
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Extreme-mass-ratio inspiral corrections to the angular
velocity and redshift factor of a mass in circular orbit about

a Kerr black hole
Abhay G. Shah, John L. Friedman, and Tobias S. Keidl

Phys. Rev. D 86, 084059 — Published 31 October 2012
DOI: 10.1103/PhysRevD.86.084059

http://dx.doi.org/10.1103/PhysRevD.86.084059


DV10880

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

EMRI corrections to the angular velocity and redshift factor of a mass in circular

orbit about a Kerr black hole

Abhay G. Shah,1, 2, ∗ John L. Friedman,2, † and Tobias S. Keidl3, ‡

1Dept of Particle Physics & Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
2Center for Gravitation and Cosmology, Department of Physics,

University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
3Department of Physics, University of Wisconsin–Washington County,USA

This is the first of two papers on computing the self-force in a radiation gauge for a particle of
mass m moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-
ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of
the quantity H := 1

2
hαβu

αuβ , gauge-invariant under gauge transformations generated by a helically
symmetric gauge vector; here hαβ is the metric perturbation, uα the particle’s 4-velocity. We find
the related order m correction to the particle’s angular velocity at fixed renormalized redshift (and
to its redshift at fixed angular velocity), each of which can be written in terms of H . The radiative
part of the metric perturbation is constructed from a Hertz potential that is extracted from the
Weyl scalar by an algebraic inversion[1]. We then write the spin-weighted spheroidal harmonics
as a sum over spin-weighted spherical harmonics sYℓm and use mode-sum renormalization to find
the renormalization coefficients by matching a series in L = ℓ+ 1/2 to the large-L behavior of the
expression for H . The non-radiative parts of the perturbed metric associated with changes in mass
and angular momentum are calculated in the Kerr gauge.

PACS numbers: 04.30.Db, 04.25.Nx, 04.70.Bw

I. INTRODUCTION

We report here a first computation of the order m renormalized corrections ∆Ω to the angular velocity of a mass
m in circular orbit about a Kerr black hole and of the related change ∆U in the scalar U = uα∇αt. This is the
constant of proportionality between the particle’s velocity and the helical Killing vector kα tangent to its trajectory:
uα = Ukα. The corresponding computation for a Schwarzschild background was first done by Detweiler [2], who
pointed out the invariance of these quantities under gauge transformations generated by helically symmetric gauge
vectors. The invariance allows straightforward comparison with computations in other gauges, and comparisons were
done for circular orbits in Schwarzschild for a Lorenz gauge [3] and for our modified radiation gauge [4]. Previous
conservative self-force computations in Kerr spacetime have been restricted to a scalar particle in eccentric, equatorial
orbit [5, 6].
The radiation gauges are associated with the Weyl scalars ψ0 and ψ4 that satisfy the Teukolsky equation [7]: They

are gauges in which one can construct a perturbed metric in the vacuum spacetime outside the particle from ψ0

or ψ4, and for circular orbits this can be done by an algebraic inversion. The resulting metric, however, lacks the
non-radiative contributions from the changes δM and δJ in mass and angular momentum, and from the change in
the center of mass. We write the metric perturbations corresponding to δM and δJ in the Kerr gauge, the result of
changing a and M in the Kerr metric written in Boyer-Lindquist coordinates. It is in this modified radiation gauge
that we compute ∆Ω and ∆U .
We believe that the numerical results given here are accurate to better than one part in 108, consistent with

our earlier Schwarzschild computation. Numerical values we reported in an earlier eprint version of this paper had
significant inaccuracy, due to an oversight in our computation of the singular field, found after two comparisons. We
performed a detailed comparison of our results for Hren with corresponding post-Newtonian values found by A. Le
Tiec; and we compared a few values of Hren with those of S. Dolan, who has completed another EMRI calculation
of Hren. Dolan’s calculation uses a Lorenz gauge and an effective-source renormalization method (see, e.g. [8–11]).
Where our initial error led to a numerical error of about 5% (with about twice that error for the the difference between
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H for Schwarzschild and for Kerr), Dolan’s present accuracy is about 1%. 1

The plan of the paper is as follows. In Sec. II A, after a brief review of the Teukolsky equation and associated
formalism, we obtain the analytic form of the Weyl scalar ψret

0 , expressed as a sum over spin-weighted spheroidal
harmonics. In II B we review the construction of the metric perturbation in a radiation gauge, using a Hertz potential
constructed algebraically from ψ0. We describe the mode sum renormalization, pointing out a difference, not present in
our Schwarzschild computation, between the singular field at subleading order in a Lorenz gauge and in our radiation
gauge. In Sec. II C, we first review two different series expansions for spin-weighted spheroidal harmonics, one as
a sum of Jacobi polynomials, the other as a sum over spin-weighted spherical harmonics. We check the accuracy of
the angular harmonics by computing them using these two different expansions. We then obtain explicit expressions
for the values of the harmonics 1Yℓm and 2Yℓm at θ = π/2 (the plane of the particle’s orbit). In Sec. II D we
review the numerical construction of solutions to the radial Teukolsky equation, by direct numerical integration and
by numerical integration of the Sasaki-Nakamura equation. Again we check the accuracy of our computation of the
radial harmonics and the angular harmonics of ψret

0 obtained in these two independent ways. In Sec. III we compute
the tetrad components of the perturbed metric from the Hertz potential. In Sec. IV we find expressions for the change
∆U in the renormalized redshift factor at fixed Ω and the corresponding change in the angular velocity at fixed U ;

each is simply related to the quantity Hren =
1

2
hrenαβ u

αuβ . In Sec. V we present the computation of the retarded

component of the lower multipoles in Boyer-Lindquist coordinates. In Sec. VI, we present the numerical results for
Hren, ∆U and ∆Ω. Finally, in Sec. VII, we briefly discuss our results and future work.

II. REVIEW AND COMPUTATION OF ψret
0

A. Formalism

We work in Boyer-Lindquist coordinates where the Kerr metric is given by

ds2 =

(
1− 2Mr

Σ

)
dt2 +

4Mar sin2 θ

Σ
dtdφ − Σ

∆
dr2 − Σdθ2 −

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdφ2, (1)

with ∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ. The Kinnersley tetrad vectors have components

lα =
1

∆

(
r2 + a2,∆, 0, a

)
,

nα =
1

2Σ

(
r2 + a2,−∆, 0, a

)
,

mα =
− ¯̺√
2

(
ia sin θ, 0, 1,

i

sin θ

)
, (2)

and we denote by D,∆ and δ the derivative operators along the tetrad vectors lα, nα and mα, respectively. The
non-vanishing spin coefficients associated with this tetrad are

̺ =
−1

r − ia cos θ
, β =

− ¯̺cot θ

2
√
2

, ̟ =
ia̺2 sin θ√

2
, τ =

−ia sin θ√
2Σ

, µ =
∆̺

2Σ
, γ = µ+

(r −M)

2Σ
, α = ̟ − β̄.

(3)

Consider a particle of mass m orbiting a Kerr black hole in circular, equatorial orbit with radial coordinate r = r0.
As noted in the introduction, the particle’s velocity is tangent to a helical Killing vector,

uα = utkα, (4)

where

kα = tα +Ωφα, (5)

1 Dolan’s results are to be reported in a paper in preparation coauthored by L. Barack and B. Wardell.
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with φα and tα the rotational and asymptotically timelike Killing vectors of the Kerr geometry and Ω the particle’s
angular velocity measured by an observer at infinity. For a circular geodesic, the values of ut and Ω are

ut =
r
3/2
0 ±M1/2a√

r30 − 3Mr20 ± 2aM1/2r
3/2
0

, (6)

Ω =
±M1/2

r
3/2
0 ± aM1/2

,

where the upper (lower) sign correspond to direct (retrograde) orbits and the corresponding stress-energy tensor is
given by

Tαβ =
m

utr20
uαuβδ(r − r0)δ(θ − π/2)δ(φ− Ωt). (7)

The perturbed spin-2 Weyl scalar, ψ0 = −Cαβγδl
αmβlγmδ, satisfies the Teukolsky equation

[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2ψ0

∂t2
+

4Mar

∆

∂2ψ0

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2ψ0

∂φ2
− 1

∆2

∂

∂r

(
∆3 ∂ψ0

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ0

∂θ

)

− 4

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ψ0

∂φ
+ 2(2 cot2 θ − 1)ψ0 − 4

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂ψ0

∂t
= 8πΣT, (8)

whose source T is given by

T := − (δ + ¯̟ − ᾱ− 3β − 4τ) (δ + ¯̟ − 2ᾱ− 2β)T11

+ [(δ + ¯̟ − ᾱ− 3β − 4τ) (D − 2¯̺) + (D − 4̺− ¯̺) (δ + 2 ¯̟ − 2β)]T13

− (D − 4̺− ¯̺) (D − ¯̺)T33

= T (0) + T (1) + T (2), (9)

where the T (i) label the three terms in the expression for T .
Because the Teukolsky equation is separable in the frequency domain, we can write ψ0 as a sum of angular harmonics,

ψ0 =
∑

ℓ,m

Rℓm(r) 2Sℓm(θ)eim(φ−Ωt), (10)

where we used the fact that, for circular orbits, harmonics eimφ have frequency ω = mΩ. For r 6= r0, the source
vanishes, and Rℓm satisfies the radial equation

∆R′′
ℓm + 6(r −M)R′

ℓm +

(
K2 − 4iK(r −M)

∆
+ 8imΩr − γ2 + 2mγ + 6− 2Eℓm

)
Rℓm = 0. (11)

The function 2Sℓm satisfies the angular equation

1

sin θ

d

dθ

(
sin θ

d

dθ
2Sℓm

)
+

(
γ2 cos2 θ − 4γ cos θ − 4m cos θ + 4 +m2

sin2 θ
+ 2Eℓm

)
2Sℓm = 0, (12)

where K = mΩ(r2 + a2)− am and γ = amΩ.
The tetrad components of the stress-energy tensor that enter the expression for T in Eq. (8) are

T11 =
m(1− aΩ)2ut

r20
δ(r − r0)δ(θ − π/2)δ(φ− Ωt),

T13 =
im(1− aΩ)

(
a− Ω(r20 + a2)

)
ut√

2r30
δ(r − r0)δ(θ − π/2)δ(φ− Ωt),

T33 =
−m

(
a− Ω(r20 + a2)

)2
ut

2r40
δ(r − r0)δ(θ − π/2)δ(φ− Ωt). (13)
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Using Eqs. (2) to write the derivative operators and Eqs. (3) for the spin coefficients, we obtain explicit forms for the
source terms T (i) of Eq. (9). Defining the quantities

q :=
m
[
a− Ω

(
r2 + a2

)]

∆
, q0 := q|r=r0 =

m
[
a− Ω

(
r20 + a2

)]

∆0
, (14)

and writing

δ(φ− Ωt) =
∞∑

m=−∞

1

2π
eim(φ−Ωt), (15)

we find

T (0) = − 1

4π
m

∞∑

m=−∞

¯̺2

r20
(1− aΩ)2uteim(φ−Ωt)

{
δ′′(θ − π/2)

+

[
maΩ(1 + sin θ)−m− m

sin θ
− cot θ +

ia

r0
− 4ia̺ sin θ − ia ¯̺sin θ

]
δ′(θ − π/2)

+

[
m(1− aΩ)− i

a

r0

] [
m(1− aΩ)− 5i

a

r0

]
δ(θ − π/2)

}
δ(r − r0), (16)

T (1) = − i

4π
m

∞∑

m=−∞

¯̺

r30
(1 − aΩ)

[
a− Ω(r20 + a2)

]
uteim(φ−Ωt)

{
2δ′(r − r0)δ

′(θ − π/2)

+ 2

(
1

r0
− 2̺+ iq0

)
δ(r − r0)δ

′(θ − π/2) +

(
2amΩ− 2m+

4ia

r
− 2ia

r0

)
δ′(r − r0)δ(θ − π/2)

+

[(
amΩ−m+

4ia

r0

)(
2

r0
+ iq0

)
+

(
amΩ−m− 2ia

r0

)(
4

r0
+ iq0

)]
δ(r − r0)δ(θ − π/2)

}
, (17)

T (2) = − 1

4π
m

∞∑

m=−∞

1

r40

[
a− Ω

(
r20 + a2

)]2
uteim(φ−Ωt)

s

−δ′′(r − r0)

−
{
i(q + q0) +

1

r0
+

5

r

}
δ′(r − r0)−

(
5

r0
+ iq0

)(
1

r0
+ iq0

)
δ(r − r0)

{

δ(θ − π/2). (18)

To compute ψret
0 , it is useful to define a Green’s function Gℓm(r, r′) as a solution to

∆G′′
ℓm + 6(r −M)G′

ℓm +

[
K2 − 4iK(r −M)

∆
+ 8imΩr − γ2 + 2mγ + 6− 2Eℓm

]
Gℓm = δ(r − r′), (19)

namely

Gℓm(r, r′) = Aℓm∆′2RH(r<)R∞(r>), (20)

where Aℓm :=
1

∆3(RHR′
∞ −R∞R′

H)
. (21)

Here RH and R∞ are two linearly independent solutions to the radial equation that are, respectively, ingoing at the
future horizon and outgoing at future null infinity, and we have suppressed the ℓm indices on RH and R∞. With Gℓm

so defined, the full Green’s function that satisfies the Teukolsky equation with source δ(r− r′)δ(cos θ− cos θ′)δ(φ−φ′)
is given by

G(x, x′) =
∑

ℓm

Aℓm∆′2RH(r<)R∞(r>) 2Sℓm(θ) 2Sℓm(θ′)eim(φ−φ′), (22)
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where we denote by x the spatial point with coordinates r, θ, φ and where ∆′ = r′
2 − 2Mr′ + a2. Hence, the Weyl

scalar that satisfies the Teukolsky equation has the form

ψ0 = −8π

∫
Σ′T (x′, x0)G(x, x

′)dr′d(cos θ′)dφ′

= −8π

∫
Σ′(T (0) + T (1) + T (2))G(x, x′)dr′d(cos θ′)dφ′

=: ψ
(0)
0 + ψ

(1)
0 + ψ

(2)
0 (23)

with Σ′ = r′
2

+ a2 cos2 θ′. The ψ(i) have, for r 6= r0, the explicit forms,

ψ
(0)
0 =

4πm(1− aΩ)2∆2
0u

t

r20

∑

ℓm

AℓmRH(r<)R∞(r>) 2Sℓm(θ)eim(φ−Ωt)

[
S′′
0 +

2iaS′
0

r0
− 2S0 + 2m(aΩ− 1)S′

0 +
2iam(aΩ− 1)S0

r0
+m2(aΩ− 1)2S0

]
, (24)

ψ
(1)
0 =

8πim(1− aΩ)
[
a− Ω(r20 + a2)

]
ut

2r30

∑

ℓm

Aℓm 2Sℓm(θ)eim(φ−Ωt)

s

2∆2
0

[
r0S

′
0 − iaS0 + r0S0

(
amΩ−m+

ia

r0

)]
[R′

H(r0)R∞(r)Θ(r − r0) +R′
∞(r0)RH(r)Θ(r0 − r)]

+

{
2∆0

[
S′
0(5r

2
0 − 6Mr0 + a2)− 4iaS0(r0 −M)

]
− 2∆2

0(r0S
′
0 − iaS0)

[
im
[
a− Ω

(
r20 + a2

)]

∆0
+

3

r0

]

− S0r0∆
2
0

[(
amΩ−m+

4ia

r0

)(
im
[
a− Ω

(
r20 + a2

)]

∆0
+

2

r0

)

+

(
im
[
a− Ω

(
r20 + a2

)]

∆0
+

4

r0

)(
amΩ−m− 2ia

r0

)]

+2∆0S0

(
amΩ−m+

ia

r0

)
(5r20 − 6Mr0 + a2)− 8iaS0∆

2
0

r0

}
RH(r<)R∞(r>)

|

, (25)

ψ
(2)
0 =

4πmut
(
a− Ω(r20 + a2)

)2

r40

∑

ℓm

Aℓm 2Sℓm(θ) 2Sℓm(π/2)eim(φ−Ωt)×
s

r20∆
2
0 {R′′

H(r0)R∞(r)Θ(r − r0) +R′′
∞(r0)RH(r)Θ(r0 − r)}

+

{
4r0∆0(3r

2
0 − 4Mr0 + a2)− 2r20∆

2
0

[
im
[
a− Ω

(
r20 + a2

)]

∆0
+

3

r0

]}
×

{R′
H(r0)R∞(r)Θ(r − r0) +R′

∞(r0)RH(r)Θ(r0 − r)}

+

{
r20∆

2
0

[
im
[
a− Ω

(
r20 + a2

)]

∆0
+

5

r0

][
im
[
a− Ω

(
r20 + a2

)]

∆0
+

1

r0

]

−r20∆2
0

[−5

r20
− 2imΩr0

∆0
− 2im(r0 −M)(a− Ω(r20 + a2))

∆2
0

]

−4r0∆0(3r
2
0 − 4Mr0 + a2)

[
im
[
a− Ω

(
r20 + a2

)]

∆0
+

3

r0

]

+2(3r20 − 4Mr0 + a2)2 + 4r0∆0(3r0 − 2M)

}
RH(r<)R∞(r>)

|

, (26)

where ∆0 = r20 − 2Mr0 + a2, S0 = 2Sℓm(π/2); S′
0 and S′′

0 are derivatives of 2Sℓm with respect to cos θ evaluated at
θ = π/2.
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B. Metric perturbation and Hren in a radiation gauge

Before presenting the detailed calculation ofH , ∆U and ∆Ω, it will be helpful briefly to recall parts of the radiation-
gauge method that we will use. In the CCK procedure [12–16] a perturbed vacuum metric is constructed from a spin
2 Hertz potential Ψ that satisfies

ψ0 =
1

8

[
L4Ψ̄ + 12M∂tΨ

]
, (27)

where L4 = L1L0L−1L−2 with Ls = ðs − ia sin θ∂t and ðs = − [∂θ + i csc θ∂φ − s cot θ]. Using Eq (10) and Eq (40)
of [1], we obtain

Ψ = 8
∑

ℓm

(−1)mDR̄ℓm + 12imMΩRℓm

D2 + 144M2m2Ω2
eim(φ−Ωt)

2Sℓm(θ), (28)

whereD2 = λ2CH(λCH+2)2+8aω(m−aω)λCH(5λCH+6)+48a2ω2[2λCH+3(m−aω)2] and λCH , the angular eigenvalue
used by Chandrasekhar [17], is related to the separation constant 2Eℓm of Eq. (11) by λCH = 2Eℓm + γ2 − 2mγ − 2.
The perturbed metric is then given (up to parts for which ψ0 vanishes) by

hαβ = ̺−4{nαnβ(δ̄ − 3α− β̄ + 5π)(δ̄ − 4α+ π) + m̄αm̄β(∆+ 5µ− 3γ + γ̄)(∆+ µ− 4γ)

−n(αm̄β)

[
(δ̄ − 3α+ β̄ + 5π + τ̄ )(∆+ µ− 4γ) + (∆+ 5µ− µ̄− 3γ − γ̄)(δ̄ − 4α+ π)

]
}Ψ+ c.c.. (29)

To describe the way one renormalizes the metric in a radiation gauge, it is helpful to begin with the Detweiler-

Whiting [18] decomposition of the metric in a Lorenz gauge. This has the form hret,Lorαβ = hS,Lorαβ + hren,Lorαβ , with

hren,Lorαβ a smooth solution to the vacuum Einstein equation in a neighborhood of the particle. Because the perturbed

Weyl scalar ψ0 is gauge invariant, when computed from this decomposed form of hret,Lorαβ , it has the gauge-invariant

decomposition ψret
0 = ψS

0 + ψren
0 , with ψren

0 a smooth sourcefree solution to the s = 2 Teukolsky equation. There is

then a smooth Hertz potential Ψren satisfying the sourcefree s = 2 Teukolsky equation with hren,ORG
αβ given in terms

of Ψren by Eq. (29). Here hren,ORG
αβ is the reconstructed perturbed metric up to terms involving changes in the mass,

angular momentum, and center of mass. (These are metric perturbations for which ψ0 vanishes, and they correspond
to the ℓ = 0 and ℓ = 1 parts of the perturbation for a Schwarzschild background.) Adding these perturbations in an
arbitrary gauge that is smoothly related to the Lorenz gauge yields the full perturbed metric in a modified radiation
gauge.
We will use this general description at the end of Sec. III, but in renormalizing Hret = 1

2h
ret
αβu

αuβ, we exploit
its invariance under gauge transformations generated by helically symmetric gauge vectors. As in our Schwarzschild
paper [4], this allows us to use the generic Lorenz-gauge singular behavior of the metric perturbation for the leading
term in the singular field. A difference between the singular field in our radiation-gauge and in the Lorenz-gauge
arises at subleading order in the angular harmonic index ℓ from a gauge vector that is singular at the position of
the particle, and this is discussed below. The mode-sum renormalization of the metric is described, for example, in
Sec. IV of [2] and we briefly review its relevant features. (It is based on the Barack-Ori mode-sum version of the
MiSaTaQuWa renormalization [19, 20] that is reviewed in detail in [21].) The components hret,Lorµν of the perturbed

retarded metric along an orthonormal frame have the singular behavior of a Coulomb field, proportional to ρ−1,
where ρ is the geodesic distance to the particle trajectory. This implies that Hret,Lor has the same Coulomb singular

behavior. The angular harmonics Hret,Lor
ℓm Yℓm of Hret,Lor then have finite limits Hℓm = limr→r0 H

ret,Lor
ℓm (t = 0, r) on

a sphere through the trajectory of the particle. At the position of the particle, the projection

Hret,Lor
ℓ =

∑

m

HℓmYℓm(π/2, 0) (30)

onto the ℓth subspace has the form

Hret,Lor
ℓ = HS,Lor

ℓ +Hren
ℓ , (31)

where Hren
ℓ , the value of the renormalized field, falls off faster than any power of ℓ. The singular field HS,Lor has

ℓ-dependence

HS,Lor
ℓ = E0L

0 +O(L−2), (32)
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with E0 independent of L; and the sum over ℓ of the O(L−2) terms vanishes. That is, HS = Hs + O(ρ), where
HS

ℓ = E0. The value of Hren is then given by

lim
ℓmax→∞

ℓmax∑

ℓ=0

Hren
ℓ = lim

ℓmax→∞

ℓmax∑

ℓ=0

(Hret
ℓ −Hs

ℓ). (33)

In our radiation gauge, we will find that, although HS,ORG
ℓ again has the form

HS,ORG
ℓ = E0L

0 +O(L−2), (34)

with E0 agreeing with its value for a Lorenz gauge, the O(L−2) part gives a contribution of order ρ0 that is odd
under parity in a hypersurface orthogonal to the trajectory: In particular, the sum of the O(ρ0) contributions from
the limits r → r+0 and r → r−0 vanishes.
The loss of gauge invariance at subleading order follows from the way one proves invariance of Hren for a helically

symmetric gauge vector ξα that is differentiable at the position of the particle (implying, in particular, Hren,Lor =
Hren,ORG). Under a gauge transformation with uα fixed, H changes by 1

2£ξgαβu
αuβ = ∇αξβu

αuβ. From Eqs. (4)
and (5) for uα, we have

∇αξβu
αuβ = utuβkα∇αξβ = utuβ(£kξβ − ξα∇βk

α) = −ξαuβ∇βu
α = 0, (35)

where we have used the geodesic equation in the last equality. Now uα, as defined by Eq. (4), satisfies the geodesic
equation only on the particle’s trajectory; for points a geodesic distance ρ from the trajectory, it satisfies

uβ∇βu
α = O(ρ). (36)

The gauge vector ξα relating a Lorenz gauge to our radiation gauge diverges as log ρ near ρ = 0 [22], leading to a
term of order ρ0 in Eq. (35). We defer to Sec. IV, in which the explicit analytic construction of the perturbed metric
is presented, the discussion of the parity of this term.
In the actual computation, as described in Sec. (VI), we use spin-weighted spherical harmonics instead of ordinary

spherical harmonics for parts of the metric with different spin weights, and we then check that the resulting leading
term in the singular field – the value of E0 – agrees with its value computed analytically within a Lorenz-gauge
framework by Linz [23].

C. Numerical methods - Angular harmonics

This section describes two different series expressions for spin-weighted spheroidal harmonics that we use for two
different purposes: First, following Fackerell and Crossman [24], we write each spin-weighted spheroidal harmonic as
a sum of Jacobi polynomials. The formalism provides an accurate way to evaluate the spheroidal harmonics and the
angular eigenvalues on which both the angular harmonics and the radial functions Rℓm depend. Second, to renormalize
the metric and the self-force, we write each spin-weighted spheroidal harmonic as sum of spin-weighted spherical
harmonics. Although the present paper uses only harmonics sSℓm := sSℓmω|ω=mΩ, the formalism is developed for

sSℓmω, with no restriction on ω.
For γ = aω, the spin-weighted spheroidal harmonics satisfy the eigenvalue equation

1

sin θ

d

dθ

(
sin θ

d

dθ
sSℓmω

)
+

[
γ2 cos2 θ − 2sγ cos θ − 2ms cos θ + s2 +m2

sin2 θ
+ sEℓmω

]

sSℓmω = 0, (37)

for a Teukolsky-equation source with time-dependence eiωt. The eigenvalue sEℓmω is a continuous function of γ that
takes the value ℓ(ℓ+1) when γ = 0. (Note that the spin-weighted spheroidal harmonics and their eigenvalues depend
on ω only via γ, so the conventional use of the index ω instead of γ is slightly misleading.)
For fixed s and γ, with γ real, the eigenfunctions are complete and orthogonal on the sphere, satisfying

δ(cos θ − cos θ′)δ(φ − φ′) =
∑

ℓm

sSℓmω(θ)e
imφ

sSℓmω(θ
′)e−imφ′

, (38)

∫ π

0

∫ 2π

0
sSℓmω(θ)e

imφ
sSℓ′m′ω(θ)e

im′φ sin θdθdφ = δℓ,ℓ′δm,m′ . (39)
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When γ = 0, sSℓmω(θ)e
imφ becomes the spin-weighted spherical harmonic sYℓm(θ, φ), given by

sYℓm =

{
[(ℓ− s)!/(ℓ+ s)!]

1/2
ðsYℓm, 0 ≤ s ≤ ℓ,

(−1)s [(ℓ+ s)!/(ℓ− s)!]
1/2

ð̄−sYℓm, −ℓ ≤ s ≤ 0,
(40)

with

ðη = − (∂θ + i csc θ∂φ − s cot θ) η,

ð̄η = − (∂θ − i csc θ∂φ + s cot θ) η (41)

where ð and ð̄ are, respectively, raising and lowering operators for the spin-weight, and η is a quantity of spin-weight s.

1. Spin-weighted spheroidal harmonics as a sum over Jacobi Polynomials

The formalism that expresses the angular harmonic sSℓmω in terms of Jacobi polynomials involves several constants
that depend on parameters s, ℓ,m, and γ whose values are fixed in this section. To avoid encumbering a large number
of symbols with the four indices s,m, ℓ, ω, in this and the next subsections (Sects. II C 1 and IIC 2) we suppress the
indices, so that, for example the angular harmonic and its corresponding eigenvalue will be written as

S ≡ sSℓmω, E := sEℓmω. (42)

To calculate the spin-weighted spheroidal harmonics, their derivatives and eigenvalue, we set x := cos θ and write
the homogenous angular equation, Eq. (37), as follows:

(1 − x2)
d2S

dx2
− 2x

dS

dx
+

(
γ2x2 − 2γsx− m2 + s2 + 2msx

1− x2
+ E

)
S = 0, (43)

The eigenfunctions’ dominant behavior at x = ±1 is (1 ∓ x)|m±s|/2. Following the formalism (and notation) of
Fackerell and Crossman [24], we introduce α = |m+ s| and β = |m− s| for simplicity and introduce new functions U
and V , as follows:

S(x) = eγx
(
1− x

2

)α(
1 + x

2

)β

U(x) , (44)

S(x) = e−γx

(
1− x

2

)α (
1 + x

2

)β

V (x). (45)

The functions U and V satisfy the following differential equation (where the upper sign is used if F = U , the lower
sign if F = V ):

(1 − x2)∂2xF + [β − α− x(2 + α+ β)± 2γ(1− x2)]∂xF

+

[
E + γ2 − α+ β

2

(
α+ β

2
+ 1

)
± γ(β − α)∓ γx(α+ β + 2± 2s)

]
F = 0. (46)

The above differential equation is closely related to that of the Jacobi polynomial given by the Rodgrigues formula

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β∂nx

[
(1− x)α+n(1 + x)β+n

]
, (47)

which satisfies
[
(1− x2)∂2x + [β − α− x(α + β + 2)]∂x + n(n+ 1 + α+ β)

]
P (α,β)
n = 0. (48)

Expanding the functions U and V as infinite series of Jacobi polynomials,

U(x) =
∞∑

r=0

A(r)P (α,β)
r (x),

V (x) =

∞∑

r=0

B(r)P (α,β)
r (x), (49)
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and using the recurrence relations satisfied by the Jacobi polynomials, we get the following two recurrence relations
for A(r) and B(r) (where the upper sign is used if G = A and the lower if G = B):

[
E + γ2 − α+ β

2

(
α+ β

2
+ 1

)
+

2sγ(α− β)

α+ β + 2

]
G(0) ±




4γ(α+ 1)(β + 1)

(
α+β
2 + 1∓ s

)

(α+ β + 2)(α+ β + 3)



G(1) = 0, (50)



±
4γ(r + α+ 1)(r + β + 1)

(
r + 1∓ s+ α+β

2

)

(2r + α+ β + 2)(2r + α+ β + 3)



G(r+1) ∓




4γr(r + α+ β)

(
r ± s+ α+β

2

)

(2r + α+ β − 1)(2r + α+ β)



G(r−1)

+

[
E + γ2 −

(
r +

α+ β

2

)(
r +

α+ β

2
+ 1

)
+

2γs(α− β)(α + β)

(2r + α+ β)(2r + α+ β + 2)

]
G(r) = 0. (51)

Determination of sE
γ
ℓm

For the series in Jacobi polynomial to converge, the constant E should satisfy a transcendental equation. To enforce
this, we define the following quantities:

N (r) =
2γ(r + α)(r + β)(2r + α+ β − 2s)

(2r + α+ β)(2r + α+ β + 1)

A(r)

A(r−1)
(52)

K(r) =

(
r +

α+ β

2

)(
r +

α+ β

2
+ 1

)
− γ2 − 2γs(α− β)(α + β)

(2r + α+ β)(2r + α+ β + 2)
(53)

L(r) =
4rγ2(r + α)(r + β)(r + α+ β)(2r + α+ β + 2s)(2r + α+ β − 2s)

(2r + α+ β)2(2r + α+ β + 1)(2r + α+ β − 1)
(54)

where none of the A(r)s vanish. Eqs. (50) and (51) may be written as

N (1) −K(0) + E = 0 (55)

and

N (r+1) = K(r) − E +
L(r)

N (r)
(56)

which by iterating gives us

N (r+1) = K(r) − E +
L(r)

K(r−1) − E + L(r−1)

K(r−2)−E+ L(r−2)

K(r−3)
−E+ L(r−3)

K(r−4)
−E+···+ L(1)

K(0)
−E

(57)

Equation (56) can also be written as

N (r) =
L(r)

E −K(r) +N (r+1)
(58)

which would then give us

N (r+1) = − L(r+1)

K(r+1) − E + L(r+2)

K(r+2)−E+ L(r+3)

K(r+3)
−E+ L(r+4)

K(r+4)
−E+···

. (59)

Equating Eqs. (57) and (59), we get a transcendental equation for E, namely

E =K(r) +
L(r)

K(r−1) − E + L(r−1)

K(r−2)−E+ L(r−2)

K(r−3)
−E+···+ L(1)

K(0)
−E

(60)

+
L(r+1)

K(r+1) − E + L(r+2)

K(r+2)−E+ L(r+3)

K(r+3)
−E+···

.
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We solve this in Mathematica to machine precision. Convergence of the infinite continued fraction in Eq. (59) is
treated in the references mentioned in [24].

Normalization of S(x)
We have already expanded the S(x) as a sum over Jacobi polynomials and have the recurrence relations for the

coefficients in the expansion where all the coefficients depend on either B(0) or A(0) in Eq. (49). Now we have,

S(x) = eγx
(
1− x

2

)α/2(
1 + x

2

)β/2 ∞∑

r=0

A(r)P (α,β)
r (x)

S(x) = e−γx

(
1− x

2

)α/2 (
1 + x

2

)β/2 ∞∑

r=0

B(r)P (α,β)
r (x). (61)

For the eigenfunctions to be normalized, we need two equations for the two unknowns, A(0) and B(0). We get one
from the Eqs. (44) and (45) which gives us

V = e2γxU. (62)

Using Eq. (49) at x = 1, we have

B(0)

A(0)
= e2γ

(
∞∑

r=0

A(r)

A(0)

(r + α)!

r!α!

)
/

(
∞∑

r=0

B(r)

B(0)

(r + α)!

r!α!

)
. (63)

The other equation is obtained by using

∫ 1

−1

S2dx =
1

2π
(64)

We use (2π)−1 here so that S(x)eimφ is normalized to 1. Using this normalization condition along with Eq. (61), we
have

A(0)B(0)
∞∑

n,r=0

A(n)

A(0)

B(r)

B(0)

∫ 1

−1

(
1− x

2

)α (
1 + x

2

)β

P (α,β)
n (x)P (α,β)

r (x)dx =
1

2π
, (65)

which gives us

A(0)B(0)
∞∑

n,r=0

A(n)

A(0)

B(r)

B(0)

2

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
δn,r =

1

2π
. (66)

Hence, the second equation is

1

A(0)B(0)
= 2π

∞∑

n=0

A(n)

A(0)

B(n)

B(0)

2

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
. (67)

The ratios A(r)/A(0) and B(r)/B(0) are easily calculated by using their recurrence relations Eqs. (50) and (51) and
using A(r) = B(r) = 0 for r < 0. Therefore Eqs. (63) and (67) correctly determine the first coefficients in the expansion
by choosing the A(0) whose real part is positive.

2. Spin-weighted spheroidal harmonics as a sum over sYℓm

The spectral decomposition of spin-weighted spheroidal harmonics in terms of spin-weighted spherical harmonics
as in [25], [26] has the form

S(θ)eimφ =

∞∑

j=ℓmin

bj sYj,m(θ, φ), (68)
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where ℓmin = max(|m|, |s|). Substituting the above in Eq. (37), we have
∑

j

bj
[
γ2 cos2 θ − 2γs cos θ − j(j + 1)

]
sYj,m = −E

∑

j

bj sYj,m. (69)

We now write cosn θ for n = 0, 1, 2 as sums of spherical harmonics. It is then easy to group them and the spin-weighted
spherical harmonics as follows: From the relations

cos θ = 2

√
π

3
Y1,0 , cos2 θ =

4
√
π

3
√
5
Y2,0 +

1

3
, (70)

Dj1
µ1m1

Dj2
µ2m2

=
∑

j,µ,m

〈j1, µ1; j2, µ2|j, µ〉〈j1,m1; j2,m2|j,m〉Dj
µ,m , (71)

and

sYℓm =

√
2ℓ+ 1

4π
Dℓ

−s,m, (72)

we find (for n = 0, 1, 2)

cosn θ sYℓm =
n

2n− 1

ℓ+n∑

j=ℓ−n

√
2ℓ+ 1

2j + 1
〈ℓ,−s;n, 0|j,−s〉〈ℓ,m;n, 0|j,m〉 sYj,m +

δn,2
3

sYℓm + δn,0 sYℓm. (73)

Multiplying Eq (69) with sYk,m, integrating over the 2-sphere, and using Eq (73) we have

bk−2

[
γ2ck−2,k,2

]
+ bk−1

[
γ2ck−1,k,2 − 2sγck−1,k,1

]
+ bk

[
γ2ck,k,2 − 2sγck,k,1 − k(k + 1)

]

+bk+1

[
γ2ck+1,k,2 − 2sγck+1,k,1

]
+ bk+2

[
γ2ck+2,k,2

]
= −Ebk, (74)

where

ck,j,2 =
δk,j
3

+
2

3

√
2j + 1

2k + 1
〈j,m; 2, 0|k,m〉〈j,−s; 2, 0|k,−s〉

ck,j,1 =

√
2j + 1

2k + 1
〈j,m; 1, 0|k,m〉〈j,−s; 1, 0|k,−s〉. (75)

Eq. (74) can be written as a matrix equation where the b are the matrix’s eigenvector and E are the eigenvalues. It
is then easy to solve the matrix equation for the eigenvectors and eigenvalues as the matrix is band diagonal. Here
〈j1,m1; j2,m2|j,m〉 are the Clebsch-Gordan coefficients.
To calculate sYℓm to high precision, we used the following analytical forms of spin-weighted harmonics at θ = π/2.

Introducing the symbol eℓm :=

{
1 ℓ+m even

0, ℓ+m odd ,
we can write

Yℓm(
π

2
, 0) = (−1)(ℓ+m)/2

√
(2ℓ+ 1)

4π

√
(ℓ −m)!(ℓ+m)!

(ℓ −m)!!(ℓ+m)!!
eℓm (76)

1Yℓm(
π

2
, 0) = (−1)(ℓ+m)/2

√
(2ℓ+ 1)(ℓ−m)!(ℓ+m)!

4πℓ(ℓ+ 1)

[
meℓ,m

(ℓ−m)!!(ℓ +m)!!
− i eℓ,m+1

(ℓ−m− 1)!!(ℓ +m− 1)!!

]
, (77)

2Yℓm(
π

2
, 0) = (−1)(ℓ+m)/2

√
(2ℓ+ 1)(ℓ−m)!(ℓ+m)!

4π(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

[
[2m2 − ℓ(ℓ+ 1)] eℓ,m
(ℓ−m)!!(ℓ +m)!!

− 2im eℓ,m+1

(ℓ−m− 1)!!(ℓ+m− 1)!!

]
.(78)

Eq. (76) is quickly obtained from the corresponding equation for Pm
ℓ (0), given, for example, in Arfken and Weber

[27]; the corresponding relations (77) and (78) for spin-weighted harmonics follow from their definition (40), with
recurrence relations of associated Legendre polynomials used to eliminate θ derivatives.
Values of the angular harmonics 2Sℓmω at (θ, φ) = (π/2, 0), computed as a sum of Jacobi polynomials and as a sum

over spin-weighted spherical harmonics 2Yℓm are listed in Table I to show the accuracy of our calculation of these
angular eigenfunctions.
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ℓ m a/M r0/M sSℓ,m (P
(α,β)
r ) sSℓ,m ( sYℓ,m)

6 3 0.90 2.321 0.25240458701173892108 0.25240458701173889664

10 8 -0.80 8.432 -0.077523625602031470364 -0.077523625602031470355

15 -14 0.56 3.994 -0.39964402300714286677 -0.39964402300714286644

20 20 0.95 1.938 0.53866543681715165119 0.53866543680910100221

25 -24 0.75 3.159 -0.38677474564628361398 -0.38677474564628311527

30 1 0.69 3.439 0.018864751317113632621 0.018864751317113632621

35 -29 0.43 4.502 -0.12392842343512166756 -0.12392842343512166731

41 38 0.85 2.633 0.41329611968515525721 0.41329611968514376716

45 43 -0.42 7.315 -0.44047075216769495176 -0.44047075216769495195

50 -47 0.50 4.234 0.37391460514301075256 0.37391460514301011670

54 43 0.29 5.015 0.39632284051223687540 0.39632284051223687540

60 58 0.81 2.860 -0.46730374640820672293 -0.46730374640803870557

65 42 -0.40 7.255 -0.35895613544467811490 -0.35895613544467811490

70 -70 0.67 3.529 -0.83907652666117403240 -0.83907652666117381586

75 74 0.80 2.910 0.32010913665973882714 0.32010913665976780184

80 78 0.64 3.660 -0.54551806835154401208 -0.54551806835154351539

85 -85 0.55 5.555 -0.88887357826499020752 -0.88887357826499020734

TABLE I: For each listed value of ℓ, m, a and r0, we give the value of 2S
ω
ℓ,m, obtained by using the formalism given in

subsections (IIC 1) and (IIC 2), with γ = amΩ = amM1/2

r
3/2
0 +a

and θ = π/2. The fractional accuracy increases with increasing r0,

and all except the last five values of r0 are chosen to be within a few percent of the innermost stable circular orbit for a given
a.

D. Numerical methods - radial harmonics

1. Teukolsky equation

We integrate RH and R∞ from the horizon and infinity, respectively. The homogenous solutions RH and R∞ at
the horizon and infinity are given by the following series

RH =
e−iωr⋆

∆2

∞∑

n=0

cn

(
r − r+
M

)n

, (79)

R∞ = eiωr⋆

∞∑

n=0

dn
(r/M)n+5

, (80)

where

r⋆ = r +
r2+ + a2

r+ − r−
ln |r − r+| −

r2− + a2

r+ − r−
ln |r − r−| and (81)

r± = M ±
√
M2 − a2. (82)
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The expansion coefficients satisfy the following recurrence relations

cn =

{
2i(n− 6)ωMcn−3 +

[
E − n2 + 7n− 12 + ω2a2 + i(8n− 34)ωM

√
1− a2/M2 + i(4n− 14)ωM

]
cn−2

+

[
4mωa+ (2E − 4n2 + 18n− 18 + 2ω2a2)

√
1− a2/M2

+ i12(n− 2)ωM − i4(2n− 5)ωa2/M − i4ma/M + i12(n− 2)ωM
√
1− a2/M2

]
cn−1

}

{
(4n2 − 8n)(1− a2/M2) +m2a2/M2 − 4mωa− 4mωa

√
1− a2/M2

− i[8nMω(1− a2/M2) + (8nωM − 4ma/M)
√
1− a2/M2

}−1

, (83)

dn =− i(n+ 1)a4

2ωM5
dn−5 +

i(n+ 1)(2n+ 1 + iωa2/M)a2

nωM3
dn−4

+
−4mMa+ (4n+ 8)ωMa2 − i(4n2 + 8n)M2 + i(E − 2n2 − 4n−m2)a2 + iω2a4

2nωM2
dn−3

+
2ma− (2n+ 1)ωa2 + i(−E + 2n2 + 5n+ 3 + 2mωa− ω2a2)M

nωM
dn−2

+
(4n− 4)ωM + i(E − n2 − 3n− 2 + ω2a2)

2nω
dn−1. (84)

We use a 7th order Runge-Kutta routine to solve for the homogenous radial solutions using the above initial/boundary
conditions, obtaining values of ψret

0 to an accuracy of 1 part in 1013.

2. Sasaki-Nakamura equation

The Sasaki-Nakamura equation is

d2X

dr∗2
− F

dX

dr∗
− UX = 0 (85)

where X is related to the radial part, R4 of ρ−4ψ4 by

R4 =
1

η

[(
α+

β′

∆

)
χ− β

∆
χ′

]
(86)

where

χ =
∆X√
r2 + a2

. (87)

The radial parts, R4 and R0 are related to each other by the relation

R0 = c
R∗

4

∆2
, (88)

where c is a constant. The function F is

F =
η′

η

∆

r2 + a2
(89)

where

η =− 12iωM + λ(λ+ 2)− 12aω(aω −m) +
8ia[3aω − λ(aω −m)]

r

+
−24iaM(aω −m) + 12a2[1− 2(aω −m)2]

r2
+

24ia3(aω −m)− 24Ma2

r3
+

12a4

r4
(90)
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and the prime denotes a derivate with respect to r.
The function U is

U =
∆U1

(r2 + a2)2
+G2 +

∆G′

r2 + a2
− FG (91)

where U1 and G are

U1 = V +
∆2

β

[
d

dr

(
2α+

β′

∆

)
− η′

η

(
α+

β′

∆

)]
and

G = −
[
2(r −M)

r2 + a2

]
+

r∆

(r2 + a2)2
. (92)

The α, β and V that appear above are given by

V = −
[
K2 + 4iK(r −M)

∆

]
+ 8iωr + λ ,

β = 2∆

[
−iK + r −M − 2∆

r

]
,

α =
−iKβ
∆2

+ 3iK ′ + λ+
6∆

r2
,

(93)

where K = (r2 + a2)ω − am. We use the following boundary conditions at the horizon and at infinity,

XH = eiωr∗ (94)

X∞ =

4∑

n=0

e−iωr∗ d̃n
rn

(95)

where

r∗ = r +
2Mr+
r+ − r−

log

∣∣∣∣
r − r+
2M

∣∣∣∣−
2Mr−
r+ − r−

log

∣∣∣∣
r − r−
2M

∣∣∣∣ (96)

and [26]

d̃0 = 1

d̃1 =
−i(2 + λ+ 2amω)

2ω
,

d̃2 = −λ
2 + λ(4 + amω)− 12iMω + 4amω(1 + amω + 2iMω)

8ω2
,

d̃3 =
iλ3

48ω3
+
iλ2(3amω − 1)

24ω3
+
iλ(−2− 2amω − 3iMω + 2a2ω2 + 3a2m2ω2 + 6iamMω2)

12ω3

+
i[6iM − 6am− 3aω(a+ imM) + 2amω2(a2 − 4M2) + (amω)2(am+ 6iM)]

6ω3
,

d̃4 =
λ4

384ω4
+
λ3(8amω − 12)

384ω4
+
λ2(12− 72amω + 48iMω + 32a2ω2 + 24a2m2ω2 + 48iamMω2)

384ω4

λ[80(1− amω) + 288iMω + 128a2ω2(amω − 1) + 16(amω)2(2amω + 12iMω − 7)− 256amM2ω3]

384ω4

+
1

24ω3
[30am− 30iM − 6a2ω − 15ω(am)2 + 60iamMω + 45M2ω − 16a3mω2 − 2(am)2ω2

− 18iM(aω)2 − 6iM(amω)2 + 4am(Mω)2 + 8a4m2ω3 + (am)4ω3 + 24imM(aω)3 + 12iM(amω)3

− 44ω(amMω)2 − 48iam(Mω)3]. (97)

The accuracy of our radial eigenfunctions is shown in Table II, which exhibits values of |RinRout/W | computed by
independently integrating the Teukolsky equation and the Sasaki-Nakamua equation.
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ℓ m a/M r0/M Teukolsky Sasaki-Nakamura

56 53 0.50 4.30 3.32878980028437×10−2 3.32878980028426×10−2

85 84 0.50 4.25 2.21479032560870×10−2 2.21479032560832×10−2

83 76 0.30 5.00 2.66435949501300×10−2 2.664359495012799×10−2

42 1 0.30 6.00 5.774432559632249×10−2 5.774432559632295×10−2

6 -1 -0.25 6.80 4.40438489554819×10−1 4.40438489554828×10−1

56 37 0.61 3.79 2.5750354691478×10−2 2.5750354691415×10−2

65 -58 -0.76 8.33 6.068437461161814×10−2 6.068437461161780×10−2

83 63 -0.71 8.18 4.5482452073276329×10−2 4.5482452073276363×10−2

76 74 0.92 2.20 1.056332700247276×10−2 1.056332700247222×10−2

68 62 0.16 5.50 3.62341811077144×10−2 3.62341811077135×10−2

79 67 0.70 3.40 1.69778531677806×10−2 1.69778531677799×10−2

56 -42 -0.25 6.80 5.4130389893688027×10−2 5.4130389893688006×10−2

79 71 0.58 3.95 2.09651683213181×10−2 2.09651683213165×10−2

82 75 -0.2 6.70 3.77916963861862×10−2 3.77916963861852×10−2

54 35 0.14 5.55 4.31642221118258×10−2 4.31642221118267×10−2

67 52 -0.64 8.00 5.497676877828166×10−2 5.497676877828151×10−2

75 61 0.78 3.05 1.52296461688768494×10−2 1.52296461688768459×10−2

77 68 -0.14 6.50 3.85508542936437×10−2 3.85508542936429×10−2

65 53 -0.72 8.30 5.946127670533624×10−2 5.946127670533644×10−2

81 66 -0.58 7.80 4.456906403886178×10−2 4.456906403886146×10−2

86 81 0.47 4.35 2.20499986904938×10−2 2.20499986904907×10−2

53 -53 -0.23 6.80 6.057956364463913×10−2 6.057956364463899×10−2

70 65 0.39 4.70 2.94548366362787×10−2 2.94548366362775×10−2

52 33 0.04 6.15 5.053852006520149×10−2 5.053852006520189×10−2

44 44 -0.34 7.10 7.645731150733178×10−2 7.645731150733167×10−2

70 68 0.21 15.00 1.027161976019888×10−1 1.027161976019891×10−1

72 67 -0.66 43.50 2.9619125920183531×10−1 2.9619125920183542×10−1

40 -39 0.21 25.00 3.02127126128480971×10−1 3.02127126128480916×10−1

61 58 0.91 72.50 5.849950541617765×10−1 5.849950541617792×10−1

50 2 -0.88 15.50 1.4349668057921668×10−1 1.4349668057921630×10−1

65 12 -0.44 100.00 7.558239183584133×10−1 7.558239183584106×10−1

TABLE II: For each listed value of ℓ, m, a and r0, we give the value of |RinRout/W |, obtained by integrating the Teukolsky
equation and the Sasaki-Nakamura equation. As in Table IIC 2, the fractional accuracy increases with increasing r0, and all
except the last six values of r0 are chosen to be within a few percent of the innermost stable circular orbit for a given a.

III. COMPUTATION OF THE PERTURBED METRIC

We can now use Eq. (29) to compute the perturbed metric in an ORG in terms of the Hertz potential Ψ. We first
convert the spin-weighted spheroidal harmonics in Eq. (28) to spin-weighted spherical harmonics as follows: Restoring
the suppressed indices s, ℓ, and m to S and bj in Eq. (68),

S = sSℓm, bj = bℓjm, (98)
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with s = 2, we have

Ψ = 8
∑

ℓm

(−1)mDR̄ℓm + 12imMΩRℓm

D2 + 144M2m2Ω2
eim(φ−Ωt)

2Sℓm(θ)

= 8
∑

ℓm

(−1)mDR̄ℓm + 12imMΩRℓm

D2 + 144M2m2Ω2
e−imΩt

∑

ℓ′

bℓℓ′m 2Yℓ′,m(θ, φ)

=
∑

ℓ′,m

(
∑

ℓ

8bℓℓ′m
(−1)mDR̄ℓm + 12imMΩRℓm

D2 + 144M2m2Ω2
e−imΩt

)

2Yℓ′,m(θ, φ)

=
∑

ℓm

Ψℓm(t, r) 2Yℓm(θ, φ). (99)

To write the nonzero tetrad components of the metric perturbation of Eq. (29), we replace spin-coefficients by their
values for Kerr given in Eq. (3), we write the derivatives operators ∆ and D in the explicit forms implied by (2), and
we use Eq. (41) to replace the angular derivative operator δ by its form in terms of ð. We thereby obtain

h11 =
∑

ℓm

1

2̺2
[
ð̄
2 − 2ia(̺+ imΩ) sin θ ð̄− 3a2̺2 sin2 θ + a2(̺− imΩ)(3̺+ imΩ) sin2 θ

]
Ψℓm 2Yℓm + c.c., (100)

h13 =
∑

ℓm

−1

4
√
2

∆

Σ̺3

[
2∂rð̄− ia

(
̺− ¯̺+ 2imΩ− 2i

a

Σ
cos θ

)
sin θ∂r − 2

(
̺+ ¯̺+ 4

r −M

∆
+ iq

)
ð̄

+ 6ia̺2 sin θ − ia
(
2̺+ ¯̺− imΩ+ 2i

a

Σ
cos θ

)(
3̺+ 4

r −M

∆
+ iq

)
sin θ

− ia (3̺+ imΩ)

(
̺− 2¯̺− 4

r −M

∆
− iq

)
sin θ

]
Ψℓm 2Yℓm, (101)

h33 =
∑

ℓm

1

4

∆2

Σ2̺4

[
∂2r +

(
̺− ¯̺+ 8

r −M

∆
− 2r

Σ
+ 2iq

)
∂r + 3̺2 +

4

∆
− 8(r −M)2

∆2
+ 2i

q(r −M) +mΩr

∆

+

(
2̺+ ¯̺− 4

r −M

∆
+ 2

r

Σ
+ 2iq

)(
3̺+ 4

r −M

∆
+ iq

)]
Ψℓm 2Yℓm. (102)

Because Ψ has spin-weight 2 and ð̄Ψ has spin-weight 1, ð̄ acting on Ψ and on ð̄Ψ has the form (41) with s = 2 and
s = 1, respectively.
We next expand the operators acting on Ψ in powers of the small parameter cos θ and show below that terms

involving cos θ and cos2 θ do not contribute to hrenµν (or to the nonzero part of the singular field). Using Eq. (40) for

the action of ð̄ on 2Yℓm, we obtain

h11 =
∑

ℓm

Ψℓm

(
2∑

n,s=0

sAn
ℓm cosn θ sYℓm

)
+ c.c., (103)
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where the radial functions sAn
ℓm are given by

0A0
ℓm =

√
(ℓ+ 2)!

(ℓ− 2)!

r2

2
, (104a)

1A0
ℓm = −

√
(ℓ− 1)(ℓ + 2)ar(i +mΩr), (104b)

2A0
ℓm =

1

2
a2mΩr(2i +mΩr), (104c)

0A1
ℓm = −i

√
(ℓ+ 2)!

(ℓ− 2)!
ar, (104d)

1A1
ℓm = −

√
(ℓ− 1)(ℓ + 2)a2(1 − 2imΩr), (104e)

2A1
ℓm = mΩa3(1 − imrΩ), (104f)

0A2
ℓm = −1

2

√
(ℓ+ 2)!

(ℓ− 2)!
a2, (104g)

1A2
ℓm =

1

2

√
(ℓ− 1)(ℓ+ 2) a[ir +mΩ(r2 + 2a2)], (104h)

2A2
ℓm = −1

2
mΩa2[2ir +mΩ(r2 + a2)]; (104i)

h13 =
∑

ℓm

2∑

s=1

2∑

n=0

sBn
ℓm cosn θ sYℓm, (105)

where, with q defined by Eq. (14), the functions sBn
ℓm are given by

1B0
ℓm = −

√
(ℓ− 1)(ℓ+ 2)

8

[
r∆Ψ′

ℓm + (2r2 − 2a2 − iqr∆)Ψℓm

]
, (106a)

2B0
ℓm =

1√
8
amΩ[r∆Ψ′

ℓm + (2r2 − 2a2 − iqr∆)Ψℓm], (106b)

1B1
ℓm = 3i

√
(ℓ− 1)(ℓ + 2)

8

a

r
[r∆Ψ′

ℓm + (2r2 − 2a2 − iqr∆)Ψℓm], (106c)

2B1
ℓm = − 1√

8

a2

r

{
(2 + 3imΩr)∆Ψ′

ℓm +
[
8(r −M) + 3mΩqr∆− 2ima+ 4imΩ(2r2 − a2)

]
Ψℓm

}
, (106d)

1B2
ℓm =

√
(ℓ− 1)(ℓ+ 2)

2

a2

r2
[
2r∆Ψ′

ℓm + (3r2 + 2Mr − 5a2 − 2iqr∆)Ψℓm

]
, (106e)

2B2
ℓm =

1

32

a

r2
{[mΩr(r2 + 8a2) + 12ia2]∆Ψ′

ℓm + [12ma3 + 2mΩ(r4 − a2r2 + 4Ma2r − 16a4)]Ψℓm

+ i[48a2(r −M)−mΩqr(r2 + 8a2)∆]Ψℓm}; (106f)

and

h33 =
∑

ℓm

2∑

n=0

Cn
ℓm cosn θ 2Yℓm, (107)

with Cn
ℓm given by

C0
ℓm =

1

4
∆2Ψ′′

ℓm +
1

2

∆

r

(
3r2 − 2Mr − a2 − iqr∆

)
Ψ′

ℓm

+

[
r2 − 2M2 − a2 + 2

Ma2

r
− 1

4
q2∆2 − i

2

q∆

r
(2r2 −Mr − a2)

]
Ψℓm, (108)
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C1
ℓm =

−ia∆2

r
Ψ′′

ℓm − ia∆

r
Ψ′

ℓm

(
8(r −M)− 3∆

2r
− 2im[a− Ω(r2 + a2)]

)

− ia
r
Ψℓm

[
2imΩ∆r + 8(M − 2)2 − 2∆+

6M∆

r
+ 6im[a− Ω(r2 + a2)](M − r)

+
3∆im[a− Ω(r2 + a2)]

2r
−m2

[
a− Ω(r2 + a2)

]2
]
, (109)

C2
ℓm =

−2a2∆2

r2
Ψ′′

ℓm − ∆a2

r2
Ψ′

ℓm

[
16(r −M)− 5∆

2r
− 4im[a− Ω(r2 + a2)]

]

−a
2

r2
Ψℓm

[
4imΩ∆r + 16(M − r)2 − 2∆+

10M∆

r
+ 12im(M − r)[a − Ω(r2 + a2)]

+
5∆[a− Ω(r2 + a2)]

2r
− 2m2[a− Ω(r2 + a2)]2

]
. (110)

We now argue that the terms involving cosn θ with n 6= 0 in Eqs. (103), (105) and (107) can be ignored. We refer
here to our description in Sec. II B of the the renormalization procedure in terms of ψ0 and Ψ. The components
hrenµν of the renormalized radiation-gauge metric are given by Eqs. (103), (105) and (107), with Ψ replaced by Ψren.
Because Ψren is smooth and hence finite at the particle, no term proportional to cos θ contributes to hrenµν .

It can happen, however, that the cos θ terms contribute to hSµν , written in terms of ΨS. The cos2 θ terms cannot

contribute, because they are O(ρ2) and multiply terms whose sum is at most O(ρ−1) (terms involving two derivatives
of Ψ). Similarly, the cos θ terms cannot contribute to the leading term in hS, because they are one order in ρ smaller
than the leading term in Hs. At subleading order, however, they give an O(ρ0) contribution that has odd parity.
The parity of this contribution to the singular field follows from that fact that, at leading order, Ψret is even under
parity about the position of the particle (shown in detail in Sec. IIID of [1]), while cos θ is odd. The leading-order
contributions to the cos θ terms come from terms involving two derivatives of Ψret, and these are again even under
parity, implying that at leading order, the contribution from r > r0 cancels the contribution with opposite sign from
r < r0. Finally, lower-order contributions multiplying cos θ are order ρ, vanishing at the particle.
One can then compute Hren by subtracting the leading part of the singular field (which coincides the Lorenz-gauge

singular field) and by omitting terms that involve cos θ. We have verified this agreement numerically (see Sec. VI),
finding that the order L0 part of HS

ℓ agrees to one part in 1012 with its analytic form computed by Linz [23] and that
the O(L−1) contribution vanishes to within the accuracy of the computation.

IV. GAUGE-INVARIANT QUANTITIES

In this section, we obtain expressions for the related quantities ∆U and ∆̂Ω that give, respectively, the change
in the redshift factor of a trajectory at fixed angular velocity and the change in the angular velocity of a trajectory
at fixed redshift factor U . Each of these quantities is invariant under gauge-transformations generated by helically
symmetric gauge vectors ξα and each can be written in terms of the similarly gauge-invariant quantity

Hren :=
1

2
hrenαβ u

αuβ , (111)

where hrenαβ is the renormalized metric perturbation.

As shown by Mino et al. [19] (see also Quinn and Wald [20] and Detweiler & Whiting [18]), at order m/M the
particle moves along a geodesic of the metric gαβ + hrenαβ , where gαβ is the background (Kerr) metric. Denote by

ûα = U(tα +Ωφα) the particle’s 4-velocity, normalized with respect to gαβ + hrenαβ ,

(gαβ + hrenαβ ) û
αûβ = 1. (112)

We consider first the difference ∆U between the value of U for a circular geodesic of the perturbed metric and its
value at the circular geodesic of the unperturbed metric with the same value of angular velocity Ω. Formally, because
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perturbations to first-order in m/M are linear in m, we can write

∆U = m

∂

∂m
U(m,Ω)|m=0. (113)

We will denote by δU the gauge-dependent change in U at a fixed value of r. Denoting by U(m, r) value of U for
the circular geodesic at radial coordinate r of the metric gαβ + hrenαβ , we have

δU := m

∂

∂m
U(m, r)|m=0. (114)

Let ξα be the radial vector joining the unperturbed circular geodesic with angular velocity Ω to the perturbed geodesic
with the same angular velocity: Formally

Ω(m = 0, r) = Ω(m, r + ξr) +O(m2). (115)

Then

∆U = δU + £ξU, ∆Ω = δΩ + £ξΩ = 0, (116)

where ∆Ω and δΩ are defined as in Eqs. (113) and (114).
We can now quickly compute ∆U from Eq. (112), showing as follows the relation

∆U = −utHren. (117)

Define k̃α in the equatorial plane by k̃α = tα+Ωφα, with Ω = Ω(m, r), and let kα be the Killing vector kα = tα+Ω0φ
α,

where Ω0 is the angular velocity of the unperturbed orbit through r = r0. Then, applying ∆ to the normalization
equation (112) and evaluating the expression at r = r0, we have

0 = ∆(gαβU
2k̃αk̃β) = (δ + £ξ)(gαβU

2k̃αk̃β) = (hrenαβ + £ξgαβ)u
αuβ +

2

U
∆U + 2Uuα(δ + £ξ)k̃

α, (118)

with δ again the perturbation at fixed radius r, as in Eq. (114). Using the fact that ξα is helically symmetric, we

now see as follows that the terms £ξgαβu
αuβ and (δ + £ξ)k̃

α vanish. At r = r0, we have U(m = 0, r0) = ut, whence
uα = utkα, and Eq. (35) then implies £ξgαβu

αuβ = 0. Finally, because the coordinate system is independent of m,
we have δtα = 0 = δφα (that is, ∂t and ∂φ do not change), and the last term vanishes:

(δ + £ξ)k̃
α|r=r0 = £ξt

α +Ω0£ξφ
α = £ξk

α = −£kξ
α = 0. (119)

From the two surviving terms on the right of Eq. (118), we obtain the claimed form ∆U = −1

2
uthrenαβ u

αuβ.

The change in the angular velocity at fixed U is similarly gauge invariant and is easily obtained from ∆U . With Ω
regarded as a function of m and U we define its change at fixed U by

∆̂Ω := m

∂

∂m
Ω(m, U)|m=0. (120)

From the fact that, at fixed m, Ω(m, U) is the inverse of U(m,Ω), it follows that

∆̂Ω = − ∂

∂U
Ω(m = 0, U)∆U, (121)

implying

∆̂Ω = − 1

uφut
Hren. (122)

The resulting values of ∆U and ∆̂Ω are presented in Tables III and IV.
For completeness, we give here explicit expressions for the quantities δU and δΩ. These depend on the gauge-

dependent acceleration aα, the self-force per unit mass, which is ordinarily defined with the perturbed trajectory
parametrized by proper time with respect to the background metric, implying for the 4-velocity uα the normalization

gαβ u
αuβ = 1. (123)
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Denoting by τ and τ̂ proper time along a trajectory with respect to gαβ and gαβ + hrenαβ , respectively, we have

uα =
dτ̂

dτ
ûα, with

dτ

dτ̂
= 1− 1

2
hrenαβ u

αuβ = 1−Hren. (124)

The acceleration of the perturbed trajectory with respect to the background metric gαβ is given by

aα := uβ∇
0

βu
α (125a)

= −(gαδ + uαuδ)(∇
0

γhβδ −
1

2
∇
0

δhβγ)u
βuγ , (125b)

where ∇
0

α is the covariant derivative operator of gαβ .
Using Eqs. (123) and (125a), we find for the changes in Ω and ut of a trajectory at fixed radius r0

δΩ = Ω
2aM1/2r20 + r

5/2
0 (r0 − 3M)

2M(r
3/2
0 + aM1/2)

ar (126)

and

δut = ut
r
1/2
0 (r20 + a2 − 2aM1/2r

1/2
0 )

2(r
3/2
0 + aM1/2)

ar, (127)

where Ω and ut are given by the relations in Eq (6), Ω is the frequency measured by the observer at infinity. Here
one is comparing the values of Ω and ut for circular geodesics of the perturbed metric gαδ + hrenαβ to their values for
a circular geodesic of the unperturbed metric gαβ at the same value r = r0 of the radial coordinate. The expressions
are valid in any gauge, but the values of ar, δΩ and δU are gauge-dependent.

V. LOWER MULTIPOLES

The metric recovered from ψren
0 specifies the perturbation up to the contribution that comes from the change in

mass and angular momentum of a Kerr metric and from a change in the center of mass that is pure gauge except at
r = r0 (and that does not contribute to Hren).2 In this section we calculate the contribution to the gauge-invariant
Hret from the change in mass and angular momentum due to the presence of the orbiting particle of mass m. We
calculate them in the “Kerr gauge”; that is, they are written as the first-order perturbations of the Kerr metric in
Boyer-Lindquist coordinates associated with the changes δM and δJ in its mass and angular momentum. These two
parts of the metric perturbation are thus stationary and axisymmetric, and they are associated with a stationary,
axisymmetric part of the stress-energy tensor. For a particle in circular orbit, δM and δJ have the simple forms

δM = E = muαt
α, δJ = L = −muαφα (128)

(for our + − −− signature), as stated by L. Price [28]. The expression for δJ follows, for example, from the Ko-
mar formula for angular momentum, valid for a stationary axisymmetric perturbation of a stationary axisymmetric
spacetime; it implies

δJ = −
∫

V

Tα
β φ

βdSα = −muφ, (129)

when there is no change in the angular momentum of the black hole. The change in the mass follows from the
Bardeen-Carter-Hawking first law of thermodynamics for black holes and matter, which gives

δM = ΩδJ +m/ut = mut. (130)

2 In the mode-sum renormalization, the individual modes of the metric are computed as the limits of their values as r → r0 from r < r0
or r > r0. Because the because the metric perturbation associated with a change in the center of mass is pure gauge for r 6= r0, these
limits vanish.
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(One can also use the generalization of the first law to helically symmetric binaries [29–31], but the stationarity and
axisymmetry of the relevant perturbation again means that the original form of the first law is valid.)
Although one can also find δM directly from the Komar expressions in terms of the timelike Killing vector shared

by the background and perturbed spacetimes, a warning is needed: An unexpected subtlety arises in using the Komar
expression for the mass. The Komar mass on a sphere outside the particle orbit has the form

δM = δ
1

4π

∫
∇αtβdSαβ , (131)

where dSαβ = 1
2ǫαβγδdS

αβ (implying dStr = 1
2

√−gdθdφ). If one requires that the change in the Komar mass of the
black hole vanish and assumes that δtα = 0, the result is an incorrect expression for δM . Gauss’s theorem gives

δM = δ
1

4π

∫

V

∇β∇αtβdSα + δ
1

4π

∫

horizon

∇αtβdSαβ

=

∫
(2Tα

β − δαβT )t
βdSα + δ

1

4π

∫

horizon

∇αtβdSαβ , (132)

and
∫
(2Tα

β − δαβT )t
βdSα = m(2ut − 1/ut) 6= mut. (133)

The discrepancy arises from a rescaling of htt = hαβt
αtβ near the horizon for a time-independent perturbation. This

is easiest to see for a Schwarzschild background, where the perturbation in the mass arises from the spherically
symmetric part of the perturbation – from the perturbation due to a spherical shell of dust whose particles have
trajectories isotropically distributed over all circular geodesics at r = r0. The Komar mass is gauge invariant,3 and
we can can compute it in a Schwarzschild gauge. The perturbed field equation then requires continuity of htt =: e2Φ

across r = r0, and δΦ is constant inside r = r0, implying a constant rescaling of time for r < r0. The result is that
the expression for the change in the Komar mass at the horizon is evaluated with a rescaled metric but without a
rescaled tα, giving a nonzero result,

δ
1

4π

∫

horizon

∇αtβdSαβ = m(1/ut − ut), (134)

that yields the correct value δM = mut for the change in the spacetime mass. The change in hαβ inside r = r0 has
the form £ξgαβ for a vector ξα linear in t; because tα remains fixed, however, this is not a gauge transformation of
the integrand ∇αtβdSαβ (the integrand does not change by £ξ(∇αtβdSαβ)).
Finally, Eq. (129) for the change in angular momentum is valid, because the rescaling does not alter the Komar

expression for the angular momentum at the horizon.
To calculate the metric perturbation that comes from the change in mass and angular momentum, we find the first

order perturbation of the (relevant components of the) Kerr metric in Boyer-Lindquist coordinates which are

htt = −2δM

r
htφ = 0

hφφ =
2(M + r)a2δM

Mr
(135)

for the change in mass, and

htt = 0

htφ =
2MδJ

r

hφφ = −2a(2M + r)δJ

Mr
(136)

3 Gauge invariance of the integral (131), over a sphere S where there is no matter, can be seen as follows. Let S′ be another sphere
homologous to S with no matter in the region between them. Then, for any given choice of gauge, the value of the Komar integral is
the same on the two spheres. Consider a gauge transformation associated with an arbitrary gauge vector ξα defined in a neighborhood
of S, and extend ξα smoothly so that it vanishes on S′. In the new gauge, the value of the Komar integral on S′ has not changed; and
it must again have the same value on S and S′. Its value on S is therefore unchanged.
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for the change in angular momentum. From these expressions and Eqs. (6) for ut and Ω (and using uφ = Ωut), we
obtain

HδM =
m(r2 ± 2aM1/2r1/2 − a2)(r3/2 − 2Mr1/2 ± aM1/2)

r9/4(r3/2 − 3Mr1/2 ± 2aM1/2)3/2
(137)

and

HδJ =
M1/2

m(r2 ∓ 2aM1/2r1/2 + a2)(±a− 2M1/2r1/2)

r9/4(r3/2 − 3Mr1/2 ± 2aM1/2)3/2
(138)

where the upper (lower) sign is used for direct (retrograde) orbits.

VI. NUMERICAL RESULTS

The renormalization of H follows the mode-sum method described in Sec. II B. After the odd-parity terms – terms
involving cos θ in Eqs. (103), (105) and (107) – are omitted, the method is identical to that used in [4] for a particle
in circular orbit in a Schwarzschild background.
In Eq. (34), with the odd-parity part of HS gone, the remaining O(L−2) terms vanish at the particle, allowing us

to write the remaining part H̃S
ℓ of HS

ℓ in the form

H̃S
ℓ
= E0 +

kmax∑

k=1

E2k

P2k(ℓ)
, (139)

where P2k(ℓ) is a polynomial in ℓ of order 2k for which

∞∑

ℓ=0

1

P2k(ℓ)
= 0. (140)

We numerically match H̃ret
ℓ (where the tilde again denotes a value computed with odd-parity terms omitted) to this

expansion of H̃S
ℓ ,

H̃S
ℓ
= E0 +

kmax∑

k=1

E2k

P2k(ℓ)
, (141)

and extract the regularization coefficients E2k up to kmax between 8 and 10. The method used in the numerical
matching and an error-minimization criterion for the choice of kmax are described in detail in [4]. The resulting value
of Hren is given by

Hren =

ℓmax∑

ℓ=0

[
Hret

ℓ −HS
ℓ

]
=

ℓmax∑

ℓ=0

[
H̃ret

ℓ − H̃S
ℓ

]
, (142)

with ℓmax = 74. The analytical value of E0 [23] is given by

E0analytical =
2

π
√
(1 + β)gθθ

K

(
β

1 + β

)
, (143)

where β =
gφφ−gθθ+L2

gθθ
and K is the complete elliptic integral of the first kind, K(m) =

∫ π/2

0

(1 −m sin2 φ)−1/2dφ.

We compare the value of E0 obtained by numerical matching to the above analytical result and observe that they
agree to 12 significant figures.
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r0/M a = −0.9M a = −0.7M a = −0.5M a = 0.0M a = 0.5M a = 0.7M a = 0.9M

4 - - - - - -0.39639405 -0.32811192

5 - - - - -0.31443977 -0.27861234 -0.25156061

6 - - - -0.29602751 -0.23463184 -0.21756347 -0.20361838

7 - - - -0.22084753 -0.18875155 -0.17902998 -0.17073001

8 - - -0.20415909 -0.17771974 -0.15838853 -0.15222199 -0.14680897

10 -0.15129436 -0.14557511 -0.14033900 -0.12912227 -0.12019572 -0.11717475 -0.11443451

15 -0.083291764 -0.081933637 -0.080646922 -0.077725319 -0.075195106 -0.074284771 -0.073429473

20 -0.058142984 -0.057590366 -0.057059948 -0.055827719 -0.054723506 -0.054316065 -0.053927537

30 -0.036504919 -0.036334869 -0.036169772 -0.035778314 -0.035416550 -0.035279964 -0.035147937

50 -0.021026283 -0.020984416 -0.020943414 -0.020844656 -0.020751199 -0.020715285 -0.02068020

70 -0.014784459 -0.014767331 -0.014750491 -0.014709646 -0.014670583 -0.014655454 -0.014640606

100 -0.010234918 -0.010228170 -0.010221515 -0.010205282 -0.010189625 -0.010183523 -0.010177512

TABLE III: This table presents the numerical values of ∆U for different values of r0/M and a. They are accurate to a fractional
difference of order 10−8.

r0/M a = −0.9M a = −0.7M a = −0.5M a = 0.0M a = 0.5M a = 0.7M a = 0.9M

4 - - - - - 0.054267340 0.052559297

5 - - - - 0.047924050 0.046963137 0.046465534

6 - - - 0.042727891 0.040850942 0.040470951 0.040275775

7 - - - 0.036056740 0.035175043 0.034994056 0.034900960

8 - - -0.031876878 0.031046361 0.030576073 0.030478282 0.030427413

10 -0.024543706 -0.024365158 -0.024209291 0.023913779 0.023742658 0.023706031 0.023686199

15 -0.014462899 -0.014434162 -0.014408846 0.014359915 0.014330238 0.014323381 0.014319216

20 -0.0098123143 -0.0098041785 -0.0097969635 0.0097828022 0.0097738694 0.0097716692 0.0097702125

30 -0.0055825069 -0.0055810957 -0.0055798309 0.0055772872 0.0055755838 0.0055751254 0.0055747889

50 -0.0026871991 -0.0026870390 -0.0026868933 0.0026865907 0.0026863727 0.0026863081 0.0026862560

70 -0.0016464854 -0.0016464466 -0.0016464110 0.0016463355 0.0016462787 0.0016462609 0.0016462460

100 -0.00097498493 -0.00097497623 -0.00097496816 0.00097495060 0.00097493692 0.00097493244 0.00097492852

TABLE IV: Numerical values of M∆̂Ω for different values of r0/M and a. The values are accurate to a fractional difference of
order 10−8.

VII. DISCUSSION AND FUTURE WORK

The results here are based on the computation of the invariant Hren, and work now underway with A. Le Tiec shows
that ∆U from the computations in our modified radiation gauge agrees with the post-Newtonian series for ∆U linear
in the spin parameter a/M : A preliminary matching shows that the first coefficient in the pN series agrees to five
significant digits. The results here also agree with those of a separate EMRI computation by Dolan, who works in a
Lorenz gauge using an effective source method (agreement is within their numerical error bars of order 10−2). Finally,
we have also begun work to extend the computation reported here to find the self-force on a particle in circular orbit
in a Kerr background.
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