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Abstract

Generalized uncertainty principles are able to serve as useful descriptions of some of the phe-

nomenology of quantum gravity effects, providing an intuitive grasp on non-trivial space-time

structures such as a fundamental discreteness of space, a universal bandlimit or an irreducible ex-

tendedness of elementary particles. In this article, uncertainty relations for single-particle quantum

mechanics are derived by a moment expansion of states for quantum systems with a discrete coor-

dinate, and correspondingly a periodic momentum. Corrections to standard uncertainty relations

are found, with some similarities but also key differences to what is often assumed in this context.

The relations provided can be applied to discrete models of matter or space-time, including loop

quantum cosmology.
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I. INTRODUCTION

If space is discrete, the form of its underlying structure should influence the general prop-

erties of position and momentum measurements and therefore their fundamental uncertainty

relations. In this context, see e.g., [1]-[5]. Compared with standard quantum mechanics,

there may be additional limitations to the precision of measurements, as they can often be

captured in generalized uncertainty principles, see e.g., [6]-[10]. For general reviews, see e.g.

[11],[12]. Phenomenology and experimental proposals are discussed, e.g., in [13]-[17].

Modifications to the uncertainty principle are bound to arise because the momentum, on

a discrete space, is no longer defined in all situations; in general, it must be replaced by

finite translation operators for displacements of at least the lattice spacing. For studies on

the question of momentum conservation in this context, and varying minimum uncertainties,

see, e.g., [18]-[23].

On scales larger than the lattice spacing, one may introduce an approximate momentum

operator, just as one can define approximate plane waves of wavelength larger than the

spacing. However, as the wave length approaches the discreteness scale, the underlying

structure becomes noticeable and deviations from standard properties of momentum arise.

In the context of the low-energy regime of various approaches to quantum gravity it is

therefore of interest to explore the consequences of spatial discreteness for the basic un-

certainty relations. In this paper, we present a systematic method to compute the leading

corrections to the position and momentum uncertainty relations for discrete spaces. Differ-

ences to some common assumptions about such principles are pointed out. We begin this

article with a brief review of the mathematical structures involved in discrete matter systems

on the one hand, and some approaches to quantum gravity on the other. Our discussion will

focus on localization, in the sense of minimizing fluctuations in position, and we will study

uncertainty principles without needing to refer to specific representations. In the main part

of this article, Section III, we will then systematically derive the generalized uncertainty

principle for a discrete system.
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II. SPATIAL DISCRETENESS

There are numerous examples of discrete structures in physical models, such as crystals

that have periodic potentials. As an illustration, let us consider the 1-dimensional quantum

mechanical system of Bloch states. For wavelike excitations of a length well above the

periodicity of the crystal, one may start with free scattering states exp(ikq) in the position

representation, whose energy is E(k) = ~2k2/2m if they represent particles of massm. These

states are no longer energy eigenstates if the particles move in a non-trivial periodic potential

V (q) with V (q+q0) = V (q), where q0 is the periodicity. We decompose the set of plane waves

into sectors labeled by a real number ǫ ∈ [0, 2π) in one-to-one correspondence with wave

functions on the finite interval [0, q0] subject to the “almost periodic” boundary condition

ψ(q+ q0) = eiǫψ(q). Square integrable functions satisfying these boundary conditions define

the Hilbert spaces Hǫ. Parameterized by ǫ for all the sectors, momentum eigenstates are

then

ψ(ǫ)
n (q) = exp(iµ(ǫ)

n q) (1)

where for all integers n,

µ(ǫ)
n :=

2πn+ ǫ

q0
(2)

is proportional to the momentum eigenvalues

p(ǫ)n = ~µ(ǫ)
n . (3)

For each fixed ǫ, these are the discrete momentum eigenvalues of a particle on a circle

with eiǫ-periodicity, and together, for all ǫ, they fill the whole real line. In this heuristic way,

the continuous momentum spectrum for a particle in the periodic potential is recovered.

This statement is heuristic because the Hilbert spaces Hǫ are all different as function spaces

and independent for different ǫ, and a wave function ψ
(ǫ)
n (q) would not be normalizable in

the usual continuum Hilbert space L2(R, dq). One may view the Hilbert spaces of different

ǫ as superselection sectors in the direct sum
⊕

ǫHǫ: One would consider all states as lying

in the same Hilbert space, but allow superpositions only of states within the same Hǫ. (The

full direct-sum Hilbert space is non-separable.)

In contrast to the momentum spectrum, the energy spectrum in a given periodic potential

V (q), while continuous, need not fill the whole real line. By solving the energy eigenvalue

equation for each ǫ, Ĥψ
(ǫ)
k = E(ǫ)(k)ψ

(ǫ)
k where ψ

(ǫ)
k is subject to the almost-periodicity
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condition, one obtains a function E(ǫ)(k). Combining all values for the different ǫ in general

leaves out some real numbers which are not realized as an energy eigenvalue in the periodic

potential, and the band structure of excitation spectra emerges.

Functional analytically, the differential operator −~2∂2q/2m+ V (q), when considered on

the finite interval of one periodicity length, becomes self-adjoint once suitable boundary

conditions are imposed. Its spectrum depends on the boundary conditions. The operator has

deficiency indices (2,2) and thus possesses a family of self-adjoint extensions parameterized

by U(2). Our previous boundary conditions ψ(q+ q0) = ψ(q)eiǫ combined with ψ′(q+ q0) =

ψ′(q)eiǫ amount to a subgroup U(1) ⊂ U(2). For each choice of such a boundary condition,

i.e, for each choice of ǫ ∈ [0, 2π), we obtain a different self-adjoint extension Ĥǫ, each

possessing its own spectrum and eigenvectors. Each set of eigenvectors spans the same

Hilbert space of square integrable functions over the interval, and the union of these spectra

forms the bands.

Clearly, the underlying periodicity of the crystal, by leading to the band structure, has

direct implications for the dynamics, which allows one to probe underlying properties of

V (q) in experiments. In low-energy experiments, distance scales larger than the spatial

periodicity can easily be probed and described perturbatively, for instance by corrected

dispersion relations taking into account the microstructure. Of interest in the present context

is the fact that a discrete structure arises in momentum space as a consequence of periodicity

in position space.

Some approaches to quantum cosmology, especially loop quantum cosmology [24, 25] (see

[26] for a recent review), begin with a similar but reversed setting, now dealing with discrete

space and almost periodic or compactified momentum space. In this case, space is not

represented by position coordinates but by geometrical quantities such as the total volume

V of an isotropic universe model, or in general by points in minisuperspace. The momentum

P is then related to curvature components or, in cosmology, the Hubble parameter. As with

Bloch states, the Hilbert space (in the momentum representation) is spanned by states

ψ(ǫ)
n (P ) = exp(iµ(ǫ)

n P ) (4)

with the same form (2) of µ
(ǫ)
n as before, except that q0 is to be replaced by a quantity

P0 signaling the periodicity of P [27, 28].[65] These are the main aspects of loop quantum

cosmology we need in this article; see Appendix A for more details.
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In addition to technical properties of the dynamics, there is a key physical difference

between the treatment of Bloch waves as a model for condensed matter physics and isotropic

loop quantum cosmology as a model for quantum gravity: Bloch states represent a system in

which the position coordinate q is almost periodic, and thus its momentum is discrete. The

regime of distances q ≫ q0 much larger than the periodicity is easily accessible by classical

physics, and one is interested in uncovering what happens at smaller distances near the

scale of periodicity. In loop quantum cosmology, on the other hand, the (momentum-like)

expansion rate P is almost periodic while the size V is discrete. Moreover, it is the low-

curvature regime P ≪ P0 which is easily accessible by classical physics and one is interested

in uncovering what happens at large curvature near P0. This point plays an important

role regarding the specific questions one tries to address. In this article, we will mainly

be concerned with the quantum-cosmology-like situation, probing the quantum system well

below the periodicity scale. This regime will be implemented by the approximations used.

A. Uncertainty with periodic momenta

Motivated by the examples of discrete systems, we assume a general class of models with

a periodicity condition on the momentum: wave functions φ(p) in momentum space obey

φ(−p0/2) = φ(p0/2) for some momentum value p0. Compared to the more general discussion

before, we set ǫ = 0 without loss of generality; non-zero values will simply shift the lattice

structure we obtain in position space. Here, the superselection assumption is important. The

conjugate variable q is then quantized to an operator with discrete spectrum qn = 2π~n/p0

with integer n. We will analyze the possible values of uncertainties that can be realized in

the set Fq̄ of wave functions that possess some fixed position expectation value q̄ = 〈q̂〉.
In particular, we ask how small the position fluctuation ∆q can be in this set, or how well

we can localize a particle at position q̄. Our aim is to derive a function ∆qmin(q̄) which

determines the minimally possible uncertainty for localization at q̄.

If we choose q̄ to be one of the lattice points, qn, we may localize the particle arbitrarily

sharply because we could choose the state to be the q̂-eigenstate with eigenvalue qn. Thus,

∆qmin(qn) = 0. As we will show now, for all other values of q̄ the minimum uncertainty is

not zero.

Without loss of generality, we then choose q0 = 0 < q̄ < q1 = 2π~/p0. A corresponding
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wave function can no longer be a position eigenstate, and in order to achieve minimum posi-

tion uncertainty we should choose a superposition of the eigenstates with position eigenvalue

zero and q1:

φq̄(p) = ae−iq0p + be−iq1p = a+ be−2πip/p0 .

With normalization, |a|2 + |b|2 = 1/p0. Moreover, we straightforwardly compute

q̄ = 2π~|b|2 , 〈q̂2〉 = 4π2
~
2|b|2/p0 . (5)

Eliminating |b|, we obtain

∆qmin(q̄) =
√
q̄(q1 − q̄) for 0 ≤ q̄ ≤ q1 , (6)

extended periodically over the whole q-axis, consistent with the findings in [22]. For sec-

tors with ǫ 6= 0, we obtain the same formula just with q1 interpreted as the lattice spacing

L = q1+ǫ − qǫ = q1. The minimal uncertainty indeed vanishes for q̄ a lattice point, and is at

most half the lattice spacing: ∆qmin ≤ L/2. At this stage we see the importance of the super-

selection assumption. Without it, we could have made the minimal uncertainty arbitrarily

small for all q̄; for every q̄, there is an ǫ-sector containing a q̂-eigenstate with eigenvalue

q̄. From the perspective of minimally possible position uncertainty, the discreteness is thus

noticeable only if the ǫ-sector is fixed, for instance derived from other observations. On one

hand, if all ǫ-sectors were allowed, we could localize at every point with absolute precision.

On the other hand, if instead in momentum space the boundary condition of periodicity up

to a phase eiǫ is replaced by Dirichlet boundary conditions then p̂ is symmetric but it is not

self-adjoint. In this case, at no point could the position be resolved to absolute precision,

leading to a global finite ∆qmin. We will also encounter this case below.

We now turn to momentum uncertainties. The minimum position uncertainty can be

used to probe the lattice structure only if the resolution of our measurements is close to the

lattice spacing. Moreover, the ǫ-sector would have to be determined by independent means.

An important question then is how the lattice structure can be noticed if measurements are

done at energies which may be high, but not high enough to resolve the lattice. One way that

may offer an opportunity to overcome this problem may be to test for small deviations from

the usual uncertainty relations, namely by checking the relationship between both position

and momentum fluctuations. Before we enter a more detailed discussion of generalized
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uncertainty relations, for later comparisons it will be useful to continue with the question of

localization and compute some of the corresponding momentum uncertainties.

Again, we choose a position eigenstate of one of the lattice points, without loss of gen-

erality at q̄ = q0 = 0. Then, φq0(p) = 1/
√
p0. In addition to q̄ = 0 and ∆q = 0, we have

p̄ = 〈p̂〉 = 0 and ∆p = p0/2
√
3. One of the consequences of discreteness is that ∆q = 0

is possible with finite ∆p, clearly requiring modified uncertainty relations compared to the

continuum case. It will also be useful to consider higher moments of the state, in particular

∆(pn) := 〈(p̂− p̄)n〉 = pn0
2n(n + 1)

(7)

for even n while ∆(pn) = 0 if n is odd. The series ∆(pn)/pn0 thus falls off for increasing n.

B. Generalized uncertainty relations

As the preceding example demonstrates, quantum systems with discrete or periodic struc-

tures in phase space cannot obey the usual uncertainty relation ∆q∆p ≥ ~/2 of quantum

mechanics because the lattice structure makes it possible for ∆q to vanish at finite ∆p. Nev-

ertheless, we still expect some form of uncertainty relation to apply; after all, at distance

scales much larger than the lattice spacing we should be able to recover standard continuum

quantum mechanics. A common way to parameterize generalized uncertainty relations is

∆q∆p ≥ ~

2

(
1 + α(∆p)2 + β(∆q)2 + γ

)
, (8)

considered first in [6], see also, e.g., [8–10].

The parameters α, β and γ are independent of ∆q and ∆p but in general may depend

on expectation values of the overall state. Dimensional analysis of the correction terms

in Eq. (8) indicates that these parameters are not purely quantum corrections, as perhaps

motivated by quantum gravity. If one uses only Planck’s constant and the Planck length,

dimensionally we must have α ∝ ℓ2P/~
2 = G/~ and β ∝ 1/ℓ2P = 1/G~, both proportional to

~−1. As quantum corrections, this behavior is unsuitable because the terms G(∆p)2/~ and

(∆q)2/G~ do not necessarily go to zero for ~ → 0, with semiclassical fluctuations squared

usually being about the size of ~. Generalized uncertainty principles thus require either

modifications to the quantum algebra of basic operators and even the classical symplectic

structure, or an additional scale not directly related to ~. This additional scale could be the
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bandlimit of a fundmental bandlimitation [30], the size of fundamental extended objects, or

the periodicity or discreteness scale considered in this paper.

1. Implications

In Eq. (8), let us first consider the case where α, β > 0, γ > −1. If also αβ ≥ 1/~2, then

this uncertainty principle has no solutions, i.e., we can rule out this case: for x := ∆q/
√
α~

and y :=
√
α∆p the relation implies the impossible relationship (x−y)2 ≤ −(1+γ) < 0. Else,

if α, β > 0 and αβ ≤ 1/~2 , then the uncertainty relation (8) arises from the commutation

relation

[q̂, p̂] = i~(1 + αp̂2 + βq̂2). (9)

through ∆A∆B ≥ 1
2
|〈[A,B]〉| which holds for any symmetric or self-adjoint operators A,B

on any domain on which they and their commutator can act. Notice that (9) induces an

uncertainty relation of the type of (8) with a generally non-vanishing γ that depends on 〈q̂〉
and 〈p̂〉. A Hilbert space representation can be constructed using ρ-deformed raising and

lowering operators, â, â†. (In the literature on quantum groups, the parameter ρ is usually

denoted q, but we here use the symbol q for the position operator). Namely, in this case the

operators q̂ and p̂ can be represented through

q̂ :=
1√

2β(1/~
√
αβ − 1)

(â† + â) (10)

p̂ :=
i√

2α(1/~
√
αβ − 1)

(â† − â) (11)

where â, â† obey

ââ† − ρâ†â = 1 (12)

with

ρ :=
1 + ~

√
αβ

1− ~
√
αβ

(13)

Note that ρ ∈ (1,∞). As usual, the Hilbert space together with a representation of q̂ and

p̂ can be constructed by the Fock method on a state |0〉 obeying â|0〉 = 0. For a general

analysis of q-deformed a-a† commutation relations, see also [31].

For β = 0, the representations of the generalized commutation relation [q̂, p̂] = i~(1+αp̂2)

are discussed in [10], where it was found that their properties qualitatively depend on the

sign of α:
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• For α < 0, there are finite-dimensional representations. In infinite-dimensional ones,

p̂ is a bounded operator and has a finite range of eigenvalues; q̂ possesses self-adjoint

extensions whose spectra are continuous.

• For α > 0, p̂ has a continuous spectrum comprised of the entire real line. The self-

adjoint extensions of q̂ possess discrete parts to their spectra and normalizable eigen-

vectors.

Let us now return to Eq. (8) for generic α, β and γ. It is of particular interest to probe

the smallest allowed scales by determining how small ∆q can be made. In the case α > 0,

β > 0, γ > −1, αβ ≤ 1/~2 of above, it is known that ∆q possesses a non-vanishing minimum

overall, as we will recover as a special case. But we also expect that, in other cases, the

vanishing of ∆q may be possible for finite ∆p as required for lattice models.

We begin by noticing that saturating the uncertainty relation requires

∆q =
∆p±

√
(1− ~2αβ)(∆p)2 − ~2β(1 + γ)

~β
. (14)

For fixed α, β and γ this expression is minimized for

(∆p)2 =
1 + γ

α(1− ~2αβ)

such that the uncertainty in position is bounded from below by

∆q = ~

√
α(1 + γ)

1− ~2αβ
(15)

provided the square root is well-defined. For α(1 + γ) > 0 a positive lower bound for the

position uncertainty results independently of the momentum uncertainty as in the exam-

ple of Section IIA in the case of Dirichlet boundary conditions. If instead α < 0 and

1 + γ > 0, then the generalized uncertainty relation Eq. (8) allows ∆q to vanish at finite

∆p =
√
−(1 + γ)/α, qualitatively similar to our example above when fixing an ǫ-sector.

This confirms our expectation that the coefficients in generalized uncertainty relations, and

especially their signs, carry information about underlying discrete structures.

Indeed, even if no direct information is available about the boundary conditions in mo-

mentum space, such as the specific ǫ-sector, indications of negative values of α (for positive

1 + γ) would imply agreement with the discrete model, while positive α would correspond

to a finite lower bound to the position uncertainty (15).
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2. Representations

Properties of operators and Hilbert-space representations can be surprisingly subtle in

the context of generalized uncertainty relations. In order to illustrate this, let us have a

closer look at the case of α, β > 0, i.e., at the case of a finite lower bound to the position

uncertainty. The operators q̂ and p̂ then act via Eqs. (10), (11), on the domain, D, of all

finite complex linear combinations of the basis vectors (a†)n|0〉. Clearly, D is dense in the

Hilbert space, H, of all (finite or infinite) normalizable linear combinations of the vectors

(a†)n|0〉. It is straightforward to verify that the commutation relation holds on D and that

q̂ and p̂ are symmetric operators, i.e., that all their expectation values are real: 〈φ|q̂|φ〉 ∈ R

and 〈φ|q̂|φ〉 ∈ R for all |φ〉 ∈ D. As always in quantum mechanics, we obtain the physical

domain Dphysical by enlarging D so as to include as many infinite linear combinations of the

basis vectors (a†)n|0〉 as possible. Concretely, Dphysical ⊂ H is the maximal domain on which

the commutation relation holds. This means that Dphysical is the maximal domain on which

the images of all operators that occur in the commutation relations are contained in the

Hilbert space. Therefore, Dphysical is the set of all |φ〉 ∈ H for which q̂|φ〉 ∈ H, p̂|φ〉 ∈ H,

q̂p̂|φ〉 ∈ H, p̂q̂|φ〉 ∈ H, q̂2|φ〉 ∈ H and p̂2|φ〉 ∈ H.

In this context, let us recall that the presence of finite lower bounds to ∆q and ∆p

precludes the existence of eigenvectors of q̂ or p̂ in Dphysical since they would have vanishing

variance, ∆q = 0 or ∆p = 0. The lower bounds even preclude the existence of sequences of

physical vectors whose variance, say ∆q, goes to zero (even while allowing that ∆p might

diverge). As one might expect, therefore, q̂ and p̂ on Dphysical have no complete spectral

decomposition and therefore cannot be self-adjoint [6]. The phenomenon that operators,

such as q̂ and p̂, are symmetric on a domain, here Dphysical, without being self-adjoint, is a

subtlety that can occur only in infinite-dimensional Hilbert spaces.

Interestingly, the detailed functional analysis of these operators shows that q̂ and p̂ in-

dividually do possess extensions of their domain on which they become self-adjoint. In

particular, there exists a family of enlarged domains Dq,α, parametrized by α ∈ [0, 1), obey-

ing Dphysical ⊂ Dq,α ⊂ H such that for each fixed α the extended q̂α which acts on Dq,α

is self-adjoint and has a discrete spectrum, {qn,α}n∈Z, along with normalizable eigenvectors

{|qn,α〉}n∈Z. It has been shown that as α runs through the interval [0, 1), the corresponding

discrete grids of eigenvalues {qn,α} cover the real line exactly once,
⋃

α∈[0,1){qn,α}n∈Z = R.
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The fact that q̂α possesses eigenvectors {|qn,α〉}n∈Z, for which ∆qα = 0, is consistent with

the fact that we have a positive lower bound (15) for ∆q. The reason is of course that the

eigenvectors |qn,α〉 are in Dq,α but not in Dphysical.

Nevertheless, while keeping in mind that the vectors |qn,α〉 are not in the physical domain,

we may of course utilize the fact that any such set of eigenvectors, {|qn,α〉}n∈Z, for any

fixed α, is a basis in the Hilbert space. Namely, we can use the fact that any physical

state |φ〉 ∈ Dphysical is completely specified by its coefficients 〈qn,α|φ〉 in the Hilbert basis

{|qn,α〉}n∈Z. This means that all physical kinematics and dynamics, i.e., that all relationships

and maps between vectors in Dphysical can be described as relationships and maps between

the coefficients of these vectors in the basis {|qn,α〉}n∈Z. The theory can therefore be viewed

as a theory living on the discrete set of positions {qn,α}n∈Z for some fixed α. Nevertheless,

this is not a discrete theory in the usual sense because the discretization is optional and one

may freely change to describing the same physical dynamics and kinematics on any other

grid of positions {qn,α′} for some other α′. This equivalence of a whole family of discrete

representations of a theory is made possible by the fact that the finite lower bound ∆qmin

makes these discretizations physically indistinguishable by any physical fields |φ〉 ∈ Dphysical.

This mathematical structure provides a generalization of Shannon sampling theory, see

[29], with ∆qmin playing the role of a finite bandwidth. (Shannon sampling theory provides

the link between discrete and continuous representations of information and it is used ubiq-

uitously in signal processing and communication engineering.) The case α > 0 therefore

describes a space which is simultaneously discrete and continuous in the same way that

information can be continuous and discrete, see [30].

3. Back to generalized uncertainty relations

Our interest now will be to understand the interplay between lower bounds to position

uncertainties and actual spatial discreteness in a way that is independent of representations

and their functional analytic subtleties.

To analyze the relationship between a discrete length and coefficients in a generalized un-

certainty principle, we here take a route on which we start with a conventional quantization

of a fundamentally discrete quantum system. From this, we derive a generalized uncer-

tainty principle of the form (8), with uniquely determined coefficients. Our methods will be
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representation-independent, thus avoiding the need to address questions of superselection or

domains. Although the example we study is simple, it should be able to serve as a model

for analogous derivations to be performed if one wants to derive predictions for low-energy

effects of fundamentally discrete systems, such as some versions of quantum gravity.

III. QUANTUM MECHANICS ON A CIRCLE

In order to study the effects of the discreteness of the position, q, perturbatively, we will

now use a simple system given by a quantized phase space of a cylinder where momentum p

has periodicity p0, and derive uncertainty relations in an expansion by p/p0. According to

the discussion above, this is the regime of interest in quantum cosmology. The expansion can

be done in a systematic and representation-independent way by computing higher moments

of a state, and it provides specific coefficients which one can compare with the general

form (8). Our techniques are motivated by a general scheme of effective equations in a

canonical setting, which was developed in [32–34]. Such equations have been derived in

loop quantum cosmology [35], for which the circle system provides a model capturing the

characteristic representation. In fact, quantum mechanics on a circle can be seen as a

sector in the Hilbert space of loop quantum cosmology, just as the set of all Bloch states

is split into sectors of functions periodic up to phase. Being based on the same techniques,

generalized uncertainty relations and effective equations may thus be combined for further

phenomenological applications of quantum cosmology.

We present a brief overview of this simple well-known system in order to introduce our

notation. Classical variables are a canonical pair (q, p) with Poisson bracket {q, p} = 1.

In analogy with loop quantum cosmology we choose the momentum p to be periodic, such

that p is the angle of a circle and thus takes values in S1. Then, q becomes discrete upon

quantization. The phase space can be described by a complete set of phase space variables

(q, sin(2πp/p0), cos(2πp/p0)) where p0 is the periodicity of p which, p being a dimensionless

angle, can be fixed to p0 = 1 but will be more useful for future expansions if kept unspecified.

Instead of using the sine and cosine, it is more convenient to use the complex-valued function

h := exp(2πip/p0) and its complex conjugate h∗, subject to the reality condition h∗h = 1.
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These basic functions satisfy the non-canonical algebra

{q, h} =
2πi

p0
h , {q, h∗} = −2πi

p0
h∗ , {h, h∗} = 0 (16)

under taking Poisson brackets.

The quantum theory can be formulated on the Hilbert space L2(S1, dp/p0) which has

an orthonormal basis {|n〉}n∈N, with momentum representation 〈p|n〉 = exp(2πinp/p0).

The variable q is directly quantized to become a multiplication operator acting by q̂|n〉 =

2π~p−1
0 n|n〉 which shows the discreteness of its spectrum. As before, wave functions need not

be strictly periodic but could also be chosen periodic up to a phase: ψ(p+p0) = exp(iǫ)ψ(p)

with ǫ ∈ R. This is sufficient to ensure that the probability density is single-valued on the

circle, and introduces a 1-parameter family of inequivalent representations for ǫ ∈ [0, 2π).

They are inequivalent because the q̂-spectrum possesses the eigenvalues 2π~(n+ ǫ)/p0 which

depend on ǫ. (We remark that we are now dealing with a closed circle instead of an interval

with boundary conditions, so that non-strict periodicity may seem impossible to impose.

Nevertheless, the corresponding Hilbert spaces can be formulated as function spaces on

non-trivial line bundle over the circle, but we will not explicitly require these structures

here.) There is no operator for p, however, because as a multiplication operator it would

not map a basis state into another allowed state. Another way to see that such an operator

cannot exist is to note that it would generate infinitesimal translations in q, which is not

possible due to the discreteness of the q̂-spectrum. There are, instead, well-defined operators

for our basic functions h and h∗, satisfying ĥ|n〉 = |n + 1〉 and ĥ∗|n〉 = |n− 1〉. The reality

condition for p is satisfied since ĥĥ∗ = 1̂ and ĥ∗ = ĥ†.

A. Moment algebra

Irrespective of the representation chosen, these basic operators satisfy the commutator

algebra

[q̂, ĥ] = −2π~

p0
ĥ , [q̂, ĥ†] =

2π~

p0
ĥ† , [ĥ, ĥ†] = 0 (17)

which faithfully quantizes the classical basic algebra. The following calculations and our

main results will make use only of this algebra and the reality condition, as well as the

general Schwarz inequality; therefore they will be manifestly representation-independent.
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Instead of working with wave functions as states, we will be using only the algebra (17)

and functionals on it, suggestively characterized by expectation values q = 〈q̂〉, h = 〈ĥ〉,
h∗ = 〈ĥ†〉 and moments

∆(qahb) :=

〈(
(q̂ − q)a(ĥ− h)b

)
Weyl

〉
(18)

of expectation values in Weyl ordering, where a, b ∈ N and a+ b ≥ 2. These variables form

an (over-) complete set of functionals assigning complex numbers to the operators in our

algebra. It follows from Hamburger’s theorem that the probability density of a wave function

can be reconstructed from the moments ∆(qn), while the phase of the wave function can be

found using moments involving h. For a pure state, the set of all moments is overcomplete.

The additional freedom in the set of moments allows one to include mixed states as well.)

The moments can be varied independently of expectation values to describe different states,

provided they respect inequalities and reality conditions as discussed below. They are also

useful for an analysis of coherent-state properties as e.g. in [36], which provides a link

to the uncertainty relation. Our analysis here provides an independent and more direct

relationship. From now on, we denote expectation values of basic operators by q and h

without distinguishing them from the classical variables. This convention simplifies the

notation and should not give rise to confusion.

Often, it is more convenient to work directly with equations for the moments rather than

taking the detour of wave functions or density matrices, presenting a complete description

from a more algebraic and representation-independent viewpoint. All crucial aspects of

the system are then contained in the basic algebra, which in our case in particular means

to use ĥ as a basic operator on the circle, possibly combined with a Hamiltonian or a

constraint. The main challenge then is to organize the infinitely many variables provided

by the moments, and the equations of motion they must fulfill. An example where these

equations can be organized in manageable ways is given by semiclassical regimes, in which

moments of high order are small, but the treatment is not restricted to this case. Our

approximation below will only assume the momentum (related to h) to be small compared

to p0, and any moments involving p (relative to p0) to fall off with increasing order as they

do for semiclassical states but not only for such states; with these assumptions, fluctuations

may still be large. Moreover, the size of the q-moments will remain unrestricted and need

not be small compared to powers of ~. An advantage of the use of expectation values and
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moments instead of wave functions is not only the representation independence but also its

larger generality: it includes mixed states as well as pure ones.

We will be working mainly with moments of lower order where a+ b is small. For better

clarity, we will then replace the superscript “a, b” by a list of operators used in the moments.

For instance, we have the h-variance ∆(h2) ≡ (∆h)2 =: ∆h2 and the covariance

∆(qh) =
1

2
〈(q̂ − q)(ĥ− h) + (ĥ− h)(q̂ − q)〉 = 1

2
〈q̂ĥ + ĥq̂〉 − qh .

B. Reality conditions

Expectation values and second-order moments are related to one another by the reality

condition: taking an expectation value of the relation ĥĥ† = 1̂ implies

hh∗ = 1−∆(hh∗) . (19)

This relation can be interpreted as reducing the number of independent expectation values

of the basic variables to the canonical value two, such as q and Re(h) (at fixed moments).

Similarly, at higher orders of the moments, we obtain additional reality conditions which

reduce the number of moments to the canonical values as already used in [37]. For the

second-order moments, we begin with the identities ĥ2ĥ† = ĥ and q̂ĥĥ† = q̂ that follow from

ĥĥ† = 1̂, and take expectation values. With some symmetric reorderings according to the

definition of the moments, we obtain

h∗∆h2 + h∆(hh∗) = −∆(h2h∗) (20)

h∗∆(qh) + h∆(qh∗) = −∆(qhh∗) . (21)

The first equation is complex and implies two independent conditions for the moments,

while the second equation is real. There are thus three conditions to restrict the second-

order moments (at fixed third-order ones) to the correct canonical number: out of six initial

moments ∆q2, Re∆(qh), Im∆(qh), ∆(hh∗), Re∆h2 and Im∆h2, three moments are left

independent, amounting to two fluctuations and one correlation.

C. Uncertainty relations

The main interest here lies in uncertainty relations which can be formulated in terms of

the moments even if they are not used for a canonical pair (q, p) but for a pair of our basic

15



operators. (See e.g. [36] for more details.) As usual, from the Schwarz inequality one derives

∆A2∆B2 −∆(AB)2 ≥ 1

4
〈i[Â, B̂]〉2 (22)

for any pair (Â, B̂) of self-adjoint or symmetric operators. In our case, we can form three

pairs of self-adjoint operators from the set (q̂, ĥ+ ĥ†, i(ĥ− ĥ†)), giving uncertainty relations

∆q2∆(h+ h∗)2 −∆(q(h+ h∗))2 = 2∆q2(Re∆h2 +∆(hh∗))− 4(Re∆(qh))2

≥ −π
2~2

p20
(h− h∗)2 (23)

for Â = q̂ and B̂ = ĥ+ ĥ†,

∆q2∆(i(h− h∗))2 −∆(qi(h− h∗))2 = 2∆q2(−Re∆h2 +∆(hh∗))− 4(Im∆(qh))2

≥ π2~2

p20
(h+ h∗)2 (24)

for Â = q̂ and B̂ = i(ĥ− ĥ†), and

∆(h + h∗)2∆(i(h− h∗))2 −∆((h+ h∗)i(h− h∗))2

= 4
(
∆(hh∗)2 − (Re∆h2)2

)
− 4(Im∆h2)2 ≥ 0 (25)

for Â = ĥ + ĥ† and B̂ = i(ĥ− ĥ†).

In semiclassical regimes, with moments of third or higher orders ignored, one can use the

reality conditions to show that (24) implies (23) and (25). If moments of higher order are

kept, (23) and (25) in combination with (24) and the reality conditions imply conditions for

third-order moments, an example for higher-order uncertainty relations. For instance, (20),

solved for h∗∆h2 and then taken in its absolute value, implies

|h|2
(
∆(hh∗)2 − |∆h2|2

)
= −|∆(h2h∗)|2 − 2Re(h∗∆(hh∗)∆(h2h∗))

and then

−2Re(h∗∆(hh∗)∆(h2h∗)) ≥ |∆(h2h∗)|2 (26)

with (25).

Given that i
2
(ĥ− ĥ†) corresponds to the sine of p̂, which should reduce to p̂ when acting

on states supported only on small p, we expect that it is (24) which reduces to the standard

uncertainty relation when p is small enough so that the periodicity can be ignored. To
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confirm this expectation, we first consider only leading orders in the p−1
0 -expansion: we

expand the operator

ĥ = 1 +
2πi

p0
p̂− 2π2

p20
p̂2 + · · · , (27)

which is valid on a set of states supported on values of p small compared to p0, and then

compute the moments for the expansion. To leading order in p−1
0 , we need only the term

ĥ− h = 2πip−1
0 (p̂− p) + · · ·, for which

∆(hh∗) = 〈(ĥ− h)(ĥ† − h∗)〉 = 4π2

p20
∆p2 + · · · (28)

and

∆h2 = 〈(ĥ− h)2〉 = −4π2

p20
∆p2 + · · · . (29)

(As one can easily verify to this order, the reality condition ∆(hh∗) = 1− |h|2 is identically
satisfied in terms of the p-moments.)

For mixed moments we have to be more careful with the ordering:

∆(qh) =
1

2
〈q̂ĥ+ ĥq̂〉 − qh =

iπ

p0
〈q̂p̂+ p̂q̂〉 − 2πi

p0
qp+ · · · = 2πi

p0
∆(qp) + · · · . (30)

Inserting this in (24) provides the uncertainty product

2∆q2(∆(hh∗)− Re∆h2)− 4(Im∆(qh))2 =
16π2

p20
(∆q2∆p2 −∆(qp)2) + · · · (31)

which together with
π2~2

p20
(h+ h∗)2 =

4π2~2

p20
+ · · ·

results in the standard uncertainty relation

∆q2∆p2 −∆(qp)2 ≥ ~2

4
. (32)

Equations (23) and (25) are satisfied identically to this order up to p−2
0 .

D. Corrections to the uncertainty relation

Corrections do arise, however, if we expand to higher orders in p−1
0 , in which case we will

obtain a generalized uncertainty relation as we demonstrate now. For instance, expanding

to the next order on the right-hand side of the uncertainty relation (24) gives

1

2
(h + h∗) = 1− 2π2

p20

(
p2 +∆p2

)
+ · · · . (33)
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These corrections are identical to what would be obtained from a modified commutator of q̂

and p̂ as in (9), [q̂, ˆ̃p] = i~(1−2π2ˆ̃p2/p20) with p̃ := p0(ĥ− ĥ†)/2π, as it follows from a formal

operator expansion

[
q̂, ĥ− ĥ†

]
=

[
q̂,

4πip̂

p0
− 8π3ip̂3

3p30
+ · · ·

]
= −4π~

p0

(
1− 2π2

p20
p̂2 + · · ·

)
.

(This contribution to the corrected uncertainty relation for systems with compact configu-

ration space is analogous to what is discussed in [38].)

However, the moments on the left-hand side of the uncertainty relation provide additional

corrections to this order which must be included for a consistent expansion. Generalized

uncertainty principles thus are not just consequences of modified commutators. We will

need ∆(qh), Re∆h2 and ∆(hh∗) up to the order p−4
0 :

∆(hh∗) =
4π2

p20
∆p2 − 4π4

3p40
∆(p4) +

4π4

p40
(∆p2)2 +

8π4

p40
p2∆p2 (34)

∆h2 = −4π2

p20
∆p2 − 8π3i

p30
∆(p3)− 16π3i

p30
p∆p2

+
28π4

3p40
∆(p4) +

32π4

p40
p∆(p3)− 60π4

p40
(∆p2)2 − 24π4

p40
p2∆p2 (35)

∆(qh) =
2πi

p0
∆(qp)− 2π2

p20
∆(qp2)− 4π2

p20
p∆(qp)− 4π3i

3p30
∆(qp3)− 4π3i

p30
p∆(qp2)− 4π3i

p30
p2∆(qp)

+
2π4

3p40
(∆(qp4) + 4p∆(qp3) + 6p2∆(qp2) + 4p3∆(qp)) . (36)

A demonstration of the lengthy calculations can be found in Appendix B. Moreover,

∆(h2h∗) =
8π3i

p30
∆(p3)− 8π4

p40

(
∆(p4) + 2p∆(p3)− 7(∆p2)2 − 6p2∆p2

)
. (37)

(One can verify that the reality condition (26) is identically satisfied in terms of the (q, p)-

moments.)

To this order, our three uncertainty relations read

∆q2∆(p4) + 4p∆q2∆(p3)− 7∆q2(∆p2)2 − 2p2∆q2∆p2

−4p∆(qp)∆(qp2)−∆(qp2)2 − 4p2∆(qp)2 ≥ ~
2p2 , (38)

from (23),

∆q2∆p2 −∆(qp)2 − 4π2

3p20

(
∆q2∆(p4) + 3p∆q2∆(p3)− 6∆q2(∆p2)2 − 3p2∆q2∆p2

)

−4π2

3p20

(
−∆(qp)∆(qp3)− 3p∆(qp)∆(qp2)− 3p2∆(qp)2

)
≥ ~2

4

(
1− 4π2p

2 +∆p2

p20

)
(39)

18



from (24), and

∆p2∆(p4)−∆(p3)2 − 7(∆p2)3 − 6p2(∆p2)2 ≥ 0 . (40)

In order to eliminate some of the high-order moments in terms of second-order ones, we

rewrite the three uncertainty relations as follows: (40) implies

∆1 := ∆(p4)− 7(∆p2)2 − 6p2∆p2 ≥ ∆(p3)2

∆p2
≥ 0 (41)

while (38) can be written as

∆2 := ∆q2
(
∆(p4)− 7(∆p2)2 − 6p2∆p2

)
+ 4p∆q2∆(p3)

+4p2
(
∆q2∆p2 −∆(qp)2 − ~

2/4
)
− 4p∆(qp)∆(qp2) ≥ ∆(qp2)2 ≥ 0 . (42)

With the two non-negative quantities ∆1 and ∆2, the central uncertainty relation (39) reads

∆q2∆p2 −∆(qp)2 ≥ ~2

4

(
1− 4π2p

2 +∆p2

p20

)

+
π2

p20

(
∆2 +

1

3
∆q2∆1 + ~

2p2 +
4

3
∆q2(∆p2)2 − 4

3
∆(qp)∆(qp3)

)

≥ ~2

4

(
1− 4π2

p20

(
∆p2 +

4

3

∆q2(∆p2)2

~2
− 4

3

∆(qp)∆(qp3)

~2

))
(43)

using ∆1 ≥ 0 and ∆2 ≥ 0 (and ∆q2 ≥ 0) in the last step. If we assume that ∆(qp) = 0, only

the remaining two fluctuations appear; all higher moments have been eliminated to order

p−4
0 in favor of additional fluctuation terms. Moreover, we can self-consistently insert the

uncertainty relation on its right-hand side in (43) to bound ∆q2∆p2 from below, resulting

in the generalized uncertainty relation

∆q2∆p2 ≥ ~2

4

(
1− 16π2

3p20
∆p2

)
(44)

expanded to second order in 1/p0. Taking a square root to this order, we have

∆q∆p ≥ ~

2

(
1− 8π2

3

(∆p)2

p20

)
(45)

which is of the form (8) with a negative α = −8π2/3p20. We see that ∆q can vanish at

a finite critical value of ∆pc, namely ∆pc =
√
−1/α =

√
3/2p0/2π. While this value

for ∆pc shows the expected qualitative behavior, it can only be a rough estimate, given

that the correction term 8π3(∆pc)
2/3p0 is certainly not small when it cancels the standard

term ~/2 of the uncertainty relation. Nevertheless, the so-obtained value for the critical
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∆pc is quite close to what we derived earlier for a position eigenstate. Our expansion by the

moments assumes that all momentum variables, including the moments, are small compared

to suitable powers of p0, with ∆(pn)/pn0 falling off as n gets larger. Even for n = 2, the ratio

is not small compared to one. For higher moments, as remarked at the end of Sec. IIA,

position eigenstates (corresponding to ∆q = 0) do fulfill the fall-off assumption, but with a

comparatively small rate of 2−n/(n+ 1). (For comparison, semiclassical expansions usually

make use of moments falling off as ~n relative to some classical scale with the dimension of

an action, providing much smaller numbers.) Leaving position eigenstates aside, there is a

large class of states that easily fulfill our assumptions provided they are sufficiently strongly

peaked in p. For such states, our generalized uncertainty relation (45) reliably exhibits

implications of discrete space on fluctuations.

IV. CONCLUSIONS

We have derived the first order of corrections to the standard uncertainty relation as they

result for a quantum system with a momentum space of the topology of S1 and thus dis-

crete position. Without needing to assume corrections to the basic operator algebra (17), we

showed that an underlying discreteness of position spectra implies specific respresentation-

independent correction terms in a generalized uncertainty principle. Formally, there is no

self-adjoint operator associated with the coordinate of the compact direction of the phase

space, which is rather quantized via periodic functions of an angular coordinate. (Group-

theoretical quantization [39], for instance, can be used to construct the quantum repre-

sentation.) For angle separations small compared to the periodicity one can then expand

quantum variables such as fluctuations, correlations and higher moments and, to leading

order, reproduce the standard uncertainty relations. Higher orders of the expansion, which

include terms sensitive to the periodicity, lead to a derived form of a generalized uncertainty

principle.

Heuristically, a generalized uncertainty principle of a form that implies a positive lower

bound for position uncertainty has been interpreted as a signal of spatial discreteness, as

it may be realized in quantum gravity. This has been supported in [10] by an analysis of

the representation theory of operator algebras which imply such a generalized uncertainty

principle. Perhaps surprisingly, the specific form of the generalized uncertainty principle
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derived in our calculations has the opposite sign of its coefficients compared to what leads

to a finite minimal position uncertainty: Even though we know that the underlying Hilbert

space implies discrete spectra and thus spatial discreteness in a rigorous sense, there is no

finite lower bound to ∆q.

Of course, as we discussed, one may expect the absolute minimum to be zero because

normalizable eigenstates of sharp position exist. In this case, a more refined version of

minimum uncertainty can be introduced which depends on the expectation value 〈q̂〉: the

minimum uncertainty could vanish when 〈q̂〉 equals an eigenvalue of q̂, but would be non-zero

otherwise. Such relations for the minimum ∆qmin(〈q̂〉) can be derived at the Hilbert space

level, but are not realized by the treatment used here. As we showed in Section IIA, the

presence of non-vanishing minima of fluctuations depends on the quantum representation.

Generalized uncertainty principles, on the other hand, are representation independent as

derived here; they follow from algebraic properties of quantum observables. While leading

corrections to the standard uncertainty relation are 〈q̂〉-independent and cannot directly

give rise to minimal uncertainties of the functional form ∆qmin(〈q̂〉), one may expect that

higher orders could bring in such a dependence on 〈q̂〉. Indeed, the dependence of ∆qmin

on 〈q̂〉 is most pronounced near q̂-eigenstates, where the leading terms of the expansion

in moments are not reliable. If higher orders are included, such a dependence may arise at

least indirectly via moments involving q. These moments are independent of the expectation

value, but specific classes of states, such as q̂-eigenstates, could imply restrictions on the

moments compatible with the form of ∆qmin seen before in (6). We leave this question open

for future investigations.

Thus, there is no simple relationship between positive lower bounds for uncertainties

according to generalized uncertainty principles on one hand, and true discreteness of operator

spectra on the underlying Hilbert space on the other. One may view the existence of a

positive lower bound for ∆q as an indication for a theory with a universal bandwidth, or

a theory based on extended fundamental objects, which would be consistent with the fact

that generalized uncertainty relations with a positive lower bound have been argued to arise,

also from string theory. A key signature of a fundamental discreteness of space, by contrast,

is the possibility of vanishing position fluctuations at finite momentum fluctuation. We re-

emphasize, however, that our treatment works well for values of variables small compared

to their periodicity, for which curvature bounds in quantum gravity are an example. If one
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instead probes an underlying periodic structure of position space, separations comparable

to the periodicity scale would have to be considered where our present expansions do not

apply.

As an alternative to string theory as a quantum theory of gravity, loop quantum gravity

[40–42] provides a kinematical quantization where geometrical operators have discrete spec-

tra [43, 44]. While this property has not been derived for physical observables, the discrete

form of kinematical spectra affects the dynamics because of the form of basic operators

which are combined to a Hamiltonian (constraint) operator. Dynamical implications can be

studied in loop quantum cosmology [24–26], for instance in the context of space-time sin-

gularities [45]. The formulation of isotropic models in loop quantum cosmology makes use

of complex exponentials of curvatures, rather than curvature components themselves [27].

The example analyzed here can thus be taken as a model for isotropic loop quantum cos-

mology, which indicates the form of generalized uncertainty principles as they may appear

in cosmological applications. Our results here would apply only to small-curvature regimes

where the discreteness of spatial geometry does not play a large role, corresponding to the

fact that we had to expand our exponentials on a circle in the inverse periodicity in order

to derive our generalized uncertainty principle.

Taking the circle example as a model for the kinematical structure of a sector in loop

quantum cosmology suggests that the canonical variables V and P , related to the volume

and expansion rate as introduced in Appendix A, are subject to a generalized uncertainty

principle

∆V∆P ≥ ~

2

(
1− 2

3
(∆P )2

)
. (46)

This inequality is valid as long as P and ∆P are small compared to the scale P0 = 2π

of almost periodicity. (As in the general derivation, we also assume a vanishing (V, P )-

covariance; otherwise there will be additional corrections as shown by the previous formulas.)

Loop quantum cosmology does not show uniquely what variables behave almost-periodically.

Taking ambiguities into account, the periodicity scale in terms of the scale factor is set by

two parameters f0 and x according to the power-law parameterization P = −f0a2xȧ. The

dimension of f0 depends on the value of x, given that P must be dimensionless. For the value

x = −1/2, for instance, f0 has the dimension of length and due to its quantum-gravity origin

one may expect it to be of the order of the Planck length f0 ∼ ℓP =
√
G~. (For consistency

with other corrections from loop quantum cosmology, it must be sufficiently larger than the
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Planck length [46].) In this case, a Planckian bound ȧ/a < ℓ−1
P for the Hubble parameter is

required for the applicability of our derivations here and leading corrections are of the order

(ℓP∆(ȧ/a))2.

In fact, as observed in [47], the use of modified commutation relations between the canon-

ical variables which correspond to a generalized uncertainty principle of the form derived

here can mimic some of the effects of loop quantum cosmology. The main example is a

bounce in isotropic models sourced by a free scalar [35, 48]. However, such an example

for high-curvature effects appears when P ∼ P0 and thus falls outside the regime where

derivations of the present paper are valid. We nevertheless note that our derivations are not

restricted to purely semiclassical regimes; all we need is a hierarchy of moments organized

by powers of P−1
0 , not of ~.

In addition to the gravitational degrees of freedom, loop quantization also applies to

matter fields. A scalar field, for instance, can be represented on the loop Hilbert space in an

almost-periodic fashion similar to the gravitational connection or the canonical variable P

in isotropic cosmology [49, 50]. In a setting of quantum field theory, generalized uncertainty

relations should then appear, with possible phenomenological consequences during inflation.

Let us recall that our considerations here have been kinematical, using a moment expan-

sion in uncertainties. The same tool is the key to analyzing quantum back-reaction effects

in the dynamics, where equations of motion (or constraints) are expanded by moments [32].

This can be done either in canonical variables or in variables analogous to h used on the

circle [35]. We leave it open to further studies to see what a combination of both types of

moment expansions would provide.

Finally, let us consider how the present considerationsl could be extended to account for

particle interactions. There are in principle two approaches, bottom up and top down. In the

top down approach, a multi particle version of the present considerations is provided by any

top level quantum gravity theory such as loop quantum gravity, which then yields a single

particle generalized uncertainty principle in a suitable limit. In the bottom up approach, one

can try to extend generalized uncertainty principles to a multi particle theory. For example,

in the case of a constant finite minimum uncertainty in position, e.g. at the Planck scale, the

space of fields is known to be bandlimited with the smallest wavelength determined by the

minimum length uncertainty. A quantum field theory is then obtained by taking an ordinary

quantum field theoretical path integral and restricting the integration range to just these
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bandlimited functions, thereby in effect eliminating the most extreme quantum fluctuations.

This approach has been pursued, for example, in [29]. The bottom-up approach then also

encounters the question of the addition of momenta, see for example [13]. For example, when

multiple bandlimited functions are multiplied naively to describe the scattering of multiple

particles, the product of these functions need not obey the same bandlimit. Indeed, when

particles scatter whose combined energy reaches or exceeds the Planck energy then their

interaction with the background spacetime must become strong. It is plausible that this

interaction could lead to a transfer of excess momentum to curvature degrees of freedom,

thereby resolving the issue of the conservation of the momenta and of the bandlimitation.

These questions are beyond the scope of the present paper.
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Appendix A: Loop quantum cosmology

We present a brief review of loop quantum cosmology with a focus on aspects relevant

for questions of the discreteness or periodicity of some directions in phase space. In this

context, we must take a general viewpoint in order to see all possible forms of discreteness

that can arise, especially at a dynamical level. Our summary here therefore differs from some

contributions and reviews in the recent literature, where models are specialized further by

ad-hoc choices so as to produce detailed studies of some specific cases.

In loop quantum gravity [40–42], one uses as one of the basic canonical fields a densitized

triad Ea
i of three orthonormal vector fields labelled by i = 1, 2, 3, related to the spatial

metric qab by Ea
i E

b
i =

√
det qqab. As a smeared version, the field is quantized via flux

operators F̂ (S) =
∫
S
Êa

i nad
2y integrated over 2-dimensional surfaces in space rather than

by its pointwise values. In an isotropic setting, Ea
i = pδai is completely determined by the

scale factor a up to orientation, with |p| = a2 and the sign of p giving the orientation of

space. Fluxes, then, reduce to area-like quantities such as A = ℓ20|p| where ℓ0 provides a
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linear measure (in terms of coordinates) for the surfaces used.

In quantum states, areas A obtained from flux operators play the role of quantum numbers

that determine the elementary discreteness of space. Indeed, the quantum representation

implies a discrete spectrum for flux operators, whose smallest possible non-zero values are

of the order A ∼ ℓ2P. One is thus led to a discrete (minisuper)space as used in this article.

For isotropic geometries, the canonically conjugate almost-periodic momentum of A is ℓ0ȧ

(represented via holonomy operators). But while the spectrum of flux operators for fixed

surfaces is fully determined and of a simple equidistant form, the question of what the

dynamical stepsize of physical scales is, for instance in an expanding universe, remains open.

The dynamics of a classical expanding universe is described by the scale factor or the triad

variable p, while elementary fluxes in quantum theory determine the possible sizes of ℓ20|p|
with ℓ0 depending on the coordinate size of surfaces (or plaquettes in a lattice-like state of

discrete space) giving rise to the smallest flux eigenvalues. If the lattice is changing, a process

called lattice refinement which is generically realized in loop quantum gravity [51, 52], ℓ0

must be assumed to depend on time or the scale factor as well. The known equidistant

spectrum for fluxes A then determines the stepsize of geometrical measures related to the

scale factor only if ℓ0 for lattice plaquettes is known as a function of a or p.

Evaluating the full dynamics of loop quantum gravity, for instance as in [53], remains

extremely challenging; it is thus impossible to derive some function ℓ0(p) from first principles.

However, on general grounds there are certain restrictions on its behavior. If ℓ0 did not

depend on p, for instance, the discreteness scale of a lattice state would be constant in

terms of coordinates, but would be magnified as the scale aℓ0 measured in an expanding

universe. For sufficiently long expansion, one would be in conflict with continuum physics.

A decreasing scale ℓ0(p) is thus required, one useful example being the power-law form

ℓ0(p) = f0|p|x with two constants f0 for the discreteness scale and x < 0 for the refinement

behavior. It is then the product ℓ0(p)ȧ = f0a
2xȧ, not ȧ, which is almost periodic, and the

conjugate variable
∫
ℓ0(p)

−1dp = f−1
0 |p|1−x/(1− x), not p, which is equidistant.

In terms of the cosmological scale factor a, we thus define canonical variables

V =
3σVa2−2x

8πG(1− x)f0
and P = −f0a2xȧ with {V, P} = 1 (A1)

where G is the gravitational constant. These conventional variables absorb the precise

periodicity scale of a2xȧ in f0 such that P0 = 2π and µ
(ǫ)
n = n + ǫ/2π. In V , moreover,
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the spatial volume V of an integration region used to average to isotropy, measured in

coordinates, appears, as well as σ = ±1 which determines the orientation of space. With

the factor of σ, allowed values of V cover the whole real line because loop variables are derived

from triads, which by changing orientation can take both signs; see [25] for derivations and

details.

The dynamics of a loop quantum cosmological model takes different forms depending

on which variable precisely is almost periodic. Unlike the condensed-matter example in

Section II, it is not clear a priori whether it is, say, a itself which acquires an equidistant

spectrum in any of the periodic dynamical sectors, or a different power of a (or yet another

functional behavior). We therefore keep this freedom in our definition of basic variables

where the power x remains unspecified. (Arguments loosely based on the full theory of loop

quantum gravity indicate that −1/2 < x < 0 generically [51, 52], with values near −1/2

preferred phenomenologically [54–56] at least in near-isotropic cosmology.) Moreover, even

if the precise discrete variable would be specified, the discreteness scale remains free. This

is parameterized by the second constant f0 whose dimension depends on x.[66]

A further difference to the Bloch example is that this so-called kinematical Hilbert space

of states (4), as it follows[67] from the full theory of loop quantum gravity, carries a dif-

ferent representation than is typically used in quantum mechanics [28]: All states ψ
(ǫ)
n are

normalizable despite their plane-wave form, and they form an orthonormal basis. (Although

non-standard, this representation may be advantageously used also in quantum mechanics

[61] and quantum field theory [62].) Since there are uncountably many such states, the

Hilbert space is non-separable. A specific way to write the inner product is the integral

form

〈f, g〉 = lim
T→∞

1

2T

∫ T

−T

f(P )g(P )dP . (A2)

Since V is conjugate to P , it can be represented as the usual derivative operator V̂ =

i~∂/∂P . The states (4) then turn out to be true normalizable eigenstates of V̂ , which thus

has a discrete spectrum. For the scale factor a, the eigenvalues in terms of the quantum

number µ
(ǫ)
n read

a(ǫ)n =

(
8πG~f0(1− x)|µ(ǫ)

n |
3V

)1/(2−2x)

=

(
8πG~f0(1− x)|n+ ǫ/2π|

3V

)1/(2−2x)

. (A3)

As in the case of Bloch states, it is the dynamics which must determine the specific realiza-
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tion and effects of the underlying discreteness as well as potentially observable implications.

Classically, cosmological dynamics is governed by the Friedmann equation

0 = C = aȧ2 − 8πG

3
E(a) (A4)

where a is the scale factor and E the matter energy in the universe. Since ȧ, according to

(A1) is related to the variable P which, after a loop quantization, becomes almost periodic,

it is not possible to represent the Friedmann equation directly on the Hilbert space of loop

quantum cosmology. Instead, one has to look for an operator which is well-defined and

which produces ȧ2 in the classical limit of small curvature where ȧ ≪ 1 (or more precisely

f0a
2xȧ ≪ 1). With P parameterized to reflect the scale of almost periodicity, a simple

and often-used operator that satisfies the requirements is obtained after replacing aȧ2 in

(A4) with f−2
0 a1−4x sin2 P where a1−4x is proportional to V 2−3/(2−2x) in terms of canonical

variables. This specific process of adapting the classical equation in large-curvature regimes

is called “holonomy modification.” It plays the role of a regularization to ensure that the

classical expression can be promoted to an operator in the quantum representation used.

A detailed derivation of the precise functional form of the Hamiltonian, or the specific

form of functions such as sin2 P in holonomy modifications, must await further developments

in evaluating the theory. This would be like asking to derive the potential V (x) relevant

for the motion of electrons in a crystal from first principles of the underlying many-body

system composed of all nuclei and electrons. Such a derivation is certainly complicated, but

still the Hamiltonian resulting from the simple basic assumptions made above has several

characteristic properties for which the detailed form is not crucial. They influence the

dynamics, which in qualitative terms will depend on the size of parameters such as f0 and x.

In contrast to a condensed-matter Hamiltonian, in this context one is not interested in all

energy eigenvalues but only in the zero eigenspace, so-called physical states annihilated by

the combined Hamiltonian of gravity and matter which forms a constraint rather than an

expression of energy. There is thus no band structure, but implications of the discreteness

do show up in other dynamical properties of the solutions.

From the action of a holonomy modification like sin2 P as a multiplication operator

ŝin2 Pψ(ǫ)
n (P ) = −1

4

(
ψ

(ǫ)
n+2(P )− 2ψ(ǫ)

n (P ) + ψ
(ǫ)
n−2(P )

)
(A5)

on V̂ -eigenstates ψ
(ǫ)
n of the form (4), with a matter Hamiltonian operator Êψ

(ǫ)
n (P ) =
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E
(ǫ)
n ψ

(ǫ)
n (P ), the constraint C = 0 in (A4) is quantized to a difference equation [27, 63]

C
(ǫ)
+ (n)s

(ǫ)
n+2 + C

(ǫ)
0 (n)s(ǫ)n + C

(ǫ)
− (n)s

(ǫ)
n−2 =

8πG

3
E(ǫ)

n s(ǫ)n (A6)

for the coefficients of physical states ψ(P ) =
∑

n,ǫ s
(ǫ)
n ψ

(ǫ)
n (P ) expanded in (4). The coeffi-

cients C
(ǫ)
0 (n) and C

(ǫ)
± (n) of the difference equation follow from quantizing the a-dependent

terms in (A4); see e.g. [25, 27, 64] for concrete examples. Eq. (A6) may appear like an eigen-

value equation for E
(ǫ)
n , but solutions to this constraint are not required to be normalizable.

In fact, if the system describes an ever-expanding cosmology, wave functions are expected

to be supported at all n without a strong fall-off at n → ±∞. Thus, general solutions are

not normalizable. However, they describe the change of the wave function of an evolving

universe for any given Ê in accordance with the matter model.

Appendix B: Example for the expansion of moments

Here we show some of the calculations necessary to expand moments up to third order

in p−1
0 . In the main text, we had to use results up to fourth order, which are more lengthy

but follow from analogous calculations.

First, we have

∆h2 = 〈ĥ2〉 − h2 = −4π2

p20
∆p2 − 8π3i

p30
∆(p3)− 16π3i

p30
p∆p2 + · · · . (B1)

where we used the third-order moment

∆(p3) = 〈(p̂− p)3〉 = 〈p̂3〉 − 3p〈p̂2〉+ 2p3 . (B2)

For mixed moments we have to be more careful with the ordering:

∆(qh) =
1

2
〈q̂ĥ+ ĥq̂〉 − qh (B3)

=
iπ

p0
〈q̂p̂+ p̂q̂〉 − 2πi

p0
qp− π2

p20
〈q̂p̂2 + p̂2q̂〉+ 2π2

p20
q〈p̂2〉 − 2π3i

3p30
〈q̂p̂3 + p̂3q̂〉+ 4π3i

3p30
q〈p̂3〉+ · · ·

=
2πi

p0
∆(qp)− 2π2

p20
∆(qp2) +

4π2

p20
p∆(qp)− 4π3i

3p30
∆(qp3)− 4π3i

p30
p∆(qp2)− 4π3i

p30
p2∆(qp) + · · ·

where in the last step the moments

∆(qp2) =
1

3
〈(q̂ − q)(p̂− p)2 + (p̂− p)(q̂ − q)(p̂− p) + (p̂− p)2(q̂ − q)〉
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=
1

2
〈q̂p̂2 + p̂2q̂〉 − q∆p2 − 2p∆(qp)− qp2 (B4)

∆(qp3) =
1

4
〈(q̂ − q)(p̂− p)3 + (p̂− p)(q̂ − q)(p̂− p)2 + (p̂− p)2(q̂ − q)(p̂− p) + (p̂− p)3(q̂ − q)〉

=
1

2
〈q̂p̂3 + p̂3q̂〉 − q∆(p3)− 3p∆(qp2)− 3p2∆(qp)− qp3 (B5)

have been used.
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