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This is the first of two papers on computing the self-force in a radiation gauge for a particle of
mass m moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-
ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of
the quantity H := %hagu“u57 gauge-invariant under gauge transformations generated by a helically
symmetric gauge vector; here hqopg is the metric perturbation, u® the particle’s 4-velocity. We find
the related order m correction to the particle’s angular velocity at fixed renormalized redshift (and
to its redshift at fixed angular velocity), each of which can be written in terms of H. The radiative
part of the metric perturbation is constructed from a Hertz potential that is extracted from the
Weyl scalar by an algebraic inversion[l]. We then write the spin-weighted spheroidal harmonics
as a sum over spin-weighted spherical harmonics Yz, and use mode-sum renormalization to find
the renormalization coefficients by matching a series in L = £ 4 1/2 to the large-L behavior of the
expression for H. The non-radiative parts of the perturbed metric associated with changes in mass
and angular momentum are calculated in the Kerr gauge.

PACS numbers: 04.30.Db, 04.25.Nx, 04.70.Bw

I. INTRODUCTION

We report here a first computation of the order m renormalized corrections A2 to the angular velocity of a mass
m in circular orbit about a Kerr black hole and of the related change AU in the scalar U = u*V,t. This is the
constant of proportionality between the particle’s velocity and the helical Killing vector £ tangent to its trajectory:
u® = Uk®. The corresponding computation for a Schwarzschild background was first done by Detweiler [2], who
pointed out the invariance of these quantities under gauge transformations generated by helically symmetric gauge
vectors. The invariance allows straightforward comparison with computations in other gauges, and comparisons were
done for circular orbits in Schwarzschild for a Lorenz gauge [3] and for our modified radiation gauge [4]. Previous
conservative self-force computations in Kerr spacetime have been restricted to a scalar particle in eccentric, equatorial
orbit [5, 6].

The radiation gauges are associated with the Weyl scalars ¢y and 14 that satisfy the Teukolsky equation [7]: They
are gauges in which one can construct a perturbed metric in the vacuum spacetime outside the particle from g
or ¢4, and for circular orbits this can be done by an algebraic inversion. The resulting metric, however, lacks the
non-radiative contributions from the changes M and dJ in mass and angular momentum, and from the change in
the center of mass. We write the metric perturbations corresponding to M and dJ in the Kerr gauge, the result of
changing a and M in the Kerr metric written in Boyer-Lindquist coordinates. It is in this modified radiation gauge
that we compute AQ and AU.

We believe that the numerical results given here are accurate to better than one part in 10%, consistent with
our earlier Schwarzschild computation. Numerical values we reported in an earlier eprint version of this paper had
significant inaccuracy, due to an oversight in our computation of the singular field, found after two comparisons. We
performed a detailed comparison of our results for H™" with corresponding post-Newtonian values found by A. Le
Tiec; and we compared a few values of H™" with those of S. Dolan, who has completed another EMRI calculation
of H™". Dolan’s calculation uses a Lorenz gauge and an effective-source renormalization method (see, e.g. [8-11]).
Where our initial error led to a numerical error of about 5% (with about twice that error for the the difference between
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H for Schwarzschild and for Kerr), Dolan’s present accuracy is about 1%. *

The plan of the paper is as follows. In Sec. ITA, after a brief review of the Teukolsky equation and associated
formalism, we obtain the analytic form of the Weyl scalar ¥{°", expressed as a sum over spin-weighted spheroidal
harmonics. In II B we review the construction of the metric perturbation in a radiation gauge, using a Hertz potential
constructed algebraically from 1. We describe the mode sum renormalization, pointing out a difference, not present in
our Schwarzschild computation, between the singular field at subleading order in a Lorenz gauge and in our radiation
gauge. In Sec. IIC, we first review two different series expansions for spin-weighted spheroidal harmonics, one as
a sum of Jacobi polynomials, the other as a sum over spin-weighted spherical harmonics. We check the accuracy of
the angular harmonics by computing them using these two different expansions. We then obtain explicit expressions
for the values of the harmonics 1Yy, and oYy, at 0 = 7/2 (the plane of the particle’s orbit). In Sec. IID we
review the numerical construction of solutions to the radial Teukolsky equation, by direct numerical integration and
by numerical integration of the Sasaki-Nakamura equation. Again we check the accuracy of our computation of the
radial harmonics and the angular harmonics of ¥§°" obtained in these two independent ways. In Sec. III we compute
the tetrad components of the perturbed metric from the Hertz potential. In Sec. IV we find expressions for the change

AU in the renormalized redshift factor at fixed € and the corresponding change in the angular velocity at fixed U;
1
each is simply related to the quantity H™" = ghfguo‘uﬂ . In Sec. V we present the computation of the retarded

component of the lower multipoles in Boyer-Lindquist coordinates. In Sec. VI, we present the numerical results for
H™™ AU and AS). Finally, in Sec. VII, we briefly discuss our results and future work.

II. REVIEW AND COMPUTATION OF "

A. Formalism

We work in Boyer-Lindquist coordinates where the Kerr metric is given by

2Mra? sin® 0

2
ds? = (1 - 2—M> di® + WL;“dtda; _Z v - (r2 ta+ s

= A ) sin? 0dp?, (1)
with A =72 —2Mr +a? and ¥ = r? + a? cos? §. The Kinnersley tetrad vectors have components
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and we denote by D, A and § the derivative operators along the tetrad vectors (%, n® and m®, respectively. The
non-vanishing spin coefficients associated with this tetrad are
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Consider a particle of mass m orbiting a Kerr black hole in circular, equatorial orbit with radial coordinate r = ry.
As noted in the introduction, the particle’s velocity is tangent to a helical Killing vector,

0= Y=Hpt

r —iacosf’

u® = u'k®, (4)
where

R = 1% 4 Q0% (5)

1 Dolan’s results are to be reported in a paper in preparation coauthored by L. Barack and B. Wardell.



with ¢ and ¢ the rotational and asymptotically timelike Killing vectors of the Kerr geometry and €2 the particle’s
angular velocity measured by an observer at infinity. For a circular geodesic, the values of u* and Q are

3/2
o o/ £ M/ | o
\/ r3 — 3Mr2 + 2aM/2r3?
:|:M1/2
Q =

TS/Q + a2’

where the upper (lower) sign correspond to direct (retrograde) orbits and the corresponding stress-energy tensor is
given by

T8 = el (r — 10)8(0 — 7/2)3(¢ — Q). (7)
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whose source T' is given by
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where the T label the three terms in the expression for T
Because the Teukolsky equation is separable in the frequency domain, we can write ¥y as a sum of angular harmonics,

Yo =3 Ron(r) oS (0)e ), (10)
£,m

where we used the fact that, for circular orbits, harmonics e?™? have frequency w = m$). For r # ry, the source

vanishes, and Ry, satisfies the radial equation

K? —4iK(r— M)
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The function Sy, satisfies the angular equation
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where K = mQ(r? 4+ a?) — am and v = amf).
The tetrad components of the stress-energy tensor that enter the expression for T in Eq. (8) are
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Using Egs. (2) to write the derivative operators and Egs. (3) for the spin coefficients, we obtain explicit forms for the
source terms T of Eq. (9). Defining the quantities
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To compute Y5, it is useful to define a Green’s function Gy, (r,r’) as a solution to
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Here Ry and R are two linearly independent solutions to the radial equation that are, respectively, ingoing at the
future horizon and outgoing at future null infinity, and we have suppressed the ¢m indices on Ry and R.,. With Gy,
so defined, the full Green’s function that satisfies the Teukolsky equation with source §(r —r’")§(cos @ —cos 0 )d(¢p — ¢')
is given by
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where we denote by z the spatial point with coordinates 7,6, ¢ and where A’ = 7’ — 2Mr' + a2 Hence, the Weyl
scalar that satisfies the Teukolsky equation has the form
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with X/ = r”* + a2 cos2 0. The ¢ have, for r # g, the explicit forms,
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where Ag = 12 — 2Mrg + a?, So = 286 (7/2); Si, and Sjj are derivatives of 2.5y, with respect to cos evaluated at
0=m/2.



B. Metric perturbation and H™" in a radiation gauge

Before presenting the detailed calculation of H, AU and AS), it will be helpful briefly to recall parts of the radiation-
gauge method that we will use. In the CCK procedure [12-16] a perturbed vacuum metric is constructed from a spin
2 Hertz potential ¥ that satisfies

1 _
Yo =3 (LY +12M 0, 9], (27)

where £* = L1LoL_1L_5 with L5 = 05 — iasin09; and J; = — [0p + i csc 0Dy — scotd]. Using Eq (10) and Eq (40)
of [1], we obtain
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where D? = A2, ;; (Acm+2)*+8aw(m—aw)A\cm (5AcH+6)+48a*w? 2 \c p+3(m—aw)?] and A\c g, the angular eigenvalue
used by Chandrasekhar [17], is related to the separation constant oFEj, of Eq. (11) by Aon = 2Eem, + 9% — 2my — 2.
The perturbed metric is then given (up to parts for which 1y vanishes) by

hap = 9_4{nan@((§—3a—ﬁ:+57r)(5—404+7r)+mamlg(A+5u—3’y+7)(Aj-u—4’y)
—n(amg) [(6 —3a+ B+5m+7)(A+p—4y)+ (A+5u—g—3y—7)(6 —da+7)] }¥ +cc. (29)

To describe the way one renormalizes the metric in a radiation gauge, it is helpful to begin with the Detweiler-

Whiting [18] decomposition of the metric in a Lorenz gauge. This has the form hf’;’Lor = hi’;or + hoy Lor - with

hos Lor 5 smooth solution to the vacuum Einstein equation in a neighborhood of the particle. Because the perturbed

Weyl scalar 1)y is gauge invariant, when computed from this decomposed form of hfg’Lor, it has the gauge-invariant

decomposition 5t = 5 + YE", with 5" a smooth sourcefree solution to the s = 2 Teukolsky equation. There is

then a smooth Hertz potential U™ satisfying the sourcefree s = 2 Teukolsky equation with h;eg ORG given in terms

of U™ by Eq. (29). Here h;cé’ ‘ORG i the reconstructed perturbed metric up to terms involving changes in the mass,
angular momentum, and center of mass. (These are metric perturbations for which 1y vanishes, and they correspond
to the £ =0 and ¢ = 1 parts of the perturbation for a Schwarzschild background.) Adding these perturbations in an
arbitrary gauge that is smoothly related to the Lorenz gauge yields the full perturbed metric in a modified radiation
gauge.

We will use this general description at the end of Sec. III, but in renormalizing H*®* = %hf;guo‘uﬁ , we exploit
its invariance under gauge transformations generated by helically symmetric gauge vectors. As in our Schwarzschild
paper [4], this allows us to use the generic Lorenz-gauge singular behavior of the metric perturbation for the leading
term in the singular field. A difference between the singular field in our radiation-gauge and in the Lorenz-gauge
arises at subleading order in the angular harmonic index ¢ from a gauge vector that is singular at the position of
the particle, and this is discussed below. The mode-sum renormalization of the metric is described, for example, in
Sec. IV of [2] and we briefly review its relevant features. (It is based on the Barack-Ori mode-sum version of the
MiSaTaQuWa renormalization [19, 20] that is reviewed in detail in [21].) The components h5""" of the perturbed
retarded metric along an orthonormal frame have the singular behavior of a Coulomb field, proportional to p~!,
where p is the geodesic distance to the particle trajectory. This implies that H**“°" has the same Coulomb singular
behavior. The angular harmonics Héﬁ;’Lorng of H**%“Lor then have finite limits Hy,, = lim,_,, HES;’LOT(t =0,7r) on
a sphere through the trajectory of the particle. At the position of the particle, the projection

Hy* M =" Hypn Yo (7/2,0) (30)

onto the /th subspace has the form
Héct,Lor _ HZS,Lor + Hécn, (31)

where H;°", the value of the renormalized field, falls off faster than any power of ¢. The singular field H S;Lor hag
{-dependence

H}'" = ByLP + O(L7?), (32)



7

with Fy independent of L; and the sum over ¢ of the O(L~2) terms vanishes. That is, HS = H* + O(p), where
H} = Ey. The value of H™" is then given by

Zmax Zmax
1~ Hrcn — 1 Hrct _ Hs .
im ; =, lim ;( i — H}) (33)

In our radiation gauge, we will find that, although H ZS "ORG again has the form
HyORS = By L + O(L7?), (34)

with Fy agreeing with its value for a Lorenz gauge, the O(L~2) part gives a contribution of order p° that is odd
under parity in a hypersurface orthogonal to the trajectory: In particular, the sum of the O(p°) contributions from
the limits 7 — rj and r — r, vanishes.

The loss of gauge invariance at subleading order follows from the way one proves invariance of H™" for a helically
symmetric gauge vector £ that is differentiable at the position of the particle (implying, in particular, H ™Lor =
H™™ORG) - Under a gauge transformation with u® fixed, H changes by %,Eggalguo‘uﬁ = Vaésu®u”. From Egs. (4)
and (5) for u®, we have

Vabpu®u® = utuP Vo5 = uluP (£485 — €4V 3E*) = —EauPVgu® = 0, (35)

where we have used the geodesic equation in the last equality. Now u®, as defined by Eq. (4), satisfies the geodesic
equation only on the particle’s trajectory; for points a geodesic distance p from the trajectory, it satisfies

uPVsu® = O(p). (36)

The gauge vector £* relating a Lorenz gauge to our radiation gauge diverges as logp near p = 0 [22], leading to a
term of order p° in Eq. (35). We defer to Sec. IV, in which the explicit analytic construction of the perturbed metric
is presented, the discussion of the parity of this term.

In the actual computation, as described in Sec. (VI), we use spin-weighted spherical harmonics instead of ordinary
spherical harmonics for parts of the metric with different spin weights, and we then check that the resulting leading
term in the singular field — the value of Ey — agrees with its value computed analytically within a Lorenz-gauge
framework by Linz [23].

C. Numerical methods - Angular harmonics

This section describes two different series expressions for spin-weighted spheroidal harmonics that we use for two
different purposes: First, following Fackerell and Crossman [24], we write each spin-weighted spheroidal harmonic as
a sum of Jacobi polynomials. The formalism provides an accurate way to evaluate the spheroidal harmonics and the
angular eigenvalues on which both the angular harmonics and the radial functions Ry, depend. Second, to renormalize
the metric and the self-force, we write each spin-weighted spheroidal harmonic as sum of spin-weighted spherical
harmonics. Although the present paper uses only harmonics sSem = sSemw|w=ma, the formalism is developed for
sS¢mw, With no restriction on w.

For v = aw, the spin-weighted spheroidal harmonics satisfy the eigenvalue equation

1 d /. d 2ms cosf + s> + m?
sinf— ¢Spmw | +

sin® 6

72 cos® 0 — 2sycosf — + sEBimow | sSemw =0, (37)

sin 6 do do

for a Teukolsky-equation source with time-dependence e?**. The eigenvalue ;Ejn. is a continuous function of v that
takes the value ¢(¢+ 1) when v = 0. (Note that the spin-weighted spheroidal harmonics and their eigenvalues depend
on w only via ~, so the conventional use of the index w instead of 7 is slightly misleading.)

For fixed s and ~, with ~ real, the eigenfunctions are complete and orthogonal on the sphere, satisfying

5(cos@ — cos0)d(¢p — ¢') = Z St (0)€™? Spmes (0™ (38)
tm

™ 27
/ / S tme(0)€™ Sy (0)e™ P sin 0dOdp = 67,0 Gy - (39)
0 0



When 7 = 0, S¢me(0)e™™? becomes the spin-weighted spherical harmonic Yz, (6, ¢), given by

Yo = 4 1= )/ (E+ )]0y, 0<s<d, (40)
ST () [ ) (= )P Y, —€ <5 <0,
with
On = — (0g +icscldy — scot ),
On = —(0p —icschOy + scoth)n (41)

where 0 and 0 are, respectively, raising and lowering operators for the spin-weight, and 7 is a quantity of spin-weight s.

1. Spin-weighted spheroidal harmonics as a sum over Jacobi Polynomials

The formalism that expresses the angular harmonic ;S in terms of Jacobi polynomials involves several constants
that depend on parameters s, ¢, m, and v whose values are fixed in this section. To avoid encumbering a large number
of symbols with the four indices s, m, ¢, w, in this and the next subsections (Sects. IIC1 and 1T C2) we suppress the
indices, so that, for example the angular harmonic and its corresponding eigenvalue will be written as

S = ssfmwu E = Eumw. (42)

To calculate the spin-weighted spheroidal harmonics, their derivatives and eigenvalue, we set = := cosf and write
the homogenous angular equation, Eq. (37), as follows:
ds ds

(1-a%)—

9 m2 4 s2 + 2msx
— 9y e e e
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1— 22

+ <72:172 — 2ysx — + E) S =0, (43)

The eigenfunctions’ dominant behavior at = +1 is (1 F z)™**I/2. Following the formalism (and notation) of

Fackerell and Crossman [24], we introduce o = |m + s| and § = |m — s| for simplicity and introduce new functions U

and V, as follows:
— 2\ ¢ B
S(z) = & (1 29”) (1‘;””) Ulz), (44)

S(z) = e® (1;””)a (1;””)[31/(95). (45)

The functions U and V satisfy the following differential equation (where the upper sign is used if F' = U, the lower
sign if F'=V):

(1-2)2F+[B—a—22+a+8)£2y(1 —2%)]|0.F

L E+2 - a;rﬁ (“‘2”3 +1) +y(8—a) Fra(a+B+2+2s)|F=0. (46)
The above differential equation is closely related to that of the Jacobi polynomial given by the Rodgrigues formula
PB)(z) = %(1 —2)"*(1+2)Por [(1 —2)* (1 + )], (47)
which satisfies
[(1=2)d; + [8—a—a(a+B+2)0 +n(n+1+a+ )] B =0. (48)

Expanding the functions U and V as infinite series of Jacobi polynomials,
Ux) = Y AOPA) (),
r=0

Vi) = 3 BOPOA (@) (49)
r=0



and using the recurrence relations satisfied by the Jacobi polynomials, we get the following two recurrence relations
for A" and B(") (where the upper sign is used if G = A and the lower if G = B):

a+p (a+ﬁ+1)+237(a—ﬁ)]G(o)i dy(a+1)(B+1) (a—;ﬂj+1$s)
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+

- G =o. (51)

o ol
Determination of sE,,,

For the series in Jacobi polynomial to converge, the constant E should satisfy a transcendental equation. To enforce
this, we define the following quantities:

2y(r+a)(r+B)2r +a+p—2s) AT

(r) —

N = 2r+a+B)2r+a+p+1) AC-D (52)
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where none of the A(s vanish. Egs. (50) and (51) may be written as

NO KO 4y p=0 (55)
and
L L)
N = g0 g4 N (56)
which by iterating gives us
NOH) — g0 gy A (57)
K- _ g1 LG=D)
K(r—2)_F4 L(r—2)
Kk(r=3) _g4 L9 €3}
Kr—4) _pi...4+ K(LU)fE
Equation (56) can also be written as
LM
(r) —
N = E— K@) £ NO+1) (58)
which would then give us
L(r+1)
r+1) __
N+ — e 5 (59)
K(7‘+2)7E+ 1. (r+3)
R
Equating Egs. (57) and (59), we get a transcendental equation for E, namely
., L)
E=K" + P A (60)
K2 -pt——L0D
K(r=3) _p4...4 K(Lo)fE
(r+1)
+ r+2)
K(r+1) _E 4 L(r

r4+2) _ L (r+3)
K ) E+K(7‘+3),E+...
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We solve this in Mathematica to machine precision. Convergence of the infinite continued fraction in Eq. (59) is
treated in the references mentioned in [24].

Normalization of S(x)
We have already expanded the S(z) as a sum over Jacobi polynomials and have the recurrence relations for the
coefficients in the expansion where all the coefficients depend on either B(Y) or A in Eq. (49). Now we have,

a/2 B/2 oo
1-— 1
S(z) = e® <—2 1’) < ;x) S AV PO ()

r=0
a/2 B/2 oo
1-— 1
sw=c(50) 0 (5E) L Enerw), (61)
r=0

For the eigenfunctions to be normalized, we need two equations for the two unknowns, A and B, We get one
from the Eqgs. (44) and (45) which gives us

V =", (62)
Using Eq. (49) at z = 1, we have

B(0 AW (r 4 a)! = BM (r +a)!
<Z A0 o) ) / <Z BO) ( r!a!) ) : (63)

=0

The other equation is obtained by using

™

! 1
/ 1 S%dx = 5 (64)

We use (27) ! here so that S(x)e?™? is normalized to 1. Using this normalization condition along with Eq. (61), we
have

AW B0 b1\ (142 1
(0) p(0) -z - " (a,8) (a,B) N
ATB ZO A0) B(0) /_1( 2 ) ( 2 ) Pn (‘T)Pr (l‘)dl‘— o7’ (65)
which gives us
A© B© Z Aln) () 2 'n+a+1I'(n+ 8+ 1)5n o i (66)
o A0 BO 2p+a+B+1 nll(n+a+B+1) ’ 2m

Hence, the second equation is

> An) gn)
1 _27TZA B 2 'n+a+1I'(n+0+1)

67
A BO 2n+a+pB+1 nlln+a+p+1) (67)

The ratios A /A©) and B /B©) are easily calculated by using their recurrence relations Eqs. (50) and (51) and
using A = B(") = 0 for r < 0. Therefore Egs. (63) and (67) correctly determine the first coefficients in the expansion
by choosing the A(®) whose real part is positive.

2. Spin-weighted spheroidal harmonics as a sum over sYim

The spectral decomposition of spin-weighted spheroidal harmonics in terms of spin-weighted spherical harmonics
as in [25], [26] has the form

H)Gim¢ = Z bj sYjm(0, ), (68)

J=Lmin
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where iy = max(|ml, |s|). Substituting the above in Eq. (37), we have
Zb (7% cos® 0 — 2yscosb — j(j +1)] & = Z (69)
J J
We now write cos™ 8 for n = 0, 1,2 as sums of spherical harmonics. It is then easy to group them and the spin-weighted
spherical harmonics as follows: From the relations

T 4\/m 1
0=2,/=Y; 29 = Y- 70
cos \/; 1,0, COS 35 20+3 (70)

DIy D2 = (s o, praldy ) (G, mas g2, malj,m) D3, (71)
Jsp,m
and
20+1

st -, 4 ) 72
£ 47T s,m ( )

we find (for n =0, 1, 2)

l+n
2€ 1 On

cos"@sng = 1 Z + S;n70|j7_5><€7m;n50|jam> S}/j,m + Tﬁzs}/lm +5n,0 s}/Em- (73)

Multiplying Eq (69) with Y, integrating over the 2-sphere, and using Eq (73) we have

br—2 [72Ck—2,k,2] + br—1 ['72Ck—1,k,2 — 25YCh—1,k1] + bk ['72Ck,k,2 — 257k 1 — k(k+1)]

+brt1 ['72Ck+1,k,2 — 28YChi1,k,1] + brga [72Ck+2,k,2} = —FEb, (74)
where
k 2
Chj2 = T 3 j,m 2,0|k,m)(j, —s;2,0|k, —s)

Ck,j,1 = \/ 2k+ 1<.77m>170|k"7m><]7 57170|k7 S> (75)

Eq. (74) can be written as a matrix equation where the b are the matrix’s eigenvector and E are the eigenvalues. It
is then easy to solve the matrix equation for the eigenvectors and eigenvalues as the matrix is band diagonal. Here
(j1, m1; j2, mal|j, m) are the Clebsch-Gordan coefficients.

To calculate Yz, to high precision, we used the following analytical forms of spin-weighted harmonics at § = 7/2.

1 /+m even

Tntroducing the symbol e i= 4 0 7" O e can wite
V(0 = (e [ BRI ™
Yim(3,0) = (_U(“mw\/(% . 121(#@([ +)i()€ rok [(e - n?;ﬁfﬂ ol W=m ff)%i p— 1)!1] o (77)
2Yim(3:0) = (_1)“%)/2\/ (ff(:—l)f) o +)l()(e+ 2)) [[2(? :fﬁﬁ?i)ifﬁ” o= milﬁﬁéem: - 1)!!] (78)

Eq. (76) is quickly obtained from the corresponding equation for P;"(0), given, for example, in Arfken and Weber
[27]; the corresponding relations (77) and (78) for spin-weighted harmonics follow from their definition (40), with
recurrence relations of associated Legendre polynomials used to eliminate 6 derivatives.

Values of the angular harmonics 2S¢, at (6, ¢) = (7/2,0), computed as a sum of Jacobi polynomials and as a sum
over spin-weighted spherical harmonics oYy, are listed in Table I to show the accuracy of our calculation of these
angular eigenfunctions.



¢ | m | a/M | ro/M «Sem (PP Sem (sYom)

6 3 0.90 2.321 0.25240458701173892108 0.25240458701173889664
10 8 -0.80 | 8.432 | -0.077523625602031470364 -0.077523625602031470355
15 | -14 0.56 3.994 -0.39964402300714286677 -0.39964402300714286644
20 20 0.95 1.938 0.53866543681715165119 0.53866543680910100221
25 | -24 | 0.75 3.159 -0.38677474564628361398 -0.38677474564628311527
30 1 0.69 3.439 0.018864751317113632621 0.018864751317113632621
35 | -29 0.43 4.502 -0.12392842343512166756 -0.12392842343512166731
41 38 0.85 2.633 0.41329611968515525721 0.41329611968514376716
45 43 | -0.42 | 7.315 -0.44047075216769495176 -0.44047075216769495195
50 | -47 0.50 4.234 0.37391460514301075256 0.37391460514301011670
54 43 0.29 5.015 0.39632284051223687540 0.39632284051223687540
60 58 0.81 2.860 -0.46730374640820672293 -0.46730374640803870557
65 42 -0.40 | 7.255 -0.35895613544467811490 -0.35895613544467811490
70 | -70 0.67 3.529 -0.83907652666117403240 -0.83907652666117381586
75 74 0.80 2.910 0.32010913665973882714 0.32010913665976780184
80 78 0.64 3.660 -0.54551806835154401208 -0.54551806835154351539
85 | -85 0.55 5.555 -0.88887357826499020752 -0.88887357826499020734

12

TABLE I: For each listed value of £, m, a and 7o, we give the value of 2Sy,,, obtained by using the formalism given in

subsections (IIC1) and (IIC2), with vy =amQ = am M2 and g = 7 /2. The fractional accuracy increases with increasing ro,

7‘3/2+a

and all except the last five values of ro are chosen to be within a few percent of the innermost stable circular orbit for a given

a.

1. Teukolsky equation

D. Numerical methods - radial harmonics

We integrate Ry and R., from the horizon and infinity, respectively. The homogenous solutions Ry and R, at
the horizon and infinity are given by the following series

where

emiwre 2 rT—Tt
Ro = =% ( M
n=0
oo
) d
_ TWT & n
R = e Z (r/M)n+5°
n=0
ri—i-az T2_ +a?
T*:r—i-r —njr—ry| - —
ry = M+ M?%—-q?

)

In|lr—r_| and

(79)

(80)
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The expansion coefficients satisfy the following recurrence relations

Cn :{2i(n —6)wMecp,—3+ [E —n? 4+ — 12 +w?a® +i(8n — 34)wM /1 — a2 /M2 + i(4n — 14)WM] Cn—2

+ [4mwa + (2F — 4n® + 18n — 18 + 2w?a?)\/1 — a2 /M?

+i12(n — 2)wM —i4(2n — 5)wa®/M — idma/M +i12(n — 2)wM+/1 — aQ/MQ} Cn1}
{(4712 —8n)(1 — a®/M?) + m?a®/M? — 4mwa — 4mwar/1 — a2/ M?

—i[8nMw(1 — a®/M?) + (8nwM — 4ma/M)+\/1 — a2/M2} ) (83)

i(n 4+ 1)(2n + 1 4 iwa?®/M)a?
n = = 2wM® n—s + ( . nwM3 2 Gn—4
—4mMa + (4n + 8)wMa? — i(4n? + 8n)M? + i(E — 2n? — 4n — m?)a? + iw?a*
* 2nwM?
2ma — (2n + 1)wa? +i(=E + 2n? + 5n + 3 + 2mwa — w?a®)M
+ nwM
n (4n — 4)wM +i(E —n? — 3n — 2 + w?a?)

2nw

i(n+1)a*

dn73

dn72

dp1. (84)

We use a Tth order Runge-Kutta routine to solve for the homogenous radial solutions using the above initial /boundary

conditions, obtaining values of ¥%°* to an accuracy of 1 part in 1013.

2. Sasaki-Nakamura equation

The Sasaki-Nakamura equation is

d’X X
where X is related to the radial part, Ry of p~%44 by
1 g B,
Ry — = [l _ = 86
4 n[(O”LA)X AX (86)
where
AX

(87)

X = /P2 + a2

The radial parts, R4 and Ry are related to each other by the relation

R*
RO = CA_é, (88)
where ¢ is a constant. The function F' is
A
- 89
n r?+a? (89)
where
n=—12iwM + AX(A + 2) — 12aw(aw — m) + Bia[3aw — Aaw — m))
r
n —24iaM (aw — m) + 12a%[1 — 2(aw — m)? n 24ia3(aw — m) — 24Ma? n 12a* (90)

r2 r3 rd



and the prime denotes a derivate with respect to 7.
The function U is
AUy

U=—71 12 -
(T2+a2)2 + + 7’2—|—CL2

2 / / /
U1:V+% {dir (204—1—%) —%<a+%>} and

B 2(r — M) rA
G__{ 72 + a? }4_ (r2 +a2)?

where Uy and G are

The «a, B and V that appear above are given by

Vo {K2+4iK(r—M)

A }—I—Siwr—l—)\,
o[ e 23),
,

—iKp 6A

_ N
o = A2 +3’LK +)\+T—2,

where K = (r? + a?)w — am. We use the following boundary conditions at the horizon and at infinity,

XH — el(—d"‘
4 ~
«d
X. = —iwr 1
o= T
n=0
where
= 2Mr log | 7= _ 2Mr_ T—r_
ry —7T 2M Ty — 7o 2M
and [26]
do =1
g - —i(2+ X+ 2amw)
1 — 2w )
- A2+ A4+ amw) — 12iMw + damw(1 + amw + 2iMw)
d2 = - ]2 )
g = ir3 n iN(Bamw — 1) iN(=2 — 2amw — 3iMw + 2aw? + 3a*m>w? + 6iamMw?)
? 7 48wt 2403 1203
n i[6iM — 6am — 3aw(a + imM) + 2amw?(a® — 4M?) + (amw)?(am + 6iM))]
6uw3 ’
Qs = A4 n A3 (8amw — 12) n A2(12 — T2amw + 48iMw + 32a°w? + 24a*m2w? + 48iamMw?)
T 3840 384w* 384w?
A[B0(1 — amw) + 288i Mw + 128a2w?(amw — 1) + 16(amw)?(2amw + 12iMw — 7) — 256am M *w?]
384w
+ Y [30am — 30iM — 6a*w — 15w(am)? + 60iamMw + 45 M>*w — 16a*>mw? — 2(am)?w?
w

— 18iM (aw)? — 6iM (amw)? + dam(Mw)? 4+ 8a*m?w? + (am)?w? + 24imM (aw)® + 12iM (amw)?

— 44w(amMw)? — 48iam(Mw)?].
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(96)

(97)

The accuracy of our radial eigenfunctions is shown in Table II, which exhibits values of |Riy Rout/W| computed by

independently integrating the Teukolsky equation and the Sasaki-Nakamua equation.



4 m | a/M | ro/M Teukolsky Sasaki-Nakamura

56 | 53 | 0.50 4.30 3.32878980028437x 102 3.32878980028426 x 102
85 | 84 | 0.50 4.25 2.21479032560870x 102 2.21479032560832x 102
83 | 76 0.30 5.00 2.66435949501300x 102 2.664359495012799x 102
42 1 0.30 6.00 5.774432559632249x 102 5.774432559632295x 102
6 -1 | -0.25 | 6.80 4.40438489554819x 101 4.40438489554828 x 10~
56 | 37 | 0.61 3.79 2.5750354691478x 102 2.5750354691415x 102
65 | -58 | -0.76 | 8.33 6.068437461161814x 1072 6.068437461161780x 102
83 | 63 | -0.71 | 8.18 | 4.5482452073276329x 1072 4.5482452073276363x 102
76 | 74 | 0.92 2.20 1.056332700247276 < 102 1.056332700247222x 102
68 | 62 0.16 5.50 3.62341811077144x 102 3.62341811077135x 102
79 | 67 | 0.70 3.40 1.69778531677806x 102 1.69778531677799x 102
56 | -42 | -0.25 | 6.80 5.4130389893688027 x 102 5.4130389893688006 x 102
79 171 0.58 3.95 2.09651683213181x 102 2.09651683213165x 102
82 | 75 -0.2 6.70 3.77916963861862x 102 3.77916963861852x 102
54 | 35 0.14 5.55 4.31642221118258 x 1072 4.31642221118267x1072
67 | 52 | -0.64 | 8.00 5.497676877828166x 102 5.497676877828151x 102
75 | 61 0.78 3.05 | 1.52296461688768494x1072 | 1.52296461688768459x 10>
77| 68 | -0.14 | 6.50 3.85508542936437x 102 3.85508542936429 x 102
65 | 53 | -0.72 | 8.30 5.946127670533624 x 102 5.946127670533644 x 102
81 | 66 | -0.58 | 7.80 4.456906403886178x 102 4.456906403886146x 10>
86 | 81 | 0.47 | 4.35 2.20499986904938 x 102 2.20499986904907 x 102
53 | -53 | -0.23 | 6.80 6.057956364463913x 102 6.057956364463899x 102
70 | 65 0.39 4.70 2.94548366362787x 1072 2.94548366362775x 102
52 | 33 0.04 6.15 5.053852006520149x 102 5.053852006520189x 102
44 | 44 | -0.34 | 7.10 7.645731150733178 x10~2 7.645731150733167x 102
70 | 68 0.21 | 15.00 1.027161976019888 x10™* 1.027161976019891x 10!
72 | 67 | -0.66 | 43.50 | 2.9619125920183531x10~* 2.9619125920183542x 107"
40 | -39 | 0.21 | 25.00 | 3.02127126128480971x10~" | 3.02127126128480916x 107"
61 | 58 | 0.91 | 72.50 5.849950541617765x 10" 5.849950541617792x 10"
50 2 -0.88 | 15.50 | 1.4349668057921668x 107" 1.4349668057921630x 10"
65 | 12 | -0.44 |100.00| 7.558239183584133x10"" 7.558239183584106x 10"

15

TABLE II: For each listed value of ¢, m, a and ro, we give the value of |Rin Rout/W|, obtained by integrating the Teukolsky
equation and the Sasaki-Nakamura equation. As in Table IIC2, the fractional accuracy increases with increasing 7o, and all

except the last six values of r¢ are chosen to be within a few percent of the innermost stable circular orbit for a given a.

I11.

COMPUTATION OF THE PERTURBED METRIC

We can now use Eq. (29) to compute the perturbed metric in an ORG in terms of the Hertz potential . We first

convert the spin-weighted spheroidal harmonics in Eq. (28) to spin-weighted spherical harmonics as follows: Restoring

the suppressed indices s, £, and m to S and b; in Eq. (68),

S = sSem, bj = bojm,

(98)
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with s = 2, we have

DRm 12imMQ Ry,
om 1 120m tm im(6—9t)

U = 8 Somn (0
Z D2+144M2m292 25m (0)
"D Ry, + 121mMQR£m imG
= 8 im b 'm Y/
Z D2 T+ 144M2m202 Z term 2Yerm (6, 9)
DRgm + 12zmMQRgm —imQt
- by im Yo (0,
e; <Z trm D2 T 144M2m202 2Yem (6, )
= Upn(t,) 2Yem (0, ). (99)
m

To write the nonzero tetrad components of the metric perturbation of Eq. (29), we replace spin-coefficients by their
values for Kerr given in Eq. (3), we write the derivatives operators A and D in the explicit forms implied by (2), and
we use Eq. (41) to replace the angular derivative operator § by its form in terms of 9. We thereby obtain

1 = _
hi1 = Z 37 (0% — 2ia(o 4+ imQ) sin 0 — 3a®0* sin® 0 + a* (0 — imQ) (30 + imQ) sin® 0] Wy, 2 Ve, + c.C., (100)
‘m
-1 A . .a . _r=M @\
his = \/_E 3 20,0 — (g—g+2zmQ—2z§c059)s1n98r—2 o+o+4 +iq |0
.o . . . .a r—M .
+ 6iap”sinf — ia (29+g—zmﬂ+2z—cos€) 30+4 +iq | sinf
b)) A
. . _or=M O\
—ia (30 +imQ) (g — 20— 4T — zq) sm@} Uprm 2Yem, (101)
1 A2 2 o r=M 2r ) 5, 4 8(7°—M)2 ( — M)+ mQr
h33— 422 (9 (Q—Q+8T—§+22q)&+3g +Z_ A2 A

+iq ) | Yo 2Yem. (102)

M
+ (29+§—4T < +2%+2iq) <3g+4

Because ¥ has spin-weight 2 and 0% has spin-weight 1, d acting on ¥ and on ¥ has the form (41) with s = 2 and
s = 1, respectively.

We next expand the operators acting on W in powers of the small parameter cosf and show below that terms
involving cos 6 and cos® @ do not contribute to hje) (or to the nonzero part of the singular field). Using Eq. (40) for

the action of & on Yy, we obtain

2
hix = Z Yo < Z S-A?m COSanWm) + c.c., (103)
m

n,s=0



where the radial functions

" .
7 are given by

o _ [(+2)! ﬁ
oA =\ T2 T
LAY, = == D)0+ 2) ar(i + mQr),
2 AY = %a2mﬂr(2i +mQr),
L [(e+2)!
0 A, = —i =2 ar,
LAy = —/(E= 1)+ 2)a*(1 - 2imQr),
9 AL, = mQa® (1 — imrQ),
o _ 1 j(e+2)! ,
OAlm_ 2 (6_2)!617
1AL, = 5V (0= 1)+ 2) afir + mQ(r? + 2a°)],

1
WA = —§mQa2[2ir +mQ(r? + a?)];

hlg—zzz Bl c08™ 0 s Yo,

Itm s=1n=0

where, with ¢ defined by Eq. (14), the functions (B}, are given by

and

with Cp, given by

8, = D a2 20— igr)wi).
oBY = %amQ[rA\IJQm + (2r% — 2a% —iqrA) Wy,
1B}, = 3i W [ AW+ (2r% —2a® — iqrA) Ve,
2
oBi, = — \}gi {(2 + 3imQr) AV, + [8(r — M) + 3mSQgrA — 2ima + 4im$(2 r?—a )} \I/gm},
\BE, = Q;%giﬁ [2r AV, + (3% +2Mr — 5a® — 2igrA) ¥y, |
oBZ = 3—12%{[77197“(7“2 +8a?) 4+ 12ia®| AV}, + [12ma® + 2mQ(r* — a*r? + 4Ma*r — 16a*)] ¥y,
r
+i[48a*(r — M) — mQqr(r® + 8a?) A ¥y, };
2
h33 = Z Z C?m COS" 0 23/["“
¢m n=0
o = —AQ\II +lé(37‘ —2Mr —a® —iqgrA) v,
m Im 2 r qr ) Im

Ma? 1 2A2_1E
r

2 2 2
—2M* — 2
| a” + 14 5

(27°2 — Mr — a2) Wi,

17

(104a)

(104b)
(104c)

(104d)

(104e)
(104f)

(104g)

(104h)

(104i)

(105)

(106a)

(106b)

(106¢)

(106d)

(106¢)

(106f)

(107)

(108)
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T A vy — %\ygm (8(r - M) - % — 2im[a — Q% + a2)]>
—%‘lmm 2imQAr + 8(M — 2)% — 2A + % + 6imla — Q(r?* + a®)](M —r)
+3Az’m[a —2?(r2 +a?)] m? [a— Q2 + a2)]2 7 (109)
;. = #EAQ\IIZ,” — AT—OQF\I/}m 16(r — M) — % — 4im[a — Q(r* + a?)]
—j—z\y@m 4imQAr +16(M —r)* — 2A + mi\ﬁM + 12im(M — 7)[a — Q% + a?)]
+5A[a_%ir2+a2)] —2m2a— Q@ + o). (110)

We now argue that the terms involving cos™ 8 with n # 0 in Eqgs. (103), (105) and (107) can be ignored. We refer
here to our description in Sec. IIB of the the renormalization procedure in terms of 1)y and ¥. The components
i of the renormalized radiation-gauge metric are given by Eqgs. (103), (105) and (107), with W replaced by W*".

Because ¥'" is smooth and hence finite at the particle, no term proportional to cos contributes to hjjy;.

It can happen, however, that the cosf terms contribute to hf‘w, written in terms of US. The cos?# terms cannot

contribute, because they are O(p?) and multiply terms whose sum is at most O(p~1) (terms involving two derivatives
of ). Similarly, the cosf terms cannot contribute to the leading term in h*, because they are one order in p smaller
than the leading term in H®. At subleading order, however, they give an O(p”) contribution that has odd parity.
The parity of this contribution to the singular field follows from that fact that, at leading order, ¥*°* is even under
parity about the position of the particle (shown in detail in Sec. IIID of [1]), while cos# is odd. The leading-order
contributions to the cos@ terms come from terms involving two derivatives of U™ and these are again even under
parity, implying that at leading order, the contribution from r > ry cancels the contribution with opposite sign from
r < ro. Finally, lower-order contributions multiplying cos @ are order p, vanishing at the particle.

One can then compute H*" by subtracting the leading part of the singular field (which coincides the Lorenz-gauge
singular field) and by omitting terms that involve cosf. We have verified this agreement numerically (see Sec. VI),
finding that the order L? part of H ZS agrees to one part in 10'2 with its analytic form computed by Linz [23] and that
the O(L™!) contribution vanishes to within the accuracy of the computation.

IV. GAUGE-INVARIANT QUANTITIES

In this section, we obtain expressions for the related quantities AU and AQ that give, respectively, the change
in the redshift factor of a trajectory at fixed angular velocity and the change in the angular velocity of a trajectory
at fixed redshift factor U. Each of these quantities is invariant under gauge-transformations generated by helically
symmetric gauge vectors £€* and each can be written in terms of the similarly gauge-invariant quantity

1
H™" .= 5h§§guauﬂ, (111)

where hgg is the renormalized metric perturbation.

As shown by Mino et al. [19] (see also Quinn and Wald [20] and Detweiler & Whiting [18]), at order m/M the
particle moves along a geodesic of the metric gag + hig, where gap is the background (Kerr) metric. Denote by

ren

4 = U(t* + Q¢~) the particle’s 4-velocity, normalized with respect to gag + hys,
(gap + hEB) a0” = 1. (112)

We consider first the difference AU between the value of U for a circular geodesic of the perturbed metric and its
value at the circular geodesic of the unperturbed metric with the same value of angular velocity €2. Formally, because
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perturbations to first-order in m/M are linear in m, we can write

0
AU = m%U(m, Q) m=o0- (113)

We will denote by dU the gauge-dependent change in U at a fixed value of r. Denoting by U(m,r) value of U for
the circular geodesic at radial coordinate r of the metric gop + hij, we have

0
oU = m%U(m,Tﬂm:O. (114)

Let £ be the radial vector joining the unperturbed circular geodesic with angular velocity €2 to the perturbed geodesic
with the same angular velocity: Formally

Qm =0,7) = Q(m,r +£7) + O(m?). (115)
Then
AU = §U + £:U, AQ =60 + £0 =0, (116)

where AQ and 092 are defined as in Eqs. (113) and (114).
We can now quickly compute AU from Eq. (112), showing as follows the relation

AU = —utH"™". (117)

Define £ in the equatorial plane by k® = ¢t +Q¢®, with Q = Q(m,r), and let £ be the Killing vector k% = t*+Q¢“,
where (g is the angular velocity of the unperturbed orbit through r» = rg. Then, applying A to the normalization
equation (112) and evaluating the expression at r = ro, we have

- - - - 2 -
0 = A(gapU?k“k") = (6 + £¢)(9apU?k®E") = (hX5 + Legap)u®u® + AU + 20ua (6 + £6)k*, (118)

with § again the perturbation at fixed radius r, as in Eq. (114). Using the fact that £* is helically symmetric, we
now see as follows that the terms £¢gasu®u® and (5 + £¢)k* vanish. At 7 = ro, we have U(m = 0,70) = u’, whence
u® = u'k®, and Eq. (35) then implies £¢g,5u“u” = 0. Finally, because the coordinate system is independent of m,
we have §t* = 0 = d¢* (that is, 8y and 94 do not change), and the last term vanishes:

(0 + £6)k|pmry = £el® + QL™ = £k = —£3,6% = 0. (119)

1
From the two surviving terms on the right of Eq. (118), we obtain the claimed form AU = ——uthffé‘uo‘uﬁ.

The change in the angular velocity at fixed U is similarly gauge invariant and is easily obtained from AU. With
regarded as a function of m and U we define its change at fixed U by

A 0
AQ = m%Q(m, U)|m:0. (120)
From the fact that, at fixed m, Q(m,U) is the inverse of U(m, ), it follows that
AQ = —iQ(m =0,U)AU. (121)
- 8U - ) )
implying
A 1
AQ = ——— . (122)
UpU

The resulting values of AU and AQ are presented in Tables III and IV.

For completeness, we give here explicit expressions for the quantities 0U and §€2. These depend on the gauge-
dependent acceleration a®, the self-force per unit mass, which is ordinarily defined with the perturbed trajectory
parametrized by proper time with respect to the background metric, implying for the 4-velocity u® the normalization

Gap u®u’ =1. (123)
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Denoting by 7 and 7 proper time along a trajectory with respect to gag and gag + hig, respectively, we have

dr . .
ut = d—uo‘, with
T

dr

1
Z=1- §h§;§u°‘u5 =1—H™, (124)

The acceleration of the perturbed trajectory with respect to the background metric g,p is given by

0
a® = u’Vau® (125a)
5 5 0 10
= (g™ +uu®)(V,hss — 5vghm)uﬁw, (125b)

0
where V,, is the covariant derivative operator of g.z.

Using Eqs. (123) and (125a), we find for the changes in Q and u' of a trajectory at fixed radius rq

_ Q2aM1/2r3 +r8/2(r0 —3M)

50 ar
M (rS/? + aM1/?)

(126)

and

tré/z(rg +a?— 2aM1/27°(1)/2)

dut =u Qr,
27 + ')

(127)

where Q and u! are given by the relations in Eq (6), € is the frequency measured by the observer at infinity. Here
one is comparing the values of 2 and u' for circular geodesics of the perturbed metric gos + h'3 to their values for
a circular geodesic of the unperturbed metric g, at the same value r = rg of the radial coordinate. The expressions
are valid in any gauge, but the values of a,, 62 and dU are gauge-dependent.

V. LOWER MULTIPOLES

The metric recovered from ;°" specifies the perturbation up to the contribution that comes from the change in
mass and angular momentum of a Kerr metric and from a change in the center of mass that is pure gauge except at
r =70 (and that does not contribute to H**").? In this section we calculate the contribution to the gauge-invariant
Hret from the change in mass and angular momentum due to the presence of the orbiting particle of mass m. We
calculate them in the “Kerr gauge”; that is, they are written as the first-order perturbations of the Kerr metric in
Boyer-Lindquist coordinates associated with the changes §M and ¢.J in its mass and angular momentum. These two
parts of the metric perturbation are thus stationary and axisymmetric, and they are associated with a stationary,
axisymmetric part of the stress-energy tensor. For a particle in circular orbit, §M and dJ have the simple forms

OM = E = mu,t®, 0J = L = —muyp® (128)

(for our + — —— signature), as stated by L. Price [28]. The expression for §J follows, for example, from the Ko-
mar formula for angular momentum, valid for a stationary axisymmetric perturbation of a stationary axisymmetric
spacetime; it implies

6] = — /V TS dSe = —muy, (129)

when there is no change in the angular momentum of the black hole. The change in the mass follows from the
Bardeen-Carter-Hawking first law of thermodynamics for black holes and matter, which gives

SM = Q6J +m/u’ = mu,. (130)

2 In the mode-sum renormalization, the individual modes of the metric are computed as the limits of their values as r — r¢ from r < ¢
or r > rg. Because the because the metric perturbation associated with a change in the center of mass is pure gauge for r # rq, these
limits vanish.
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(One can also use the generalization of the first law to helically symmetric binaries [29-31], but the stationarity and
axisymmetry of the relevant perturbation again means that the original form of the first law is valid.)

Although one can also find M directly from the Komar expressions in terms of the timelike Killing vector shared
by the background and perturbed spacetimes, a warning is needed: An unexpected subtlety arises in using the Komar
expression for the mass. The Komar mass on a sphere outside the particle orbit has the form

1
= —_— @ ﬁ
SM 54W/v t0dSags, (131)

where dSqp = %eamdsaﬁ (implying dSy, = %«/—gd@dqﬁ). If one requires that the change in the Komar mass of the
black hole vanish and assumes that 6t® = 0, the result is an incorrect expression for M. Gauss’s theorem gives

1 1
M 547T/Vvﬂv t dSa+54 /horizonv t7dSap

1
= [ (2T%5 — 65T)tPdS, + 6— VP dSqs, 132
B 8 4 B
horizon
and
/(2TO‘5 - 5gT)t5dSa =m(2u; — 1/u') # muy. (133)

The discrepancy arises from a rescaling of hy = ha,gto‘t'@ near the horizon for a time-independent perturbation. This
is easiest to see for a Schwarzschild background, where the perturbation in the mass arises from the spherically
symmetric part of the perturbation — from the perturbation due to a spherical shell of dust whose particles have
trajectories isotropically distributed over all circular geodesics at » = 79. The Komar mass is gauge invariant,? and
we can can compute it in a Schwarzschild gauge. The perturbed field equation then requires continuity of hy =: €2®
across r = 1o, and 0P is constant inside r = rg, implying a constant rescaling of time for r» < rg. The result is that
the expression for the change in the Komar mass at the horizon is evaluated with a rescaled metric but without a
rescaled t%, giving a nonzero result,

5i/ Ve dSas = m(1/u’ — ug), (134)
dm horizon

that yields the correct value 0M = mu; for the change in the spacetime mass. The change in h,g inside r = ry has
the form £¢gnp for a vector £ linear in ¢; because t* remains fixed, however, this is not a gauge transformation of
the integrand Vt?dS,s (the integrand does not change by £¢(Vt#dS,s)).

Finally, Eq. (129) for the change in angular momentum is valid, because the rescaling does not alter the Komar
expression for the angular momentum at the horizon.

To calculate the metric perturbation that comes from the change in mass and angular momentum, we find the first
order perturbation of the (relevant components of the) Kerr metric in Boyer-Lindquist coordinates which are

26M
hit = —
r
ht¢ - O
2(M + r)a*6 M
Rpey = ————— 2~~~ 135
66 i (135)
for the change in mass, and
htt =0
2MoJ
h =
teh .
2a(2M +1r)oJ
hoo = ——— 5 — (136)

3 Gauge invariance of the integral (131), over a sphere S where there is no matter, can be seen as follows. Let S’ be another sphere
homologous to S with no matter in the region between them. Then, for any given choice of gauge, the value of the Komar integral is
the same on the two spheres. Consider a gauge transformation associated with an arbitrary gauge vector £% defined in a neighborhood
of S, and extend £% smoothly so that it vanishes on S’. In the new gauge, the value of the Komar integral on S’ has not changed; and
it must again have the same value on S and S’. Its value on S is therefore unchanged.
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for the change in angular momentum. From these expressions and Egs. (6) for v and € (and using u? = Qut), we
obtain

w(r? £ 2aM /22 — a?)(r3/2 — 2Mr'/% £ aMV/?)
74)/4(7,3‘/2 —3Mrl/2 + 2aM1/2)3/2

Hsy = (137)

and

MY ?m(r? 5 2aM?r/2 4 a?)(+a — 2M1/2r1/2)
1974 (r3/2 — 3Mri/2 £ 2aM1/2)3/2

Hsy = (138)

where the upper (lower) sign is used for direct (retrograde) orbits.

VI. NUMERICAL RESULTS

The renormalization of H follows the mode-sum method described in Sec. II B. After the odd-parity terms — terms
involving cosf in Egs. (103), (105) and (107) — are omitted, the method is identical to that used in [4] for a particle
in circular orbit in a Schwarzschild background.

In Eq. (34), with the odd-parity part of H® gone, the remaining O(L~2) terms vanish at the particle, allowing us

to write the remaining part H 2 of H7 in the form

k
~ N~ Eo
HS = Ey + — 139
) 0 ; Por0) (139)

where Py (¢) is a polynomial in £ of order 2k for which

> PQ:(K) =0. (140)

£=0

We numerically match H ;¢ (where the tilde again denotes a value computed with odd-parity terms omitted) to this
expansion of H ZS,

Kmax
HS = By + L (141)
= Pa(0)

and extract the regularization coefficients Fog up to kpax between 8 and 10. The method used in the numerical
matching and an error-minimization criterion for the choice of kyax are described in detail in [4]. The resulting value
of H™" is given by

élnax Zmax
LR HIED S A (142)
=0 £=0

with fax = 74. The analytical value of Fy [23] is given by

I 2 g
EOanalytlcal - - (1 T ﬁ)geeK <1 + B) ) (143)

/2

where = W%Q:JFLZ and K is the complete elliptic integral of the first kind, K(m) = / (1 — msin® ¢)~1/2d.

0
We compare the value of Ej obtained by numerical matching to the above analytical result and observe that they
agree to 12 significant figures.



ro/M| a=—-09M a=-0.7TM a=—0.5M a=00M a=05M a=07TM a=09M
4 - - - - - -0.39639405 | -0.32811192
5 - - - - -0.31443977 | -0.27861234 | -0.25156061
6 - - - -0.29602751 | -0.23463184 | -0.21756347 | -0.20361838
7 - - - -0.22084753 | -0.18875155 | -0.17902998 | -0.17073001
8 - - -0.20415909 | -0.17771974 | -0.15838853 | -0.15222199 | -0.14680897
10 | -0.15129436 | -0.14557511 | -0.14033900 | -0.12912227 | -0.12019572 | -0.11717475 | -0.11443451
15 | -0.083291764 | -0.081933637 | -0.080646922 | -0.077725319 | -0.075195106 | -0.074284771 | -0.073429473
20 | -0.058142984 | -0.057590366 | -0.057059948 | -0.055827719 | -0.054723506 | -0.054316065 | -0.053927537
30 | -0.036504919 | -0.036334869 | -0.036169772 | -0.035778314 | -0.035416550 | -0.035279964 | -0.035147937
50 | -0.021026283 | -0.020984416 | -0.020943414 | -0.020844656 | -0.020751199 | -0.020715285 | -0.02068020
70 |-0.014784459 | -0.014767331 | -0.014750491 | -0.014709646 | -0.014670583 | -0.014655454 | -0.014640606
100 | -0.010234918 | -0.010228170 | -0.010221515 | -0.010205282 | -0.010189625 | -0.010183523 | -0.010177512
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TABLE III: This table presents the numerical values of AU for different values of 7o/M and a. They are accurate to a fractional
difference of order 1075.

ro/M| a=—0.9M a=—0.7M a=—05M a=0.0M a=0.5M a=0.7M a=09M
4 - - - - - 0.054267340 | 0.052559297
5 - - - - 0.047924050 | 0.046963137 | 0.046465534
6 - - - 0.042727891 | 0.040850942 | 0.040470951 | 0.040275775
7 - - - 0.036056740 | 0.035175043 | 0.034994056 | 0.034900960
8 - - -0.031876878 | 0.031046361 | 0.030576073 | 0.030478282 | 0.030427413
10 | -0.024543706 | -0.024365158 | -0.024209291 | 0.023913779 | 0.023742658 | 0.023706031 | 0.023686199
15 | -0.014462899 | -0.014434162 | -0.014408846 | 0.014359915 | 0.014330238 | 0.014323381 | 0.014319216
20 |-0.0098123143 | -0.0098041785 | -0.0097969635 | 0.0097828022 | 0.0097738694 | 0.0097716692 | 0.0097702125
30 |-0.0055825069 | -0.0055810957 | -0.0055798309 | 0.0055772872 | 0.0055755838 | 0.0055751254 | 0.0055747889
50 |-0.0026871991 | -0.0026870390 | -0.0026868933 | 0.0026865907 | 0.0026863727 | 0.0026863081 | 0.0026862560
70 | -0.0016464854 | -0.0016464466 | -0.0016464110 | 0.0016463355 | 0.0016462787 | 0.0016462609 | 0.0016462460
100 [-0.00097498493 [-0.00097497623 [-0.00097496816 |0.00097495060 |0.00097493692 | 0.00097493244 | 0.00097492852

TABLE IV: Numerical values of MAQ for different values of ro/M and a. The values are accurate to a fractional difference of
order 1078,

VII. DISCUSSION AND FUTURE WORK

The results here are based on the computation of the invariant H™", and work now underway with A. Le Tiec shows
that AU from the computations in our modified radiation gauge agrees with the post-Newtonian series for AU linear
in the spin parameter a/M: A preliminary matching shows that the first coefficient in the pN series agrees to five
significant digits. The results here also agree with those of a separate EMRI computation by Dolan, who works in a
Lorenz gauge using an effective source method (agreement is within their numerical error bars of order 10~2). Finally,
we have also begun work to extend the computation reported here to find the self-force on a particle in circular orbit
in a Kerr background.
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