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Abstract

We construct N = 1 supergravity extensions of scalar field theories with higher-
derivative kinetic terms. Special attention is paid to the auxiliary fields, whose elim-
ination leads not only to corrections to the kinetic terms, but to new expressions for
the potential energy as well. For example, a potential energy can be generated even
in the absence of a superpotential. Our formalism allows one to write a supergravity
extension of any higher-derivative scalar field theory and, therefore, has applications
to both particle physics and cosmological model building. As an illustration, we couple
the higher-derivative DBI action describing a 3-brane in 6-dimensions to N = 1 super-
gravity. This displays a number of new features– including the fact that, in the regime
where the higher-derivative kinetic terms become important, the potential tends to be
everywhere negative.
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1 Introduction

Since its discovery [1, 2, 3], supersymmetry has been investigated with enthusiasm by theoret-
ical physicists. If the supersymmetry algebra is linearly realized, its representations contain
bosonic and fermionic degrees of freedom in equal numbers. Moreover, particles belonging
to the same representation have equal mass. Since superpartners with the same mass as
conventional particles have not been observed, four-dimensional supersymmetry cannot be
an unbroken low energy symmetry. Nevertheless, there are good reasons to take seriously
the idea that supersymmetry– particularly four-dimensional N = 1 supersymmetry –might
be relevant at higher energies. For example, when N = 1 supersymmetry is taken into
account, the gauge couplings of the electroweak and strong forces unite to good precision at
high energies [4], suggesting the existence of supersymmetric grand unification. Moreover,
supersymmetric theories enjoy special finiteness properties that help to explain the hierarchy
between the electroweak and the unification/gravitational scales [5, 6]. Last, but not least,
N = 1 supersymmetry is a central feature of phenomenologically realistic string theories–see,
for example [7, 8].

All of this motivates studying early universe cosmology within the context of N = 1
supersymmetry. Since cosmology quintessentially involves gravitation, such theories must
be constructed using “local” supersymmetry– that is, N = 1 supergravity –and not the
“global” supersymmetry of low energy particle physics models. This has been done within
the context of two-derivative kinetic theories, both in local quantum field theory and su-
perstrings. More recently, however, it has become clear that higher-derivative theories of
cosmology are potentially important. These include so-called DBI inflation [9], ekpyrotic
theories with brane collisions [10, 11] and ghost-condensation [12, 13, 14], as well as other
cosmologies constructed on the worldvolume of three-branes [15, 16]. Motivated by this, in
this paper we will develop a framework for constructing higher-derivative kinetic theories of
chiral superfields coupled to N = 1 supergravity. As a first application of this formalism,
we present an example of supergravitational DBI inflation.

This paper builds on previous work [17, 18] on globally supersymmetric higher-derivative
scalar field theories– extending it to local N = 1 supergravity. We first construct a su-
pergravity version of (∂φ)4, the square of the usual kinetic energy of a real scalar field. In
the present work, we neglect fermions because a) they are typically unimportant in models
of early universe cosmology and b) since their inclusion greatly complicates all equations.
Instead, we focus on the physics of the scalar bosons and the associated auxiliary fields.
We will present the fermionic terms, and discuss their role, in forthcoming publications [19].
When the fermions are set to zero, our supergravity extension of (∂φ)4 has a special– per-
haps unique –property; namely, it can be multiplied by an arbitrary function of the scalar
fields and their spacetime derivatives, while not altering the pure supergravity sector of the
Lagrangian. Because this multiplicative factor is arbitrary, our formalism allows one to write
a supergravity extension of any higher-derivative Lagrangian built out of scalar fields and
their spacetime derivatives.

As always in supergravity, a special role is played by the auxiliary fields. In this paper,
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we devote considerable attention to their properties. In ordinary two-derivative chiral su-
pergravity, elimination of the auxiliary fields leads to a well-known formula for the potential
V . In terms of a Kähler potential K and superpotential W [20], this is given by

V = eK
(

K ,AiAj∗|DAiW |2 − 3|W |2
)

, (1.1)

where Ai denotes the complex scalar component of a chiral supermultiplet. In higher-
derivative supergravity theories, we find two generic differences. First, the elimination of
the auxiliary fields leads to corrections to the above formula. When the higher-derivative
terms are important, these corrections can be significant, drastically modifying the dynam-
ics. The second property is that the equation of motion for the auxiliary field F i of a chiral
multiplet is now a cubic equation– whereas previously it was linear. Thus, in general it
admits three distinct solutions, which, after substituting back into the Lagrangian, lead to
three inequivalent theories. In this paper, we present the basic properties of each of these
three branches.

The bulk of the paper presents our general formalism. It is useful, therefore, to give an
explicit example– which we do by constructing the supergravity extension of a particular
DBI action. This allows us to display the specific corrections to both the kinetic and poten-
tial terms induced by the elimination of the auxiliary fields when higher-derivative terms are
present. We also analyze one of the new branches of the supergravity DBI theory, comment-
ing on the implications of our results for models of DBI inflation. In particular, we find that
in the relativistic regime of the DBI theory, the potential automatically becomes negative–
rendering inflation impossible. These findings illustrate the significance that the auxiliary
fields can have on the dynamics of a given model.

There are many potential applications of our results, particularly in early universe cosmol-
ogy. For example, cosmological models that are constructed in– or inspired by –string theory
should admit an effective N = 1 supergravity description in four-dimensions. These theories
typically have scalar fields arising as the moduli associated with branes [21], flux [22, 23] or
the compactification manifold. For most– if not all –of these models, whether they are of
DBI inflation [9], k-inflation [24], k-essence [24], ekpyrotic/cyclic cosmology [10, 25, 12, 26],
effective theories of Galileons [27] or higher-derivative induced cosmic bounces [28, 29, 30],
the proper setting is supergravity– and all contain phases where the dynamic description
includes scalar higher-derivative terms. We hope to apply our formalism to these models in
the future.

The plan of the paper is the following. We begin in Section 2 by reviewing the construction
of higher-derivative kinetic terms for chiral multiplets in global supersymmetry; that is, when
gravity is neglected. Then, in Section 3, it is shown how this construction can be generalized
to supergravity. We proceed by eliminating the auxiliary fields one by one, beginning with
bm and M of pure supergravity. . The auxiliary fields F i of the chiral multiplets require
special attention, and Section 4 is devoted to them. In Section 5 we apply our formalism
to an example of the DBI action. For the benefit of the reader, we include short summaries
of our results at the end of each subsection in 4 and 5 . After concluding in Section 6, we
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add Appendices describing the difference of our formalism with the framework of Baumann
and Green [31, 32], as well as comments on Kähler invariance in the present context. The
notation and conventions of the book by J. Wess and J. Bagger [33] are used throughout the
paper.

2 Higher-Derivative Chiral Superfields in

Flat Superspace

We begin by considering global N = 1 supersymmetry in flat four-dimensional spacetime.
The associated supersymmetry algebra is given by

{Qα, Q̄α̇} = −2σm
αα̇Pm, (2.1)

where Qα, Q̄α̇ and Pm = −i∂m generate supersymmetry and translations respectively. Here
α, β, ... and α̇, β̇, ... are the conjugate indices of two-component Weyl spinors and m,n... are
spacetime indices. To construct supersymmetric Lagrangians in this context, it is useful to
work in flat superspace where, in addition to the four ordinary spacetime dimensions (with
coordinates xm), one adds four fermionic, Grassmann-valued dimensions (with coordinates
θα, θ̄α̇). In terms of these coordinates, the supersymmetric generators are represented by the
superspace derivatives

Dα =
∂

∂θα
+ iσm

αα̇θ̄
α̇∂m, D̄α̇ = − ∂

∂θ̄α̇
− iθασm

αα̇∂m (2.2)

which satisfy the algebra
{Dα, D̄α̇} = −2iσm

αα̇∂m . (2.3)

Any supermultiplet can be obtained as an expansion of a superfield, appropriately con-
strained, in the anti-commuting coordinates θ, θ̄. The expansion terminates at order θθθ̄θ̄
because of the Grassmann nature of these coordinates. For example, a chiral superfield Φ,
defined by the constraint

D̄Φ = 0 , (2.4)

has the expansion

Φ = A(x) +
√
2θχ(x) + θθF (x)

+iθσmθ̄∂mA(x)−
i√
2
θθ∂mχ(x)σ

mθ̄ +
1

4
θθθ̄θ̄�A(x), (2.5)

where A is a complex scalar, χα is a spin-1
2
fermion and F is a complex auxiliary field–

which, for Lagrangians with canonical kinetic energy, is not a dynamical degree of freedom.
(A, χ, F ) are the component fields of the chiral supermultiplet. The component expansion
(2.5) can be simplified by using the coordinates ym = xm + iθσmθ̄, in terms of which

Φ = A(y) +
√
2θχ(y) + θθF (y). (2.6)
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This form of the component expansion has a straightforward generalization to curved su-
perspace, as we will see shortly. It also suggests an alternative way of defining component
fields, which turns out to be more useful in supergravity. Consider, for example, the chiral
supermultiplet Φ. We note that one can also define the components of Φ as

A ≡ Φ | (2.7)

χα ≡ 1√
2
DαΦ | (2.8)

F ≡ −1

4
D2Φ | (2.9)

where | denotes taking the lowest component. It is straightforward to check that these fields
are identical to those in the θ, θ̄ expansion (2.5).

A general feature of superspace is that the highest component (that is, the θθθ̄θ̄ compo-
nent) transforms under supersymmetry into a total spacetime derivative. Thus, the highest
component of a superfield can be used to construct a supersymmetric Lagrangian. Because
of the Grassmann nature of the fermionic coordinates, one can isolate the top component
by integrating over superspace with d2θd2θ̄. Moreover, one can replace the d2θd2θ̄ integral
over all superspace by a chiral integral −1

4
d2θD̄2 using the chiral projector D̄2. This follows

from the flat superspace relation D̄3 = 0.
In a previous paper [17], it was shown how to construct supersymmetric actions involving

higher-derivatives of chiral superfields. The construction is based on a particular supersym-
metric extension of the scalar field Lagrangian (∂φ)4 given by DαΦDαΦD̄α̇Φ

†D̄α̇Φ†. Ignoring
the fermion χ, this superfield contains only the θθθ̄θ̄ component

DαΦDαΦD̄α̇Φ
†D̄α̇Φ† = θθθ̄θ̄

(

16(∂A)2(∂A∗)2 (2.10)

−32 |∂A|2|F |2 + 16|F |4
)

,

where the complex scalar A is composed of two real scalars φ, ξ as

A =
1√
2
(φ+ iξ) (2.11)

and |∂A|2 ≡ ∂A · ∂A∗. Thus, the superspace integral of the superfield (2.10) yields the term

16(∂A)2(∂A∗)2 = 4(∂φ)4 + 4(∂ξ)4 − 8(∂φ)2(∂ξ)2 + 16(∂φ · ∂ξ)2 (2.12)

plus terms involving the auxiliary field F . Hence, (2.10) constitutes a possible supersym-
metric extension of (∂φ)4. The relationship to a different supersymmetric extension of (∂φ)4

is discussed in Appendix A. In this paper, we concentrate on (2.10) since this superfield
possesses several particularly useful properties:

• It constitutes a supersymmetric extension of the precise expression (∂φ)4, and does not
contain other terms involving φ alone.
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• Despite the higher-derivative nature of the superfield, the auxiliary field F does not
obtain a kinetic energy. This is non-trivial, as on dimensional grounds a term such as
|A|2|∂F |2 could have arisen, and implies that F remains truly auxiliary.

• As pointed out in [17], the auxiliary field now appears at quartic order in the action
and, thus, its equation of motion is cubic. Hence, in contrast to the usual two-derivative
supersymmetric theories, there exist now up to three different solutions for F . We will
explore this issue much further in Section 4.

• Finally, the most crucial property for our present purposes is the fact that the bosonic
part ofDαΦDαΦD̄α̇Φ

†D̄α̇Φ†, given in (2.10), only contains a non-zero top θθθ̄θ̄ component–
all lower components vanish. It follows that if one multiplies this superfield with any
function T of Φ, Φ† and (an arbitrary number of) their spacetime derivatives, then
the component expansion will be given by (2.10) times T |, where inside T | the chiral
superfield Φ is simply replaced by its lowest component A. This allows one to easily
construct a supersymmetric extension of any higher-derivative scalar Lagrangian con-
taining (∂φ)4 as a factor, simply by performing the replacement φ →

√
2A→

√
2Φ in

the co-factor.

This last property was used in [17] to construct a supersymmetric extension of theories with
Lagrangian P (X, φ), where X ≡ −1

2
(∂φ)2. Specifically, for

P (X, φ) =
∑

n≥1

an(φ)X
n (2.13)

it was shown that the higher-derivative terms in the supersymmetric generalization are the
d2θd2θ̄ integral of

1

16
DΦDΦD̄Φ†D̄Φ† T (Φ,Φ†, ∂mΦ, ∂nΦ

†), (2.14)

where

T (Φ,Φ†, ∂mΦ, ∂nΦ
†) =

∑

n≥2

an

(

1

32
{D, D̄}(Φ + Φ†){D, D̄}(Φ + Φ†)

)n−2

=
∑

n≥2

an

(

1

4
∂m(Φ + Φ†)∂m(Φ + Φ†)

)n−2

, (2.15)

an = an

(

Φ+Φ†
√
2

)

and we have made use of (2.3) to write {D, D̄} ∝ ∂m.

Particular applications were a supersymmetric form of the DBI action, as well as a super-
symmetric ghost condensate theory– both in flat spacetime. However, the most interesting
phenomenological consequences occur when these models are coupled to gravity– for exam-
ple, inflation driven by the DBI part of the action or cosmic bounces induced by a ghost
condensate. It is, therefore, of interest to include gravity in the analysis. In a supersymmet-
ric context, this means extending the above construction to curved superspace. This will be
the topic of the next section.
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3 Higher-Derivative Chiral Superfields in

Curved Superspace

We now want to extend the above results to N = 1 supergravity, obtained by “gauging”
the supersymmetry algebra (2.1). Loosely speaking, the gauge field associated with the
translation generators Pm is the vierbein em

a (where a, b, ... denote tangent space indices),
while the gauge field associated with Qα is the gravitino ψmα. As with global supersymme-
try, supergravity is most easily expressed in superspace–now, however, with non-vanishing
curvature. In this case, one can introduce new fermionic coordinates Θ which are defined
precisely so that the (A, χ, F ) components of a chiral superfield Φ arise as the coefficients of
the expansion

Φ = A +
√
2Θαχα +ΘαΘαF. (3.1)

In curved superspace, supersymmetric Lagrangians can be constructed from the chiral inte-
grals

∫

d2Θ(D̄2 − 8R)L, (3.2)

where L is a scalar, hermitean function. Note that the chiral projector in curved superspace
is D̄2−8R, where D̄α̇ is a spinorial component of the curved superspace covariant derivative
DA = (Da,Dα, D̄α̇) and R is the curvature superfield. In its component expansion, R contains
the Ricci scalarR and the gravitino ψm, as well as the auxiliary fields of supergravity– namely
a complex scalarM and a real vector bm. The purely bosonic components in the Θ expansion
of R are

R = −1

6
M +Θ2

( 1

12
R− 1

9
MM∗ − 1

18
bmb

m +
1

6
iea

mDmb
a
)

. (3.3)

A second superfield that we will need is the chiral density E . This contains the determinant
of the vierbein e, as well as M and ψm. Its bosonic expansion is

2E = e(1−Θ2M∗) . (3.4)

For a complete discussion of curved superspace we refer the reader to [33], whose notation
and formalism we use.

In this paper, we will construct a supergravitational extension of a generic higher-
derivative scalar field Lagrangian with, however, all fermions set to zero. We ignore the
fermions for two reasons; first, to reduce the complexity of the discussion and, second, so as
to emphasize the important physics occurring in the bosonic sector of this theory. The more
complete Lagrangian, with all fermions turned on, will be discussed in follow-up papers,
where the physics associated with them will be elucidated. As a warm-up, we construct the
theory of chiral superfields without higher-derivatives coupled to supergravity – again with
all fermions set to zero. We start by introducing an hermitean Kähler potentialK(Φi,Φ†k∗) of
the chiral superfields Φi (where i = 1, 2, . . . enumerates the fields), along with a holomorphic
superpotential W (Φi). The associated Lagrangian is given by

L =

∫

d2Θ2E
[3

8
(D̄2 − 8R)e−K(Φi,Φ†k∗)/3 +W (Φi)

]

+ h.c. (3.5)

6



= − 3

32
eD2D̄2e−K/3 | −3

8
eM∗D̄2e−K/3 | −1

8
eMD2e−K/3 |

+e
(

− 1

4
R− 1

6
MM∗ +

1

6
baba −

i

2
ea

mDmb
a
)

e−K(A,A∗)/3

−eW (A)M∗ + e∂WiF
i + h.c., (3.6)

where ∂Wi =
∂W
∂Ai . This Lagrangian is meant to be integrated over spacetime to yield an

action. With this in mind, we integrate by parts 1 to obtain

1

e
L = e−K/3

(

− 1

2
R− 1

3
MM∗ +

1

3
baba

)

+3
( ∂2e−K/3

∂Ai∂Ak∗

)

(∂Ai · ∂Ak∗ − F iF k∗)

+ibm(∂mA
i∂e

−K/3

∂Ai
− ∂mA

k∗∂e
−K/3

∂Ak∗ ) +MF i∂e
−K/3

∂Ai
(3.7)

+M∗F k∗∂e
−K/3

∂Ak∗ −WM∗ −W ∗M + ∂WiF
i + ∂W ∗

k∗F
k∗.

We now add the higher-derivative kinetic terms for the chiral superfields, following the
results derived previously in flat superspace [17]. As reviewed above in Section 2, the su-
perspace integral of DΦDΦD̄Φ†D̄Φ† contains the term 16(∂A)2(∂A∗)2 in its component ex-
pansion. Hence, we add such a term to the Lagrangian, now, however, in a manifestly
diffeomorphism invariant manner.2 Specifically, we introduce

Lh−d = −1

8

∫

d2Θ2E(D̄2 − 8R)DΦiDΦjD̄Φ†k∗D̄Φ†l∗ Tijk∗l∗ + h.c.

= 16 e(∂Ai · ∂Aj)(∂Ak∗ · ∂Al∗) Tijk∗l∗|
−32 eF iF k∗(∂Aj · ∂Al∗) Tijk∗l∗|
+16eF iF jF k∗F l∗ Tijk∗l∗|, (3.8)

where Tijk∗l∗| is the lowest component of the tensor superfield Tijk∗l∗. Let us clarify the
meaning of Tijk∗l∗. First, this superfield transforms as a four-index tensor on the Kähler
manifold in which the scalar fields take their values (we know that the target space is a
Kähler manifold from the two-derivative part of the action– see Appendix B for more details
on this point) and, thus, ensures target space diffeomorphism invariance. Second, Tijk∗l∗ is
required to be hermitian and symmetric in the pair of indices i, j as well as in k∗, l∗. Third,
any tensor satisfying these constraints can be multiplied by an arbitrary real function of the
chiral superfields and an unlimited number of their Dm covariant derivatives, as long as all
indices stemming from the covariant derivatives are contracted. Examples of Tijk∗l∗| include

1We only use integration by parts on this part of the action, as we will not multiply this with any field
dependent factor later in our analysis.

2We thank Ilarion Melnikov for stressing the issue of target space diffeomeorphism invariance to us.
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1
2
(gik∗gjl∗ + gil∗gjk∗), where gij∗ is the Kähler metric, and the Riemann tensor Rik∗jl∗. How-

ever, more general– non-geometric –choices respecting the required symmetries are equally
possible3. The fact that one can multiply this tensor with an arbitrary function of the chiral
superfields and their spacetime derivatives means that we can obtain a supergravity extension
of any term that involves (∂φ)4 as a factor and, thus, by dividing out by (∂φ)4 if necessary,
of any higher-derivative scalar Lagrangian. An illustrative example of the usefulness of this
property is provided by the DBI action presented in Section 5.

The new higher-derivative terms necessarily enter with at least one new mass scale, which
renders the action dimensionless. In fact, since the T tensor can be composed of many terms,
it can contain a number of such masses. In a given application, these mass scales will, of
course, be important in determining the significance of the various terms. However, in the
present paper, we have set these mass scales to unity– so as to simplify our formulae and
because they are easy to reintroduce.

The sum of the two actions (3.6)+(3.8) does not lead to ordinary Einstein frame gravity
but, rather, to a scalar-gravity theory of the form e−K/3R. One can transform the action
into Einstein frame by performing the Weyl rescaling

en
a → en

aeK/6. (3.9)

Note that the higher-derivative term does not contribute to the gravity-scalar coupling and,
hence, we can perform the same Weyl rescaling as in ordinary chiral supergravity without
higher-derivatives. This is a non-trivial feature of our framework, which greatly facilitates
subsequent calculations. Adding the two actions above, and performing the Weyl rescaling,
gives

1

e
LWeyl = −1

2
R− 3

4

∂m(e−K/3)∂m(e
−K/3)

e−2K/3
+ total derivative

+3eK/3
( ∂2e−K/3

∂Ai∂Ak∗

)

∂Ai · ∂Ak∗

+
1

3
baba + ieK/3bm(∂mA

i∂e
−K/3

∂Ai
− ∂mA

k∗∂e
−K/3

∂Ak∗ )

−3e2K/3
( ∂2e−K/3

∂Ai∂Ak∗

)

F iF k∗

+e2K/3MF i
(∂e−K/3

∂Ai

)

+ e2K/3M∗F k∗
(∂e−K/3

∂Ak∗

)

−1

3
eK/3MM∗ − e2K/3WM∗ − e2K/3W ∗M

+ e2K/3∂WiF
i + e2K/3∂W ∗

k∗F
k∗

+16 (∂Ai · ∂Aj)(∂Ak∗ · ∂Al∗) Tijk∗l∗Weyl|

3In all examples in this paper, we will, for specificity, choose Tijk∗l∗| to be proportional to 1

2
(gik∗gjl∗ +

gil∗gjk∗).
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−32 eK/3F iF k∗(∂Aj · ∂Al∗) Tijk∗l∗Weyl|
+16e2K/3F iF jF k∗F l∗ Tijk∗l∗Weyl|. (3.10)

The subscript “Weyl” on Tijk∗l∗Weyl| indicates that if this expression involves the spacetime
metric, then it must be rescaled as gmn → eK/3gmn. Henceforth, we drop the total derivative
term. To proceed, we want to eliminate the auxiliary fields. We begin with bm, whose
equation of motion does not involve the higher-derivative terms and is given by

bm =
i

2
(∂mA

iK,Ai − ∂mA
k∗K,Ak∗) . (3.11)

Substituting this back into the action, while also defining

N =M +K,Ak∗F k∗ , (3.12)

yields

1

e
LWeyl = −1

2
R− gik∗∂A

i · ∂Ak∗ + gik∗e
K/3F iF k∗ − 1

3
eK/3NN∗

+ e2K/3
(

−WN∗ −W ∗N + F i(DAW )i + F k∗(DAW )∗k∗
)

+ 16(∂Ai · ∂Aj)(∂Ak∗ · ∂Al∗) Tijk∗l∗Weyl|
−32 eK/3F iF k∗(∂Aj · ∂Al∗) Tijk∗l∗Weyl|
+16e2K/3F iF jF k∗F l∗ Tijk∗l∗Weyl|, (3.13)

where the Kähler metric is gik∗ =
∂2K

∂Ai∂Ak∗ and DAWi = ∂Wi+K,AiW is the Kähler covariant
derivative. The equation of motion for N is again independent of the higher-derivative terms,
and is simply

N = −3eK/3W . (3.14)

Plugging this back into the action gives

1

e
LWeyl = −1

2
R− gik∗∂A

i · ∂Ak∗ + gik∗e
K/3F iF k∗

+ e2K/3[F i(DAW )i + F k∗(DAW )∗k∗] + 3eKWW ∗

+ 16(∂Ai · ∂Aj)(∂Ak∗ · ∂Al∗) Tijk∗l∗Weyl|
−32 eK/3F iF k∗(∂Aj · ∂Al∗) Tijk∗l∗Weyl|
+16e2K/3F iF jF k∗F l∗ Tijk∗l∗Weyl|. (3.15)

In the next section, we will discuss the remaining auxiliary field, namely F , in great
detail. Before doing so, however, let us write out– for completeness –the supersymmetry
transformations of the above theory. As everywhere in this paper, we only consider the
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bosonic contributions and, hence, the fermionic variations only. The original transformations
are given by

δǫχ
i = i

√
2σmǭ∂mA

i +
√
2ǫF i, (3.16)

δǫψm = −2Dmǫ+ iem
a

(

1

3
Mσaǭ+ baǫ+

1

3
bcǫσcσ̄a

)

, (3.17)

where the supersymmetry parameter is denoted by ǫ. Weyl rescaling is performed via

χ → e−K/12χ , (3.18)

ψm → eK/12ψm , (3.19)

ǫ → eK/12ǫ . (3.20)

As discussed in [33], the gravitino must also be shifted as

ψm → ψm + i

√
2

6
K,Ak∗χ̄k∗ (3.21)

in order for the fermionic kinetic terms to be in canonical form. Plugging in the solutions
for M and bm, we obtain

δǫχ
i = i

√
2σmǭ∂mA

i +
√
2eK/6ǫF i, (3.22)

δǫψm = 2
(

Dm +
1

4
(K,Ai∂mA

i −K,Ak∗∂mA
k∗)

)

ǫ+ ieK/2Wσmǭ. (3.23)

Note that, althoughM depends on F via its definition in terms ofN, the shift of the gravitino
subsequently removes the F dependence from the gravitino variation. In (3.22), however, F
will have to be replaced by the particular solution for F under consideration. It is to these
solutions that we now turn our attention.

4 The Auxiliary Field F

We now consider the most interesting of the auxiliary fields, namely F. Three remarks are in
order. First, despite the fact that we have added higher-derivative terms, F does not obtain
a kinetic term in our formalism. This is non-trivial in this context, and implies that F
remains a truly auxiliary field. Second, there is some subtlety regarding the quantum theory
associated with this action. For standard two-derivative actions, where F only appears at
quadratic order, we can do one of two equivalent things: either eliminate F using its algebraic
equation of motion, or, in the path integral formalism, simply integrate over F. This second
approach leads to a Gaussian integral, and the end result is the same as eliminating F via
its equation of motion. In the higher-derivative formalism presented in this paper, since F
now appears at fourth order, this equivalence is no longer preserved. Thus, there is some
ambiguity as to what the correct quantum theory should be. Since, in this paper, we are only
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studying the theory at the classical level, we will proceed by eliminating F via its equation of
motion. This brings us to our third remark. The equation of motion for F is easily derived
from the action (3.13) and reads

gik∗F
i + eK/3(DAW )∗k∗ + 32F i(eK/3F jF l∗ − ∂Aj · ∂Al∗)Tijk∗l∗Weyl| = 0. (4.1)

This equation is now cubic in F and, thus, it can have up to three inequivalent solutions. As
we will see, these different solutions lead to different theories! From now on, we will restrict
our analysis to a single chiral superfield Φ1 = Φ, the extension to multiple superfields being
straightforward to implement. In this case, the equation of motion for F becomes

K,AA∗F + eK/3(DAW )∗ + 32F (eK/3|F |2 − |∂A|2)T = 0, (4.2)

where
|∂A|2 = ∂A · ∂A∗ = gmn∂mA∂nA

∗ (4.3)

and where we use the simplified notation

T ≡ T111∗1∗Weyl|. (4.4)

Note that T is effectively an arbitrary real scalar function of A,A∗ and their spacetime
covariant derivatives Dm . . . ∂nA, Dm . . . ∂nA

∗.
To proceed, let us first consider the case where the superpotential is absent. The effect

of turning on a superpotential will be discussed thereafter.

4.1 Without A Superpotential

We first analyze the case with vanishing superpotential, W = 0. The equation for F then
becomes

F
(

K,AA∗ + 32T (eK/3|F |2 − |∂A|2)
)

= 0. (4.5)

This has two solutions, which we denote by F0 and Fnew respectively. The first solution is the
trivial one, where F0 = 0. In this case, the Lagrangian becomes purely kinetic, as expected,
and is given by

1

e
LW=0,F0=0 = −1

2
R−K,AA∗|∂A|2 + 16(∂A)2(∂A∗)2 T . (4.6)

However, there is a second– non-trivial –solution corresponding to the large bracket in (4.5)
vanishing; that is,

|Fnew|2 = − 1

32 T e
−K/3K,AA∗ + e−K/3 |∂A|2. (4.7)

Putting this equation into (3.15), the Lagrangian becomes

1

e
LW=0,Fnew

= −1

2
R+ 16T

(

(∂A)2(∂A∗)2 − (∂A · ∂A∗)2
)

11



− 1

64T (K,AA∗)2. (4.8)

Note that this theory is not continuously connected to the ordinary two-derivative super-
gravity since in the limit T → 0 the term proportional to 1/T blows up. Remarkably, the
ordinary kinetic term has vanished– being replaced by purely higher-derivative terms! In
making this statement, we have discarded one special case: since T is arbitrary in our for-
malism, there is the possibility that an ordinary kinetic term could arise from a particular
form of T , such as T ⊃ −|∂A|2/

(

(∂A)2(∂A∗)2− (∂A · ∂A∗)2
)

. We will, in fact, examine such
a situation in Section 5. However, for now, let us proceed with the case where T is a function
of the fields A,A∗ only, without derivatives.

Then, something interesting occurs. Although we have set the superpotential to zero
in the present section, the elimination of F in this new branch leads to a non-vanishing
potential energy given by

Vnew =
1

64T (K,AA∗)2. (4.9)

This can be positive or negative, depending on the sign of the tensor T . The form of the
potential depends on which Kähler potential and which T tensor one considers. This choice
is largely unrestricted, but there is one consistency condition that must be satisfied; that
is, the right-hand side of (4.7) must be positive. This can be achieved in one of two ways,
which we examine in turn– 1) either K,AA∗T < 0 and 〈∂A〉 is small, or 2) at least one of the
two real scalars that make up A must have large spatial gradients.

In the first case, where the scalars do not have large spatial gradients, it is clear that one
must take T negative when the Kähler metric has the usual positive sign. It follows that the
potential (4.9) is negative. The second case corresponds to the situation where some spatial
gradients are large. To explore this, write the complex scalar A in terms of two real scalars
φ, ξ as

A =
1√
2
(φ+ iξ). (4.10)

We will choose the T tensor to be of the canonical form (K,AA∗)2, but allow for an additional
real multiplicative factor v(φ, ξ). That is, take

T = (K,AA∗)2v(φ, ξ). (4.11)

Then, in a flat Robertson-Walker background with metric ds2 = −dt2+a(t)2dx2, the action
becomes

∫

d4xLW=0,Fnew
=

∫

d4xa3
(

− 3
ȧ2

a2
+

16

a2
v(φ, ξ)(ξ2,iφ̇

2 + φ2
,iξ̇

2 − 2φ,iξ,iφ̇ξ̇)

+
16

a4
v(φ, ξ)(φ,iξ,iφ,jξ,j − φ2

,iξ
2
,j)−

1

64v(φ, ξ)

)

. (4.12)

Even though we have a purely higher-derivative theory in (4.8), one can now see that, via
their interactions, the scalars can generate “ordinary” kinetic terms for each other. Suppose,
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for example, that ξ develops a non-trivial spatial profile ξ = ξ(xi).4 Then the theory becomes

∫

d4xLW=0,Fnew
=

∫

d4xa3
(

− 3
ȧ2

a2
+

16

a2
v(φ, ξ)(ξ2,i(φ̇

2 − 1

a2
φ2
,j)

+
1

a2
φ,iξ,iφ,jξ,j)− Vnew(φ, ξ)

)

, (4.13)

where

Vnew =
1

64v(φ, ξ)
. (4.14)

Because of the additional φ,iξ,iφ,jξ,j term, the dispersion relation for φ will be slightly un-
usual in this background, and one may expect that φ will develop gradient instabilities over
sufficiently long timescales. Be that as it may, the theory does have a very interesting fea-
ture; namely, if we require that the kinetic term for φ be ghost-free, then one must impose
the condition that v(φ, ξ) > 0. This then leads to a positive potential Vnew! In other words,
having one of the scalars develop large spatial gradients leads to both a two-derivative kinetic
term for the other scalar and a positive potential. In a supergravity context, this property
is most unusual and deserves further attention.

Summary: In the absence of a superpotential, there are two types of solutions for the auxiliary
field F. The first is the trivial solution F = 0. Its substitution leads to a purely kinetic
Lagrangian including higher-derivative kinetic terms. However, there exist new solutions
Fnew as well. These generate a “potential without a superpotential”. When the scalar fields
develop large spatial gradients, this potential can be positive.

4.2 With A Superpotential

Now introduce a non-vanishing superpotential, and consider the solutions for F in its pres-
ence. Multiplying (4.2) with F ∗ shows that (DAW )∗F ∗ must be real. Thus, one can relate
F and F ∗ via

F ∗ =
DAW

(DAW )∗
F (4.15)

as long as DAW 6= 0, which we now assume. One can use this relation to obtain a cubic
equation for F alone. This is given by

K,AA∗F + eK/3(DAW )∗ + 32(eK/3 DAW

(DAW )∗
F 3 − |∂A|2F )T = 0. (4.16)

4Here, we simply assume that such solutions exist. Of course, this has to be verified for any given
function v(φ, ξ). In the case where v depends on φ alone, for example, there exist solutions where φ is purely
time-dependent and ξ = aix

i for some constants ai.
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In general, this equation admits three distinct solutions– which we denote by F1, F2, F3 –
leading to three different theories. One can find these solutions using Cardano’s formula.
Define

p = e−K/3 (DAW )∗

DAW

(

K,AA∗

32T − |∂A|2
)

, (4.17)

q =
1

32T
(DAW )∗2

DAW
, (4.18)

D =
(q

2

)2

+
(p

3

)3

(4.19)

=
1

(64T )2
(DAW )∗4

(DAW )2
+

1

27eK
(DAW )∗3

(DAW )3

(

K,AA∗

32T − |∂A|2
)3

.

Then the solutions are given by

Fk+1 = ωkF+ + ω−kF− , (4.20)

where k = 0, 1, 2, ω = e2πi/3 = −1
2
+ i

√
3
2

is a cube root of unity and

F+ = (−q
2
+D1/2)1/3, F− = (−q

2
−D1/2)1/3. (4.21)

The three solutions can also be written as

F1 = F+ + F−, (4.22)

F2 = −1

2
(F+ + F−) + i

√
3

2
(F+ − F−), (4.23)

F3 = −1

2
(F+ + F−)− i

√
3

2
(F+ − F−). (4.24)

Substituting these back into the action generates three different branches of the theory. We
call the theory that results from substituting F1 the ordinary branch, and the ones associated
with F2 and F3 the new branches, for reasons that will become clear. In general, the solutions
presented above are rather complicated. However, to get some insight one can analyze them
in different simplifying limits.

Summary: When a superpotential is present, the auxiliary field F admits three distinct solu-
tions, which lead to three distinct theories. One of these solutions, which we call the ordinary
branch, is related to the usual solution for F that one obtains in two-derivative chiral super-
gravity, while the other two solutions correspond to new branches of the theory.

4.2.1 Small Higher-Derivative Terms

The higher-derivative terms are all proportional to the T tensor. Therefore, by assuming
that T contains a factor that can be tuned to be small, one can treat such terms as sub-
leading. The T → 0 limit then corresponds to q ≪ p3/2, and gives rise to the approximate
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expressions

F 3
± = ±D1/2 − q

2
= (

p

3
)3/2

(

± 1− q

2
(
3

p
)3/2 ± 27q2

8p3
+O(

q4

p6
)
)

. (4.25)

For the ordinary branch, this implies that

F1 = −q
p
+
q3

p4
+O(

q4

p9/2
), (4.26)

or, more explicitly,

F1 = −K ,AA∗

eK/3(DAW )∗

+32T e4K/3(K ,AA∗

)4(DAW )∗2DAW

−32T eK/3(K ,AA∗

)2(DAW )∗|∂A|2 +O(T 2) . (4.27)

Note that this corresponds to a small correction to the usual solution for the auxiliary field
F in the presence of a superpotential. Correspondingly, we obtain small corrections in the
Lagrangian by substituting this solution for F . To first order in the higher-derivative terms,
the Lagrangian becomes

1

e
Lordinary,T→0 = −1

2
R−K,AA∗|∂A|2 − eK(K ,AA∗|DAW |2 − 3|W |2)

−32 eKK ,AA∗|DAW |2K ,AA∗|∂A|2 T
+16 (∂A)2(∂A∗)2 T
+16e2K(K ,AA∗|DAW |2)2 (K ,AA∗

)2T . (4.28)

An interesting feature is that both the kinetic terms and the potential get corrected. The
potential now becomes

V = eK(K ,AA∗|DAW |2 − 3|W |2)
−16(eKK ,AA∗|DAW |2)2 (K ,AA∗

)2Tno der., (4.29)

where Tno der. stands for the part of T that does not contain spacetime derivatives. Note that
all the correction terms in the Lagrangian above are invariant under Kähler transformations.

As an example, consider the case where K = ΦΦ†, T = τ(K,AA∗)2 is of canonical form
with τ a small parameter and W = Φn, for some positve integer n. Then the potential, to
first order in τ , is given by V = V̄ + δV where

V̄ = eAA∗

(|A|2n+2 + (2n− 3)|A|2n + n2|A|2n−2) (4.30)

while

δV = −16τe2AA∗ |A|4n−4(|A|2 + n)4. (4.31)
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At sufficiently large values of |A|, the correction term always becomes larger than the original
potential– indicating that our approximation breaks down. However, for small values of |A|
the corrections can be trusted. They are typically small, but in certain cases can lead to
novel effects. In particular, consider the case where n = 1; that is, W = Φ. Then, near the
minimum at A = 0 the potential can be approximated by

V̄n=1 ≈ 1 +
1

2
|A|4 + · · · . (4.32)

Note that the |A|2 = φ2 + ξ2 term cancels in the expansion. Therefore, this potential is very
flat near the origin, rising only quartically as (φ2+ ξ2)2. The leading order correction to this
potential is given by

δVn=1 ≈ −16τ(1 + 6|A|2 + 16|A|4 + · · · ). (4.33)

For 1
128

> τ > 0, the minimum at A = 0 becomes a local maximum. The potential is now
minimized along a circle defined by |A|2 = 12τ/(1 − 128τ). In other words, the potential
changes from a slowly rising quartic potential with a minimum at the origin to a “Mexican
hat”.

In the limit where the higher-derivative terms are small, the new branches behave very
differently. Using the same approximations as above, the F2,3 solutions to the auxiliary field
equation of motion can be approximated by

F2 =
i

4
√
2
e−K/6

(

(DAW )∗K,AA∗

(DAW )T

)1/2

+
1

2
K ,AA∗

eK/3(DAW )∗ +O(T 1/2), (4.34)

F3 = − i

4
√
2
e−K/6

(

(DAW )∗K,AA∗

(DAW )T

)1/2

+
1

2
K ,AA∗

eK/3(DAW )∗ +O(T 1/2). (4.35)

When substituted into the Lagrangian they give, to sub-leading order in T ,

1

e
Lnew,T →0 = −1

2
R− 2K,AA∗|∂A|2

−eK
(

− 3

2
K ,AA∗|DAW |2 − 3|W |2

)

+
3

64T (K,AA∗)2. (4.36)

Not only do the ordinary kinetic term and the ordinary part of the potential come out with
unusual coefficients, but the last term, which is the dominant term in the T → 0 limit,
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blows up as the higher-derivative terms are made small. This term, which includes the new
contribution to the potential

Vnew = − 3

64Tno der.
(K,AA∗)2, (4.37)

shows explicitly that the new branches are separated from the ordinary supergravity theory
by an infinite potential barrier (and implies, incidentally, that the scale of supersymmetry
breaking will tend to be large in the new branches). The implication is that these new
theories cannot be reached dynamically from the ordinary, two-derivative supergravity in
the perturbative regime. In other words, one cannot start gradually turning on the higher-
derivative terms and end up in one of the new branches. This leaves open the possibility
that these branches might be connected to each other when the higher-derivative terms are
large. We will explore this limit next.

Summary: When our higher-derivative chiral supergravity terms are small, then, in the
ordinary branch, they lead to correspondingly small corrections to the two-derivative and
potential terms via substitution of the auxiliary field F. The new potential is given by

V = eK(K ,AA∗|DAW |2 − 3|W |2)
−16(eKK ,AA∗|DAW |2)2 (K ,AA∗

)2Tno der., (4.38)

where Tno der. stands for the part of T that does not contain spacetime derivatives. In the new
branches, even small higher-derivative terms lead to drastic changes in the Lagrangian via
substitution of the auxiliary field. In this case, the kinetic and potential terms have unusual
coefficients, and a large additional (positive or negative) potential

Vnew = − 3

64Tno der.
(K,AA∗)2 (4.39)

is generated.

4.2.2 Large Higher-Derivative Terms

We now consider the opposite limit, where the higher-derivative terms are large compared
to the ordinary kinetic terms. We can use the approximate expressions

F+ + F− = −q
p
+O(

q3

p4
), (4.40)

F+ − F− = 2(
p

3
)1/2 +

√
3

4

q2

p5/2
+O(

q4

p9/2
). (4.41)

In the large T limit, the ordinary branch solution then becomes

F1 = 0 + eK/3(DAW )∗
1

32T |∂A|2 +O(
1

T 2
). (4.42)
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Substituting this solution into the Lagrangian, we find to subleading order that

1

e
Lordinary,T →∞ = −1

2
R−K,AA∗|∂A|2 + 3eK |W |2

+16(∂A)2(∂A∗)2 T . (4.43)

The higher-derivative kinetic term, of course, dominates in this limit. Interestingly, the
associated potential given by

VT →∞ = −3eK |W |2 (4.44)

is always negative. This is because– in the ordinary branch –the auxiliary field F is essentially
irrelevant in the limit of large kinetic terms.

For the new branches, the solutions are slightly more involved. They are given by

F2 = −e−K/6

(

DAW
∗

DAW

)1/2

|∂A|

+
1

64T e
−K/6K,AA∗

(

DAW
∗

DAW

)1/2
1

|∂A|
− 1

64T e
K/3(DAW )∗

1

|∂A|2 +O(
1

T 2
) , (4.45)

F3 = e−K/6

(

DAW
∗

DAW

)1/2

|∂A|

− 1

64T e
−K/6K,AA∗

(

DAW
∗

DAW

)1/2
1

|∂A|
− 1

64T e
K/3(DAW )∗

1

|∂A|2 +O(
1

T 2
) . (4.46)

For the two new branches, to subleading order, the Lagrangian approaches the same large
T limit

1

e
Lnew,T →∞ = −1

2
R− 4K,AA∗|∂A|2 + 3eK |W |2 (4.47)

+16[(∂A)2(∂A∗)2 − |∂A|4] T .

The elimination of the auxiliary fields leads to the presence of additional higher-derivative
terms, which are of the same order in derivatives as the original ones considered. Further-
more, the normalization of the ordinary kinetic term is changed, while the potential energy,
just as for the ordinary branch, has become equal to (4.44) and, thus, is also always negative.

Note that in this large T limit, the ordinary and new branches are still different. This
leads us to conclude that these branches really correspond to entirely separate, and different,
theories. It will be interesting to further explore the physical relevance of the new branches.
We leave this topic for future work, and only add one comment. The equation of motion
for F (4.2) implies that, for the new branches, one must have ∂A · ∂A∗ > 0 in the large
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T limit. Then, loosely speaking, the sum of spatial gradients in the scalar fields must be
larger than their time gradients. It would be interesting to see how this constraint gets
implemented by the dynamics, in a situation where the higher-derivative terms come to
dominate progressively.

Summary: When the higher-derivative terms are large, then in both the ordinary and the
new branches the potential is given by

VT →∞ = −3eK |W |2 (4.48)

and, hence, is always negative. This result is of particular significance for cosmological appli-
cations. Furthermore, in the new branches, additional higher-derivative terms are generated
via substitution of the auxiliary field. Both in the limit of small and large higher-derivative
terms, the new branches are considerably different than the ordinary branch and represent
new theories that are not continuously related to it.

5 An Example: DBI in Supergravity

One can use our formalism to construct a minimal supergravity version of the Dirac-Born-
Infeld (DBI) brane action, whose general form includes the bosonic term

S = −
∫

ddx
√−g 1

f(φk)

(

√

det(gmn + f(φk)∂mφi∂nφjgij + Fmn)− 1

)

. (5.1)

Here Fmn represents the field strengths of 1-form fields, which we ignore in the present paper.
The φi are real scalar fields specifying the position of the brane in the transverse dimensions.
The field space metric gij as well as the (real and positive) function f(φi) arise from both
the higher-dimensional metric and the dilaton. DBI actions are well-motivated from string
theory, where they arise as the effective actions of D-branes [34]. Since these branes are of
central importance in string theory, it is of interest to study their realizations in supergravity.
Moreover, bosonic DBI actions have been used to construct models of inflation with unusual,
but interesting, properties. Specifically, because of their higher-derivative terms, they can
lead to inflation on potentials that would otherwise be too steep. Additionally, they have
characteristic observational predictions, such as equilateral non-Gaussianity in the spectrum
of fluctuations–see [9, 35].

The detailed form of the supergravity DBI action will depend on the context. In par-
ticular, the dimensional reduction of higher-dimensional D-brane actions with (non-linearly
realized) extended supersymmetries, such as those presented in [36], to 4-dimensional (lin-
early realized) minimal supergravity is in general rather involved, and the resulting action
will depend on many details of the compactification. In the present paper, we are not inter-
ested in examining such dimensional reductions. Rather, we will construct the supergravity
version of one specific, but illustrative, example; namely, the DBI action derived by Rocek
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and Tseytlin as the (gauge-fixed) flat superspace effective action of a D3-brane in 6 dimen-
sions [37]. This action contains two scalars φ, ξ describing the position of the brane in the
two dimensions transverse to the four-dimensional worldvolume. The Lagrangian is given by

1

e
Lbrane = −1

f

(

√

det(gmn + f ∂mφ∂nφ+ f ∂mξ∂nξ)− 1
)

, (5.2)

where f = f(φ, ξ) is a real, positive function. It is useful to combine the two real scalars
into a complex scalar A = 1√

2
(φ+ iξ) and to re-write the Lagrangian as

1

e
Lbrane = − 1

f(A,A∗)

(

√

det(gmn + f(A,A∗) ∂mA∂nA∗)− 1
)

= −1

f

(

√

1 + 2f |∂A|2 + f 2 |∂A|4 − f 2 (∂A)2(∂A∗)2 − 1
)

(5.3)

= −|∂A|2 + f (∂A)2(∂A∗)2

1 + f |∂A|2 +
√

(1 + f |∂A|2)2 − f 2 (∂A)2(∂A∗)2
.

This action is in a form perfectly suited to our framework. Comparing with Eqs. (3.15) and
(4.4), we can see that one should take K = ΦΦ† and choose

16T111∗1∗Weyl| ≡ 16TDBI (5.4)

=
f

1 + f |∂A|2 +
√

(1 + f |∂A|2)2 − f 2 (∂A)2(∂A∗)2
.

It is then straightforward to write out the curved superspace version of this DBI Lagrangian.
It is given by

LDBI =

∫

d2Θ2E
[3

8
(D̄2 − 8R)e−ΦΦ†/3 +W (Φ)

]

+ h.c.

−1

8

∫

d2Θ2E(D̄2 − 8R)DΦDΦD̄Φ†D̄Φ† TDBI + h.c., (5.5)

where we have added a superpotential W and let

16TDBI = (5.6)

f(Φ,Φ†)

1 + f∂Φ · ∂Φ†eK/3 +
√

(1 + f∂Φ · ∂Φ†eK/3)2 − f 2(∂Φ)2(∂Φ†)2e2K/3
.

Here, factors of eK/3 = eΦΦ†/3 have been introduced so as to compensate for the Weyl
rescaling that must be performed to go to Einstein frame. In components fields, action (5.5)
becomes

1

e
LDBI = −1

2
R− 1

f

(

√

det(gmn + f ∂mA∂nA∗)− 1
)
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+eAA∗/3|F |2 + e2AA∗/3[F (DAW ) + F ∗(DAW )∗] + 3eAA∗|W |2

−32 eAA∗/3|F |2|∂A|2 TDBI

+16e2AA∗/3|F |4 TDBI . (5.7)

The auxiliary field F now obeys the equation of motion

F + eAA∗/3(DAW )∗ + 32F TDBI(e
AA∗/3|F |2 − |∂A|2) = 0 . (5.8)

We will consider three regimes of interest here, leaving a more detailed study to future work.
When f is small, that is, when the higher-derivative terms are subdominant, one can apply
the results of Subsection 4.2.1. Then the ordinary branch solution for F leads to small
correction terms, the resulting Lagrangian being

1

e
LDBI,ordinary,T→0

= −1

2
R− 1

f

(

√

det(gmn + f ∂mA∂nA∗)− 1
)

− 2feK |DAW |2
1 + f |∂A|2 +

√

(1 + f |∂A|2)2 − f 2 (∂A)2(∂A∗)2
|∂A|2

(5.9)

− eK(|DAW |2 − 3|W |2)

+
fe2K |DAW |4

1 + f |∂A|2 +
√

(1 + f |∂A|2)2 − f 2 (∂A)2(∂A∗)2
(5.10)

with K = AA∗. Both the kinetic and the potential terms receive corrections, which are,
however, necessarily small in the limit under consideration. Nevertheless, it will be important
to include such terms when working out the detailed predictions of phenomenological or
cosmological models based on DBI actions.

From the point of view of the present paper, as well as for applications to models of DBI
inflation, the regime where f is large is the most interesting one. Indeed, a special feature
of the DBI action is that for large f– and restricting to fields that depend only on time
–the scalars get slowed down and obey a stringent upper speed limit. By inspection of the
Lagrangian, one can see that this upper limit corresponds to

f |Ȧ|2 ≤ 1

2
. (5.11)

The “relativistic” limit, where this bound is (approximately) saturated, is clearly of par-
ticular importance to models of DBI inflation, as it can ensure slow-roll even in relatively
steep potentials. However, precisely because the kinetic term becomes small as f becomes
large, the relativistic limit does not immediately correspond to the large T limit of Sub-
section 4.2.2. Indeed, TDBI becomes large, but the higher-derivative terms nevertheless do
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not become completely dominant. For this reason, one cannot blindly apply the formulas of
Subsection 4.2.2. Instead, one must start again from the equation of motion (4.16) for the
auxiliary field F . For simplicity, we restrict our analysis to a single real scalar φ =

√
2Re(A).

Then K = φ2/2. In the present context, the auxiliary field equation of motion reduces to

F 3 +
3

4f
e−K/3 (DAW )∗

DAW
F +

1

4f

(DAW )∗2

DAW
= 0, (5.12)

where we have used

16TDBI =
f

1 + 1
2
f (∂φ)2 +

√

1 + f (∂φ)2
≈ 2f (5.13)

for the relativistic limit f (∂φ)2 ≈ −1. In the limit that (feK |DAW |2)1/3 is large, the solution
to Eq. (5.12) is given by

F ≈ −
(

(DAW )∗2

4f DAW

)1/3

. (5.14)

Substituting this solution back into the Lagrangian gives

1

e
LDBI,relativistic = −1

2
R− 1

f

(

√

1 + f (∂φ)2 − 1
)

−3

2

eK |DAW |2
[4f eK |DAW |2]1/3 + 3eK |W |2, (5.15)

where the higher corrections are of order O((f eK |DAW |2)−2/3). Remarkably, the first part
of the potential is subleading, and the dominant contribution to the potential, namely
−3eK |W |2, is negative! Thus, for this simple, single-field supergravity realization of the
DBI action, inflation cannot occur in the relativistic regime. As the higher-derivative terms
become increasingly important, the potential becomes correspondingly more negative. A
question, which we leave to future work, is whether this limitation can be overcome by
considering either more fields or different supergravity extensions of the DBI model5.

Finally, an interesting theory can arise in the absence of a superpotential. In that case,
as discussed in detail in Subsection 4.1, apart from the trivial solution F0 = 0– which leads
to the standard DBI theory –there exists a new solution satisfying

|Fnew|2 = e−AA∗/3
(1

2
|∂A|2 − 1

2f
(1 +

√

(1 + f |∂A|2)2 − f 2(∂A)2(∂A∗)2
)

(5.16)

5In [38] a study of supersymmetric DBI inflation was undertaken, where the authors also highlighted
the importance of the cubic equation of motion for F , and where they considered similar limits to those
considered here. It was claimed that in the small f limit (large T in their notation) inflation cannot occur,
but that in the large f limit, with very small φ̇2, it could. They also excluded relativistic DBI inflation, but
for reasons different than ours. Our results differ rather significantly, which can in part be traced back to
the fact that we are performing the analysis in supergravity, whereas the authors of [38] considered a hybrid
approach where the formulae of global supersymmetry were simply added to an Einstein-Hilbert term.
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When substituted into the action, we obtain the Lagrangian

1

e
LDBI,new = −1

2
R− 1

4
|∂A|2

− 1

4f

(

√

det(gmn + f ∂mA∂nA∗)− 1
)

− 1

2f
(5.17)

+
f
(

(∂A)2(∂A∗)2 − |∂A|4
)

1 + f |∂A|2 +
√

(1 + f |∂A|2)2 − f 2 (∂A)2(∂A∗)2
.

Although the ordinary kinetic term has disappeared, a new kinetic term, as well as a new
potential, have regrown via the higher-derivative interactions! In the purely time-dependent
case, where A = (φ(t) + ξ(t))/

√
2, the theory reduces to

1

e
LDBI,new = −1

2
R+

1

4
X − 1

4f

(

√

1− 2fX − 1
)

− 1

2f
, (5.18)

where X = 1
2
(φ̇2+ ξ̇2). For the type IIB string theory case of a D3-brane moving in a warped

throat Calabi-Yau geometry, one has f ∝ (φ2+ ξ2)−2. Hence, in this setting our new theory–
which has both an ordinary kinetic term and an additional DBI term –would contain a non-
vanishing potential proportional to (φ2+ξ2)2. Thus, even in the absence of a superpotential,
an effective potential is generated. One must remember, however, that for consistency the
right-hand side of (5.16) must be positive. It is straightforward to convince oneself that for
scalar fields which depend only on time this requires that we take f < 0 and, hence, the
potential is required to be negative. If we allow the fields to depend on space as well, then
the right-hand side of (5.16) can be positive when the fields develop large spatial gradients,
even when f is positive. Either way, however, this new branch of the theory does not allow
for a phase of inflation to occur. An interesting question is what prevents the theory from
dynamically reaching the “forbidden” field values, where |F |2 would become negative. We
leave this open question for future work.

Summary: Our formalism allows one to construct a supergravity version of the DBI action.
When the higher-derivative terms are small, we obtain correspondingly small corrections
to the DBI Lagrangian and to the potential. In the most interesting case, where the higher-
derivative terms significantly influence the dynamics, we find that the potential again becomes

VT →∞ = −3eK |W |2 , (5.19)

which is everywhere negative. This result represents a serious challenge to models of DBI
inflation where the relativistic regime of the theory is exploited. In the absence of a superpo-
tential, the new branch of the supergravity DBI theory generates a potential, but, curiously,
this theory either requires the potential to be negative (without restricting the types of so-
lutions that the scalars can admit) or, if the potential is positive, it requires the scalars to
develop large spatial gradients.
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6 Conclusions and Outlook

In this paper, we presented a formalism that allows one to obtain an N = 1 supergravity ex-
tension of any scalar field theory with higher-derivative kinetic terms. This was accomplished
by constructing a superfield– quartic in chiral scalars –which contains the term (∂φ)4 and,
when the fermions are set to zero, consists entirely of its top component. Thus, when multi-
plied by any other superfield, the resulting Lagrangian contains only the lowest component
of the multiplicative factor. This property enables one to directly construct a supergravity
extension any higher-derivative scalar field term of interest. Moreover, as discussed in the
Appendix, our supergravity extension of (∂φ)4 is likely to be the unique one that does not
modify the gravitational sector of the theory– thus rendering our construction particularly
pertinent. For this reason, studying the properties of the auxiliary fields in this context,
which are crucial to the structure of supergravity, is important. This was carried out, in
detail, in this paper.

In our formalism, despite the inclusion of an arbitrarily high number of spacetime deriva-
tives, the auxiliary fields do not have kinetic terms and, therefore, continue to satisfy alge-
braic equations of motion. We point out that this is a highly non-trivial property, which
renders the treatment of the auxiliary fields straightforward. Be this as it may, there is
one new, and important, property of our formalism. That is, although the auxiliary fields
F satisfy an algebraic equation of motion, that equation is now cubic– as opposed to the
linear equation in the usual second order kinetic theory. Hence, this equation admits up to
three distinct solutions. We have shown that these solutions lead to different theories that
cannot dynamically transition from one to another. One solution is directly related to the
one ordinarily obtained in the absence of higher-derivative terms. This leads to corrections
to both the kinetic and potential terms when substituted into the action. We have examined
these corrections in different limits. When the higher-derivative terms are small, the cor-
rections are correspondingly small, but need to be taken into account when making precise
predictions in phenomenology and cosmology. In the limit that the higher-derivative terms
become large, the effect of eliminating the auxiliary field is to suppress certain contributions
to the potential. The result is that the negative term −3eK |W |2 becomes the dominant
contribution to the potential energy. Thus, in the large higher-derivative limit, supergravity
manifests once more its predilection for negative potentials. This feature implies that the
supergravity implementation of inflationary and k-essence models– such as DBI inflation
–that rely on higher-derivative kinetic terms in an essential way become more challenging.

In addition to this “usual” solution for F , there exist up to two new solutions. These lead
to theories with very unusual properties, which we have only started exploring in the present
paper. For example, these new branches seem to prefer solutions with substantial spatial
gradients in the scalar fields, and can lead to positive potentials. Moreover they can do this
even in the absence of a superpotential. These curious theories, whose physical relevance is
not clear yet, form an interesting topic for further research.

This work has many foreseeable applications. Most importantly, we hope that our results
can be used to bridge the gap between standard model building in cosmology and full-
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blown string compactifications, leading to well-motivated effective theories of early universe
dynamics. In this context, it will be interesting to investigate in more detail models of DBI
inflation and k-inflation, as well as other models of brane dynamics such as the Galileons
and their extensions. Furthermore, it will be enlightening to find out whether null energy
violating models, such as the ghost condensate, can be realized in a supergravity context.
We hope to explore these topics in the near future.
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A Relationship to the Work of Baumann and Green

An initial study of an effective supergravity theory of higher-derivative scalar fields was
performed by D. Baumann and D. Green in [32] (other earlier works of interest include
[39, 40, 41, 42, 43, 44]), and applied to certain cosmological questions in [31]. These authors
based their formalism on a different supergravity extension of (∂φ)4, given by

LBG = − 1

32

∫

d2Θ2E(D̄2 − 8R)(Φ− Φ†)2DaΦDaΦ†. (A.1)

The component expansion of this Lagrangian contains (∂φ)4, as desired. It also contains
terms that are of a rather different character than those considered in our work. For example,
the above superfield generates derivative couplings to the Ricci tensor of the form

ξ2(∂φ)2R, ξ2Rmn∂mφ∂nφ. (A.2)

Such couplings modify the gravitational part of the theory in a non-trivial manner. This is
both interesting for phenomenology and difficult for calculations, as one cannot Weyl rescale
such terms away. For this reason, it becomes more difficult to interpret the resulting theory.
The component expansion of (A.1) also contains a term

ξ2|∂F |2 , (A.3)

which makes the “auxiliary” field become propagating. This implies that the field F cannot
be eliminated as usual, but must be retained as a dynamical, propagating degree of freedom.
For these reasons, the term (A.1) takes us outside the class of theories we want to consider
in the present work. However, in a general supersymmetric effective field theory, such a
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term could also be present. Consequently a study of its properties and phenomenological
consequences is certainly of interest.

A final remark. In [17] arguments were given that, in global supersymmetry, the two
superfield expressions DΦDΦD̄Φ†D̄Φ† and (Φ− Φ†)2DaΦD

aΦ† are the only “clean” super-
symmetric extensions of (∂φ)4. By this we mean that they generate (∂φ)4, but no additional
terms containing only φ. We now see that in supergravity these two superfield expressions
differ in their coupling to gravity, with DΦDΦD̄Φ†D̄Φ† leading to minimal coupling while
(Φ− Φ†)2DaΦDaΦ† gives additional derivative couplings.

B Comment on Kähler Invariance

In the usual theory of chiral superfields coupled to supergravity, invariance under Kähler
transformations plays an important role. Thus, one may wonder if this symmetry also re-
stricts higher-derivative terms. Since the same question arises in chiral models with global
supersymmetry, we will analyze the question in that simpler context. Super-Kähler trans-
formations correspond to a shift of the vector Kähler superfield

K(Φi,Φ†i∗) → K(Φi,Φ†i∗) + C(Φi) + C∗(Φ†i∗) , (B.1)

where C is an arbitrary holomorphic function of chiral superfields and C∗ is its conjugate.
Since the usual two-derivative chiral superfield Lagrangian is

L =

∫

d2θd2θ̄K , (B.2)

invariance under super-Kähler transformations is almost a trivial statement, following from
the fact that the top component of any chiral superfield is a total spacetime derivative– given
by 1

4
� of its lowest component.
Less trivial, however, is the following. Note that the super-shift (B.1) induces the scalar

Kähler transformation

K(Ai, Ai∗) → K(Ai, Ai∗) + C(Ai) + C∗(Ai∗) (B.3)

in the lowest component of K(Φi,Φ†i∗). Furthermore, the θ2θ̄2 component of K(Φi,Φ†i∗),
which gives the two-derivative component field Lagrangian, contains the non-linear sigma
model K,AiAj∗DmAiDmA

j∗ for the scalar fields Ai. Under the Kähler transformation (B.3),
this is invariant since K appears with mixed second derivatives. This invariance– unlike the
total divergence terms –is very non-trivial and corresponds geometrically to the target space
of the scalar fields being a complex Kähler manifold with Kähler metric gij∗ = K,AiAj∗ .

Now consider higher-derivative contributions to the Lagrangian. As discussed in the text,
in flat superspace these take the form

Lh−d =

∫

d2θd2θ̄DΦiDΦjD̄Φ†k∗D̄Φ†l∗Tijk∗l∗ . (B.4)
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To maintain sigma-model diffeomorphism invariance, it is necessary that Tijk∗l∗ transform as
a tensor on the complex scalar manifold. Furthermore, consistency with the Kähler manifold
required by the two-derivative Lagrangian implies that this tensor be chosen invariant under
Kähler transformations (B.1). An example of this is to take Tijk∗l∗ ∝ (K,ΦiΦ†j∗)2 times a
Kähler invariant scalar superfield–as was done in the text for the case where all fermions
are set to zero. Thus, the requirement that the action be Kähler invariant does restrict the
higher-derivative terms. Finally, these arguments carry over directly to curved superspace
and, hence, higher-derivative chiral superfield Lagrangians coupled to N = 1 supergravity.
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