2.90), appear as

log |a2|, so that a2 < 0 do not create any inconsistencies. This is of course shouldn’t

come as a surprise because the resolution parameter appear in the metric (2.12) as

1 + F0 and since |F0| < 1 it shouldn’t lead to any inconsistencies no matter how we

relate F0 to a.

In our opinion the result that we presented above is probably the first time where

the backreaction effects from black hole, including the resolution factor, are taken

into account in a self-consistent way to lowest orders in gsNf and gsM
2/N . To this

order, as we showed above, the backreactions from fluxes and branes could be consis-

tently ignored in the near horizon limit (2.41). One may now take this background

and compute the IR effects for large N thermal QCD. However before we go about

studying these effects we would like to dwell, just for the sake of completeness, on the

corrections to the Klebanov-Strassler three-form fluxes that arise from the backreac-

tions of the black-hole, local brane sources, and the resolution parameter. Readers
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wishing to know our results may however skip the next sub-section altogether and

proceed on with the calculations of the RG flows and the effects of the chemical

potential.

2.2 The three-form fluxes revisited

In the above subsection we managed to provide a detailed derivation of the non-

extremal limit of the Klebanov-Strassler type solution with a background warped

resolved conifold. The ansatze that we used to solve for the fluxes was (2.49) where

we divided the three-form fluxes into two pieces: one coming from the known Ouyang

fluxes, and the other coming from the various backreactions. The second piece, for

both RR and NS three-form fluxes, received contributions from the bare resolution

parameter a20 and the gsM
2/N terms in addition to the O(rh) terms. In the following

we will not only justify this but also provide the form of the three-form fluxes includ-

ing the above-mentioned corrections in the limit where the second squashing factor G
in (2.12) is negligible. Our analysis will also not be affected by the constraint (2.41)

that we had to impose to solve EOMs in the above subsection. In particular this

means that the radial coordinate may take all values above rh.

Using the metric (2.10) and (2.12) with the condition (2.13), the non-ISD RR

three-form flux F̃3 ≡ F3 − C0H3 takes the following form22:

F̃3 =

(
ão −

3

2πrgsNf

)∑

α

2M(r)cα
rǫ(α)

(
sin θ1 dθ1 ∧ dφ1 −

∑

α

fα
rγ(α)

sin θ2 dθ2 ∧ dφ2

)

∧ eψ
2

−
∑

α

3gsM(r)Nfdα
4πrσ(α)

dr ∧ eψ ∧
(
cot

θ2
2

sin θ2 dφ2 −
∑

α

gα
rρ(α)

cot
θ1
2

sin θ1 dφ1

)

−
∑

α

3gsM(r)Nfeα
8πrτ(α)

sin θ1 sin θ2

(
cot

θ2
2
dθ1 +

∑

α

hα

rδ(α)
cot

θ1
2
dθ2

)
∧ dφ1 ∧ dφ2 (2.64)

with ão = 1 + 3
2π

and is defined in the intermediate region rmin < r < ro. The

additional contributions to (2.64) are all proportional to powers of rh, as they vanish

in the ISD case. Finally, the quantity ǫ(α) is defined in the following way:

ǫ(α) = α+
∑

n

bαn
rn

(2.65)

with bαn are functions of gsNf ,M and the horizon radius rh. In a similar fashion

ρ(α), σ(α), δ(α) etc are also defined. The other coefficients, for example cα, ...hα would

22For the derivations of the three-form fluxes, the readers may want to look up our earlier papers

[5, 6, 25] where all the necessary details are given. For example, the ISD fluxes on the resolved

conifold are derived in [5], and their extension to the non-ISD cases are argued in [6, 25]. In the

following we will elaborate more on the derivations of [6, 25] and show the consistency of the results

presented therein.
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again be functions of gsNf and rh, but also of the resolution factor a (including the

internal angular coordinates). The resolution factor appears from the gravity dual

that we considered in [6] i.e a resolved warped deformed confold with the resolution

factor can be viewed as a function dependent on the horizon radius rh. We will argue

this in details below. The coefficients bαn can be represented in terms of the following

matrix:

b{αn} ≡




b00 b01 b02 b03 ....

b10 b11 b12 b13 ....

b20 b21 b22 b23 ....

b30 b31 b32 b33 ....

... ... ... ... ....

bm0 bm1 bm2 bm3 ....




(2.66)

The elements of the matrix bαn can be determined in terms of the c0, c1, c2, .. coeffi-

cients that appears in the expansion cα
r
ǫ(α) . This is one reason of writing the various

powers of r using different symbols. For example σ(α) will have a similar expansion

as (2.65) but with a different matrix. The various elements of the matrix will now

be determined in terms of d0, d1, d2, .. etc as one would expect. For the first case, we

have managed to determine cα up to few terms. They are represented as:

c0 = 1 +O(rh), c1 = O(rh), c2 =
9a2gsNf

2πζ2

(
1− 3

2
log ζ

)
+O(rh)(2.67)

where a is the resolution factor and ζ is a parameter whose importance will become

apparent soon. Once we know cα, it is not too difficult to get the relations between the

various components of the matrix (2.66). One may now show that the components

bαn satisfy:

b00 = b01 = b10 = O(rh)

c0b02 + c1b11 + c2b20 = − 27a2gsNf

4πζ2
+O(rh)

2c0b00b01 + c1b10 = O(rh)

c0b
2
01 + 2c0b00b02 + 2c1b10b11 + c2b20 = O(rh) (2.68)

Following the above set of relations one may show that:

∑

α

cα
rǫ(α)

= 1 +
9a2gsNf

2πζ2r2

(
1− 3

2
log ζ

)
− 27a2gsNf

4πζ2
· log r
r2

+
O(rh)

r2
+O(rh)

≡ 1 +
9gsNf

4π
· a

2(rh, gsNf )

(ζr)2
· [2− 3log (ζr)] +O(rh, g

2
sN

2
f ) (2.69)

which is consistent with what we discussed in [6], namely, the resolution parameter a

can be thought of as a function of (rh,M, gsNf), including the radial and the angular
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directions, i.e

a2 = a2(rh,M, gsNf) = a20 +

∞∑

α=1

bαg
α
s [M(r)rh]

α+1

Nαrǫ(α)
(2.70)

with bα being functions of the angular directions so that this is consistent23 with

(2.63). These can be determined by comparing (2.70) with (2.63) derived in the

previous subsection (note that (2.63) implies b0 = 0). The other similar factors

appearing in the flux (2.73) are given in terms of the following series expansions

similar to (2.69) above:

∑

α

dα
rσ(α)

= 1 +
18a2(rh,M, gsNf)log (ζr)

(ζr)2
+O(rh,M, gsNf)

∑

α

eα
rτ(α)

= 1− 18a2(rh,M, gsNf)log (ζr)

(ζr)2
+O(rh,M, gsNf ) (2.71)

Note also that there are squashing factors given by fα
r
γ(α) ,

gα
r
ρ(α) and

hα

r
δ(α)

. These squash-

ing factors distort the spheres and therefore affect the fluxes on them. Its easy to

show that these factors are given by:

∑

α

fα
rγ(α)

= 1− 729

32π2
· g

2
sN

2
f a

4(rh,M, gsNf)

(ζr)4
· log (ζr) [2− 3log (ζr)] +O(rh,M, g2sN

2
f )

+
81

8π
· gsNfa

2(rh,M, gsNf)log (ζr)

(ζr)2
(2.72)

= 1 +
81

2
· gsNfa

2(rh,M, gsNf )log (ζr)

4πr2 + 9gsNfa2(rh,M, gsNf)[2− 3 log (ζr)]
+O(rh,M, g2sN

2
f )

∑

α

gα
rρ(α)

= 1 +
36a2(rh,M, gsNf )log (ζr)

(ζr)3
− 648a4(rh,M, gsNf)log

2(ζr)

(ζr)5
+O(rh,M, g2sN

2
f )

= 1 +
36a2(rh,M, gsNf) log (ζr)

(ζr)3 + 18a2(rh,M, gsNf)ζr log (ζr)
+O(rh,M, g2sN

2
f )

∑

α

hα

rδ(α)
= 1 +

36a2(rh,M, gsNf )log (ζr)

(ζr)2
+

648a4(rh,M, gsNf)log
2(ζr)

(ζr)4
+O(rh,M, g2sN

2
f )

= 1 +
36a2(rh,M, gsNf ) log (ζr)

(ζr)2 + 18a2(rh,M, gsNf) log (ζr)
+O(rh,M, g2sN

2
f )

The far IR physics is then determined from (2.73) and the squashing factors (2.72)

by making the replacement (ζr) → r to the radial coordinate. Note also that all

23Its not too difficult to argue for (2.70) using (2.55) and (2.56) if we say that h1 goes as
L4

r4 [O(M/N) + O(gSM
2/N)] from (2.59). The first term in F is of O(M/N) from (2.59) which

means a20 is of O(M/N). This will again be shown later in this section using a slightly different

argument. Once this is established, comparing both sides of (2.55) then easily implies (2.70). To

lowest order then a2 will be a function of (r2h,M/N, gsM
2/N, gsNf ) as shown in (2.63).
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the flux components are expressed in terms of a2 and therefore the sign of a2 can

be directly inserted here. Considering all the above, this then gives us exactly the

result that we had in [6], namely:

F̃3 = 2MA1

(
1 +

3gsNf

2π
log r

)
eψ ∧ 1

2
(sin θ1 dθ1 ∧ dφ1 −B1 sin θ2 dθ2 ∧ dφ2)

−3gsMNf

4π
A2

dr

r
∧ eψ ∧

(
cot

θ2
2

sin θ2 dφ2 −B2 cot
θ1
2

sin θ1 dφ1

)

−3gsMNf

8π
A3 sin θ1 sin θ2

(
cot

θ2
2
dθ1 +B3 cot

θ1
2
dθ2

)
∧ dφ1 ∧ dφ2 (2.73)

where we have taken M(r) → M in the far IR, and the various coefficients Ai,Bi

are related to (2.69) and (2.72) as:

∑

α

cα
rǫ(α)

≡ A1,
∑

α

dα
rσ(α)

≡ A2,
∑

α

eα
rτ(α)

≡ A3

∑

α

fα
rγ(α)

≡ B1,
∑

α

gα
rρ(α)

≡ B2,
∑

α

hα

rδ(α)
≡ B3 (2.74)

As we mentioned before, the additional contributions to (2.74) are all proportional

to powers of rh, as they vanish in the ISD case. Needless to say, the functional form

for F3 is consistent with (2.49).

The NS three-form flux H3 is now more interesting. Unlike F̃3, it has to be

closed. When the resolution parameter a and M are just constants, it is easy to

construct a closed H3. In the presence of non-constant a and M(r), finding a closed

H3 is more non-trivial. For our case H3 is given by24:

H3 =
∑

α

6gsM(r)kα

rβ(α)

[
1 +

1

2π
−
(
cosec θ1

2
cosec θ2

2

)gsNf

2πr
9gsNf

2

] [
dr +

∑

i

O(rh)dσi

]

∧1

2

(
sin θ1 dθ1 ∧ dφ1 −

∑

α

pα
rκ(α)

sin θ2 dθ2 ∧ dφ2

)
+
∑

α

3g2sM(r)Nf lα

8πrθ(α)

(
dr

r
∧ eψ − 1

2
deψ

)

∧
(
cot

θ2
2
dθ2 −

∑

α

qα

rξ(α)
cot

θ1
2
dθ1

)
+ gs

dM(r)

dr

(
b1(r) cot

θ1
2
dθ1 + b2(r) cot

θ2
2
dθ2

)

∧eψ ∧ dr + 3gs
4π

dM(r)

dr

(
1 + gsNf −

1

r2gsNf
+

9a2gsNf

r2
+ b3(r)

)
log

(
sin

θ1
2
sin

θ2
2

)

sin θ1 dθ1 ∧ dφ1 ∧ dr −
gs
12π

dM(r)

dr

(
2− 27a2gsNf

r2
+ 9gsNf −

1

r16gsNf
− 1

r2gsNf

)

log

(
sin

θ1
2
sin

θ2
2

)
sin θ2 dθ2 ∧ dφ2 ∧ dr −

gsb4(r)

12π

dM(r)

dr
log

(
sin

θ1
2
sin

θ2
2

)
sin θ2 dθ2 ∧ dφ2 ∧ dr

24We correct a minor typo in [25].
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(2.75)

with (kα, ..., qα) being constants, σi ≡ (θi, φi) and bn =
∑

m
anm

rm+ǫ̃m
where anm ≡

anm(gsNf ,M, rh) and ǫ̃m ≡ ǫ̃m(gsNf ,M, rh).

Note that in addition to the simplest O(rh) term that we mentioned above, there

would be more terms of the same order that vanish in the ISD limit. We might also

wonder about terms of the form da/dr and da/dσi. From the form of (2.70) we

see that these terms themselves are of O(M) so to this order they could either be

absorbed in dM(r)/dr terms or in the O(rh) terms. The various squashing factor

etc are now given by:

∑

α

kα

rβ(α)
= 1− 3a2(rh,M, gsNf)

(ζr)2
+O(rh,M, g2sN

2
f )

∑

α

lα

rθ(α)
= 1 +

36a2(rh,M, gsNf) log (ζr)

ζr
+O(rh,M, g2sN

2
f )

∑

α

pα
rκ(α)

= 1 +
3gsa

2(rh,M, gsNf)

(ζr)2
+

9gsa
4(rh,M, gsNf )

(ζr)4
+O(rh,M, g2sN

2
f )

= 1 +
3gsa

2(rh,M, gsNf)

(ζr)2 − 3a2(rh,M, gsNf )
+O(rh,M, g2sN

2
f )

∑

α

qα

rξ(α)
= 1 +

72a2(rh,M, gsNf) log (ζr)

ζr
− 2592a4(rh,M, gsNf) log

2 (ζr)

(ζr)2
+O(rh,M, g2sN

2
f )

= 1 +
72a2(rh,M, gsNf ) log (ζr)

ζr + 36a2(rh,M, gsNf) log (ζr)
+O(rh,M, g2sN

2
f ) (2.76)

To study the far IR physics, we again consider M(r) →M , with the various expan-

sions in (2.76) are related to A4,A5,B4 and B5 respectively. Note again that the

resolution parameter in all the coefficients appear as a2. This then reproduces again

the far IR result of [25] as well as the expected ansatze (2.49), namely:

H3 = 6gsA4M

(
1 +

9gsNf

4π
log r +

gsNf

2π
log sin

θ1
2

sin
θ2
2

)
dr

r

∧1

2

(
sin θ1 dθ1 ∧ dφ1 −B4 sin θ2 dθ2 ∧ dφ2

)
+

3g2sMNf

8π
A5

(
dr

r
∧ eψ − 1

2
deψ

)

∧
(
cot

θ2
2
dθ2 −B5 cot

θ1
2
dθ1

)
(2.77)

with the necessary O(rh) terms that vanish when the horizon radius vanishes.

In the far IR the closure of H3 is again non-trivial because the resolution pa-

rameter a is no longer a constant now, although M(r) → M . All the informations

of non-constant a are captured in the coefficients A4,5 and the squashing factors
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B4,5. In the following section we will determine the resolution parameter to O(M2)

in the IR. This means up to this order, the closure of H3 implies the following three

conditions:

(i) α2cot
θ2
2

∂A5

∂θ1
+ α2 A5cot

θ1
2

∂B5

∂θ1
+O(rh,M

3, gsNf ) = 0 (2.78)

(ii) α1sin θ1
∂A4

∂θ2
+ α2cos θ1 cot

θ2
2

∂A5

∂θ1
− α3sin θ1 cot

θ2
2

∂A5

∂r

+ α2A5cos θ1 cot
θ1
2

∂B5

∂θ2
+O(rh,M

3, gsNf ) = 0

(iii) α1 B4 sin θ2 cot
θ1
2

∂A4

∂θ1
− α1 A4 sin θ2

∂B4

∂θ1
− α2 A5 cos θ2 cot

θ1
2

∂B5

∂θ2

− α3 A5 sin θ2 cot
θ1
2

∂B5

∂r
+ α2 cos θ2 cot

θ2
2

∂A5

∂θ1

− α3 B5 sin θ2 cot
θ1
2

∂A5

∂r
+O(rh,M

3, gsNf) = 0

where α1, α2 and α3 are defined as:

α1 =
3gsM

2

(
1 +

9gsNf

4π
log r +

gsNf

2π
log sin

θ1
2

sin
θ2
2

)

α2 =
3g2sMNf

8πr
, α3 = −3g2sMNf

16π
= −rα2

2
(2.79)

The RR three-form flux F̃3 ≡ F3 − C0H3 is not closed, but it satisfies the condition

dF̃3 = −dC0 ∧H3, which is equivalent to the statement that F3 is closed. Of course

as described in [25], the closure of F3 is only in Region 1. In Region 2 there are anti

five-brane sources that make F3 non-closed. The closure of F3 in Region 1 implies

the following nine conditions on the various coefficients of the three-form fluxes:

(iv) β1
∂A1

∂r
sin θ1 − β2

∂A2

∂θ1
cot

θ1
2

sin θ1 − β2 A2

∂B2

∂θ1
cot

θ1
2

sin θ1

+kα1 A4 sin θ1 + kα2 A5 B5 cot
θ1
2

cos θ1 + kα2 A5 B5 cot
θ1
2
+O(rh,M

3, gsNf) = 0

(v) − β1 B1

∂A1

∂r
sin θ2 + β1 A1

∂B1

∂r
sin θ2 + β2

∂A2

∂θ2
cot

θ2
2

sin θ2

−kα1 A4 B4 sin θ2 − kα2 A5 cot
θ2
2

cos θ2 + kα2 A5 cot
θ2
2
+O(rh,M

3, gsNf ) = 0

(vi) β1
∂B2

∂r
cos θ2 sin θ1 − β2

∂A2

∂θ1
cot

θ2
2

sin θ1 cos θ1 + β2 B2

∂A2

∂θ1
cot

θ1
2

sin θ1 cos θ2

−β2 A2

∂B2

∂θ1
cot

θ1
2

sin θ1 cos θ2 + β3
∂A3

∂r
cot

θ2
2
− kα1 A4 sin θ1

− kα2 A5 B5 cot
θ1
2

cos θ1 + kα2 A5 B5 cot
θ1
2

cos θ2 +O(rh,M
3, gsNf ) = 0

(vii) − β1 B1

∂A1

∂r
sin θ2 cos θ1 − β1 A1

∂B1

∂r
sin θ2 cos θ1 − β2

∂A2

∂θ2
cot

θ2
2

sin θ2 cos θ1
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−β2 B2

∂A2

∂θ2
cot

θ1
2

sin θ1 cos θ2 − β2 A2

∂B2

∂θ2
cot

θ1
2

sin θ1 cos θ2 + β3 B3

∂A3

∂r
cot

θ1
2

+ β3 A3

∂B3

∂r
cot

θ1
2
+ kα2 A5 cos θ1 cot

θ2
2
− kα1 A4 B4 sin θ2

− kα2 A5 cot
θ2
2

cos θ2 +O(rh,M
3, gsNf) = 0

(viii) β1
∂A1

∂θ2
cos θ2 + β1 A1

∂B1

∂θ1
sin θ2 cos θ1 − β3 B3

∂A3

∂θ1
cot

θ1
2
+ β3

∂A3

∂θ2
cot

θ2
2

−β3 A3

∂B3

∂θ1
cot

θ1
2
− kα3 A5 cot

θ2
2

sin θ1 + kα3 A5 B5 cot
θ1
2

sin θ2 +O(rh,M
3, gsNf) = 0

(ix) β1
∂A1

∂θ2
sin θ1 + kα3 A5 cot

θ2
2

sin θ1 +O(rh,M
3, gsNf) = 0

(x) β1 A1

∂B1

∂θ1
sin θ2 + kα3 A5 B5 cot

θ1
2

sin θ2 +O(rh,M
3, gsNf) = 0

(xi) − β2
∂A2

∂θ1
cot

θ2
2

sin θ2 − kα2 A5 B5 cot
θ1
2

cos θ2 + kα2 A5 B5 cot
θ1
2

+O(rh,M
3, gsNf) = 0

(xii) − β2 A2

∂B2

∂θ2
cot

θ1
2

sin θ1 + β2
∂A2

∂θ2
cot

θ2
2

sin θ2 − kα2 A5 cot
θ2
2

− kα2 A5 cot
θ2
2

cos θ1 +O(rh,M
3, gsNf ) = 0 (2.80)

where we have already defined αk,An and Bm. The βi are now defined as:

β1 =M

(
1 +

3gsNf

2π
log r

)
, β2 = −3gsMNf

4πr
=

2β3
r

(2.81)

Note that in (2.78) and (2.80) we have separated theO(rh,M
3, gsNf) corrections from

the resolution parameter a2 in the fluxes. We may also absorb these corrections to the

resolution parameter and write the three-form fluxes completely in terms of O(M3)

corrections to the O(M) terms in the original Ouyang solution. This may also be

interpreted as though every flux components sees a different resolution parameter a2k.

Note also that we don’t have an O(M2) corrections to the Ouyang three-form fluxes.

However from (2.70) we do expect an O(M) term for a2, unless of course b0 = 0 or

a0 is proportional to M . Comparing (2.70) with (2.55), (2.56) and (2.63) may imply

b0 = 0. Additionally, the scenario with a20 being of O(M/N), is more likely, as in the

absence of wrapped D5-branes the gauge theory is conformal with the gravity dual

given by AdS5 × T 1,1 [28]. Only in the presence of wrapped D5-branes the gravity

dual becomes a resolved warped-deformed conifold so the resolution parameter a0
should depend on M . This will be consistent with (2.55) and (2.59) as discussed

earlier. In either case, it is clear that the fluxes that we take contribute the O(M3)

terms to the original Ouyang fluxes. This helped us to get a consistent background

in the presence of fluxes and a black-hole as we saw in the previous subsection. A

more elaborate study will be delegated to [21].
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Before we end this section, let us also see how the squashing factors in the three-

form fluxes behave in the light of the result (2.63). To O(gsM
2/N) the resolution

parameter a2 is only a function of the radial coordinate r. This means that An,Bm

can be written as functions of r to this order satisfying the closure conditions (2.78)

and (2.80). For example, combining (2.63) and (2.78), A5 takes the following integral

form:

A5 =
1

sin θ1 cot θ2
2

∫
dr
a5
α3

(2.82)

where a5 is a function of the angular θi and the radial r variable such that ∂A5

∂θi
= 0.

Similarly:

B5 =
sin θ1 cot θ2

2

sin θ2 cot θ1
2

∫
dr c5α

−1
3 (r)∫

dr′ a5α
−1
3 (r′)

(2.83)

where again c5 is like a5 discussed above. Once (a5, c5) are determined the two integral

forms (2.82) and (2.83) not only satisfy the closure conditions (2.78) but also the

necessary EOM. These two integral forms are also consistent with the conditions

(ix) and (x) of (2.80) because α3 ≡ −3g2sMNf

16π
is a constant. Note however that,

to this order, the integral form for (A4,B4) cannot be determined by this method,

although we will know (A4,B4) in terms of the resolution parameter a2 up to the

O(rh,M
3, gsNf ) corrections.

On the other hand both (A1,B1) do have an integral representation if we assume

that (A4,B4) have some integral representation (which in turn will be determined

in a different way from the one that we have followed here). If this is the case, then:

A1 =

∫
dr

β1

(
a1

sin θ1
+ kα1 A4 + kα2 A5 B5 cot

θ1
2

cot θ1 + kα2 A5 B5 csc2
θ1
2

)

B1 = A1

∫
dr

β1A1
2

(
b1

sin θ2
+ kα1 A4 B4 + kα2 A5 cot

θ2
2

cot θ2 − kα2 A5 csc2
θ2
2

)

(2.84)

where (a1, b1) are functions of r and θi such that ∂A1

∂θi
= ∂B1

∂θi
= 0 in the same sense as

mentioned earlier for the other cases. The other squashing factors in (2.80) do not

however have such simpler integral forms.

Another interesting thing to note is that from condition (xii) of (2.80) we might

get a simpler form for A5, namely:

A5 = − ra7

2kα3cot
θ2
2
(1 + cos θ1)

(2.85)

This may seem to be different from (2.82) that we derived earlier. This is however

not the case because the coefficient a7 is related to a5 in the following way:

a5 =
1

k

(
∂a7
∂θ1

+ r
∂2a7
∂θ1∂r

)
(2.86)
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One may also cook up somewhat similar relation for b5 and b7 from condition (xi) of

(2.80) as above. The final result will again be consistent with what we got earlier,

establishing the fact that the system is well defined with the given set of boundary

conditions. Therefore these analyses complete the side of story that we expected

from [6] and [25] in a satisfactory manner.

2.3 The behavior of the coupling constants

In the above sub-section we computed the background more or less exactly up to

order gsM2

N
. To this order we see that the corrections to the resolution parameter a2

is only functions of r, the radial coordinate. If we go beyond this order, the angular

dependences start showing up.

One other thing along the same line would be to study the behavior of the two

gauge coupling constants of the boundary theory. For example a crucial question

would be to ask how the RG flows of the coupling constants change when the thermal

effects are turned on. In the literature there have been many confusing statements

on this. In the following we will argue that the RG flows or more appropriately the

thermal beta functions should be properly interpreted and the correct picture, in our

opinion, is that the thermal beta functions do not change, but the coupling constants

themselves get renormalised. Let us elaborate the story below.

Once we know the NS B-field B2 and the string coupling eΦ then it is easy to

determine the gauge couplings at the UV of the dual gauge theory. The resulting

relations are:

8π2

g21
= e−Φ

[
π − 1

2
+

1

2π

(∫

S2

B2

)]

8π2

g22
= e−Φ

[
π +

1

2
− 1

2π

(∫

S2

B2

)]
(2.87)

Now note that when a2 is a constant the string coupling and the B2 field were

obtained in [6] as

e−Φ =
1

gs
− Nf

8π
log(r6 + 9a2r4)− Nf

2π
log
(
sin

θ1
2
sin

θ2
2

)

B2 =
(
b1(r) cot

θ1
2
dθ1 + b2(r) cot

θ2
2
dθ2

)
∧ eψ

+
[3g2sMNf

4π
(1 + log(r2 + 9a2)) log

(
sin

θ1
2
sin

θ2
2

)
+ b3(r)

]
sin θ1dθ1 ∧ dφ1

−
[g2sMNf

12πr2
(−36a2 + 9r2 + 16r2 log r + r2 log(r2 + 9a2)) log

(
sin

θ1
2
sin

θ2
2

)
+ b4(r)

]

× sin θ2dθ2 ∧ dφ2 (2.88)

where we have shown the a2 dependences in B2. The other a2 dependences come

from the implicit coefficients bi(r). These dependences in the first two coefficients
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b1(r), b2(r) are given by25:

b1(r) =
g2SMNf

24π(r2 + 6a2)

(
18a2 + (16r2 − 72a2) log r + (r2 + 9a2) log(r2 + 9a2)

)

b2(r) = −3g2sMNf

8πr2
(
r2 + 9a2

)
log(r2 + 9a2) (2.89)

Similarly, other dependences on the resolution parameter would come from the (b3, b4)

coefficients. We have determined these coefficients in terms of first-order differential

equations. They are now given by:

b′3(r) =
3gsMr

r2 + 9a2
+

g2sMNf

8πr(r2 + 9a2)

[
− 36a2 − 18a2 log |a2|+ 34r2 log r (2.90)

+(10r2 + 81a2) log(r2 + 9a2)
]

b′4(r) = −3gsM(r2 + 6a2)

κr3
− g2sMNf

8πκr3

[
18a2 − 18(r2 + 6a2) log |a2|

+(34r2 + 36a2) log r + (10r2 + 63a2) log(r2 + 9a2)
]

As all the above coefficients are given in terms of the resolution parameter derived in

(2.63), they should then be functions of rh and other radial and angular variables26.

This means that the exact coupling should be determined in terms of the NS B-field

B̃2 that is of the form, up to the order that we had in (2.63):

B̃2 = B2(r, θi) + (gSM) · (gsNf) ·
(
gsM

2

N

)
B2(r) + (gSM) · (gsNf )

2

(
gsM

2

N

)
C2(r, θi)

(2.91)

and not B2 that we mentioned in (2.88). Also we expect dB̃2 = H3 with H3 given as

in (2.75). However, notice that the extra terms in (2.91) are suppressed by gSMNf

over and above the gsM2

N
suppression. Therefore if we follow the limit shown in (2.38),

we can easily infer that this makes (2.91) and the resolution parameter a2 (2.63) to

have the following ǫ expansion

B̃2 = B2(r, θi) + ǫ11/2 B2(r) + ǫ7 C2(r, θi)
a2 = a20 + ǫ9/2 r2h + ǫ9/2 a21(r) + ǫ6 a22(r, θi) (2.92)

that basically tells us that B̃2 ≈ B2 which is consistent with our assumptions in [6].

To this limit then the running of the couplings do not change, as one would have

expected. This gives us:

∂

∂ log Λ

[4π2

g21
+

4π2

g22

]
= −3Nf

4

(r2 + 6a20
r2 + 9a20

)

25The bi(r) here are the same bi(r) that we encountered in (2.75) in the limit where the fluxes

become ISD.
26Note the appearance of log |a2| so that a2 < 0 will not lead to any inconsistencies, as we

explained earlier.
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∂

∂ log Λ

[4π2

g21
− 4π2

g22

]
= 3M

[
1 +

3gsNf

4π
log(r2 + 9a20) + ...

]
(2.93)

where Λ is the energy scale in the gauge theory side. In fact the LHS of (2.93) is

written in terms of gauge theory variables whereas the RHS is written in terms of

gravity variables.

One important question now is to ask what happens when we consider gsM2

N

corrections. Clearly now we need to consider the corrections to a2 (2.63). What does

this imply for the running couplings? Saying that the coupling constants run at a

different rate would probably not be a meaningful statement. The correct thing to

say at this stage would be to allow for new effective couplings g̃1 and g̃2 that again flow

at the same rate as before, i.e the effective couplings have the same beta functions

as the original theory. Alternatively this means that between the two scales, energy

and temperature, we fix the energy scale and define effective couplings for any given

temperature. Once we change the energy scale, these couplings should run exactly

as before.

A way to see this would be the following illustrative example. Imagine the

complete corrections to (2.93), from the changes in the fluxes and the resolution

parameters, may be represented as:

∂

∂ log Λ

[4π2

g21
+

4π2

g22

]
= −3Nf

4

(r2 + 6a20
r2 + 9a20

)
+

∞∑

n=1

rnhFn(r, θi) (2.94)

∂

∂ log Λ

[4π2

g21
− 4π2

g22

]
= 3M

[
1 +

3gsNf

4π
log(r2 + 9a20) + ...

]
+

∞∑

m=1

rmh Gm(r, θi)

where Fn(r, θi) and Gn(r, θi) capture all the corrections. For simplicity we have con-

sidered the corrections to depend only on (r, θi). Of course more generic corrections

could also be entertained here but it would only make the analysis involved with-

out changing the underlying physics. Therefore here we will stick to the simplest

scenario.

The above corrections to our earlier set of equations can now be re-arranged

to redefine two new set of couplings g̃1 and g̃2 that are related to g1 and g2 in the

following way:

1

g̃21
=

1

g21
− 1

32π4

∫ Λ

a0

dr

r

∫ 2π

0

∏

i

dθi

( ∞∑

n=1

rnhFn +
∞∑

m=1

rmh Gn
)

1

g̃22
=

1

g22
− 1

32π4

∫ Λ

a0

dr

r

∫ 2π

0

∏

i

dθi

( ∞∑

n=1

rnhFn −
∞∑

m=1

rmh Gn
)

(2.95)

where we have taken an average over the angular directions so that the couplings

are defined only in terms of rh and r (or temperature and the energy scale, in the

language of gauge theory). With this, one can now easily see that the two effective
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couplings g̃1 and g̃2 flow exactly as (2.93) and therefore the theory has the same

behavior, which in turn means the same renormalisation group flows, in terms of

these couplings. This would probably be the right way to analyse thermal beta

functions.

We can perform a few checks to justify, at least to some extent, the results

got from the gravity side. Firstly, the two running equations (2.93) are easy to

justify. When the bare resolution parameter a0 is small then (2.93) combine precisely

to reproduce the NSVZ beta function [32]. Secondly, in the presence of a non-

zero temperature T in field theory, the thermal loops will renormalize the two YM

couplings g
(i)
YM to take the following form in the planar limit (see for example [33]):

1

g̃
2(i)
YM

=
1

g
2(i)
YM

[
1 +

∑

n

g
2n(1)
YM Hi1

n (T ) +
∑

m

g
2m(2)
YM Ki2

m(T )

]
(2.96)

where the coeffcients Hi1
n (T ) and Ki2

m(T ) could be determined from evaluating the

thermal loops. One thing is clear: to have the same NSVZ beta function these

coefficients are related as:

H11
n (T ) = H21

n (T ), K12
m (T ) = −K22

m (T ) (2.97)

With (2.97), although the above YM couplings have surprising resemblance to the

analysis that we did from the gravity side in (2.95), this mapping can be made precise

if we could identify the coefficients on both sides of the dictionary. This is presently

work in progress and more details will be elaborated in a forthcoming work.

2.4 Short detour on dualities and dipole deformations

Our final aim of this section would be to take a short detour and study the effect

of the dipole deformations on the flavor seven-branes in the gravity picture. This

dipole deformation, since it affects the seven-branes, should also have some effect on

the fundamental quarks in the gauge theory. We will make some speculations how

the dipole deformations effect the far IR picture.

Our starting assumption would be that the solutions presented in the earlier

subsections have isometries along φ1, φ2 and ψ directions. This in particular means

that the coefficients appearing in (2.61) i.e (Ai, Fi, Gi, gi) are all functions of (r, θi)

only and not of (φi, ψ). This is not a strong assumption as we saw earlier that even

to O(g2sM
2Nf/N) the (φi, ψ) dependences do not show up. It could be that the

background retains its isometry along (φi, ψ) directions to all orders in gsNf and

gsM
2/N , but we haven’t shown this here.

Before moving ahead let us clarify a point here. Dipole (or non-commutative)

deformations can be studied in two possible ways. In the conformal case, one takes

the D3-brane metric written in terms of its harmonic functions, and then use TsT (T-

duality, followed by a shift s, and then another T-duality) to generate new solution.
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The new solution is still given in terms of D3-branes and harmonic functions, but now

there is a background BNS field. One then takes the near horizon limit to determine

the gravity dual of this scenario. The gravity dual has no D3-branes, but both F5 as

well as H3 = dBNS fluxes are still present. The near horizon geometry do not change

the internal metric too much, and therefore analysis on both sides of the story is

somewhat similar.

The above criteria changes quite a bit once we go to the non-conformal case. The

gravity dual is not simply given by taking the near-horizon limits of the D3 and the

wrapped D5-branes. To avoid naked singularities of the Klebanov-Tseytlin form, one

now has to deform the internal space also. This means making a TsT transformation

on the brane side, one may not necessarily get the full gravity dual picture easily.

This is also clear in the geometric transition set-up, whose supergravity solution is

developed in [34, 3]. So we could do TsT transformations on two sides of the picture,

leading to two possible different interpretations.

Thus, once we have solutions for both sides, namely the gauge-theory and the

gravity sides, we can use TsT transformations to deform them into various different

solutions. In this paper we will not consider the dipole (or non-commutative) defor-

mations on the gauge-theory side of the story27, but concentrate only on the gravity

side. This means, given the background metric (2.10) with fluxes, five-branes and

seven-branes, the TsT transformed backgrounds will be related to some interesting

deformations of the four-dimensional thermal gauge theories. These deformations

can be classified to fall into four categories. They are listed as follows28:

• T-dualize along one space direction say x3 then shift along another space direction

say x2 mixing (x2, x3) and then T-dualize back along x3 direction.

• T-dualize along x3 and then shift29 along one of the internal directions that are

isometries of the background, namely along φ1, φ2 or ψ directions30, and then T-

dualize back along x3 direction.

• T-dualize, shift and then T-dualize along internal directions. The shift will mix

two of the internal directions in some appropriate way.

The first operation will lead to a non-commutative gauge theory on the D7-branes

with [x2, x3] = iB23 as our algebra. The second one is more interesting. T-dualizing

along x3 but making a shift on the directions along which the D7-branes are oriented

i.e along φ1, θ1 and ψ (recall that the D7-branes wrap the two-sphere parametrised by

27The dipole deformations on the gauge theory side, at least in the far IR and in the local case,

has been discussed earlier in [35]. The readers may refer to those papers for more details on the

multiply allowed dipole deformations.
28We will use (x0, x1, x2, x3) as a convenient reparametrization of (t, x, y, z) used earlier. The

former will be more convenient for the next couple of sections.
29Again mixing x3 with one of the internal directions.
30For simplicity we will only consider the isometry directions.
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(θ1, φ1) and are spread along (r, ψ) directions) will lead again to a non-commutative

gauge theory on the D7-branes. On the other hand, if we make a shift along the

orthogonal direction parametrised by φ2, then the theory on the D7-branes will be

a dipole gauge theory. For the last case, one is T-dualizing and shifting along the

directions of the D7-branes. This will again lead to non-commutative theory on the

D7-branes. On the other hand if we shift along φ2 but T-dualise along the D7-brane

directions, we will get dipole theory on the D7-branes.

To analyse these in case-by-case basis, let us study the first kind of deformation

first. We choose the shift to be

x2 7→
x2

cos θ
+ sin θx3, x3 7→ cos θx3 (2.98)

After the series of transformations discussed above, i.e TsT , the metric (2.10), be-

comes31:

ds2 =
1√
h

[
−g1dx20 + dx21 + J(dx22 + dx23)

]
+
√
h(g−1

2 dr2 + dM2
5) (2.99)

with the Lorentz breaking deformations along (x2, x3) directions specified by J .

There is also a background BNS field that accounts for the non-commutativity. Both

J and the BNS field are defined as:

J−1 = sin2 θh−1 + cos2 θ, B23 = tan θh−1J (2.100)

The metric has the same form as in [38] and the gauge theory on the D7-branes

become non-commutative in the x2 and x3 directions.

For the second kind of deformation we follow similar procedure as above except

that now we shift along ψ direction and T-dualise along x3 direction. The resulting

metric is

ds2 =
1√
h

(
−g1dx20 + dx21 + dx22 +

9

9 cos2 θ + r2 sin2 θ
dx23

)
(2.101)

+
√
h

[
r2(dψ + cos θ1dφ1 + cos θ2dφ2)

2

9 cos2 θ + r2 sin2 θ
+ ...

]

where note that the x3 and the ψ circle is non-trivially warped. The dotted terms are

unchanged from the original metric (2.10). However the BNS field now is non-trivial

because of the ψ fibration structure:

B =
r2 tan θ

9 cos2 θ + r2 sin2 θ
dx3 ∧ (dψ + cos θ1dφ1 + cos θ2dφ2) (2.102)

The scenario now is interesting because we have three components of the BNS field,

with two of the components B3ψ and B3φ1 parallel to the D7-branes and one com-

ponent B3φ2 having one leg orthogonal to the D7-branes. Existence of these three

31For this section we will ignore the O(gsM
2/N, r4h/r

4) corrections to the internal metric (2.12).

A more precise result will not change the physics to the order that we are studying here.
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components would lead to a complicated theory on the D7-branes that in some limit

may be considered as a combination of both dipole and non-commutative deforma-

tions of the world-volume theory on the D7-branes.

As an example for the third kind of deformation32 we first T-dualize along ψ

direction and then shift along φ2 direction. The resulting metric, keeping both the

squashing factors (F,G) in (2.10), will look like

ds2 =
1√
h
(−g1dt2 + dx2 + dy2 + dz2) +

√
h
[
r2J(dψ + cos θ1 cos θdφ1 + cos θ2dφ2)

2

+
3

2
r2J(1 + F )(1 + G) sin θ22dφ2

2 + ...
]

(2.103)

with the dotted terms being the terms unchanged from the original metric (2.10).

As expected, note that both the ψ fibration structure as well as the φ2 directions get

warped by J . As before there is also a BNS field. Both J and BNS are given by:

Bψφ2 =
1

6
tan θ sin2 θ2 (1 + F )(1 + G)J

J−1 = 9 cos2 θ +
1

6
hr2(1 + F )(1 + G) sin2 θ2 sin

2 θ (2.104)

This solution shows that the gauge theory on the D7-branes has become a non-local

dipole theory33.

All these solutions generated from our TsT duality operations lead to new gauge

theories on the D7-branes. As mentioned earlier, it is not clear to us whether these

deformations are the corresponding gravity duals of the respective deformations on

the gauge theory side of the picture. One thing however is clear: due to the dipole de-

formations on the D7-branes, the KK masses of the fluctuations are different from the

original theory. In fact the dipole deformations (along appropriate directions) tend

to make the KK states heavier [35]. Therefore we would expect operator dimensions

on the field theory side to also change accordingly.

The TsT duality operation doesn’t change the warp factor nor the BH factor.

Naively applying the criteria from [25] one would think this doesn’t change the

32Note that we cannot construct another theory by shifting along θ2 direction and then T-dualing

along φ2 direction because θ2 is not an isometric direction. A shift along the non-isometry directions,

like the θ2 direction, will destroy the existing isometry directions making the T-duality operations

highly non-trivial.
33On the other hand, the shifts and the duality directions that we choose are not the most generic

ones. We can make numerous other shifts. One simple example could be as follows: we T-dualize

along space direction x3, then shift as z 7→ z + λθ22/2 and finally T-dualize back to generate a

non-trivial background with the metric

ds2 =
1√
h
(−g1dt

2 + dx2 + dy2 + dz2) +
√
h(g−1

2 dr2 + dM2
5 + λ2 θ22 dθ22)

and a BNS field, B3θ2 = λθ2. This would generate dipole deformation on the D7-branes.
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thermal behavior of the theory. However, notice that now there is an extra non-

constant BNS field that cannot be gauged away. This means when we write down

the Nambo-Goto action for the strings, the effect of the BNS field can no longer

be ignored and it’ll definitely change the criteria of the confinement/deconfinement

transition studied in [25, 30]. This shouldn’t be surprising because one would expect

the thermal behavior of the dipole deformed quarks to be different from the un-

deformed ones.

3. Background chemical potential and backreactions

After carefully working out all the details about the background, it is now time to

study various applications. In earlier papers [6, 25, 30, 27] we managed to study

aspects of phase transitions, quarkonium meltings, viscosity to entropy ratio and

many other things despite lacking a precise knowledge of the background. Of course

our ignorance about the precise details of the background, first proposed in [6], wasn’t

quite a handicap as the knowledge of the existence of an UV completion was enough

to get results for many of the above mentioned computations. For those computations

that needed specific details, for example the question of how much we deviate from

the well-known viscosity to entropy bound, were left in their functional forms. Once

precise background informations become available, these functional forms may be

replaced by their exact values.

In the following sections we will however not re-address those questions here. In-

stead we will ask what happens if we switch on a chemical potential in our theory. In

fact, even before we study the consequences of switching on a chemical potential, we

should ask how to generate a chemical potential in our set-up. This is unfortunately

not so simple as the AdS case. Part of the reason is that, a-priori there are two

known ways by which we could generate chemical potential: one via duality chasing,

and the other via the D7-brane gauge fields. Both give different result, and we will

argue below that the former, i.e the duality chasing method, is inherently flawed due

to certain subtleties associated with the curvature of the background. The latter will

turn out to be more useful.

The second reason that makes the story a little more involved has to do with the

underlying RG flows in the dual gauge theory. Due to this, we need to understand

the effect of the chemical potential at a given renormalization scale. In the gravity

side, this means that we have to study the background at a chosen radial coordinate.

We will discuss this below, and also point out the subtleties with the duality chasing

idea that make it difficult to use this as a viable method of generating chemical

potential in our theory. But first let us give a brief discussion of the concept of

chemical potential in thermal field theories.
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3.1 Chemical potential in thermal field theories

Chemical potential is associated with conserved current. Once there is a conserved

charge Q =
∫
j0d3x, there is a chemical potential µ conjugate to Q, and the grand

partition function for the thermal field becomes

Z = Tre−β(H−µQ)

=

∫
Dψ exp

[
−
∫ β

0

d4x(LE − µj0)
]

(3.1)

where H is the Hamilton and LE is the Lagrangian density after Wick rotation. We

have omitted other gauge group indices for simplification.

In the field theory the only field naturally couples to j0 is A0 so the chemical

potential in the thermal field theory is defined as the time component of the gauge

field A0. Loosely speaking, according to the AdS/CFT correspondence this is the

value of the bulk gauge field At(r) at boundary, i.e. radial infinity. If we have a gauge

field At in the bulk its value at infinity will introduce a chemical potential associated

with some conserved charge for the gauge theory living on the boundary. In the

following section we will first try to generate such a bulk field by duality chasing.

A more interesting thing to do is to study the chemical potential associated

with the quark number. In our case we have M coincident fractional D3 branes

(in the far IR) and Nf coincident D7 branes so the SU(M) gauge theory has a

global U(Nf ) ≃ SU(Nf ) × U(1) symmetry. The fundamental matter ψ and ψ̄,

which are quarks, transform under the global U(1) symmetry with charges 1 and

−1 respectively. Thus the U(1) charge counts the number of quark numbers nq. In

terms of partition function it can be written as

Z = exp(−βW ) = exp [−β(H − µnq)] (3.2)

where W is the Gibbs free energy which satisfies

δW

δµ
= −nq (3.3)

From the string point of view, the Gibbs free energy is proportional to the on shell

D7 brane action,

δW =

∫ ∞

r0

d4x dr dΩ3δLE =

∫ ∞

r0

d4x dr dΩ3
δLE

δ∂rA0(r)
∂rδA0(r) (3.4)

where r0 is some scale that will be made precise later and Ω3 is the internal three-cycle

along which D7 branes are extended. On the other hand

∫
dΩ3

δLE
δ∂rA0(r)

= −nq
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The reason is the following. The U(1) field on the D7-brane worldvolume can be

thought of as arising from fundamental strings dissolved into the D7-branes. Thus

the density of the quarks is precisely the density of the strings. Since the fundamental

strings source the NS two-form BNS ≡ B0r, so its density can be determined from

the local charge density of the BNS-field. Furthermore, the gauge invariance requires

that the D7-brane action only involves the combination B0r + 2πl2sF0r so that
∫
dΩ3

δLE
δ∂rA0(r)

= −2πl2s

∫
dΩ3

δLE
δB0r

= −nq (3.5)

Plugging (3.5) into (3.4) we find

δW = −nq [δA0(∞)− δA0(r0)] (3.6)

since A0(r0) always vanishes, comparing (3.6) and (3.3) we get µ = A0(∞). We will

calculate this chemical potential in the next subsection after we clarify the subtleties

associated with duality chasing method to generate chemical potential in our model.

3.2 Chemical potential using duality chasing

The duality chasing idea is somewhat similar to the technique that we used to gener-

ate non-commutative and dipole theory on the D7-branes. Instead of using shift, we

will apply boost and then T-dualize. We call this technique as TbT where b stands

for boost. The boosting mixes x0 with the internal coordinate, say ym, to generate a

BNS field of the form B0m. This means from the five-dimensional point-of-view this

would indeed be a gauge field A0 ≡ B0m. Since the duality chasing preserves34 EOMs,

our method should give us a background with a vector potential A0. Unfortunately,

as we show below, this fails in a rather subtle way.

Our starting point would be to consider the metric and the fluxes presented in

section 2 but ignoring the O(gsM
2/N, r4h/r

4) corrections (this means we are in the

range (2.41)). Since our background is divided into three Regions, namely 1,2 and

3, the easiest way would be to keep all the warp factors undetermined so that after

TbT we can get the results for the three Regions simultaneously. This is easier said

than done because the background also has BNS fields that start decaying faster as

we approach Region 3 [25].

To avoid these subtleties, let us study the effect of the TbT operations only in

Region 1. The BNS field in Region 1 will be of the form (2.91). However due to the

scaling arguments given in (2.92), the BNS field components take the form (2.88).

We can simplify this a little further by making the components independent of φ2

direction with a gauge transformation:

Bnow = B2 + dC1, with Ci =

∫
Bφ2i dφ2 (3.7)

34Both sides are weakly coupled, and so no non-perturbative effects could enter here.
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where B2 is given in (2.88) and Bnow is the BNS field that will enter the duality

relations. Taking this into account, after TbT the metric will be:

ds2 =
1√
h

(
− Ag1
A cosh2 β − g1√

h
sinh2 β

dt2 + dx2123

)
+

√
h

g1
dr2

+
√
h r2

[
1

9
−

√
h r2

81
cos2 θ2A

(
1− A cosh2 β

A cosh2 β − g1√
h
sinh2 β

)]
(dψ + cos θ1dφ1 + cos θ2dφ2)

2

+

√
h r2

6
(dθ21 + sin2 θ1dφ

2
1) +

√
h r2 (1 + F )(1 + G)

6

(
dθ22
1 + G + sin2 θ2dφ

2
2

)

+
h r4

9
A
(
1− A cosh2 β

A cosh2 β − g1√
h
sinh2 β

)
×

[
1

9
cos θ1 cos

3 θ2dφ1dφ2 −
(
1

4
sin4 θ2 +

1

3
sin2 θ2 cos

2 θ2

)
dφ2

2

]

−
√
h r2

9

(
1− A cosh β

A cosh2 β − g1√
h
sinh2 β

)
×

[√
h r2 (1 + F )(1 + G)

6
cos θ2 sin

2 θ2Adψdφ2 + cos θ1 cos θ2dφ1φ2

]

+
h r4

81

A cosh β cos3 θ2(1− cosh β)

A cosh2 β − g1√
h
sinh2 β

dψdφ2 (3.8)

where more details are given in Appendix A. The background now indeed has a

gauge flux A0 coming from (A.9) along with a dilaton φ̃. The various components

are given by:

A =
18√

h r2
[
2 cos2 θ2 + 3(1 + F )(1 + G) sin2 θ2

]

φ̃ = φ− 1

2
ln

(
cosh2 β − g1 sinh

2 β

A
√
h

)

A0 = B0φ1dφ1 + B0φ2dφ2 + B0ψdψ + B0θ1dθ1 (3.9)

with B0φ1 , B0φ2, B0ψ and B0θ1 are the four-components given in (A.9). There are also

the RR fields that we haven’t discussed here. They do not mix with the metric and

the BNS fields and therefore do not change the chemical potential. This is because

the gauge field in (3.9) come from the cross-terms in the metric generated by the

boost operation and not from the fluxes.

Unfortunately the solution presented in (3.9) and (3.8) has numerous issues. We

notice that the dilaton becomes imaginary and gtt becomes infinity and changes sign

at r = r1, where

r1 =
1√
g1

· 3
√
2 coth β√

2 cos2 θ2 + 3(1 + F )(1 + G) sin2 θ2
(3.10)
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and becomes negative when r > r1. We will asume that r1 >> (N/M)1/4rh. When

dilaton becomes imaginary that means the theory is not well defined in this region

and signals a serious problem for the TbT done for this metric. Actually after the

boost in type IIA the metric already have gtt and gφ2φ2 changing sign at r = r1
which means at that point t becomes spacelike while φ2 becomes timelike. In [31]

the authors discussed the dimensional reduction on a timelike direction, but for our

case its not clear whether the dimensional reduction or T-dualities along the half

spacelike half timelike direction makes sense. Of course one might try to do the

TbT operation along flat space-time directions but this will not generate any new

solutions. In the literature TbT was generally done on asymptotically flat directions,

see for example [36] and references therein, however, when one tries to do the TbT

operation along very curved directions as in our case, one will generally get into the

same problem as we do.

The above issues tell us that the duality chasing idea may be a futile endeavor

to look for chemical potential from the gravity side. There exists a much better way

to determine the source of chemical potential involving considerable less effort. We

turn to this in the following section.

3.3 Chemical potential from D7 brane world-volume gauge theory

Another way to introduce chemical potential is to study the U(1) gauge field on the

D7 brane as in [4] (see also [39]). To study this case thoroughly one has to take into

account not only the backreaction of the D7 brane but also the backreaction of the

gauge field on the brane.

We first solve for the gauge field. To do this, we consider the solution from [6]

where we already took into account the backreactions from the seven-brane as well

as from the fluxes and black hole. This way the metric ansatze will be more generic

than what we took here. Of course in [6], the warp factor and the hi coeffcients of

the internal metric were left undetermined, so the chemical potential that we will get

using this background will be left in terms of these coefficients. Our aim then would

be to plug in the values of the coefficients that we determined here by considering the

backreaction from the black hole and compute a representative chemical potential.

Our starting point then is the metric35:

ds210 =
1√
h
(−gttdt2 + dx2123) +

√
h(grrdr

2 + r2dM2
5 ) (3.11)

where dM2
5 is the same as ds26 in (A.1). We take the simplest D7 brane embedding

35Note that in this section we are taking a metric ansatze more general than the one considered

in (2.12). Therefore we will assume that the radial range is r ≥ rh and not (2.41). Of course the

metric of the internal space could still change to O(r4h/r
4) but we will not address the issue here.

A more elaborate analysis will be presented elsewhere.
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profile which is φ2 = 0, θ2 = θ2(r), so the induced metric for D7 brane is

ds28 =
1√
h
(−gttdt2 + dx2123) +

√
h
[
(grr + r2h3h4(∂rθ2)

2)dr2 + r2h1(dψ + cos θ1dφ1)
2

+r2h2(dθ
2
1 + sin2 θ1dφ

2
1) + h5 cosψ(∂rθ2)drdθ1 + h5 sinψ sin θ1(∂rθ2)drdφ1

]

(3.12)

In the UV region the NS and RR two-forms, B2 and C2 respectively, can be neglected.

If we allow the seven-brane embedding to be wholly in Region 3 of [25], then the

scenario will be no different from the ones in [4]. Therefore by the same argument

in [4] we can only turn on the At component on the brane which will be a function

of the radial coordinate. The DBI action for the D7 brane is,

I = TD7

∫
d8x e−φr3

√
h1h2 sin θ1

[
gttgrrh2 + gtth2∂rφ

i∂rφ
i
√
h + h2F

2
tr

+gttr
2(h2h3h4 − h25/4)(∂rθ2)

2
]1/2

(3.13)

Neglecting the fluctuations in φi i.e keeping ∂rφ
i∂rφ

i = 0, the equation of motion for

At is

∂r

{
e−φr3

√
h1h2 h2 ∂rAt√

gttgrrh2 + h2F 2
tr + gttr2(h2h3h4 − h25/4)(∂rθ2)

2

}
= ∂rD = 0 (3.14)

At r → ∞, one can find At = µ + a
r2

where µ is the chemical potential on the field

theory side. And µ can be described as

µ =

∫ ∞

r0

drD

√
gttgrrh2 + gttr2(h2h3h4 − h25/4)(∂rθ2)

2

e−2φr6h1h32 − h2D2
(3.15)

where r0 >> rh with r0 to be a point in Region 3 determined by the minimum dip

of the seven-brane in Region 3. For simplicity, we have also assumed the chemical

potential for At(r0) = 0.

Note that the chemical potential µ in (3.15) depends on the precise embedding

θ2(r). To eliminate θ2(r) in (3.15) we need to determine the equation of motion for

this. For this we first construct the Legendre transform of eq. (3.13) with respect to

D to eliminate At in the action. The new action is,

I = TD7

∫
d8xe−φr3 sin θ1

√√√√h1h2 (gttgrrh2 + gttr2(h2h3h4 − h25/4)(∂rθ2)
2)

1− D2

e−2φr6h1h22

(3.16)

With this the equation of motion for θ2(r) is,

∂r

(
e−φr5

√
h1h2

1− D2

e−2φr6h1h22

gtt(h2h3h4 − h25/4)∂rθ2√
gttgrrh2 + gttr2(h2h3h4 − h25/4)(∂rθ2)

2

)
≡ ∂rK = 0
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(3.17)

After simplification we find that the chemical potential can be expressed in terms of

two constants D and K in the following way:

µ =

∫ ∞

r0

dr Fµ (r; {hi}) (3.18)

where we have defined

Fµ (r; {hi}) =
√√√√ grrg

2
tt(h2h3h4 − h25/4)r

14h21h
3
2D

2

(r6h1h
2
2 −D2e2φ)

(
e−2φgtt(h2h3h4 − h25/4)r

14h21h
3
2 −K2(r6h1h

2
2 −D2e2φ)

)

(3.19)

The above formula for the chemical potential although elegant, is unfortunately not

very illuminating for us because the warp factors hi are now all in Region 3 whereas

in this paper we have concentrated ourselves only in Region 1. It could be that

the hi continue to remain the same from IR to UV, but we don’t have any a-priori

information on this. In addition to that we expect the seven-brane to go all the

way to r = rh in Region 1. Therefore a more generic formula for the chemical

potential, that takes into account various regimes of validity of our construction, can

be expressed succinctly as36:

µ =

∫ ∞

rh

dr Fµ (r; {hi}) (3.20)

=

∫ rmin

rh

dr Fµ,1

(
r; {h(1)i }

)
+

∫ r0

rmin

dr Fµ,2

(
r; {h(2)i }

)
+

∫ ∞

r0

dr Fµ,3

(
r; {h(3)i }

)

where h
(n)
i are the warp factors of the internal space in Region n with the corre-

sponding function Fµ,n

(
r; {h(n)i }

)
. One interesting thing about (3.20), and also of

(3.18), is that the warp factor h doesn’t appear in the final formula (at least for the

embedding that we have chosen). We also note that, in the limit:

K = 0, φ ≪ log


r

3h
(n)
2

√
h
(n)
1

D


 (3.21)

which means that the value of the dilaton at any point in the radial direction is

bounded above by the log function, the formula for the chemical potential drastically

36In deriving this formula we have ignored the pull-backs from the NS and RR three-form fluxes

from Regions 1 and 2. It will be interesting to see how the chemical potential depends on these

informations. Here, however, we will suffice ourselves with approximate estimates, and a more

detailed exposition will be addressed elsewhere.
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simplifies to:

µ = D



∫ rmin

rh

dr
eφ

r3h
(1)
2

√
h
(1)
1

+

∫ r0

rmin

dr
eφ

r3h
(2)
2

√
h
(2)
1

+

∫ ∞

r0

dr
eφ

r3h
(3)
2

√
h
(3)
1


(3.22)

The actual value of the chemical potential in this limit now depends on the value

of the dilaton in the three regions as well on the internal warp factors h
(n)
i . To

estimate the value of the chemical potential let us now consider a toy example where

the dilaton is approximately constant over the three regions and the internal warp

factors remain same in Regions 1, 2 and 3, i.e:

eφ ≈ gs, D ≡ c0r
3
h (3.23)

h
(n)
1 =

1

9
, h

(n)
2 =

1

6
, h

(n)
3 =

1

1 + G , h
(n)
4 =

(1 + F )(1 + G)
6

, h
(n)
5 = 0

where c0 is a constant37 and the scaling of D is motivated from [4]. Plugging (3.23)

in (3.22) we get our final estimate for the chemical potential as:

µ = − 9c0rhgs (3.24)

where the sign of µ will be determined by the sign of co. Note that our estimate says

that the chemical potential is very small (provided |co| ≪ 1) and is proportional to

rh, the horizon radius. In the dual field theory, the temperature is related to the

horizon in the following way

T =
g′(rh)

4π
√
h(rh)

(3.25)

This means that in terms of temperature, the chemical potential is given by

µ = c0Tr
2
h

√
h(rh) (3.26)

where we have taken the appoximation that g(r) = 1 − r4h/r
4. As seen from our

numerical analysis, g0 ≪ 1 and we can effectively ignore the modification of g(r) due

to the presence of fluxes, while A0 near the horizon is not negligible. Thus we have

to consider h(rh) = h0(rh)+h
1(rh) in the above expression. From (3.26), we see that

chemical potential is approximately linear in terms of temperature, however as

r2h
√
h(rh) ∼ L2

√

1 +
3gsM2

2πN
log(

rh
r∗
) + A0(rh) (3.27)

with r∗ being another relevant scale, (3.26) also involes terms ∼ log(T ). But this

is precisely consistent with the logarithmic running of the gauge coupling with tem-

perature and hence our analysis reveals that chemical potential is sensitive to the

underlying structure of the gauge theory, which by construction is non-conformal.
37c0 can be thought of as a free parameter of our theory, not determined by the equation of

motion. In fact using (3.2), one readily gets that c0 ∼ r−1

h (W −H)/nq. Thus c0 is related to quark

density.
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4. Discussions and Conclusions

In this paper we have addressed one of the crucial issue left undetermined in our

earlier papers [6, 25, 30, 27], namely the backreactions from black hole, branes and

fluxes on the background geometry and on the various UV completions. We found

that in certain limit (2.38) the background EOMs allow for a perturbative suppres-

sions (2.39) under which the backreactions from branes and fluxes can be consistently

ignored. This means we only had to study the backreaction from black hole on the

geometry, a task, which in the same limit, simplifies immensely to a set of three

second-order partial differential equations (2.25), (2.43) and (2.55) provided we are

in the radial range (2.41). Solutions to these equations are provided in Appendix

C. Of course the analysis that we present here is only meant for the IR regime of the

theory, but it would probably be possible to extend this to Region 3 where UV caps

were introduced in [6, 25]. Two challenges still remain: one, to study the equations

at r = rh in Region 1 and two, to study them in the intermediate buffering region

i.e Region 2. In both cases the analysis may get very involved because for the first

case one would now have to solve all the twenty internal Einstein’s equations; and

for the second case the (p, q) five-brane sources and fluxes will further complicate the

scenario. These details are left for future works.

We took few other directions in this paper too, many of which are not restricted

by the constraint (2.41). We gave a detailed analysis of the backreactions on the

fluxes from the black hole and the flavor seven-branes. These backreactions tend to

make the three-form fluxes non-ISD. Interesingly the effect of the horizon radius rh
on the fluxes is, to the order that we present here, implicit: the appearance is via the

resolution parameter F (or a2). The fact that the resolution parameter would have

dependence on the black hole radius was anticipated in [6, 25]. Here we confirm that

prediction.

Another direction that we took here is related to the study of the running cou-

plings. Our analysis predicts that the two couplings change under various backreac-

tions from the dual gravity side, but their RG runnings remain the same as for the

non-thermal case. We believe this should be the correct way to interpret thermal

beta functions. An alternative interpretation where the thermal beta function is as-

sumed to be different from the non-thermal case is probably not a very meaningful

conclusion.

Our final analysis, ignoring the detour that we took to study dipole deformed

quarks, is the study of chemical potential. We showed how the chemical potential

should be studied in a theory with an underlying RG flow. Our analysis yields, by

ignoring certain subtleties, a result of the form (3.20). Under simplifying assum-

tions this gives us (3.24) which turns out to be a reasonably good estimate. A full

analysis however will require us to compute, among other things, the internal warp

factors h
(n)
i . Furthermore, going beyond gsNf and gsM

2/N orders, and estimating
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the background would yield interesting results for the IR regime of large N thermal

QCD. All of these are of course very challenging questions but, as we saw in this

paper, there may exist corners of the solution spaces where one may find unexpected

simplifications. It is worth at least, if not for anything else, to look for these regimes

of simplicity in a subject that is notorious for its unyielding complexity.
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A. An exercise in duality chasing

In this section our aim would be to understand how to switch on a gauge field, A0,

along a five-dimensional space in type IIB string theory. The five-dimensional space

will be the dual gravitational description of a gauge theory with running couplings.

This would mean that all the type IIB fields, namely the three and the five-forms

including the axion-dilaton are all switched on. We will generate this solution using

two stages of duality transformations. The first stage of duality transformations

would convert a simple torsional background to another background that has both

the three-forms including five-forms and axion-dilaton switched on. The second stage

of duality transformations would further convert this background to the one that we

want.

Our starting point would then be to take the following torsional background:

ds210 = h
1
2 eφh0ds

2
4 + h−

1
2 eφds26 (A.1)

where φ is the dilaton and we have defined ds26 and ds24 in the following way:

ds24 = −gttdt2 + dx2123

ds26 = h1dr
2 + h2(dψ + cos θ1dφ1 + cos θ2dφ2)

2 + h3(dθ
2
1 + sin2 θ1dφ

2
1) + h4(h6 dθ

2
2 + sin2 θ2dφ

2
2)

+h5 cosψ (dθ1dθ2 − sin θ1 sin θ2dφ1φ2) + h5 sinψ (sin θ1dθ2dφ1 − sin θ2dθ1dφ2) (A.2)

with (h, hi) being the required warp factors, and the torsion H3 is given by the usual

relation:

H3 = e2φ ⋆ d(e−2φJ) (A.3)

J is the fundamental form that we will compute separately in Appendix B. Now

using our first stage of duality transformations, as described in details in [3], we can
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easily get the following background from (A.1), (A.3) and the dilaton φ:

F3 = h h20 cosh βe
2φ ⋆ d(e−2φJ),

H3 = −h h20 sinh βe2φd(e−2φJ),

F5 = −1

4
(1 + ⋆)dA0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3,

ds2 = h0ds
2
4 + h1dr

2 + h2(dψ + cos θ1dφ1 + cos θ2dφ2)
2 + h3(dθ

2
1 + sin2 θ1dφ

2
1) + h4(h6 dθ

2
2

+ sin2 θ2dφ
2
2) + h5 cosψ (dθ1dθ2 − sin θ1 sin θ2dφ1φ2) + h5 sinψ (sin θ1dθ2dφ1 − sin θ2dθ1dφ2)

(A.4)

For this solution to be supersymmetric, the minimum requirement, in the absence

of a black hole, is h h20e
2φ = 1. Using this we can compute the NS B-field from the

three-form H3 = dB2 as:

B2 = −e−2φ sinh βJ

= −e−2φ sinh β(
√
F1F2dr ∧ (dψ + cos θ1dφ1 + cos θ2dφ2)

+AB sinψ sin θ1 sin θ2(w + za)dφ1 ∧ dφ2 −ABz sin θ1dφ1 ∧ dθ1
+AB cosψ sin θ2(w + za)dθ1 ∧ dφ2

−[ABa(w + za)− C
√
F4 − a2A2(z − wa)] sin θ2dθ2 ∧ dφ2

−[ABaz − C
√
F4 − a2A2w] cosψ sin θ1dθ2 ∧ dφ1

+[ABaz − C
√
F4 − a2A2w] sinψdθ2 ∧ dθ1]) (A.5)

where A,B,C, a, w, z, J are worked out in Appendix B.

In our second stage of duality on (A.4), we will do a T-duality followed by a Boost

and then another T-duality (TbT ) along φ2 direction. To make the TbT operation

simpler, we can do a gauge transformation to eliminate the Bφ1i components in the

following way:

B̃2 = B2 + dC1, with Ci =

∫
Bφ2i dφ2 (A.6)

Now that the B2 field has no Bφ2i components, TbT is straightforward. The resulting

metric is:

ds2 = h0

(
− Agtt
A cosh2 β − h0gtt sinh

2 β
dt2 + dx2123

)
+ h1dr

2

+

(
h2 − h22 cos

2 θ2A(1− A cosh2 β

A cosh2 β − h0gtt sinh
2 β

)

)
(dψ + cos θ1dφ1 + cos θ2dφ2)

2

+h3(dθ
2
1 + sin2 θ1dφ

2
1) + h4(h6 dθ

2
2 + sin2 θ2dφ

2
2)

+A
(
1− A cosh2 β

A cosh2 β − h0gtt sinh
2 β

)
(h2h5 sinψ cos θ2 sin θ2dψdθ1

−h
2
5 sin

2 ψ sin2 θ2
4

dθ21 −
h25 cos

2 ψ sin2 θ1 sin
2 θ2 − h2h5 cosψ sin θ1 cos θ1 sin θ2 cos θ2

4
dφ2

1
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−(h24 sin
4 θ2 + 2h2h4 sin

2 θ2 cos
2 θ2)dφ

2
2 − (2h2 cos θ1 cos θ2 − h5 cosψ sin θ1 sin θ2)

×h5 sinψ sin θ2
2

dφ1dθ1 + h2h5 cosψ sin θ1 sin θ2 cos θ2dψdφ1 + h22 cos θ1 cos
3 θ2dφ1dφ2

)

−
(
1− A coshβ

A cosh2 β − h0gtt sinh
2 β

)
(h2 cos θ1 cos θ2dφ1φ2 + h2h4 cos θ2 sin

2 θ2Adψdφ2)

− A cosh β

A cosh2 β − h0gtt sinh
2 β

(
h5 cosψ sin θ1 sin θ2dφ2dφ1 + h5 sinψ sin θ2dφ2dθ1

)

+
A coshβ

A cosh2 β − h0gtt sinh
2 β

h22 cos
3 θ2(1− cosh β)dψdφ2 + h5(cosψdθ1dθ2 + sinψ sin θ1dθ2dφ1)

(A.7)

where β is the boost parameter, and we have defined A as:

A =
1

h2 cos2 θ2 + h4 sin
2 θ2

(A.8)

The metric (A.7) is accompanied by all the type IIB RR and NS form fields. These

can be easily worked out. Here we will just quote the B2 field and the dilaton φ̃:

φ̃ = φ− 1

2
log(cosh2 β − h0gtt sinh

2 β) +
1

2
log A

B0φ2 =
(A− h0gtt) sinh β cosh β

A cosh2 β − h0gtt sinh
2 β
, B0ψ = Ah2 cos θ2 sinh β

B0φ1 =
A
2
(2h2 cos θ1 cos θ2 − h5 cosψ sin θ1 sin θ2) sinh β, B0θ1 =

A
2
h5 sinψ sin θ2 sinh β

(A.9)

It is now easy to see what the five-dimensional gauge-field would look like. Its simply

the following wedge product:

A0 ≡ B0φ2dφ2 +B0ψdψ +B0φ1dφ1 +B0θ1dθ1 (A.10)

Notice that for the metric and dilaton to be regular we require the metric component

gtt and the warp factors to satisfy:

h0gtt(h2 cos
2 θ2 + h4 sin

2 θ2) 6 coth2 β (A.11)

If we demand this requirement to hold for all the values of θ2 and β, then we need

the following two scenarios:

If h4 > h2, then h0h4gtt 6 1

If h2 > h4, then h0h2gtt 6 1 (A.12)
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B. The fundamental form J

We first define the vielbeins as follows,

e1 =
√
h1dr, e5 =

√
h4h6 − a2A2dθ2

e2 =
√
h2(dψ + cos θ1dφ1 + cos θ2dφ2)

e3 = A(sinψ sin θ1dφ1 + cosψdθ1 − adθ2)

e4 = B
(
w sin θ2dφ2 + z(cosψ sin θ1dφ1 − sinψdθ1 + a sin θ2dφ2)

)

e6 = C
(
z sin θ2dφ2 − w(cosψ sin θ1dφ1 − sinψdθ1 + a sin θ2dφ2)

)
(B.1)

where A, B, C, a, w, z must satisfy,

A2 = h3, a = − h5
2h3

, B2zw + C2zw =
3

2
h5

B2z2 + C2w2 = h3, B2z − C2w = h3, B2w2 + C2z2 = h4 −
h25
4F3

(B.2)

The fundamental form J is,

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

=
√
h1h2dr ∧ (dψ + cos θ1dφ1 + cos θ2dφ2)

+AB sinψ sin θ1 sin θ2(w + za)dφ1 ∧ dφ2 − ABz sin θ1dφ1 ∧ dθ1
+AB cosψ sin θ2(w + za)dθ1 ∧ dφ2

−[ABa(w + za)− C
√
h4h6 − a2A2(z − wa)] sin θ2dθ2 ∧ dφ2

−[ABaz − C
√
h4h6 − a2A2w] cosψ sin θ1dθ2 ∧ dφ1

+[ABaz − C
√
h4h6 − a2A2w] sinψdθ2 ∧ dθ1 (B.3)
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C. More details on the squashing and the warp factor com-

putations

In the absence of blackhole that is e2B = 1, the warp factor α = e4A = 1/h only

depends on r, θ1 and θ2 even when D7 back reaction is taken into account by con-

sidering the running axion-dilaton field [13]. In this extremal limit rh = 0, we have

ISD three-form fluxes G3 and the internal metric g̃mn describes a Ricci flat deformed

cone. For the non-extremal case, we will demand similar behavior for the warp fac-

tor h and will find that such solutions do exist. Using h ≡ h(r, θ1, θ2) only, in the

non-extremal case we get,

dF̃5 = d

([
∂rh ζ + e−2B

(
ḡθ1θ1∂θ1h η1 + ḡθ2θ2∂θ2h η2

)] r5(1 + F + G/2)
108

sinθ1sinθ2

)

≡ dD (C.1)

where we have used our metric ansatz (2.10, 2.12) and definition of the five-form flux

(2.53). We have only kept linear terms in F,G and this is justified as we look for

solutions F,G ≪ 1 and ignore terms higher order term. In the above we have also

defined

ḡpq = e−2B g̃pq (C.2)

where p, q run over the compact directions and thus (C.2) implies ḡpq is indepndent

of B. Here ζ, ηi are five-forms given by

ζ = dψ ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2
η1 = dψ ∧ dr ∧ dφ1 ∧ dφ2 ∧ dθ2
η2 = dψ ∧ dr ∧ dφ1 ∧ dφ2 ∧ dθ1 (C.3)

Just like the extremal case, we will assume that ∂θih ∼ O(g2sNfM
2/N) and we

will find that this choice is consistent with all the Einstein equations and equations

for the fluxes . With this assumption, we readily get up to O(gsM
2/N), and ignoring

O(F,G,G)O(gsM
2/N) (since F,G,G ≪ 1)

ḡθiθi∂θih = ḡθiθi0 ∂θih (C.4)

where i = 1, 2 and ḡpq0 is zeroth order in M,Nf . But at zeroth order in M,Nf , the

compact five dimensional internal space M5 is exactly the deformed cone and thus

ḡpq0 is precisely the metric of deformed T 1,1. Our ansatz for the black hole factor e2B

is given in (2.54) where G is at least O(M/N, gsM
2/N, gsNf ). This is a sufficient

condition as in the absence of five-branes and seven branes, we have AdS × T 1,1

with black hole where e2B = 1 − r̄4h
r4

and r̄h ≫ b. This is because for large r, the
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deformed cone becomes the regular cone and considering r̄h ≫ a, we are effectively

putting a black hole in a regular cone. In other words, the non-extremal limit of the

geometry only ‘sees’ the regular cone and deformation of the cone is hidden behind

the black hole horizon. This also means our non-extremal solution is valid only for

large horizon, that is the non-extremal solution only captures the large temperature

deconfined chirally symmetric phase of the gauge theory. The extremal solution

without any black hole is dual to the confined phase.

Now using (2.54) in D reads

D =

[
∂rh ζ +

1

1− r4
h

r4

(
ḡθiθi0 ∂θih ηi

)
]
r5
sinθ1sinθ2

108
(1 + F +G/2)

=
[
∂rh

0 ζ + ḡθiθi0 ∂θih
0 ηi
]
r5
sinθ1sinθ2

108
+

[
∂rh

1 ζ +
1

1− r4
h

r4

ḡθiθi0 ∂θih
1 ηi

+
r4h/r

4

1− r4
h

r4

ḡθiθi0 ∂θih
0 ηi

]
r5
sinθ1sinθ2

108
+ r5

(F +G/2) sinθ1sinθ2
108

∂rh
0 ζ (C.5)

where we have only considered up to O(gsM
2/N) terms. Here h0 is the Ouyang

solution and h1 is the correction due to the black hole which alters the internal

compact space M5. But the Ouyang solution satisfies Bianchi identity exactly as:

d

[(
∂rh

0ζ + ḡθiθi0 ∂θih
0ηi
)
r5
sinθ1sinθ2

108

]
= H

(0)
3 ∧ F (0)

3 (C.6)

Using this in (2.47) we get

d

[(
∂rh

1ζ +
1

g
ḡθiθi0 ∂θih

1ηi +
r4h/r

4

g
ḡθiθi0 ∂θih

0ηi

)
r5
sinθ1sinθ2

108
+ r5

(F +G/2) sinθ1sinθ2
108

∂rh
0ζ

]
= 0

which gives us (2.55). The derivations of (2.25), (2.43) and (2.45) have already been

discussed in section 2.2.

We will now solve the four equations (2.55), (2.25), (2.43) and (2.45) by ignoring

all terms of O(gsNf ). In this limit, all angular dependences vanish and all the func-

tions A, F and G are only functions of the radial coordinate r. This also means we

are ignoring the back reaction of the seven branes and our solution should be consid-

ered as the non-extremal generalization of Klebanov-Strassler theory with modified

UV behavior. For Nf = 0, with e−4A = h = h0 + h1, we take the following ansatz

h1 =
L4

r4
(
A0(r) + A1(r)log r + A2(r)log

2r
)

e2B ≡ g = 1− r4h
r4

+ g0(r) + g1(r)log r + g2(r)log
2r

F = F0(r) + F1(r)log r + F2(r)log
2r

– 53 –



(C.7)

With our ansatz, only taking up to linear order terms in Ai, Fi and gi one obtains that

the equation derived from (2.45) is trivial. Also up to linear order, A1 = A2 = F1 =

F2 = g1 = g2 = 0 is a solution with A0, F0, g0 being the only non-trivial functions.

The equations resulting from (2.55),(2.25) and (2.43) are as follows

(i) rA′′
0 − 3A′

0 − 4F ′
0 = 0

(ii) 5r4g′0 + 4r̄4hF
′
0 + r5g′′0 = 0

(iii)
6gsM

2

Nπ
r̄4h + 56r4g0 + 16r4F0 + 4rr̄4hA

′
0 + 49r5g′0 + 24r5F ′

0 + 12rr4hF
′
0

+ 7r6g′′0 + 4r6F ′′
0 − 4r2r4hF

′′
0 = 0 (C.8)

To solve these second order differential equations, all we need to do now is

specify the boundary conditions. As we have second order differential equations, we

can choose two boundary conditions. A priori we do not know where the horizon is,

that is we do not rh such that e2B(rh)=0, so we cannot specify the boundary condition

at the horizon. Additionally we cannot take r to be smaller than the range (2.41).

However, since we are looking for solution such that asymptotically we recover the

extremal geometry, we can impose the following boundary conditions:

limr→∞ A0(r) = 0

limr→∞ g0(r) = 0

limr→∞ F0(r) = 0 (C.9)

From the form of the equations in (C.8), we see that inverse power series in r is a

possible candidate for the solutions that obey the boundary conditions (C.9). On

the other hand, as already discussed in section 2.1, we expect Ai, gi and Fi to be

proportional to the horizon rh. Thus our anstaz is

A0(r) = ā0k

(rh
r

)k
, F0(r) = f̄ 0

k

(rh
r

)k

g0(r) = ζ̄0k

(rh
r

)k
, (C.10)

where ā0k, f̄
0
k and ζ̄0k are atleast O(M/N, gsM

2/N), and the radial coordinate r is

assumed in the range (2.41). The boundary condition (C.9) implies

ā00 = f̄ 0
0 = ζ̄00 = 0 (C.11)

We can further choose three other boundary conditions. Again since (a) we do not

know where the horizon is and (b) the radial coordinate is constrained by (2.41), we

will choose the following boundary conditions: at r = ∞ and choose

limr→∞ A′
0(r) = 0
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limr→∞ g′0(r) = 0

limr→∞ F ′
0(r) = 0 (C.12)

which is automatically solved by our ansatz (C.10). With the set of boundary con-

ditions (C.9) and (C.12), we solve (C.8) numerically. The exact solution (whose

validity should be considered for r > (N/M)1/4rh) is plotted in Figures 1, 2, 3.

Observe that the numerical solutions are consistent with the analytic behavior in

(C.10). When M = 0, equations (C.8) imply that we have the trivial solution, i.e.

A0 = g0 = F0 = 0. But since M 6= 0, we must have non-trivial solutions to satisfy

(C.8).
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