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We give a detailed analysis of the effects of scheme transformations in the vicinity of an exact
or approximate infrared fixed point in an asymptotically free gauge theory with fermions. We list
necessary conditions that such transformations must obey and show that, although these can easily
be satisfied in the vicinity of an ultraviolet fixed point, they constitute significant restrictions on
scheme transformations at an infrared fixed point. We construct acceptable scheme transformations
and use these to study the scheme-dependence of an infrared fixed point, making comparison with
our previous three-loop and four-loop calculations of the location of this point in the MS scheme.
We also use an illustrative hypothetical exact β function to investigate how accurately analyses of
finite-order series expansions probe an infrared fixed point and the effect of a scheme transformation
on these. Some implications of our work are discussed.
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I. INTRODUCTION

The evolution of an asymptotically free gauge theory
from the weakly coupled ultraviolet (UV) regime to the
infrared (IR) regime is of fundamental interest. Here we
study this evolution for a theory with gauge group G
and a given content of massless fermions. The UV to IR
evolution is determined by the renormalization group β
function of the theory, which describes the dependence of
g ≡ g(µ), the running gauge coupling, on the Euclidean
momentum scale, µ [1]. If a theory is asymptotically
free, with a small gauge coupling at a high scale µ, and
if the β function of this theory has a zero at a value
αIR, then as the scale µ decreases from large values, the
coupling evolves toward αIR, which is thus an exact or
approximate infrared fixed point (IRFP) of the renor-
malization group [2]. The approximate determination of
the location of αIR from a perturbative calculation of β
is complicated by the fact that at three-loop and higher
order, the β function is dependent upon the scheme used
for the regularization and renormalization of the the-
ory. It is clearly important to assess the effect of this
scheme dependence on the determination of αIR. This
can be done by calculating β in one scheme, performing
a transformation to another scheme, and comparing the
respective values of αIR in these schemes. In Ref. [3]
we pointed out that there is far less freedom in choosing
scheme transformations at an IR fixed point than there
is at a UV fixed point (UVFP), and we reported results
from a study of scheme dependence in the calculation
of an IR fixed point to three-loop and four-loop order.
Since the one-loop and two-loop terms in the β function
are scheme-independent, with scheme-dependence enter-
ing only at the level of three loops and higher, one plausi-
bly expects that if αIR is small, reasonably well-behaved
scheme transformations should not shift it very much,

and our results confirm this expectation. However, these
transformations do have a significant effect when αIR is
of order unity, as is generically the case when one is in-
vestigating the boundary, as a function of the number of
fermions, between the infrared phases with and without
spontaneous chiral symmetry breaking.
In this paper we present a detailed analysis of scheme

transformations in the vicinity of an IR fixed point. We
focus mainly on vectorial gauge theories but also remark
on chiral gauge theories. For a vectorial gauge the-
ory, it is straightforward to generalize our assumption
of massless fermions to the case of finite-mass fermions;
essentially, by use of the decoupling theorem [4], at a
given scale µ, one includes the subset of the fermions
with masses small compared with µ and integrates out
those with masses greater than µ. In contrast, for a chi-
ral gauge theory, the gauge invariance requires massless
fermions. As an input to our present work, we use our
previous calculations of IR zeros of β to three-loop and
four-loop order in the MS scheme [5] (see also [6], the
results of which agree with [5]).
We define α = g2/(4π), a ≡ g2/(16π2) = α/(4π), and

βα ≡ dα

dt
, (1.1)

where t = lnµ. This has the series expansion

βα = −2α
∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ , (1.2)

where b̄ℓ = bℓ/(4π)
ℓ. The coefficients b1 and b2 were

calculated in [7] and [8]. The bℓ for ℓ = 1, 2 are inde-
pendent of the scheme used for regularization and renor-
malization, while bℓ with ℓ ≥ 3 are scheme-dependent
[9]. One scheme involves dimensional regularization [10]
and minimal subtraction (MS) of the poles at dimension
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d = 4 in the resultant Euler Γ functions [11]. The heav-
ily used modified minimal subtraction (MS) scheme also
subtracts certain related constants [12]. Calculations of
b3 and b4 in the MS scheme were given in [13, 14]. Just
as the calculation of b1 and demonstration that b1 > 0
was pivotal for the approximate Bjorken scaling observed
in deep inelastic electron scattering at SLAC and the de-
velopment of quantum chromodynamics (QCD) [7, 15],
the computation of bℓ for ℓ = 2, 3, 4 has been important
for many QCD calculations and fits to experimental data,
including data on αs(Q) [16]. Thus, although the expan-
sion (1.2) is not a Taylor-series expansion with a finite
radius of convergence, but instead is only an asymptotic
series [17] and neglects nonperturbative effects such as
instantons [18], comparisons of finite-order calculations
with experimental data in QCD at momentum scales
large compared with the confinement scale, ΛQCD ≃ 300
MeV, have shown that one can reliably use the pertur-
bative β function in the deep Euclidean regime.
In the vicinity of the UV fixed point at α = 0, one can

carry out a scheme transformation that renders three-
and higher-loop terms zero [19]. Below we will present
an explicit construction of a scheme transformation that
achieves this. Considerable work has been done on
scheme (and related scale) transformations that reduce
higher-order corrections in QCD calculations [20]-[24].
However, as we showed in [3], in order to be acceptable,
a scheme transformation must satisfy a number of con-
ditions, and although these can easily be satisfied in the
vicinity of a UV fixed point, they are highly nontriv-
ial, and are strong restrictions, in the vicinity of an IR
fixed point. This is especially true when αIR grows to a
value of order unity, so that infrared theory is becoming
strongly coupled.

II. BACKGROUND

We first recall some relevant background. As noted
above, except where otherwise indicated, we will consider
a vectorial non-Abelian gauge theory. This theory has
gauge group G and Nf massless (Dirac) fermions trans-
forming according to a representation R. For a given
G and R, as Nf increases, b1 decreases and eventually
vanishes at [25, 26]

Nf,b1z =
11CA

4Tf
. (2.1)

Since we restrict our considerations to an asymptotically
free theory, we require that, with our sign conventions,
b1 > 0, which implies an upper limit on Nf , namely,

Nf < Nf,max ≡ Nf,b1z . (2.2)

If Nf is zero or sufficiently small, then b2 has the same
positive sign as b1, so β has no (perturbative) IR zero for
α 6= 0 [27]. With a sufficient increase in Nf , b2 vanishes.

This occurs at

Nf,b2z =
17C2

A

2Tf(5CA + 3Cf )
. (2.3)

For Nf > Nf,b2z, b2 reverses sign, becoming negative.
Since Nf,b2z < Nf,max, it follows that in the interval I
defined by

I : Nf,b2z < Nf < Nf,max , (2.4)

the two-loop β function has an IR zero at aIR,2ℓ =
−b1/b2, i.e.

αIR,2ℓ = −4πb1
b2

, (2.5)

which is physical for b2 < 0. Since b1 and b2 are scheme-
independent, so is αIR,2ℓ. In contrast, an IR zero calcu-
lated at n-loop (ℓ) order for n ≥ 3 is dependent upon the
scheme S used for the calculation, so we denote it here as
αIR,nℓ,S . (In [5] we denoted this simply as αIR,nℓ since

we were working there entirely in the context of the MS
scheme.) For a given gauge group G and fermion repre-
sentation R (provided that Nf ∈ I, so that the two-loop
β function has a zero),

αIR,2ℓ is a decreasing function of Nf . (2.6)

As Nf approaches Nf,max from below, b1 → 0+, while b2
approaches a finite negative constant, so

αIR,2ℓ → 0+ as Nf ր Nf,max . (2.7)

For Nf in the range where an IR zero of β exists, it
plays an important role in the UV to IR evolution of the
theory [8, 28]. If αIR,2ℓ is large enough, then, as µ de-
creases through a scale denoted Λ, the gauge interaction
grows strong enough to produce a bilinear fermion con-
densate in the most attractive channel, with attendant
spontaneous chiral symmetry breaking (SχSB) and dy-
namical generation of effective masses for the fermions
involved [29]. In a one-gluon exchange approximation to
the Dyson-Schwinger equation for the fermion propaga-
tor in a vectorial gauge theory, this occurs as α increases
through a value αcr given by αcrCf ∼ O(1) [30, 31].
Perturbative and nonperturbative corrections to this one-
gluon exchange approximation have been discussed [32].
In a chiral gauge theory this fermion condensation breaks
the gauge symmetry, while in the vectorial case, the most
attractive channel for fermion condensation is the singlet
channel, which preserves the gauge symmetry [33]. Since
the fermions that have gained dynamical masses are inte-
grated out in the low-energy effective field theory below
Λ, the β function changes, and the theory flows away
from the original IR fixed point, which is thus only ap-
proximate. However, if αIR,2ℓ is sufficiently small, as
is the case with a large enough (AF-preserving) fermion
content, then the theory evolves from the UV to the IR
without any spontaneous chiral symmetry breaking. In
this case the theory has an exact IR fixed point.
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For a given G and Nf (massless) fermions in a rep-
resentation R, the critical value of Nf beyond which
the theory flows to the IR conformal phase is denoted
Nf,cr. As Nf increases, αIR,2ℓ decreases, and Nf,cr is
the value at which αIR,2ℓ decreases through αcr. The
determination of the value of Nf,cr for a given gauge
group G and fermion representation R is of basic field-
theoretic interest. In addition, this determination is im-
portant for ongoing studies of quasi-conformal gauge the-
ories. These have a gauge coupling that gets large but
runs slowly over a long interval of µ due to an approx-
imate IR fixed point [31]. In the region of Nf slightly
less than Nf,cr, where the theory confines but behaves in
a quasi-conformal manner, some insight has been gained
from continuum studies of the changes in the spectrum of
gauge-singlet hadrons as compared with the spectrum in
a QCD-like theory [31, 34, 35]. Going beyond continuum
studies, there has been an intensive recent program of
lattice simulations to estimate Nf,cr and study the prop-
erties of quasi-conformal gauge theories. For example,
recent lattice papers on SU(3) with fermions in the fun-
damental representation include [36, 37], and some gen-
eral reviews are given in the conferences [38]. The UV to
IR evolution of a chiral gauge theory and associated se-
quential gauge symmetry breaking are also important for
dynamical approaches to fermion mass generation [39].
Since αIR,2ℓ is ∼ O(1), especially in the quasi-

conformal case where Nf
<∼ Nf,cr, there are significant

corrections to the two-loop results from higher-loop terms
in β. These motivate one to calculate these corrections
to three-loop and four-loop order, and this has been done
in the MS scheme [5, 6, 40]. We found that, as expected
if perturbative calculations are reasonably reliable, for
a given R and Nf (provided that Nf ∈ I, so that the
two-loop beta function has an IR zero), the shift in the
location of the IR zero is smaller when one goes from
the three-loop to the four-loop level than when one goes
from the two-loop to the three-loop level. The actual
direction of the shift depends on the fermion representa-
tion, R. For the fundamental (fund.) representation, we
found that, for a given N and Nf ,

αIR,3ℓ,MS < αIR,4ℓ,MS < αIR,2ℓ for R = fund. (2.8)

These shifts as a function of loop order are larger for
smaller Nf and get smaller as Nf approaches Nf,max.
For example, for G = SU(3) and Nf = 12, we calculated
(cf. Table III of [5])

SU(3), Nf = 12 : αIR,2ℓ = 0.754 ,

αIR,3ℓ,MS = 0.435

αIR,4ℓ,MS = 0.470 ,

(2.9)

so the fractional shifts are

SU(3), Nf = 12 :
αIR,3ℓ,MS − αIR,2ℓ

αIR,2ℓ
= −0.42

αIR,4ℓ,MS − αIR,3ℓ,MS

αIR,3ℓ,MS

= +0.07 ,

(2.10)

and the resultant ratios are

SU(3), Nf = 12 :
αIR,3ℓ,MS

αIR,2ℓ
= 0.58

αIR,4ℓ,MS

αIR,2ℓ
= 0.62

αIR,4ℓ,MS

αIR,3ℓ,MS

= 1.08 .

(2.11)

Qualitatively similar loop comparisons apply for other
values of N and Nf .
For the other (viz., adjoint and rank-2 symmetric and

antisymmetric tensor) representations that we studied
in [5], we also found that higher-loop values of the IR
zero of β were generically smaller than the two-loop
value, although not all parts of the inequality in (2.8)
necessarily held. As examples, for G = SU(2) and
fermions in the adjoint (triplet) representation, αIR,2ℓ =
0.628, αIR,3ℓ,MS = 0.459, and αIR,2ℓ,MS = 0.450, while

for G = SU(3) with octet fermions, αIR,2ℓ = 0.419,
αIR,3ℓ,MS = 0.306, and αIR,2ℓ,MS = 0.308.
Clearly, it is important to assess the scheme-

dependence in these calculations of the IR zero of β at
three-loop and four-loop level. In particular, one would
like to know quantitatively how the value of the IR zero,
computed at a loop level higher than two loops, changes
when one changes the scheme from the MS scheme used
in Refs. [5, 6] to another scheme. This information is also
useful for continuum studies of the boundary, as a func-
tion of Nf (for a given N and R), between the IR phase
with chiral symmetry breaking and the chirally symmet-
ric IR phase. We address this question here. First, we
discuss general properties of a scheme transformation.

III. SCHEME TRANSFORMATION

A. General

A scheme transformation can be expressed as a map-
ping between α and α′. It will be convenient to write
this as

a = a′f(a′) . (3.1)

To keep the UV properties the same, one requires f(0) =
1. We consider that are analytic about a = a′ = 0 and
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hence can be expanded in the form

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s , (3.2)

where the ks are constants, k̄s = ks/(4π)
s, and smax

may be finite or infinite. For f(a′) functions with infi-
nite smax, our assumption of analyticity at a′ = a = 0
requires that the infinite series in Eq. (3.2) converges
within some nonzero radius of convergence. Given the
form (3.2), it follows that the Jacobian

J =
da

da′
=

dα

dα′
(3.3)

satisfies

J = 1 at a = a′ = 0 . (3.4)

We have

βα′ ≡ dα′

dt
=

dα′

dα

dα

dt
= J−1 βα . (3.5)

This has the expansion

βα′ = −2α′

∞
∑

ℓ=1

b′ℓ(a
′)ℓ = −2α′

∞
∑

ℓ=1

b̄′ℓ(α
′)ℓ , (3.6)

where b̄′ℓ = b′ℓ/(4π)
ℓ. Given the equality of Eqs. (3.5)

and (3.6), one can solve for the b′ℓ in terms of the bℓ and
ks. This leads to the well-known important result that
[9]

b′ℓ = bℓ for ℓ = 1, 2 , (3.7)

i.e., that the one- and two-loop terms in β are scheme-
independent. We note that the scheme-independence of
b2 assumes that f(a′) is gauge-invariant. This is evident
from the fact that in the momentum subtraction (MOM)
scheme, b2 is actually gauge-dependent [41] and is not
equal to b2 in the MS scheme. We restrict our analysis
here to gauge-invariant scheme transformations and to
schemes, such as MS, where b2 is gauge-invariant.
If there is an IR zero in the two-loop βα, at αIR,2ℓ given

by (2.5), then there is also an IR zero in the two-loop βα′

at the same value of α′, This is consistent with the fact
that, in general, (3.1) maps a′ = −b1/b2 to a 6= −b1/b2,
since (3.1) is an exact result, whereas the equality of two-
loop IR zero values holds for the truncations of βα and
βα′ to two-loop order. This difference is also important
to remember in analyzing shifts of the location of the IR
zero of β function. For an illustration of this, we again
take G = SU(3) and Nf = 12. In Eqs. (2.9) we listed the

values of αIR,2ℓ and, in the MS scheme, the values of the
three-loop and four-loop IR zeros, αIR,nℓ,MS , n = 3, 4.
As an example of an acceptable scheme transformation,
we consider the application of the scheme transformation
a = (1/r) sinh(ra′) to the β function in the MS scheme,

which will be discussed in detail in Section VII below.
For r = 6, we find (cf. Table III)

Sshr
, r = 6 : α′

IR,2ℓ,Sshr ;r=6 = αIR,2ℓ = 0.754

α′

IR,3ℓ,Sshr ;r=6 = 0.433 ,

α′

IR,4ℓ,Sshr ;r=6 = 0.467 (3.8)

Because these zeros are calculated via truncations of the
βα′ function to three-loop and four-loop order, respec-
tively, they differ slightly from the result of applying the
exact (infinite-order) scheme transformation in Eq. (7.2)
to the IR zeros in Eq. (2.9). Thus, the transformation
Sshr

with r = 6 maps the value αIR,2ℓ = 0.754 to the
value 0.739, and so forth for the others in Eq. (3.8). In
compact notation,

Sshr ;r=6 : (αIR,2ℓ = 0.754) → 0.739 ,

(αIR,3ℓ,MS = 0.435) → 0.432 ,

(αIR,4ℓ,MS = 0.470) → 0.466 . (3.9)

Similar comments apply for other values of r with this
Sshr

scheme transformation, and for other scheme trans-
formations. In general, for Nf values where αIR,2ℓ is
not too large, so that the perturbative estimate of the
IR zero of β is reasonably reliable, and provided that
a scheme transformation is sufficiently well-behaved, the
differences between α′

IR,nℓ,S calculated to n-loop order
and the result of applying the exact transformation to
the initial scheme (here, the MS scheme) are small.
For a given gauge group G and fermion representa-

tion R, as Nf approaches Nf,max from below, since
αIR,2ℓ → 0 as Nf approaches Nf,max from below (cf.
Eq. (2.7)), it follows that, insofar as higher-order per-
turbative calculations of β are reliable, they also yield
αIR,nℓ → 0 and, after an acceptable scheme transforma-
tion, also

α′

IR,nℓ → 0+ as Nf ր Nf,max . (3.10)

In order to assess scheme-dependence of an IR fixed
point, we have calculated the relations between the b′ℓ
and bℓ for higher ℓ. For example, for ℓ = 3, 4, 5 we
obtain

b′3 = b3 + k1b2 + (k21 − k2)b1 , (3.11)

b′4 = b4+2k1b3+k21b2+(−2k31 +4k1k2− 2k3)b1 , (3.12)

and

b′5 = b5 + 3k1b4 + (2k21 + k2)b3 + (−k31 + 3k1k2 − k3)b2

+ (4k41 − 11k21k2 + 6k1k3 + 4k22 − 3k4)b1 . (3.13)

We list the somewhat longer expressions for b′ℓ for ℓ =
6, 7, 8 in the Appendix. Since the bℓ have been cal-
culated only up to ℓ = 4, we will only need the above
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results for b′3 and b′4 in our study of the effect of perform-
ing scheme transformations on the four-loop β functions
for a non-Abelian gauge theory. However, we will use
the b′ℓ up to ℓ = 8 in our study of the effect of scheme
transformations on an illustrative hypothetical exact β
function in Section VIII.
From the expressions for b′ℓ with 3 ≤ ℓ ≤ 8 that we

have calculated, we can discern several general structural
properties. First, in the coefficients of the terms bn en-
tering in the expression for bℓ, the sum of the subscripts
of the kss is equal to ℓ − n with 1 ≤ n ≤ ℓ − 1, and the
products of the various kss correspond to certain parti-
tions of ℓ− n. For example, in the expression for b′4, the
coefficient of b1 contains the term −2k31 corresponding
to the partition (1,1,1) of ℓ − n = 4 − 1 = 3, the term
4k1k2 corresponding to the partition (1,2) of 3, and the
term −2k3, corresponding to the partition 3 of 3. How-
ever, because of cancellations, in the expression for b′ℓ
for even ℓ, the coefficient of bn does not contain all of
the terms corresponding to the partitions of ℓ − n. For
example, in the expression for b′2, there is no k1b1 term;
in the expression for b′4, although the partitions of 2 are
{(1, 1), (2)}, the coefficient of b2 does not contain k2; and
in the expression for b′6, although the partitions of 3 are
{(1, 1, 1), (1, 2), (3)}, the coefficient of b3 does not contain
k31 or k3. A corollary of the structural property above is
that the only kss that appear in the formula for b′ℓ are
the kss with 1 ≤ s ≤ ℓ− 1.
We note that the form for f(a′) in Eq. (3.2) could

be generalized further so that f(a′) could include a part
that is finite but nonanalytic at a′ = 0. An example is

f(a′) = [1 +

smax
∑

s=1

ks(a
′)s][1 + κe−ν/a′

] , (3.14)

where κ and ν are (real) constants and ν > 0. (In this
context, we recall that expressions containing terms like
exp(−8π2/g2) naturally arise in instanton calculations.)
Since no terms involving κ occur at any finite order of
a perturbative expansion of f(a′) in powers of a′, our
results for b′ℓ in Eqs. (3.11)-(3.13), (11.1)-(11.3) continue
to hold for these scheme transformations.

B. Transformation to ’t Hooft Scheme at a UVFP

Given that the bℓ for ℓ ≥ 3 are scheme-dependent, one
may ask whether it is possible to transform to a scheme
in which the b′ℓ are all zero for ℓ ≥ 3, i.e., a scheme in
which the two-loop β function is exact. Here and else-
where, by the term “exact two-loop β function” we mean
exact in the sense of Eq. (1.2), which does not include
possible nonperturbative contributions, such as could be
produced by instantons [18]. Near the UV fixed point
at α = 0, this is possible, as emphasized by ’t Hooft
[19]. This is commonly called the ’t Hooft scheme, and
we denote it as SH . For this and other schemes, we shall
also use this symbol to refer to transformation that takes

one to the given target scheme; the meaning will be clear
from the context.
We next present an explicit scheme transformation

which, starting from a given scheme, transforms to the ’t
Hooft scheme. This necessarily has smax = ∞. Our key
to constructing this transformation is to take advantage
of the property that b′ℓ for ℓ ≥ 3 contains only a linear
term in kℓ−1, so that the equation b′ℓ = 0 is a linear equa-
tion for kℓ−1, which can always be solved. In order to
simplify the transformation, we start by setting k1 = 0.
We then solve the equation b′3 = 0 for k2, obtaining

k2 =
b3
b1

. (3.15)

We then substitute these values of k1 and k2 into the
equation b′4 = 0 using our expression (3.12) and solve for
k3, obtaining

k3 =
b4
2b1

. (3.16)

We then continue iteratively in this manner. In the next
step, we substitute these values of ks, s = 1, 2, 3, into the
expression for b′5 = 0, using Eq. (3.13), and solve for k4,
getting

k4 =
b5
3b1

− b2b4
6b21

+
5b23
3b21

. (3.17)

Proceeding in this manner, we obtain

k5 =
b6
4b1

− b2b5
6b21

+
2b3b4
b21

+
b22b4
12b31

− b2b
2
3

12b31
(3.18)

and

k6 =
b7
5b1

− 3b2b6
20b21

+
8b3b5
5b21

+
11b24
20b21

− 4b2b3b4
5b31

+
b22b5
10b31

+
16b33
5b31

+
b22b

2
3

20b41
− b32b4

20b41
.

(3.19)

One can continue this procedure iteratively to calculate
ks with arbitrarily high values in s, since the equation
bℓ = 0 is a linear equation for kℓ−1, which always has a
solution. This yields a two-loop β function that is exact.
We shall refer to this transformation as the SH transfor-
mation. Although we do not claim that this is the only
way to transform to the ’t Hooft scheme, it is a particu-
larly simple way to do so.
There are several salient structural features of these

expressions for the kss. First, ks only depends on ratios of
bℓ/b1. Second, the ℓ values that occur in the ratios bℓ/b1
that enter into the expression for ks have the property
that in a term proportional to

∏imax

i=2 bℓi

bj1
, (3.20)
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one has

s =
[

imax
∑

i=2

ℓi

]

− j , (3.21)

where imax is determined by s+j. As a corollary, the sets
of ℓi that enter into the numerator of Eq. (3.20) arise as
subsets of the partitions of s+ j that exclude the integer
1. For example, in the expression for k6, Eq. (3.19), the
products of bℓi that enter in the terms proportional to
b−2
1 have sets of ℓi values that are a subset of partitions
of 6 + 2 = 8 that exclude the value 1, including (2,6),
(3,5), and (4,4), corresponding to the products b2b6, b3b5,
and b24. Not all of the partitions of s + j excluding 1
are represented; in the example given, the partitions of
8 excluding 1 also include (2,2,2,2), (2,2,4), and (2,3,3),
but the numerators of these terms proportional to b−2

1 in
k6 do not include b42, b

2
2b4, or b2b

2
3.

In this ’t Hooft scheme with a (perturbatively) exact
two-loop β function, if the resultant IR zero, αIR,2ℓ, is
at a sufficiently small coupling to lie in the non-Abelian
Coulomb phase so that the evolution into the infrared
does not entail any spontaneous chiral symmetry break-
ing or attendant dynamical fermion mass generation,
then this is an exact IR fixed point. In this case, one
can take advantage of the exact solution of the differential
equation represented by the two-loop β function in terms
of a Lambert function [42]. In contrast, if the resultant
IR zero, αIR,2ℓ, is greater than the critical value, αcr for
spontaneous chiral symmetry breaking and associated bi-
linear fermion condensate formation, then, as µ decreases
below a scale denoted Λ and α increases past αcr, this
condensate formation occurs, the fermions gain dynami-
cal masses, and one integrates them out of the low-energy
effective field theory applicable below this scale. Hence,
the β function changes to that of a pure gluonic theory,
and so one cannot use the solution in terms of a Lambert
function calculated for µ > Λ, but instead must match
this onto a different solution with Nf = 0 applicable for
µ < Λ. This latter solution does not involve any pertur-
bative IR zero.

C. Necessary Conditions for an Acceptable Scheme

Transformation

In order to be physically acceptable, this transforma-
tion must satisfy several conditions, Ci. For finite smax,
Eq. (3.1) is an algebraic equation of degree smax+1 for α′

in terms of α. We require that at least one of the smax+1
roots must satisfy these conditions. For smax = ∞ with
nonzero ks for arbitrarily large s, the equation for α′ in
terms of α is generically transcendental, and again we
require that the physically relevant solution must satisfy
these conditions. These are as follows:

• C1: the scheme transformation must map a real
positive α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map

taking α > 0 to a negative or complex α′ would
violate the unitarity of the theory.

• C2: the scheme transformation should not map a
moderate value of α, for which perturbation theory
may be reliable, to a value of α′ that is so large
that perturbation theory is unreliable.

• C3: J should not vanish in the region of α and
α′ of interest, or else there would be a pole in Eq.
(3.5).

• C4: The existence of an IR zero of β is a scheme-
independent property of an AF theory, depending
(insofar as perturbation theory is reliable) only on
the condition that b2 < 0. Hence, a scheme trans-
formation must satisfy the condition that βα has
an IR zero if and only if βα′ has an IR zero.

Since one can define a transformation from α to α′ and
the inverse from α′ to α, these conditions apply going in
both directions. These four conditions can always be
satisfied by scheme transformations used to study the
UV fixed point and hence in applications to perturbative
QCD calculations, since the gauge coupling is small (e.g.,
αs(mZ) = 0.118), and one can choose the ks to have
appropriately small magnitudes. By continuity, it follows
that among the smax+1 roots of Eq. (3.1), there is always
one with a real (positive) α′ ≃ α near the UV fixed point
at α = 0. For small α, C1-C4 are then met. We note
that, in addition to these four conditions, there may also
be other related ones that must be satisfied for a given
scheme transformation to be acceptable. For example, in
the S1 scheme presented in [3], it is necessary that the
expression b22 − 4b1b3 in Eq. (5.3) must be nonnegative.

IV. EXAMPLES OF SCHEME

TRANSFORMATIONS ACCEPTABLE AT A

UVFP BUT NOT AT AN IRFP

In [3] we pointed out that although these conditions
C1-C4 can easily be satisfied by a scheme transforma-
tion applied in the vicinity of the UV fixed point at
α = α′ = 0, they are not automatically satisfied, and are
a significant constraint, on a scheme transformation that
one tries to apply in the vicinity of an IR fixed point. In
[3] we demonstrated this with two specific examples: (i)
α = α′ tanh(α′), and (ii) a scheme transformation with
smax = 2, k1 = 0, and k2 = b3/b1 designed to render
b′3 = 0. Here we elaborate on these, give a third exam-
ple of a scheme transformation that is acceptable at a
UV fixed point but not at a general IR fixed point, and
discuss some issues that arise with a fourth transforma-
tion. The two pathological transformations presented in
[3] are denoted, respectively, as (i) the special r = 4π case
of the Sthr

scheme transformation and (ii) the S2 scheme
transformation, discussed below in Sections VI and IVA,
respectively. Our two additional examples are the S3
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scheme transformation in Section IVB and the transfor-
mation SH to the ’t Hooft scheme in Section IVC. In
the following, to avoid overly complicated notation, we
will use the generic notation α′ for the result of the ap-
plication of each scheme transformation to an initial α,
with it being understood that this refers to the specific
transformation under consideration. Where it is neces-
sary for clarify, we will use a subscript to identify the
specific scheme S being discussed.

A. The S2 Transformation with smax = 2 to a

Scheme with b′3 = 0

Here we elaborate on the scheme transformation dis-
cussed in [3] with smax = 2 that renders b′3 = 0 and is
acceptable at a UV fixed point, but was shown to be un-
acceptable at a general IR fixed point. Because smax = 2,
this scheme transformation depends on two parameters,
ks with s = 1, 2. Since b′3 depends quadratically on k1
and linearly on k2, the solution of the desired condition
b′3 = 0 is simplest if one sets k1 = 0. Then, using Eq.
(3.11) and solving this equation b′3 = 0 for k2, one finds

k2 =
b3
b1

. (4.1)

This scheme transformation, denoted S2, is then

S2 : smax = 2, k1 = 0 , k2 = b3/b1 , i.e.,

a = a′
[

1 +
b3
b1
(a′)2

]

. (4.2)

Applying this S2 scheme transformation to an initial
scheme, one obtains

b′4 = b4 . (4.3)

It is straightforward to calculate the b′ℓ for ℓ ≥ 5, but we
will not need them here.
By construction, at the three-loop level, βα′ in this

scheme is the same as the (scheme-independent) two-loop
β function, so the IR zero of βα′ at the three-loop level
is

α′

IR,3ℓ,Si
= α′

IR,2ℓ,Si
= αIR,2ℓ = −4πb1

b2

for Si = S1, S2, S3. (4.4)

(We write this in a general form, since it holds not just
for the present S2 scheme transformation, but also for
the S3 and S1 transformations to be discussed below.)
At the four-loop level in this S2 scheme, the IR zero is
determined by the physical (smallest positive) solution of
the cubic equation

b1 + b2a
′ + b′4(a

′)3 = 0 . (4.5)

In order that this transformation obey condition C1,
that it maps a′ > 0 to a > 0, we require that 1 +
(b3/b1)(a

′)2 > 0. This inequality must be satisfied, in
particular, in the vicinity of the two-loop IR zero of β, so
substituting the (scheme-independent) aIR,2ℓ = a′IR,2ℓ =

−b1/b2 from Eq. (2.5), we obtain the inequality

1 +
b1b3
b22

> 0 . (4.6)

But, as noted in [3], this inequality is not, in general, sat-
isfied. For example, let us consider the class of theories
with G = SU(N) and Nf fermions in the fundamental
representation. Substituting the scheme-independent ex-
pressions for b1 and b2 [7, 8], together with the expression
for b3 in the MS scheme [13] for this class of theories, the
inequality (4.6) becomes

104470N6 + 3NfN(−26950N4 + 4505N2 + 99) +N2
f (15384N

4 − 4656N2 + 270) + 4N3
fN(−112N2 + 33)

36[34N3 +Nf (−13N2 + 3)]2
> 0 .

(4.7)

For a given value of N , the determination of the range
in Nf where this inequality is satisfied involves the cal-
culation of the zeros of the numerator of (4.7), which
are solutions of a cubic equation in Nf . For N = 2,
these zeros occur at Nf = 4.27, 8.44, 55.90, while for
N = 3 they occur at Nf = 6.22, 12.41, 84.32. As be-
fore, we restrict our consideration to the interval I given
by Eq. (2.4), Nf,b2z < Nf < Nf,max, where the two-
loop β function has an IR zero. For N = 2, this in-
terval I is 5.55 < Nf < 11, and in this interval the
inequality is violated for 5.55 < Nf < 8.44 and is sat-

isfied for 8.44 < Nf < 11. For N = 3, the interval I
is 8.05 < Nf < 16.5, and in this interval, the inequal-
ity is violated for 8.05 < Nf < 12.41 and is satisfied
for 12.41 < Nf < 16.5. For the physical, integer values
of Nf , these statements are evident from the values of
b̄ℓ listed in Table III of our Ref. [5]. For example, for
N = 3 and Nf = 10, where αIR,2ℓ = 2.21, the values
of these coefficients are b̄1 = 0.345, b̄2 = −0.156, and
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b̄3 = −0.386, so that

1 +
b̄1b̄3

b̄22
= 1 +

b1b3
b22

= −4.47

for G = SU(3), Nf = 10, R = fund. . (4.8)

The values of 1+(b1b3/b
2
2) for N = 3 and some larger val-

ues of Nf are as follows: −1.43 for Nf = 11 and −0.270
for Nf = 12, with positive values for Nf ≥ 13 in the
interval I, including the value +0.293 for Nf = 13.
The pathology that this S2 scheme transformation vio-

lates conditions C1 and C4 is reflected in the results that
one gets by actually applying it to the four-loop β func-
tion in the MS scheme and solving for the IR zeros. As
above, we focus on the case of fermions in the fundamen-
tal representation, with Nf ∈ I. We list the values of
α′

IR,3ℓ,S2
and α′

IR,4ℓ,S2
in Table I. The three-loop values

are given by Eq. (4.4). As regards the four-loop val-
ues, we find that, except for Nf value(s) near Nf,max,
at the upper end of the non-Abelian Coulomb phase, the
cubic equation (4.5) yields a negative root and a complex-
conjugate pair of roots, none of which is physically ac-
ceptable. For example, for N = 2, there is no physical
root (denoted as n.p. in the table) for Nf ∈ I except for
the highest value of Nf below Nf,max, namely Nf = 10.
Similarly, when N = 3, a physical root of the cubic equa-
tion first appears for Nf = 14 and when N = 4, this
happens when Nf = 19.
Thus, although this S2 scheme transformation is ac-

ceptable at the UV fixed point at α = 0 and at a suffi-
ciently weakly coupled IR fixed point at the upper end of
the non-Abelian Coulomb phase, it is not acceptable at
a general IR fixed point, since it fails to satisfy condition
C1. The latter pathology occurs when αIR grows to a
value of order unity. According to the results of several
lattice groups [36], for N = 3, the theory with Nf = 12,
and hence also the theory with Nf = 13, evolve into
the infrared in a conformal, non-Abelian Coulomb phase
(other lattice groups differ on the Nf = 12 case [37]).
Provided that one accepts that Nf = 12, and hence also
Nf = 13, are in the non-Abelian Coulomb phase, our re-
sults above show that a scheme transformation may fail
to be acceptable not only at an IR fixed point in the
phase with confinement and spontaneous chiral symme-
try breaking (which is approximate), but also at an exact
IR fixed point in the lower part of the chirally symmetric
conformal phase.

B. The S3 Transformation with smax = 2 to a

Scheme with b′3 = 0

Here we present a scheme transformation with smax =
2 that is also designed to render b′3 = 0 and is acceptable
at a UV fixed point, but we show that it is not acceptable
at a general IR fixed point. The property that smax = 2
and the goal of rendering b′3 = 0 are the same as those of
the transformation given in [3] (denoted S2 here). Since

one uses a scheme transformation with smax = 2 and
since b′3 depends only on k1 and k2, it follows that a nat-
ural first choice is to try k1 = 0 and k2 6= 0. This was the
(S2) transformation that was shown to be unacceptable
at a general IR fixed point in [3]. Another natural choice
is to set k2 = k21 , since this renders the coefficient of the
b1 term in b′3, namely (k21 − k2), equal to zero. Hence,
this choice considerably simplifies the equation b′3 = 0,
which is reduced to a linear equation for k1, with solu-
tion k1 = −b3/b2. We denote this scheme transformation
as S3,

S3 : smax = 2, k1 = −b3
b2

, k2 = k21 =
b23
b22

(4.9)

and study it here. As before, we also use S3 to refer to
the scheme that is obtained by applying this transforma-
tion to an initial scheme such as the MS scheme. We
denote the resultant IR zero of βα′ at the n-loop level as
α′
IR,nℓ,S3

. Evaluating Eq. (3.12) for b′4 in this scheme,
we calculate

b′4 = b4 −
b23
b2

− 2b1b
3
3

b32
for S3 . (4.10)

The function f(a′) takes the simple form

f(a′) = 1 + ξ + ξ2 for S2 ,

where ξ ≡ k1a
′ = −b3a

′

b2
. (4.11)

Now 1 + ξ + ξ2 is always positive, with no real zero in ξ
(and a minimum at ξ = −1/2, where this polynomial is
equal to 3/4). The Jacobian for this transformation is

J = 1 + 2ξ + 3ξ2 for S3. (4.12)

This J is also positive, with no real zero in ξ (and a
minimum at ξ = −1/3, where J = 2/3). As with the S2

scheme, at the three-loop level, βα′ in this scheme is the
same as the two-loop β function, so the IR zero of βα′ at
the three-loop level satisfies Eq. (4.4). At the four-loop
level in this S3 scheme, the IR zero is determined by the
physical (smallest positive) solution of the cubic equation
(4.5) with b′4 given by Eq. (4.10).
We have calculated the resultant α′

IR,nℓ ≡ αIR,nℓ,S3
in

this S3 scheme up to the (n = 4)-loop level. In Table I we
list values of the n-loop IR zero, α′

IR,nℓ,S3
for n = 2, 3, 4

for relevant Nf , with fermions in the fundamental rep-
resentation and several values of N . For comparison we
also include the values of αIR,nℓ,MS for n = 3, 4 in the

MS scheme from [5]. Since the two-loop value is scheme-
independent, we denote it simply as αIR,2ℓ. The relation
(4.4) is reflected in the entries in the table. The four-loop
zero is denoted as α′

IR,4ℓ,S3
. In contrast with αIR,nℓ,MS

and α′

IR,nℓ,S1
, which decrease monotonically as a func-

tion of Nf for a given N , α′

IR,4ℓ,S3
behaves nonmono-

tonically as a function of Nf , first increasing and then
decreasing.
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But our overriding result here is that the S3 scheme
transformation does not yield any physical value for
α′
IR,4ℓ,S3

in the case of SU(4) with Nf = 18 in the funda-
mental representation. In this case, the above-mentioned
cubic equation has only a negative root and a complex-
conjugate pair of roots. Hence, this S3 scheme transfor-
mation fails conditions C1 and C4 and must be rejected as
unacceptable in the vicinity of a general IR fixed point.
This theory, with an SU(4) gauge group and Nf = 18
fermions is likely to be in a non-Abelian Coulomb phase
in the infrared. Assuming this is the case, this provides
another example of how a scheme transformation can be
pathological not just in the confined phase with sponta-
neous chiral symmetry breaking, but also in the infrared
conformal phase.

C. The SH Transformation to the ’t Hooft Scheme

In Section III B we have constructed a scheme transfor-
mation that can be applied to an arbitrary initial scheme
to shift to the ’t Hooft scheme, with b′ℓ = 0 for ℓ ≥ 3
and thus a (perturbatively) exact two-loop β function.
By the general continuity arguments that we have pre-
sented, this scheme transformation satisfies all of the req-
uisite conditions to be an acceptable transformation in
the vicinity of the UV fixed point at α = α′ = 0. How-
ever, one encounters a complication with this transfor-
mation at an IR fixed point. This can be explained as
follows. For a given group G and fermion representation
R, as Nf increases toward Nf,max, b1 → 0, while b2 and,
in the initial scheme, the bℓ with ℓ ≥ 3, approach finite
nonzero values. Hence, since the coefficient ks is a sum
of terms each of which contains an inverse power of b1, it
follows that, as Nf takes on values close to Nf,max, these
ks coefficients may have arbitrarily large magnitudes as
s → ∞. For a particular term ks(a

′)s in the sum (3.2),
much of this growth is cancelled, since, a′IR,2ℓ ∝ b1. How-
ever, since one must use an infinite number of ks terms
to render all of the b′ℓ equal to zero for this SH transfor-
mation, one encounters the issue of the convergence of
the infinite series for f(a′) in Eq. (3.2). Note that this
is not an issue of strong coupling, as are the pathologies
in the S2, S3, and Sthr

scheme transformations; it occurs
in the weakly coupled, non-Abelian Coulomb phase. We
do not claim here that it is impossible to construct an
acceptable scheme transformation to get to the ’t Hooft
scheme in the vicinity of an IR fixed point, only that
one encounters delicate issues of convergence with the
SH scheme, since for a fixed Nf near to Nf,max, the ks
may have unbounded magnitudes as s → ∞.
As we will discuss below, the scheme transformation

S1 contains a parameter (denoted k1p) that also grows
large as Nf approaches Nf,max, but, although inconve-
nient, this is much less serious, since there is only a single
parameter involved, since smax = 1, not an infinite num-
ber, as with the SH transformation, and the growth of
this single parameter, restricted to integer values of Nf ,

is bounded.

V. THE TRANSFORMATION S1 WITH smax = 1
TO A SCHEME WITH b′3 = 0

We next proceed to construct and study scheme trans-
formations that are acceptable at an (exact or approxi-
mate) IR fixed point and use them to study the scheme
dependence of the location of this fixed point. For com-
parative purposes, it is useful to begin by discussing the
scheme denoted S1 that we presented in [3], on which we
will give more details here.
The original motivation for our construction of this S1

scheme transformation was the idea of designing a trans-
formation that would render at least one of the b′ℓ with
ℓ ≥ 3 equal to zero, namely b′3. In turn, this was moti-
vated by the idea of having a scheme transformation that
achieves at least one step in the sequence of steps that
defines a transformation to the ’t Hooft scheme, where
b′ℓ = 0 for all ℓ ≥ 3. The next steps in this direction
would be design a scheme transformation that would ren-
der both b′3 = 0 and b′4 = 0 at an IR fixed point, and then
one that would render b′ℓ = 0 for ℓ = 3, 4, 5, and so forth,
up to a fixed value of s. As a reasonable first exploration
of such endeavors, we opted to focus on scheme transfor-
mations that rendered just b′3 = 0. We have considered
three of these, labelled Sj , j = 1, 2, 3, and shown that the
S2 and S3 transformations are not acceptable at a gen-
eral IR fixed point. As we will show below, the S1 scheme
transformation has the inconvenient feature that the ks
coefficients grow as one approaches the upper end of the
non-Abelian Coulomb phase, producing a rather strong
scheme-dependence even at the four-loop level. This S1

scheme transformation is, nevertheless, valuable as a les-
son that shows how large scheme-dependent effects can
be. As we will show below in Section 7.1, the Sshr

scheme
transformation in Eq. (7.1) with moderate values of r is
better-behaved and, when applied to the β function in
the MS scheme, produces smaller shifts in the location
of the IR zero than the S1 transformation.
We proceed to the details of the construction of the

S1 scheme transformation presented in [3]. We assume
Nf ∈ I, so a two-loop IR zero of β exists. Since smax = 1,
Eq. (3.1) reads a = a′(1+k1a

′). Although this quadratic
equation has two formal solutions, only the solution

α′

+ =
1

2k̄1

(

− 1 +
√

1 + 4k̄1α
)

(5.1)

is acceptable, since only this solution has α → α′ as
α → 0.
This scheme transformation was designed to render

b′3 = 0, so the next step is to solve the equation b′3 = 0
using Eq. (3.11), viz.,

b3 + k1b2 + k21b1 = 0 , (5.2)

for the parameter k1. Formally, Eq. (5.2) has two solu-
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tions,

k1p, k1m =
1

2b1

[

− b2 ±
√

b22 − 4b1b3

]

, (5.3)

where (p,m) refer to ±. We will focus on G = SU(N)
with fermions in the fundamental and adjoint represen-
tation. Of the two formal solutions in Eq. (5.3), only
k1p is allowed. To show this, we consider k1m. We must
be able to use this for Nf ∈ I, including the lower end
of this interval, where Nf approaches Nf,b2z from above.
Precisely at the lower end, as Nf ց Nf,b2z , b2 → 0−

and αIR,2ℓ → ∞, so clearly one cannot trust perturba-
tive calculations at or near this point. However, we will
at least require that the transformation should obey the
conditions C1-C4 for Nf

>∼ Nf,b2z where αIR,2ℓ is not too
large. As shown in [5], in this region of Nf , b3 < 0, so
that, taking into account that both b2 and b3 are negative
in this region, we can reexpress k1m as

k1m =
1

2b1

[

|b2| −
√

b22 + 4b1|b3|
]

for Nf
>∼ Nf,b2z .

(5.4)

As Nf ց Nf,b2z, b2 → 0−, so k1m → −
√

|b3|/b1. Substi-
tuting this into Eq. (5.1), using k̄1 = k1/(4π), we have

α′

+ =
1

2k̄1m

(

− 1 +
√

1 + 4k̄1mα
)

=
1

2|k̄1m|
(

1−
√

1− 4|k̄1m|α
)

. (5.5)

Next, substituting the value of αIR,2ℓ from Eq. (2.5) as
a relevant estimate, the square root in Eq. (5.1) becomes

[

1−
√

b1|b3|
|b2|

]1/2

. (5.6)

As Nf approaches Nf,b2z from above and b2 → 0−, the
expression in this square root becomes negative, so that
the square root itself is imaginary. Hence, if one were
to try to use k1m with this scheme transformation, then
a real α ≃ αIR,2ℓ would get mapped via Eq. (5.1) to a
complex, unphysical α′, clearly violating conditions C1,
C2, and C4. We therefore cannot use the k1m solution in
Eq. (5.3) but must instead choose the k1p solution. We
next show that that the discriminant in the expression
for k1p in Eq. (5.3), Dk = b22 − 4b1b3, is nonnegative
(actually positive), as it must be. This property follows
because b3 < 0 in this interval for the representations
under consideration, since Nf,b3z < Nf,b2z (where we use
the relevant solution of the quadratic equation, labelled
Nf,b3z,− in Eq. (3.16) of our [5]). Hence, we can write
Dk = b22 + 4b1|b3| > 0. We denote the present scheme
transformation with this choice as S1:

S1 : smax = 1, k1 = k1p , i.e.,

a = a′(1 + k1pa
′) . (5.7)

Physically, Nf is restricted to take on nonnegative, in-
tegral values. However, since in much of our analysis,

we do consider the formal analytic continuation of Nf

from these integral values to positive real numbers, we
remark on one effect of this continuation here. For a
given gauge group G and fermion representation R, if
one carries out this analytic continuation and considers
the formal limit Nf ր Nf,max, i.e., as one approaches
the upper end of the non-Abelian Coulomb phase, as a
function of Nf , since b1 → 0, k1p diverges because of the
prefactor (2b1)

−1 in Eq. (5.3). This divergence in k1p
is cancelled in the actual S1 transformation, which still
maps αIR,2ℓ → 0 to α′ → 0 as Nf ր Nf,max. This can

be seen by expanding Eq. (5.1): α′
+ →

√

α/k̄1p → 0.

Although one does not have to worry about this if one
restricts Nf to physical, integer values in the asymptoti-
cally free intervalNf < Nf,max, it does lead to significant
residual scheme dependence in the comparison between
the four-loop IR zero in the MS scheme, and the four-
loop zero computed by applying this S1 scheme transfor-
mation to the MS scheme, even for Nf near to Nf,max.

By construction, since b′3 = 0 in this scheme, the three-
loop zero of βα′ is equal to the two-loop zero, as expressed
in Eq. (4.4), and as was the case with the S2 and S3

schemes. At the four-loop level, the IR zero is given
by the physical (smallest positive) solution of the cubic
equation (4.5) with b′4 given by Eq. (3.12) with k1 = k1p
and k2 = k3 = 0. We list values of α′

IR,nℓ ≡ α′

IR,nℓ,S1

in this S1 scheme, up to (n = 4)-loop level, as calculated
in [3], in Table I, for relevant Nf , with fermions in the
fundamental representation and several values of N . For
comparison we also include the values of αIR,nℓ,MS for

n = 3, 4 in the MS scheme from [5].

We carried out the analogous calculations for fermions
in the adjoint representation of SU(N) in [3]. Here,
Nf,b1z = 11/4 and Nf,b2z = 17/16, so the only phys-
ical, integer value of Nf ∈ I is Nf = 2. SU(2) models
with Nf = 2 adjoint fermions have been of recent interest
[43]. For both of these cases we found that

α′

IR,3ℓ,S1
> αIR,3ℓ,MS (5.8)

and

α′

IR,4ℓ,S1
< αIR,4ℓ,MS . (5.9)

For both of these representations, our results obey
the required behavior in Eq. (3.10), although one ob-
serves that even for rather large Nf values that are reli-
ably expected to lie in the non-Abelian Coulomb phase,
there is still a significant difference between α′

IR,nℓ,S1
and

αIR,nℓ,MS for n = 3, 4. We attribute this difference to
the behavior of k1p as a function of Nf ∈ I. As we will
show, this difference is greater than the corresponding
difference when one uses a scheme transformation such
as the Sshr

scheme to be discussed below.
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VI. THE Sthr SCHEME TRANSFORMATION

In this section we study the scheme transformation

Sthr
: a =

tanh(ra′)

r
. (6.1)

Since tanh(ra′)/r is an even function of r, we take r > 0
with no loss of generality. The transformation Sthr

has
the advantage that it depends on a parameter r, which
we can vary to study the effect that it has on the location
of the IR fixed point. In particular, as r → 0, this trans-
formation smoothly approaches the identity. The inverse
of Eq. (6.1) is

a′ =
1

2r
ln

(

1 + ra

1− ra

)

(6.2)

and the Jacobian is

J =
1

cosh2(ra′)
. (6.3)

In the notation of Eq. (3.1),

f(a′) =
tanh(ra′)

ra′
. (6.4)

This has the series expansion of the form (3.2), with

ks = 0 for odd s (6.5)

and, for even s,

k2 = −r2

3
, k4 =

2r4

15
, (6.6)

k6 = −17r6

315
, k8 =

62r8

2835
, (6.7)

and so forth for ks with higher s.
Substituting these expressions for ks into the general

expressions for the b′ℓ, we obtain

b′3 = b3 +
r2b1
3

, (6.8)

b′4 = b4 , (6.9)

b′5 = b5 −
r2b3
3

+
2r4b1
45

, (6.10)

b′6 = b6 −
2r2b4
3

+
r4b2
15

, (6.11)

b′7 = b7 − r2b5 +
r4b3
5

+
r6b1
315

, (6.12)

b′8 = b8 −
4r2b6
3

+
4r4b4
9

− 4r6b2
189

, (6.13)

and so forth for the b′ℓ with ℓ ≥ 9. .
We apply this Sthr

scheme transformation to the β
function in the MS scheme. We will only need the b′ℓ
with ℓ ≤ 4 for this purpose, since (in addition to the
scheme-independent b1 and b2) only b3 and b4 have been
calculated for the MS scheme. For Nf in the interval I
where the two-loop β function has an IR zero, we then
calculate the resultant IR zeros in βα′ at the three- and
four-loop order. We have carried out these calculations
for N = 2, 3, 4, with fermions in the fundamental repre-
sentation and for a range of r values, namely r = 3, 6, 9,
and 4π ≃ 12.56. We list the results in Table II. For r = 1,
the IR zeros are almost identical to those in the MS
scheme and hence are not listed. The complex entry for
N = 2, Nf = 7, r = 4π is α′

IR,4ℓ,r=4π = 1.718± 0.9285i.
The presence of this complex entry is a manifestation of
the fact pointed out in [3] and discussed further below
that this scheme transformation is not acceptable in gen-
eral.
As regards the change in the location of the IR zero

as a function of the loop order, we first recall that in
[5] we showed that for a given N and Nf (with Nf ∈
I, so the two-loop β function has an IR zero), as one
goes from two-loop to three-loop order, the location of
this zero decreases and then as one goes from three-loop
to four-loop order, it increases by a smaller amount, so
that the four-loop value is still smaller than the (scheme-
independent) 2-loop value. Aside from the pathological
behavior that occurs for smaller Nf values where αIR,2ℓ

gets sufficiently large (e.g., for N = 2, Nf = 7, where
αIR,2ℓ = 2.83 and α′

IR,4ℓ,r=4π is complex), we observe
behavior similar to that which we found in our previous
higher-loop calculations for fermions in the fundamental
representation in the MS scheme. First, as is evident
from Table II, for a given N , Nf , and r,

α′

IR,3ℓ,Sthr
< α′

IR,4ℓ,Sthr
< αIR,2ℓ for R = fund.

(6.14)
These shifts as a function of loop order are larger for
smaller Nf and get smaller as Nf approaches Nf,max.
Second, we observe that for a given N , Nf , and r,

α′

IR,nℓ,Sthr
> αIR,nℓ,MS , for n = 3, 4, R = fund.

(6.15)
For a given N and r, the values α′

IR,nℓ,Sthr
approach the

corresponding αIR,nℓ,MS as Nf ր Nf,max. Third, for a
given N , Nf , and loop order n = 3 or n = 4,

α′

IR,nℓ,Sthr
is an increasing function of r . (6.16)

For Nf values close to Nf,max for a given N , these differ-
ences in values are sufficiently small so that the entries
may coincide to the given number of significant figures.
The scheme transformation Sthr

with r = 4π can be
written equivalently as

α = α′ tanh(α′) . (6.17)
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As we pointed out in [3], the Sthr
scheme transformation

with this value of r is not acceptable, because it violates
conditions C1, C2, and C4. In particular, as is evident
from the inverse of this transformation, viz.,

α′ =
1

2
ln

(

1 + α

1− α

)

, (6.18)

the exact inverse transformation maps α > 1 to a com-
plex and hence unphysical, value of α′. At an IR fixed
point, it can easily happen that αIR,2ℓ > 1, in which case
this ST yields a complex, unphysical α′. For example (see
Table III in [5]) for G = SU(2) with Nf = 8 fermions in
the fundamental representation, αIR,2ℓ = 1.26 and for
SU(3) with Nf = 11, αIR,2ℓ = 1.23. More generally, as is
evident from Eq. (6.2), the inverse of the scheme trans-
formation Sthr

with a given value of r will map a value
α > 1 to a complex, unphysical value of α′ if rα/(4π) > 1.
As with the complex entries in Table II, this is another
manifestation of the pathology in this scheme transfor-
mation at an IR fixed point. In order for this Sthr

scheme
transformation to satisfy conditions C1, C2, and C4, it is
necessary that for the values of α of interest,

r <
4π

α
=

1

a
. (6.19)

VII. THE Sshr SCHEME TRANSFORMATION

In this section we study the scheme transformation

Ssh,r : a =
sinh(ra′)

r
. (7.1)

Since sinh(ra′)/r is an even function of r, we take r > 0
with no loss of generality. This has the inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2
]

(7.2)

and the Jacobian

J = cosh(ra′) . (7.3)

In the notation of Eq. (3.1),

f(a′) =
sinh(ra′)

ra′
. (7.4)

This has a series expansion of the form (3.2) with ks = 0
for odd s, as in (6.5), and for even s,

k2 =
r2

6
, k4 =

r4

120
, (7.5)

k6 =
r6

5040
, k8 =

r8

362880
, (7.6)

and so forth for higher s.

Substituting these expressions for ks into the general
expressions for the b′ℓ, we obtain

b′3 = b3 −
r2b1
6

, (7.7)

b′4 = b4 , (7.8)

b′5 = b5 +
r2b3
6

+
31r4b1
360

, (7.9)

b′6 = b6 +
r2b4
3

+
r4b2
15

, (7.10)

b′7 = b7 +
r2b5
2

+
3r4b3
40

− 173r6b1
5040

, (7.11)

b′8 = b8 +
2r2b6
3

+
r4b4
9

− 4r6b2
189

, (7.12)

and so forth for the b′ℓ with ℓ ≥ 9.
We apply this Sshr

scheme transformation to the β
function in the MS scheme. For the same reason as was
given above, we will only need the b′ℓ with ℓ ≤ 4 for
this purpose. For Nf in the interval I where the two-
loop β function has an IR zero, we then calculate the
resultant IR zeros in βα′ at the three- and four-loop order.
We have carried out these calculations for N = 2, 3, 4,
with fermions in the fundamental representation and for
a range of r values, namely r = 3, 6, 9, and 4π. We
list the results in Table III. We denote the IR zero of
βα′ at the n-loop level as α′

IR,nℓ ≡ α′

IR,nℓ,Sshr
and in the

table we further shorten this to α′

IR,nℓ,r. As with the
Sthr

scheme transformation, and for the same reason, for
r = 1, the IR zeros are almost identical to those in the
MS scheme and hence are not listed.
We observe the following general properties in our cal-

culations of α′
IR,nℓ,Sshr

. First, as is evident from Table

III, for a given N , Nf , and r,

α′

IR,3ℓ,Sthr
< α′

IR,4ℓ,Sthr
< αIR,2ℓ for R = fund.

(7.13)
As with our calculations with other scheme transforma-
tions, these shifts as a function of loop order are larger
for smaller Nf and get smaller as Nf approaches Nf,max.
Second, for a given N , Nf , and r,

α′

IR,nℓ,Sshr
< αIR,nℓ,MS , for n = 3, 4, R = fund.

(7.14)
For a given N and r, the values α′

IR,nℓ,Sshr
approach the

corresponding αIR,nℓ,MS as Nf ր Nf,max. Third, for a
given N , Nf , and loop order n = 3 or n = 4,

α′

IR,nℓ,Sthr
is a decreasing function of r . (7.15)

Note that the inequalities (7.14) and (7.15) are opposite
to (6.15) and (6.16) for the Sthr

scheme transformation.
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As was the case with the other schemes, for Nf values
close to Nf,max for a given N , these properties are suffi-
ciently small so that the entries may coincide to the given
number of significant figures.
In contrast with the Sthr

scheme transformation, the
Sshr

transformation is acceptable for r values up to the
largest that we consider, viz., r = 4π, where it takes the
form

α = sinh(α′) . (7.16)

This is understandable since the inverse transformation,
(7.2), is not singular, whereas the inverse of the Sthr

transformation, (7.2), is singular for for α → 1 for this
value of r. As with the other scheme transformations,
the three- and four-loop values of the IR zero in the Sshr

scheme approach the corresponding values in the MS as
Nf → Nf,max, in accord with Eq. (3.10).
Some comparative remarks are in order concerning the

S1 and Sshr
scheme transformations. We find that the

Sshr
scheme transformation with moderate r leads to

smaller shifts in the location of the IR zero than was
the case with the S1 scheme transformation, when both
are applied to the β function in the MS scheme. We have
explained the origin of this as resulting from a particular
feature of the parameter k1p that enters in the S1 scheme
transformation. In general, we find that even for smaller
Nf values (lying above Nf,b2z) the Sshr

transformation
with moderate r produces rather small shifts in the lo-
cation of the IR zero. For example (cf. Table III), for
SU(3) with Nf = 10, we obtain the following fractional
shifts in this IR zero at the three-loop and four-loop level:

α′

IR,3ℓ,Sshr ,r=4π − αIR,3ℓ,MS

αIR,3ℓ,MS

= −0.054

α′

IR,4ℓ,Sshr ,r=4π − αIR,4ℓ,MS

αIR,4ℓ,MS

= −0.065

for SU(3), Nf = 10, r = 4π . (7.17)

One would thus tend to prefer the Sshr
scheme transfor-

mation, since it minimizes scheme dependence at higher-
loop order. However, the S1 transformation provides an
example of how there may still be significant dependence
when one uses certain scheme transformations. We will
show another example of this in the next section, using an
illustrative exact β function, for which a slight change in
r in the Sshr

transformation can have a significant effect
on the nature of an IR zero at the three-loop order.

VIII. STUDY WITH AN ILLUSTRATIVE

EXACT β FUNCTION

It is instructive to study series expansions of an illus-
trative hypothetical exact β function in order to ascertain
the accuracy and reliability of finite-order analyses and

the effects of scheme transformations. Here we shall take
one such function, which has an exactly known infrared
zero that is reached from the origin. It should be empha-
sized at the outset that, although the function that we
use in Eq. (8.4) with (8.6) below is designed to emulate
some properties of the β function of an asymptotically
free non-Abelian gauge theory with fermions, we do not
mean to imply that it is fully realistic. Instead, we use it
in the spirit of a reasonable test function which embod-
ies some relevant features and can serve as a theoretical
laboratory in which to investigate how well analyses of
truncated series expansions probe the IR zero and how
this is affected by scheme transformations.
Because we are interested in the evolution of an asymp-

totically free theory from the neighborhood of the UV
fixed point at α = 0 to an IR fixed point, we require
that this illustrative β function have the property that,
as α increases from zero, it has a zero at a finite value of
α, which we denote as αIR. We also require that it be
bounded in the interval

0 ≤ α ≤ αIR . (8.1)

It is convenient to define a scaled quantity

α̃ ≡ α

αIR
. (8.2)

Since we assume that the evolution of the theory from
the UV to the IR starts from a small value in the UV, we
only need to consider the behavior of β in this interval
(8.1). From Eq. (1.2), the β function has the form, for
small α in the deep UV,

βα = −2b̄1α
2

[

1 +
b̄2

b̄1
α+O(α2)

]

= −2b̄1α
2

[

1− α

αIR,2ℓ
+O(α2)

]

. (8.3)

In general, we can write

βα = −2b̄1α
2h(α) , (8.4)

where the function h(α) satisfies

h(0) = 1 . (8.5)

A priori, one could consider functions h(α) with either
a finite or an infinite series expansion. We shall consider
an illustrative example of the latter case, namely

h(α) =
sin(π

√
α̃ )

(π
√
α̃ )

. (8.6)

Here we use
√
α̃ because sin(x)/x has only even powers

in its Taylor series expansion

sinx

x
=

∞
∑

n=0

(−1)n
x2n

(2n+ 1)!
, (8.7)
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but we want a β function with odd, as well as even, pow-
ers of α, to emulate a typical β function encountered in
a non-Abelian gauge theory. (One could equally well use
a similar trigonometric function with this property (and

the property (8.5)), such as h(α) = cos[(π/2)
√
α̃ ]). As

noted above, the feature that (8.6) and this cosine func-
tion have an infinite number of zeros beyond the one at
α̃ = 1, i.e., α = αIR, will not be of direct concern to
us, since we are only interested in their behavior in the
interval (8.1). Although the illustrative β function in
Eq. (8.4) with (8.6) has no explicit Nf -dependence, one
may regard it as implicitly incorporating this through the
value of αIR.
Substituting (8.7) into (8.4), we have, for this illustra-

tive β function,

βα = −2b̄1α
2

∞
∑

ℓ=1

(−π2α/αIR)
ℓ−1

(2ℓ− 1)!
. (8.8)

Hence, in the notation of Eq. (1.2),

b̄ℓ

b̄1
=

(−π2/αIR)
ℓ−1

(2ℓ− 1)!
(8.9)

or equivalently,

bℓ
b1

=
(−4π3/αIR)

ℓ−1

(2ℓ− 1)!
. (8.10)

Before performing a scheme transformation, we first
analyze finite-order truncations of this β function to see
how closely the resulting determination of the IR zero
compares with the exact value, αIR. Obviously, no claim
is made that this β function actually arose from a loop
calculation, but it will be useful to employ the terminol-
ogy of loops to refer to the expansion order. To four-loop
order, ℓ = 4, Eq. (1.2) reads

βα = −2b̄1α
2
[

1+
b̄2

b̄1
α+

b̄3

b̄1
α2+

b̄4

b̄1
α3+O(α4)

]

. (8.11)

Explicitly,

βα = −2b̄1α̃
2
[

1−π2

3!
α̃+

π4

5!
α̃2−π6

7!
α̃3+O(α̃4)

]

. (8.12)

For our further discussion, we shall define a compact no-
tation consistent with Eq. (8.2), namely

α̃IR,nℓ ≡
αIR,nℓ

αIR
. (8.13)

At the two-loop order, the β function given in Eqs.
(8.11) and (8.12) has an IR zero at αIR,2ℓ = −b̄1/b̄2 =
(6/π2)αIR = 0.60793αIR, i.e.,

α̃IR,2ℓ = 0.60793 , (8.14)

to the indicated numerical accuracy. Evidently, this two-
loop estimate of the IR zero differs substantially from

the exact value of the IR zero, being approximately 40 %
smaller than this value. Interestingly, at the three-loop
level, although βα has two zeros at nonzero values of α̃,
neither of them is a physical IR zero; instead, they form
the complex-conjugate pair

α̃IR,3ℓ,± =
2(5±

√
5 i)

π2
= 1.0132± 0.4531i . (8.15)

This is an important result, since it illustrates the basic
fact from calculus that a polynomial obtained as a trun-
cation of a series expansion for a given function does not
necessarily accurately reproduce the zeros of that func-
tion. In the present case, the real part of the complex
pair of zeros is rather close to 1, but the imaginary part
is not small relative to this real part, so that in the com-
plex plane, the distance of each of these roots from 1, i.e.,
the distance of the roots in α from αIR, is substantial. At
four-loop order, the βα function has three nonzero roots
in α̃, namely a physical IR zero close to the exact value,

α̃IR,4ℓ = 0.9603 , (8.16)

about 4 % smaller than the exact value, together with a
complex conjugate pair at α̃ = 1.6476± 1.6566i.
We have continued this analysis up to (n = 8)-loop

order. At five-loop level, the equation βα = 0 has a real
root very close to the exact value,

α̃IR,5ℓ = 1.0045 , (8.17)

together with another real root at α̃ = 2.4958 and a
complex pair, α̃ = 1.8974 ± 3.4138i. At the six-loop
level, the equation βα = 0 has five nonzero solutions for
α̃, namely

α̃IR,6ℓ = 0.99972 , (8.18)

and two pairs of complex-conjugate roots. At the seven-
loop level, the equation βα = 0 has the root

α̃IR,7ℓ = 1.00001346 , (8.19)

together with two pairs of complex-conjugate roots and
a larger positive real root at α̃ = 3.621288. Finally, at
the eight-loop level, the equation βα = 0 yields

α̃IR,8ℓ = 0.999999507 , (8.20)

together with two pairs of complex-conjugate roots and
two larger real roots. These values of the physical IR zero
for 4 ≤ ℓ ≤ 8 yield the following fractional differences
with respect to the exact value:

α̃IR,4ℓ − 1 ≡ αIR,4ℓ − αIR

αIR
= −3.97× 10−2 , (8.21)

αIR,5ℓ − αIR

αIR
= 4.52× 10−3 , (8.22)
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αIR,6ℓ − αIR

αIR
= −2.83× 10−4 , (8.23)

αIR,7ℓ − αIR

αIR
= 1.35× 10−5 , (8.24)

and

αIR,8ℓ − αIR

αIR
= −0.493× 10−6) . (8.25)

Thus, once one gets beyond the three-loop order, these
values converge monotonically toward the exact value of
αIR.
We next perform a scheme transformation on βα and

study the shift in the values of the IR zero of βα′ , calcu-
lated to the various orders considered here. We denote
these as α′

IR,nℓ and the ratios with respect to αIR as

α̃′

IR,nℓ. For definiteness, we use the Sshr
transformation

given in Eq. (7.1), i.e., α = (4π/r) sinh(rα′/(4π)), with
variable r. As noted before, without loss of generality,
we may take r > 0. Clearly, as r → 0+, the Sshr

scheme
transformation approaches the identity map, so, by con-
tinuity, in this limit, the resulting values of the IR zero
calculated at the ℓ-loop level approach those obtained
above. However, as we will show next, the values that
one gets for larger r depend sensitively on this param-
eter. Of course, at the two-loop level, since b′ℓ = bℓ for
ℓ = 1, 2, we get the zero at the same place, but now in
the α′ variable, namely,

α̃′

IR,2ℓ,Sshr
= 0.60793 . (8.26)

At the three-loop level, the condition βα′ = 0 yields
(aside from the double root at α′ = 0 corresponding to
the UV fixed point), the quadratic equation

1− π2

6
α̃′ +

( π4

120
− r2

96π2

)

(α̃′)2 = 0 . (8.27)

This equation obviously has a singular behavior at the
value of r that causes the coefficient of the (α̃′)2 term to

vanish, namely r = 2π3/
√
5 = 27.73... We assume that r

does not take on this value. The equation then has the
two formal solutions,

α̃′

IR,3ℓ

4π
=

20π3 ±
√
150r2 − 20π6

2(4π6 − 5r2)
. (8.28)

We showed above that in the analysis of βα at this three-
loop level, there are no real roots. Here, in contrast, for
sufficiently large r, these roots become real. This demon-
strates how a scheme transformation can qualitatively, as
well as quantitatively, change the analysis of the IR zero
of a β function. In the present case, the roots are real if
the discriminant is nonnegative, i.e, if

r ≥
( 2

15

)1/2

π3 = 11.322 . (8.29)

In order to get real roots at the three-loop level, we re-
strict to r values that satisfy this inequality. For example,

let us take r = 4π. Then from Eq. (8.28) we obtain an
IR zero at

α̃′

IR,3ℓ,Sshr
= 1.000400 for r = 4π (8.30)

together with another real root α̃′ = 1.54959. Although
the three-loop value in Eq. (8.28) is very close to the ex-
act value 1, i.e., α′

IR,3ℓ,Sshr
is very close to αIR, this is for-

tuitous. For example, if one increases r from 4π = 12.566
slightly to r = 15, the value in Eq. (8.30) shifts to
α̃IR,3ℓ,Sshr

= 1.19414. If, on the other hand, one de-
creases r to ostensibly reasonable values below the lower
bound (8.29), then one would revert back to the situation
encountered in the analysis of βα, namely there would not
be any physical IR zero at this three-loop level.
At the four-loop level, if one continues to use the value

r = 4π, the condition βα′ = 0 yields one real root, which
is the IR zero,

α̃′

IR,4ℓ,Sshr
= 0.79922 for r = 4π , (8.31)

together with a pair of complex-conjugate roots. One can
carry this analysis to higher-loop level. For example, at
five-loop level, with r = 4π, the condition βα′ = 0 yields
not real solutions for an IR zero, but instead a quartic
equation with two pairs of complex-conjugate roots.
In closing this section, we again emphasize that we

have carried out this analysis in the spirit of using a test
function with reasonable behavior in the relevant interval
(8.1) to study how well analyses of a finite series expan-
sion probe its IR zero, and the effect of a scheme trans-
formation on these. There is obviously no implication
that other properties of the particular test function (8.4)

with (8.6) (such as the infinitely many zeros at
√
α̃ = s

with s ≥ 2) are relevant to the true β function of a non-
Abelian gauge theory.

IX. ANOMALOUS DIMENSION OF FERMION

BILINEAR

The anomalous dimension γm describes the scaling of
a fermion bilinear and the running of a dynamically gen-
erated fermion mass in the phase with spontaneous chi-
ral symmetry breaking. It plays an important role in
technicolor theories, via the renormalization group fac-
tor η = exp[

∫

dt γm(α(t))] that can enhance dynamically
generated Standard-Model fermion masses. In the non-
Abelian Coulomb phase (which is a conformal phase),
the IR zero of β is exact, although a calculation of it to a
finite-order in perturbation theory is only approximate,
and γm evaluated at this IR fixed point is exact. In the
phase with SχSB, where an IR fixed point, if it exists, is
only approximate, γm is an effective quantity describing
the running of a dynamically generated fermion mass for
the evolution of the theory near this approximate IRFP.
In [5] we evaluated γm to three- and four-loop order at the
IR zero of β calculated to the same order and showed that
these higher-loop results were somewhat smaller than the
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two-loop evaluation. In both the conformal and non-
conformal phases it is important to assess the scheme-
dependence of γm when calculated to finite order. At
an exact zero of β, the anomalous dimension γm(α) cal-
culated in a given scheme is the same as the anomalous
dimension γ′

m(α′) calculated in another scheme [9]. Our
results in [3] and here concerning shifts in the location of
the IR zero resulting from a scheme transformation show
that, a priori, a transformation may introduce significant
shifts in both this location and in the resultant value of
γm, especially when the IR fixed point occurs at moder-
ate to strong coupling. For a given gauge group G and
fermion representation R, the value of αIR,2ℓ gets larger
as Nf ց Nf,b2z , and hence, understandably, the shift
in α′

IR,nℓ when calculated in a different scheme can be
significant. The same comment applies to γm, although
part of this region of Nf

>∼ Nf,b2z is in the phase with
spontaneous chiral symmetry breaking rather than the
chirally symmetric phase, so the IR fixed point is only
approximate. For a well-behaved scheme transformation
such as Sshr

with moderate r, asNf increases throughout
the non-Abelian Coulomb phase, this scheme-dependent
shift in a finite-loop-order calculation of the IR zero and
resultant shift in the value of γm, calculated to the same
finite-loop order, become small.

X. DISCUSSION AND CONCLUSIONS

In this paper, extending the work in [3], we have given
a detailed analysis of the effects of scheme transforma-
tions in the vicinity of an exact or approximate infrared
fixed point in an asymptotically free gauge theory with
fermions. We have discussed a set of necessary conditions
that such transformations must obey and have shown
with several examples that, although these can easily be
satisfied in the vicinity of an ultraviolet fixed point, they
constitute significant restrictions on scheme transforma-
tions at an infrared fixed point. This is especially true
when this fixed point occurs at a relatively strong cou-
pling.
We have constructed acceptable scheme transfor-

mations and have used these to study the scheme-
dependence of an infrared fixed point, making compari-
son with our previous three-loop and four-loop calcula-
tions of the location of this point in the MS scheme in
[5]. The S1 transformation, which renders the three-loop
coefficient of the βα′ function zero, provides an exam-
ple of how a scheme transformation can produce signifi-

cant scheme dependence in an IR zero. The Sshr
scheme

transformation with moderate r is better behaved than
the S1 transformation and introduces smaller scheme-
dependent shifts in the location of the IR zero. This
Sshr

transformation with moderate r provides a valuable
tool to assess scheme dependence. As applied to the β
function in the MS scheme, it shows that this depen-
dence is small in the vicinity of both the UV fixed point
at α = 0 and an IR fixed point at sufficiently small cou-
pling. It also gives a quantitative measure of the size
of the scheme-dependence in the calculation of this fixed
point at the three-loop and four-loop order, both at small
and at larger couplings.
We have constructed an illustrative exact β function of

an asymptotically free theory with an infrared zero and
have used it as a theoretical laboratory in which to assess
the accuracy with which finite-order truncations of the
series expansion of this β function are able to determine
the IR zero. Applying the Sshr

scheme transformation
to the series expansion for this illustrative β function,
we have also studied the consequences of this for the
determination of the IR zero in the α′ variable from a
finite-order truncation of the series. For the illustrative
β function, we find that this scheme transformation can
have a significant effect, especially at low orders in the
expansion.
We believe that the results reported here give a deeper

insight into scheme transformations of the β function
and scheme-dependence of infrared fixed points in non-
Abelian gauge theories with fermions. There is clearly
more interesting work to be done investigating this ques-
tion. The knowledge gained will be useful for a better
understanding of the UV to IR evolution of these theo-
ries, in particular, those with fermion contents that result
in quasi-conformal behavior.
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XI. APPENDIX

In this appendix we first give the expressions that we
have calculated for b′ℓ with ℓ = 6, 7, 8:

b′6 = b6 + 4k1b5 + (4k21 + 2k2)b4 + 4k1k2b3 + (2k41 − 6k21k2 + 4k1k3 + 3k22 − 2k4)b2

+ (−8k51 + 28k31k2 − 16k21k3 − 20k1k
2
2 + 8k1k4 + 12k2k3 − 4k5)b1 , (11.1)

b′7 = b7 + 5k1b6 + (7k21 + 3k2)b5 + (2k31 + 7k1k2 + k3)b4 + (k41 − 2k21k2 + 4k1k3 + 3k22 − k4)b3
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+ (−4k51 + 15k31k2 − 9k21k3 − 12k1k
2
2 + 9k2k3 + 5k1k4 − 3k5)b2

+ (16k61 − 68k41k2 + 40k31k3 − 21k21k4 + 73k21k
2
2 − 58k1k2k3 + 10k1k5 + 16k2k4 − 12k32 + 9k23 − 5k6)b1 ,

(11.2)

and

b′8 = b8 + 6k1b7 + (11k21 + 4k2)b6 + (6k31 + 12k1k2 + 2k3)b5 + (k41 + 4k21k2 + 6k1k3 + 4k22)b4

+ (−2k51 + 8k31k2 − 4k21k3 − 6k1k
2
2 + 8k2k3 + 4k1k4 − 2k5)b3

+ (8k61 − 36k41k2 + 22k31k3 − 12k21k4 + 42k21k
2
2 − 36k1k2k3 + 6k1k5 + 12k2k4 − 8k32 + 7k23 − 4k6)b2

+ (−32k71 + 160k51k2 − 96k41k3 + 52k31k4 − 230k31k
2
2 − 26k21k5 + 208k21k2k3

+ 12k1k6 + 84k1k
3
2 − 42k1k

2
3 − 76k1k2k4 + 20k2k5 + 24k3k4 − 52k22k3 − 6k7)b1 .

(11.3)

For reference, we list the expressions for b1 [7], b2 [8],
and, in the MS scheme, b3 [13], calculated for a vectorial
gauge theory with Nf (massless) fermions transforming
according to the representation R of the gauge group G
[25]:

b1 =
1

3
(11CA − 4TfNf ) (11.4)

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf )TfNf

]

. (11.5)

b3 =
2857

54
C3

A ++TfNf

[

2C2
f − 205

9
CACf − 1415

27
C2

A

]

+ (TfNf)
2

[

44

9
Cf +

158

27
CA

]

.

(11.6)

In our calculations we have also used the MS result for b4 [14], but we do not list it here because of its length.

The interval I in which the two-loop β function has an
IR zero is given in Eq. (2.4). The lower end of this inter-
val is defined by the condition that b2 decreases through
zero, which occurs at the value Nf = Nf,b2z given in Eq.
(2.3). Numerical values of b̄ℓ were presented in [5], e.g.,
for the fundamental representation in Table I of that ref-
erence. As discussed in [5], for Nf = 0 and sufficiently
small, b2, b3, and b4 are all positive, and they decrease
with increasing Nf . The value of Nf at which b3 goes
through zero and becomes negative, denoted Nf,b3z, is
smaller than the value Nf,b2z, so that b3 is generically
negative in the interval I (cf. Eq. (2.4)) where the two-
loop β function has an IR zero. As is evident in Table I,
the four-loop coefficient b4 can be positive or negative in
this interval I. The upper end of the interval I occurs at
Nf = Nf,b1z = Nf,max [26], where b1 → 0+. The values
of b2 and b3 at Nf = Nf,max are used implicitly in the

text, in particular, in our discussion of the S1 scheme
transformation, so we list them here:

b2 = −CA(7CA + 11Cf) at Nf = Nf,max (11.7)

and

b3 = −CA

24
(1127C2

A+616CACf−132C2
f) at Nf = Nf,max

(11.8)
We denote these as (b2)Nf,max

and (b3)Nf,max
, respec-

tively. For the fundamental representation,

(b2)Nf,max,fund. = −
[

(5N)2 − 11

2

]

(11.9)

and

(b3)Nf,max,fund.. = −
[

1402N4 − 242N2 − 33

24N

]

. (11.10)
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These are both negative for all physically relevant N .
Specifically, with Nf continued from the nonnegative in-
tegers to the nonnegative reals,

(b2)Nf,max,fund. < 0 for N >

√
11

5
= 0.66332..

(11.11)
and

(b3)Nf,max,fund. < 0

for N >

[

169642 + 9814
√
1243

]1/2

1402
= 0.512186..

(11.12)

For the adjoint representation,

(b2)Nf,max,adj. = −18N2 (11.13)

and

(b3)Nf,max,fund. = −537N3

8
, (11.14)

which are also negative.
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TABLE I: Values of the IR zeros of βα in the MS scheme and
the respective βα′ functions obtained by applying the S1, S2, and
S3 scheme transformations to the MS βα function. The listings
are for an SU(N) gauge theory with Nf (massless) fermions in the
fundamental representation, for N = 2, 3, 4, calculated to n-loop
order and denoted as α

IR,nℓ,MS
and α′

IR,nℓ,Si
, where i = 1, 2, 3,

respectively. Here, α
IR,2ℓ,MS

= α′

IR,2ℓ,Si
is scheme-independent,

so we denote it simply as αIR,2ℓ. Since all of these Si scheme
transformations with i = 1, 2, 3 yield b′

3
= 0, it follows that

α′

IR,3ℓ,Si
= α′

IR,2ℓ
= αIR,2ℓ. The notation n.p. means not phys-

ical, i.e., there is no physical solution for α′

IR,4ℓ,Si
. See text for

further details.

N Nf αIR,2ℓ αIR,3ℓ,MS αIR,4ℓ,MS α′

IR,4ℓ,S1
α′

IR,4ℓ,S2
α′

IR,4ℓ,S3

2 7 2.83 1.05 1.21 0.640 n.p. 0.488

2 8 1.26 0.688 0.760 0.405 n.p. 0.633

2 9 0.595 0.418 0.444 0.2385 n.p. 0.730

2 10 0.231 0.196 0.200 0.109 0.240 0.248

3 10 2.21 0.764 0.815 0.463 n.p. 0.316

3 11 1.23 0.578 0.626 0.344 n.p. 0.391

3 12 0.754 0.435 0.470 0.254 n.p. 0.444

3 13 0.468 0.317 0.337 0.181 n.p. 0.4385

3 14 0.278 0.215 0.224 0.121 0.321 0.358

3 15 0.143 0.123 0.126 0.068 0.148 0.152

3 16 0.042 0.040 0.040 0.0215 0.042 0.042

4 13 1.85 0.604 0.628 0.365 n.p. 0.228

4 14 1.16 0.489 0.521 0.293 n.p. 0.276

4 15 0.783 0.397 0.428 0.235 n.p. 0.311

4 16 0.546 0.320 0.345 0.187 n.p. 0.339

4 17 0.384 0.254 0.271 0.146 n.p. 0.362

4 18 0.266 0.194 0.205 0.110 n.p. n.p.

4 19 0.175 0.140 0.145 0.0785 0.193 0.208

4 20 0.105 0.091 0.092 0.050 0.108 0.111

4 21 0.047 0.044 0.044 0.023 0.048 0.048
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TABLE II: Values of the IR zeros of βα in the MS scheme and βα′ after applying the Sthr
scheme transformation to the MS scheme, for

an SU(N) theory with Nf fermions in the fundamental representation, for N = 2, 3, 4, calculated to n-loop order and denoted as α
IR,nℓ,MS

and α′

IR,nℓ,Sthr
≡ α′

IR,nℓ,r
. The Sthr

entries are for r = 3, 6, 9, 4π. As before, since the two-loop IR zero is scheme-independent, we

denote it simply as αIR,2ℓ.

N Nf αIR,2ℓ αIR,3ℓ,MS α′

IR,3ℓ,r=3 α′

IR,3ℓ,r=6 α′

IR,3ℓ,r=9 α′

IR,3ℓ,r=4π αIR,4ℓ,MS α′

IR,4ℓ,r=3 α′

IR,4ℓ,r=6 α′

IR,4ℓ,r=9 α′

IR,4ℓ,r=4π

2 7 2.83 1.05 1.07 1.11 1.21 1.45 1.21 1.24 1.33 1.63 complex

2 8 1.26 0.688 0.693 0.706 0.731 0.781 0.760 0.767 0.789 0.832 0.939

2 9 0.595 0.418 0.419 0.423 0.428 0.439 0.444 0.446 0.450 0.458 0.472

2 10 0.231 0.196 0.196 0.197 0.197 0.199 0.200 0.200 0.201 0.202 0.203

3 10 2.21 0.764 0.770 0.786 0.816 0.876 0.815 0.822 0.844 0.885 0.978

3 11 1.23 0.578 0.581 0.588 0.602 0.627 0.626 0.630 0.640 0.660 0.700

3 12 0.754 0.435 0.436 0.439 0.445 0.456 0.470 0.472 0.477 0.485 0.502

3 13 0.468 0.317 0.317 0.318 0.321 0.325 0.337 0.338 0.340 0.343 0.349

3 14 0.278 0.215 0.215 0.215 0.216 0.217 0.224 0.224 0.224 0.225 0.227

3 15 0.143 0.123 0.123 0.123 0.124 0.124 0.126 0.126 0.126 0.126 0.126

3 16 0.042 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

4 13 1.85 0.604 0.606 0.614 0.627 0.653 0.628 0.631 0.640 0.656 0.688

4 14 1.16 0.489 0.491 0.495 0.502 0.516 0.521 0.523 0.528 0.539 0.557

4 15 0.783 0.397 0.398 0.401 0.405 0.412 0.428 0.429 0.433 0.439 0.450

4 16 0.546 0.320 0.321 0.322 0.324 0.328 0.345 0.346 0.348 0.351 0.357

4 17 0.384 0.254 0.254 0.255 0.256 0.258 0.271 0.271 0.272 0.274 0.277

4 18 0.266 0.194 0.194 0.195 0.195 0.196 0.205 0.205 0.205 0.206 0.207

4 19 0.175 0.140 0.140 0.141 0.141 0.141 0.145 0.145 0.146 0.146 0.146

4 20 0.105 0.091 0.091 0.091 0.091 0.091 0.092 0.092 0.092 0.092 0.093

4 21 0.047 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
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TABLE III: Values of the IR zeros of βα in the MS scheme and βα′ after applying the Sshr
scheme transformation to the MS scheme, for

an SU(N) theory with Nf fermions in the fundamental representation, for N = 2, 3, 4, calculated to n-loop order and denoted as α
IR,nℓ,MS

and α′

IR,nℓ,Sshr
≡ α′

IR,nℓ,r
. The Sshr

entries are for r = 3, 6, 9, 4π. As before, since the two-loop IR zero is scheme-independent, we

denote it simply as αIR,2ℓ.

N Nf αIR,2ℓ αIR,3ℓ,MS α′

IR,3ℓ,r=3 α′

IR,3ℓ,r=6 α′

IR,3ℓ,r=9 α′

IR,3ℓ,r=4π αIR,4ℓ,MS α′

IR,4ℓ,r=3 α′

IR,4ℓ,r=6 α′

IR,4ℓ,r=9 α′

IR,4ℓ,r=4π

2 7 2.83 1.05 1.05 1.03 0.998 0.953 1.21 1.20 1.16 1.11 1.04

2 8 1.26 0.688 0.686 0.680 0.670 0.654 0.760 0.757 0.747 0.732 0.7085

2 9 0.595 0.418 0.418 0.416 0.413 0.409 0.444 0.443 0.441 0.438 0.432

2 10 0.231 0.196 0.196 0.196 0.196 0.195 0.200 0.200 0.200 0.200 0.199

3 10 2.21 0.764 0.762 0.754 0.742 0.723 0.815 0.812 0.802 0.786 0.762

3 11 1.23 0.578 0.577 0.574 0.568 0.559 0.626 0.6245 0.6195 0.611 0.599

3 12 0.754 0.435 0.434 0.433 0.430 0.426 0.470 0.470 0.467 0.464 0.457

3 13 0.468 0.317 0.316 0.316 0.315 0.313 0.337 0.337 0.336 0.335 0.332

3 14 0.278 0.215 0.214 0.214 0.214 0.213 0.224 0.2235 0.223 0.223 0.222

3 15 0.143 0.123 0.123 0.123 0.123 0.123 0.126 0.126 0.126 0.126 0.125

3 16 0.042 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

4 13 1.85 0.604 0.602 0.599 0.593 0.583 0.628 0.626 0.622 0.615 0.603

4 14 1.16 0.489 0.488 0.486 0.483 0.477 0.521 0.520 0.517 0.513 0.505

4 15 0.783 0.397 0.397 0.396 0.394 0.390 0.428 0.428 0.426 0.423 0.419

4 16 0.546 0.320 0.320 0.319 0.318 0.316 0.345 0.345 0.344 0.343 0.340

4 17 0.384 0.254 0.253 0.253 0.253 0.252 0.271 0.271 0.271 0.270 0.268

4 18 0.266 0.194 0.194 0.194 0.194 0.193 0.205 0.205 0.204 0.204 0.2035

4 19 0.175 0.140 0.140 0.140 0.140 0.140 0.145 0.145 0.145 0.145 0.145

4 20 0.105 0.091 0.091 0.091 0.091 0.091 0.092 0.092 0.092 0.092 0.092

4 21 0.047 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044


