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When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the
Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field E,
which produces tidal forces, and the frame-drag field B, which produces differential frame dragging.
In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex
lines (integral curves of the three eigenvector fields of E) and their tendicities (eigenvalues of these
eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines

and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper,
we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the
horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black
holes’ horizon tendicity and vorticity (the normal-normal components of E and B on the horizon).
For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon’s intrinsic
scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature.

We show that, for horizon-penetrating time slices, all these entities (E, B, the tendex lines and
vortex lines, the lines’ tendicities and vorticities, and the horizon tendicities and vorticities) are
affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing
and coordinate choices that are commonly used for black holes. We also explore how the tendex
and vortex lines change as the spin of a black hole is increased, and we find, for example, that as a
black hole is spun up through a dimensionless spin a/M =

√
3 /2, the horizon tendicity at its poles

changes sign, and an observer hovering or falling inward there switches from being stretched radially
to being squeezed. At this spin, the tendex lines that stick out from the horizon’s poles switch from
reaching radially outward toward infinity, to emerging from one pole, swinging poloidally around
the hole and descending into the other pole.

PACS numbers: 04.25.dg, 04.70.Bw

I. MOTIVATION AND OVERVIEW

It has long been known that, when one performs a
3+1 split of spacetime into space plus time, the Weyl
curvature tensor Cαβγδ gets split into two spatial, sym-
metric, traceless tensors: the so-called “electric” part,
E, which we call the tidal field (because it is responsi-
ble for the gravitational stretching and squeezing that
generates tides), and the so-called “magnetic” part B,
which we call the frame-drag field (because it generates
differential frame dragging, i.e., differential precession of
gyroscopes).

Recently [1, 2], we and colleagues have proposed visu-
alizing the tidal field by means of the integral curves of its
three eigenvector fields, which we call tendex lines, and
each line’s eigenvalue, which we call its tendicity. These
are very much like electric field lines and the magnitude
of the electric field. Similarly, we have proposed visual-
izing the frame-drag field by integral curves of its three
eigenvector fields, which we call vortex lines, and each
curve’s eigenvalue, which we call its vorticity. These are
analogous to magnetic field lines and the magnitude of
the magnetic field.

In our initial presentation [1] of these new concepts

and their applications, we demonstrated that they can
be powerful tools for visualizing the nonlinear dynamics
of curved spacetime that is triggered by the inspiral, col-
lision, and merger of binary black holes. We expect them
also to be powerful visualization tools in other venues of
nonlinear spacetime dynamics (geometrodynamics).

After our initial presentation [1], we have turned to
a methodical exploration of these tools, in a series of
papers in this journal. We are beginning in Papers I–
III by applying these tools to “analytically understood”
spacetimes, in order to gain intuition into the relation
between their visual pictures and the analytics. Then
in Paper IV and thereafter, we shall apply them to nu-
merical spacetimes, looking for types of features we have
already found, and retrieving their analytical origin.

In [2] (henceforth Paper I), using examples of nearly
flat (linearized) spacetimes, we have shown that tendex
lines and vortex lines can illustrate very well the space-
time dynamics around oscillating multipole sources, and
we have connected various features of the field lines to
physical understanding, and to the analytics. We found
that, in the near zone of an oscillating multipole, the
field lines are attached to the source; in the transition
zone, retardation effects cause the field lines to change
character in understandable ways; and in the wave zone,
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the field lines approach those of freely propagating plane
waves. In a supplementary study [3], some of us have
classified the tendex and vortex lines of asymptotically
flat space times at future null infinity according to the
lines’ topological features.

Recently, Dennison and Baumgarte [4] computed the
tendex and vortex fields of approximate analytical solu-
tions of boosted, non-spinning black holes (both isolated
holes and those in binaries). Specifically, they computed
an analytical initial-data solution of the Einstein con-
straint equations (in the form of that of Bowen and York
[5]) that is accurate through leading order in a boost-like
parameter of the black holes. Their results are an impor-
tant analytical approximation to the vortex and tendex
fields of a strong-field binary, and will likely be useful for
understanding aspects of numerical-relativity simulations
of binary black holes.

In Paper III, we shall explore the tendex and vor-
tex lines, and their tendicities and vorticities, for
quasinormal-mode oscillations of black holes—and shall
see very similar behaviors to those we found, in the lin-
earized approximation, in Paper I [2]. In preparation for
this, we must explore in depth the application of our new
tools to stationary (Schwarzschild and Kerr) black holes.
That is the purpose of this Paper II.

In Paper IV we shall apply our tools to numerical
simulations of binary-black-hole inspiral, collision, and
merger, and shall use our linearized visualizations (Pa-
per I), our stationary-black-hole visualizations (Paper
II), our quasinormal-mode visualizations (Paper III), and
Dennison and Baumgarte’s visualizations [4] to gain in-
sight into the fully nonlinear spacetime dynamics that
the binary black holes trigger.

This paper is organized as follows: In Sec. II, we briefly
review the underlying theory of the 3 + 1 split of space-
time and our definitions of the tidal field E and frame-
drag field B in [1, 2]. In Sec. III, we introduce the con-
cepts of horizon tendicity (the normal-normal component
of E on a black-hole horizon) and horizon vorticity (the
normal-normal component of B), which, for stationary
black holes, can be related to the real and imaginary
parts of the Newman-Penrose Weyl scalar Ψ2 and are
the horizon’s scalar intrinsic curvature and scalar extrin-
sic curvature (aside from simple multiplicative factors).

In Sec. IV, we give formulae for the eigenvector
and eigenvalue fields for the tidal field around a static
(Schwarzschild) black hole, we draw pictures of the black
hole’s corresponding tendex lines, and we discuss the con-
nection to the tidal stretching and squeezing felt by ob-
servers near a Schwarzschild hole. (The frame-drag field
vanishes for a Schwarzschild hole.)

In Sec. V, we turn on a slow rotation of the hole, we
compute the frame-drag field B generated by that ro-
tation, we visualize B via color-coded pictures of the
horizon vorticity and the vortex lines, and we discover
a spiraling of azimuthal tendex lines that is created by
the hole’s rotation. In this section, we restrict ourselves
to time slices (and the fields on those time slices) that

have constant ingoing Eddington-Finklestein time, and
that therefore penetrate the horizon smoothly. (For the
Schwarzschild black hole of Sec. IV, the tendex lines
are the same in Schwarzschild slicing as in Eddington-
Finklestein slicing; the hole’s rotation destroys this.)
In Sec. VI, we turn to rapidly rotating (Kerr) black

holes, and explore how the vortex and tendex lines and
the horizon vorticities and tendicities change when a hole
is spun up to near maximal angular velocity. In these ex-
plorations, we restrict ourselves to horizon-penetrating
slices, specifically: slices of constant Kerr-Schild time t̃,
and the significantly different slices of constant Cook-
Scheel, harmonic time t̄. By using the same spatial coor-
dinates in the two cases, we explore how the time slicing
affects the tendex and vortex lines and the horizon ten-
dicities and vorticities. There is surprisingly little dif-
ference, for the two slicings; the field lines and hori-
zon properties change by only modest amounts when
one switches from one slicing to the other (top row of
Fig. 6 compared with bottom row). By contrast, when we
use non-horizon-penetrating Boyer-Lindquist slices (Ap-
pendix A), the field lines are noticeably changed. In
Sec. VI we also explore how the vortex and tendex lines
(plotted on a flat computer screen or flat sheet of pa-
per) change, when we change the spatial coordinates with
fixed slicing (Fig. 5). We find only modest changes, and
they are easily understood and quite obvious once one
understands the relationship between the spatial coordi-
nate systems.
In Sec. VII, we briefly summarize our results. In three

Appendices, we present mathematical details that under-
lie some of the results in the body of the paper.
Throughout this paper we use geometrized units, with

G = c = 1. Greek indices are used for 4D spacetime
quantities, and run from 0 to 3. Latin indices are used for
spatial quantities, and run from 1 to 3. Hatted indices
indicate components on an orthonormal tetrad. Capi-
tal Latin indices from the start of the alphabet are used
for angular quantities defined on spheres of some con-
stant radius, and they generally run over θ, φ. We use
signature (− + ++) for the spacetime metric, and our
Newman-Penrose quantities are defined appropriately for
this signature, as in [6].

II. TENDEX AND VORTEX LINES

In this section we will briefly review the 3 + 1 split
and the definition of our spatial curvature quantities. A
more detailed account is given in Paper I of this series [2].
To begin with, we split the spacetime using a unit time-
like vector ~u, which is everywhere normal to the slice of
constant time. This vector can be associated with a fam-
ily of observers who travel with four-velocity ~u, and will
observe the corresponding time slices as moments of si-
multaneity. We consider only vacuum spacetimes, where
the Riemann tensor Rµνρσ is the same as the Weyl tensor
Cµνρσ . The Weyl tensor has ten independent degrees of
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freedom, and these are encoded in two symmetric, trace-
less spatial tensors E and B. These spatial tensors are
formed by projection of the Weyl tensor Cµνρσ and (mi-
nus) its Hodge dual ∗Cµνρσ onto the spatial slices using
uµ, and the spatial projection operator γα

µ. The projec-
tion operator is given by raising one index on the spatial
metric of the slice, γµν = gµν + uµuν . The resulting
spatial projection of the Weyl tensor is given by an even-
parity field called the “electric” part of Cµνρσ and also
called the “tidal field”,

Eαβ = γα
ργβ

σCρµσνu
µuν , i.e. Eij = Ci0̂j0̂ , (2.1a)

and an odd-parity field called the “magnetic” part of
Cµνρσ and also called the “frame-drag field”,

Bαβ = −γα
ργβ

σ ∗Cρµσνu
µuν , i.e. Bij =

1

2
ǫipqC

pq

j0̂
.

(2.1b)
Here, as usual, we give spatial (Latin) indices to quanti-
ties after projection onto the spatial slices using γα

µ. We
note that our conventions on the antisymmetric tensors
are, when expressed in an orthonormal basis, ǫ0̂1̂2̂3̂ = +1
and ǫ1̂2̂3̂ = +1, with ǫijk = ǫ0̂ijk.
The real, symmetric matrices, Eij and Bij are com-

pletely characterized by their orthogonal eigenvectors
and corresponding eigenvalues. Note that, since each
tensor is traceless, the sum of its three eigenvalues must
vanish. Our program for generating field lines to visual-
ize the spacetime curvature is to find these eigenvector
fields by solving the eigenvalue problem,

E i
jv

j = λvi . (2.2)

This results in three eigenvector fields for each of the two
tensors E and B. These fields are vector fields on the
spatial slice, and behave as usual under transformations
of the spatial coordinates (but not changes of the slicing
vector uµ). By integrating the streamlines of these eigen-
vector fields, we arrive at a set of three tendex lines and
three vortex lines. These lines are associated with the
corresponding eigenvalues, the tendicity of each tendex
line and vorticity of each vortex line. In visualizations,
we color code each tendex or vortex line by its tendicity
or vorticity.
This method of visualization represents physical infor-

mation about the spacetime in a very natural way. It was
shown in Paper I that the tidal field E describes the local
tidal forces between nearby points in the spacetime, and
the less-familiar frame-drag field B describes the relative
precession of nearby gyroscopes. In the local Lorentz
frame of two freely falling observers, separated by a spa-
tial vector ξj , the differential acceleration experienced by
the observers is

∆ai = −E i
jξ

j . (2.3a)

If these same observers carry inertial guidance gyro-
scopes, each will measure the gyroscope of the other to

precess (relative to her own) with a vectorial angular ve-
locity dictated by B,

∆Ωi = Bi
jξ

j . (2.3b)

In particular, note that if one observer measures a clock-
wise precession of the other observer’s gyroscope, the sec-
ond observer will also measure the precession of the first
to be clockwise.

The physical meaning of the tendex and vortex lines
is then clear: if two observers have a small separation
along a tendex line, they experience an acceleration along
that line with a magnitude (and sign, in the sense of
being pushed together or pulled apart) given by the value
of the tendicity of that line, as governed by Eqs. (2.3a)
and (2.2). In the same way, two observers separated along
a vortex line experience differential frame dragging as
dictated by Eqs. (2.3b) and (2.2) (with Eij → Bij).

III. BLACK-HOLE HORIZONS; THE HORIZON
TENDICITY ENN AND VORTICITY BNN

In many problems of physical interest, such as black-
hole perturbations and numerical-relativity simulations
using excision (as in the SpEC code [7]), black-hole inte-
riors are not included in the solution domain. However,
we are interested in structures defined on spacelike sur-
faces that penetrate the horizon, and, in order to retain
the information describing the dynamics of spacetime in
and near the black-hole region, we must define quasilocal
quantities representing the tendicity and vorticity of the
excised black-hole region.

We define the horizon tendicity and vorticity as fol-
lows: For a hypersurface-normal observer with 4-velocity
~u, passing through a worldtube such as an event hori-
zon or a dynamical horizon, the worldtube has an inward

pointing normal ~N orthogonal to ~u, and two orthonormal
vectors tangent to its surface, ~e2 and ~e3 (together these
four vectors form an orthonormal tetrad). The horizon
tendicity is defined as ENN = EijN iN j and the horizon
vorticity is BNN = BijN

iN j . Physically, they represent
the differential acceleration and differential precession of
gyroscopes, respectively, as measured by the observer, for

two points separated in the direction of ~N , and projected
along that direction.

The horizon tendicity and vorticity have several inter-
esting connections with other geometric quantities of 2-
surfaces. In particular, they fit nicely into the Newman-
Penrose (NP) formalism [8]. Rather than describe space-

time in terms of the tetrad ~u, ~N , ~e2 and ~e3, the NP
approach describes spacetime in terms of a null tetrad,

with two null vectors ~l, and ~n, together with a complex
spatial vector ~m and its complex conjugate ~m∗. It is con-
venient to adapt this tetrad to the 2-surface so that it is
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given by

~l =
1√
2
(~u− ~N) , ~n =

1√
2
(~u+ ~N) ,

~m =
1√
2
(~e2 + i~e3) . (3.1)

On an event horizon, ~l is tangent to the generators of
the horizon and ~n is the ingoing null normal. It is not
difficult to show that in this tetrad the complex Weyl
scalar Ψ2 is given by

Ψ2 = Clmm∗n = (ENN + iBNN)/2 , (3.2)

where Clmm∗n is the Weyl tensor contracted into the four
different null vectors of the tetrad in the order of the
indices.
Penrose and Rindler [9] relate the NP quantities to

curvature scalars of a spacelike 2-surface in spacetime.
In turn, we can then connect their results to the horizon
tendicity and vorticity. More specifically: Penrose and
Rindler define a complex curvature of a 2-surface that
equals

K =
1

4
(R+ iX ) . (3.3)

Here R is the intrinsic Ricci curvature scalar of a the 2D
horizon and X is a scalar extrinsic curvature (a curvature
of the bundle of vector spaces normal to the two-surface
in spacetime). This extrinsic curvature X is related to
the Háj́ıček field [10] ΩA = nµ∇Alµ (where ∇A denotes
the covariant derivative projected into the 2D horizon) by
X = ǫAB∇AΩB, where ǫAB is the antisymmetric tensor
of the 2D horizon. In the language of differential forms,
X is the dual of the exterior derivative of the Háj́ıček
1-form.
Penrose and Rindler [9] show that for a general, possi-

bly dynamical black hole,

K = −Ψ2 + µρ− λσ , (3.4)

where ρ, σ, µ, and λ are spin coefficients related to the ex-

pansion and shear of the null vectors~l and ~n, respectively.
This means that the horizon tendicity and vorticity are
given by

ENN = −R/2 + 2ℜ[µρ− λσ] , (3.5a)

BNN = −X/2 + 2ℑ[µρ− λσ] . (3.5b)

In the limit of a stationary black hole (this paper), ρ and
σ vanish, so

ENN = −R/2 , and BNN = −X/2 . (3.6)

The 2D horizon of a stationary black hole has spherical
topology, and the Gauss-Bonnet theorem requires that
the integral of the scalar curvature R over a spherical
surface is 8π; accounting for factors of two, the integral
of the horizon tendicity ENN over the horizon is −4π (the

average value of the horizon tendicity will be negative).
Stokes’s theorem states that the integral of an exact form
such as X vanishes on a surface of spherical topology,
and the horizon vorticity will also have zero average. In
formulae:

∮

ENNdA = −4π ,

∮

BNNdA = 0 (3.7)

for the horizon of a stationary black hole.

It is worth noting a few other examples in the liter-
ature where the complex curvature quantities (and as
such, horizon tendicity and vorticity) have been used.
The most common use of horizon vorticity (in a disguised
form) is for computing the spin angular momentum as-
sociated with a quasilocal black-hole horizon. Following
Refs. [11–13], it has become common to compute black
hole spin in numerical-relativity simulations using the fol-
lowing integral over the horizon:

J = − 1

8π

∮

KijN
iϕjdA, (3.8)

where Kij is the extrinsic curvature of the spatial slice

embedded in spacetime, ~N is the inward-pointing unit
normal vector to the horizon in the spatial slice, and ~ϕ
is a rotation-generating vector field tangent to the two-
dimensional horizon surface. If ~ϕ is a Killing vector, then
one can show that J is conserved. In Ref. [14], this was
applied to binary-black-hole simulations with ~ϕ given as
a certain kind of approximate Killing vector that can be
computed even on a deformed two-surface. In Ref. [15],
and independently in Refs. [16, 17], this idea was refined.
The quantity J can be shown to be boost invariant (in-
dependent of boosts of the spatial slice in the direction

of ~N) if ~ϕ is divergence-free. Hence, in Refs. [15–17], ~ϕ
is restricted to have the form ϕA = ǫAB∇Bζ, where ζ is
some scalar quantity on the two-surface (eventually fixed
by a minimization problem for other components of the
Killing equation). Once this substitution has been made,
an integration by parts allows J to be written as:

J =
1

8π

∮

X ζdA. (3.9)

The quantity ζ is fixed by a certain eigenvalue problem
on the horizon 2-surface. On a round 2-sphere, the op-
erator in this eigenproblem reduces to the conventional
Laplacian, and ζ can be shown to reduce to an ℓ = 1
spherical harmonic. Thus the quasilocal black-hole spin
defined in Refs. [15–17] can be thought of as the dipole
part of the horizon vorticity.
There are simpler ways that one can distill a measure

of black hole spin from the concepts of horizon vortic-
ity and tendicity. In Ref. [17], an alternative measure
of spin was made by comparing the maximum and min-
imum values of the horizon scalar curvature to formulae
for a Kerr black hole. This method has roots in older
techniques by which spin is inferred from the horizon’s in-
trinsic geometry through measurements of geodesic path
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length (see, for example, Refs. [18–20]). The method of
computing spin by comparing horizon curvature extrema
to Kerr formulae could be extended to use the extrin-
sic scalar curvature, or the horizon vorticity or tendicity
(which differ from the scalar curvatures in dynamical sit-
uations). While such methods have the benefit of rela-
tive simplicity, their practical value in numerical relativ-
ity is weakened by an empirical sensitivity of the inferred
spin to effects such as “junk” radiation and black hole
tides [17, 21].

In Ref. [22], it was shown that higher spherical-
harmonic components of these horizon quantities provide
natural definitions of source multipoles on axisymmetric
isolated horizons. In Refs. [23] and [24], this formal-
ism was extended to less symmetric cases for use with
numerical-relativity simulations, while attempting to in-
troduce as little gauge ambiguity as possible in the pro-
cess. Related applications of this formalism can be found
in Refs. [25, 26].

IV. SCHWARZSCHILD BLACK HOLE

In this section, we examine vortex and tendex lines for
a non-rotating black hole with mass M . These lines, of
course, depend on our choice of time slicing. As in the
numerical simulations that are the focus of Paper IV, so
also here, we shall use a slicing that penetrates smoothly
through the black hole’s horizon. The slices of constant
Schwarzschild time t for the hole’s Schwarzschild metric

ds2 = −(1−2M/r)dt2+
dr2

1− 2M/r
+r2dθ2+r2 sin2 θdφ2

(4.1)
do not penetrate the horizon smoothly; rather, they be-
come singular as they approach the horizon. (Denni-
son and Baumgarte [4] compute the tidal and frame-drag
fields of a Schwarzschild black hole in a slice of constant
Schwarzschild time and in isotropic coordinates; see their
paper for comparison.)

The simplest horizon-penetrating slices are those of
constant ingoing Eddington-Finkelstein (EF) time

t̃ = t+ 2M ln |r/2M − 1| . (4.2)

The Schwarzschild metric (4.1), rewritten using EF co-
ordinates {t̃, r, θ, φ}, takes the form

ds2 = −
(

1− 2M

r

)

dt̃2 +
4M

r
dt̃dr +

(

1 +
2M

r

)

dr2

+r2dθ2 + r2 sin2 θdφ2 . (4.3)

The observers who measure the tidal and frame-drag
fields that lie in a slice of constant t̃ have 4-velocities
~u = −αEF

~∇t̃, where αEF = 1/
√

1 + 2M/r is the normal-
izing lapse function. These observers can be regarded as
carrying the following orthonormal tetrad for use in their

measurements:

~u =
1

√

1 + 2M/r

[(

1 +
2M

r

)

∂t̃ −
2M

r
∂r

]

,

~er̂ =
1

√

1 + 2M/r
∂r , ~e

θ̂
=

1

r
∂θ ,

~e
φ̂

=
1

r sin θ
∂φ . (4.4)

The nonzero components of the tidal field that they mea-
sure using this tetrad are

Er̂r̂ = −2M

r3
, E

θ̂θ̂
= E

φ̂φ̂
=

M

r3
, (4.5)

and the frame-drag field B
âb̂

vanishes. (See, e.g.,
Eq. (31.4b) of [27]).
Note that the black hole’s tidal field (4.5) has the same

form as the Newtonian tidal tensor outside of a spherical
source. Since the tidal field is diagonal in this tetrad, its
eigenvalues and its unit-normed eigenvectors are

~Vr = ~er̂ , λr = −2M

r3
,

~Vθ = ~e
θ̂
, λθ =

M

r3
,

~Vφ = ~e
φ̂
, λφ =

M

r3
. (4.6)

Because the two transverse eigenvalues λθ and λφ are
degenerate, any vector in the transverse vector space
spanned by ~e

θ̂
and ~e

φ̂
is a solution to the eigenvalue prob-

lem, and correspondingly, any curve that lies in a sphere
of constant r can be regarded as a tendex line. How-
ever (as we shall see in the next section), when the black
hole is given an arbitrarily small rotation about its polar
axis θ = 0, the degeneracy is broken, the non-degenerate
transverse eigenvectors become ~e

θ̂
and ~e

φ̂
, and the trans-

verse tendex lines become circles of constant latitude and
longitude.
In Figure 1, we plot a few of these transverse tendex

lines (giving them a blue color corresponding to positive
tendicity λθ > 0 and λφ > 0), and also a few of the radial
tendex lines (colored red for negative tendicity λr < 0).
Also shown are two human observers, one oriented along
a blue tendex line (and therefore being squeezed by the
tidal field) the other oriented along a red tendex line (and
therefore being stretched).

V. SLOWLY ROTATING BLACK HOLE

A. Slicing and coordinates

When the black hole is given a slow rotation with an-
gular momentum per unit mass a, its metric (4.1) in
Schwarzschild coordinates acquires an off-diagonal gtφ
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FIG. 1: Tendex lines for a non-rotating (Schwarzschild) black
hole. These lines are identical to those generated by a spher-
ically symmetric mass distribution in the Newtonian limit.
Also shown are observers who experience the tidal stretching
and compression associated with the tendex lines.

term:

ds2 = −(1− 2M/r)dt2 +
dr2

1− 2M/r
+ r2dθ2

+r2 sin2 θdφ2 − 4aM

r
sin2 θdtdφ (5.1)

[the Kerr metric in Boyer-Lindquist coordinates, Eq.
(6.1) below, linearized in a]. The slices of constant EF
time t̃ = t+ 2M ln |r/2M − 1| are still smoothly horizon
penetrating, but the dragging of inertial frames (the off-
diagonal gtφ term in the metric) causes the Schwarzschild
φ coordinate to become singular at the horizon. To fix
this, we must “unwrap” φ, e.g., by switching to

φ̃ = φ+ (a/2M) ln |1− 2M/r| , (5.2)

thereby bringing the “slow-Kerr” metric (5.1) into the
form

ds2 = −
(

1− 2M

r

)

dt̃2 +
4M

r
dt̃dr +

(

1 +
2M

r

)

dr2

+r2dθ2 + r2 sin2 θdφ̃2 − 4aM

r
sin2 θdt̃dφ̃

−2a
√

1 + 2M/r sin2 θdrdφ̃ (5.3)

[Eq. (B1) below, linearized in a], which is well behaved
at and through the horizon. The observers who move
orthogonally to the slices of constant t̃ have 4-velocity
~u and orthonormal basis the same as for a non-rotating
black hole, Eq. (4.4), except that ~er̂ is changed to

~er̂ =
1

√

1 + 2M/r

[

∂r +
a

r2
(1 + 2M/r)∂φ̃

]

(5.4)

[Eq. (B2) below, linearized in a].

B. Frame-drag field and deformed tendex lines

The slow rotation gives rise to a frame-drag field

Br̃r̃ =
−6aM cos θ

r4
, Br̃θ̃ = Bθ̃r̃ =

−3aM sin θ

r4
√

1 + 2M/r
,

Bθ̃θ̃ = Bφ̃φ̃ =
3aM cos θ

r4
(5.5)

[Eq. (A2b) linearized in a/M ] that lives in the slices of
constant EF time t̃. This field’s vortex lines, shown in
Fig. 2b, are poloidal and closely resemble those of a spin-
ning point mass (a “current dipole”) in the linearized
approximation to general relativity (Fig. 3 of Paper I
[2]). At radii r ≫ M , the field asymptotes to that of a
linearized current dipole.

The rotating hole’s horizon vorticity is BNN = Br̂r̂ =
−6(aM/r4) cos θ, which is negative in the north polar
regions and positive in the south polar regions. Corre-
spondingly, there is a counterclockwise frame-drag vortex
sticking out of the hole’s north pole, and a clockwise one
sticking out if its south pole. We identify the edge of each
vortex, at radius r, as the location where the vorticities
of the vortex lines that emerge from the hole at the base
of the vortex, fall (as a function of θ at fixed r) to 90%
of the on-pole vorticity. The vortex edges are shown, in
Fig. 2, as semi-transparent surfaces; for comparison we
also show where the vorticity has fallen to 85% and 80%
of the on-pole vorticity at a given radius r.

The hole’s (small) spin not only generates a frame-
drag field Bij ; it also modifies, slightly, the hole’s tidal
field Eij and its tendex lines. However, the spin does
not modify the field’s tendicities, which (to first order
in a/M) remain λE

r = −2M/r3, λE
θ = λE

φ = M/r3 [Eq.

(4.6)]. The modified unit tangent vectors to the tendex
lines are

~V E
r = ~er̂ −

2Ma sin θ

r2
√

1 + 2M/r
~e ˆ̃
φ
,

~V E
φ̃

= ~e ˆ̃
φ
+

2Ma sin θ

r2
√

1 + 2M/r
~er̂ , ~V E

θ̃
= ~e ˆ̃

θ
. (5.6)

Correspondingly, there is a slight (though hardly no-
ticeable) bending of the radial tendex lines near the
black hole, and—more importantly—the azimuthal ten-

dex lines (the ones tangent to ~V E
φ̃
) cease to close. In-

stead, the azimuthal tendex lines spiral outward along
cones of fixed θ, as shown in Fig. 2a. Since these lines
have been only slightly perturbed from closed loops, they
spiral quite tightly, appearing as solid cones. In order to
better visualize these spiraling lines, we have increased
their outward (r directed) rate of change by a factor of
five as compared to the axial rate of change in Fig. 2a.
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(a) (b)

FIG. 2: (a) Tendex lines, and (b) vortex lines for a slowly rotating (Kerr) black hole. Here we take a/M = 0.1. The horizon
is color coded by its tendicity ENN in (a) and vorticity BNN in (b), and the field lines are color coded by the sign of their
tendicity or vorticity (blue for positive, red for negative). In (a), the spiraling lines have been made to spiral more loosely by
multiplying the rate of change in the r direction by five. The semi-transparent cone-like surfaces emerging from the horizon’s
north and south polar regions show where the magnitude of the vorticity at a given radius has fallen to 80% (outermost cones),
85%, and 90% (innermost cones) of the polar magnitude. We identify the innermost cone (the 90% contour) as the edge of the
frame-drag vortex. The equatorial plane is shown for reference in both panels.

C. Robustness of frame-drag field and tendex-line
spiral

The two new features induced by the hole’s small spin
(the frame-drag field, and the spiraling of the azimuthal
tendex lines) are, in fact, robust under changes of slic-
ing. We elucidate the robustness of the tendex spiral in
Appendix C. We here elucidate the robustness of the
frame-drag field and its vortex lines and vorticities:
Suppose that we change the time function t̃, which

defines our time slices, by a small fractional amount of
order a/M ; i.e., we introduce a new time function

t′ = t̃+ ξ(r, θ) , (5.7)

where t̃ is EF time and ξ has been chosen axisymmetric
and time-independent, so it respects the symmetries of
the black hole’s spacetime. Then “primed” observers who
move orthogonal to slices of constant t′ will be seen by the
EF observers (who move orthogonal to slices of constant
t̃) to have small 3-velocities that are poloidal, v = vr̂er̂+

vθ̂e
θ̂
. The Lorentz transformation from the EF reference

frame to the primed reference frame at some event in
spacetime induces a change of the frame-drag field given
by

δB = −2(v × E)S (5.8)

[see, e.g., Eq. (B12) of [28], linearized in small v], where
the S means symmetrize. Inserting the EF tidal field

(4.5) and the poloidal components of v, we obtain as the
only nonzero components of δB

δB
r̂
ˆ̃
φ
= δB ˆ̃

φr̂
= −(3M/r3)vθ̂ . (5.9)

This axisymmetric, slicing-induced change of the
frame-drag field does not alter the nonzero components
of the frame-drag field in Eq. (5.5); it only introduces
a change in the component B

r̂
ˆ̃
φ
. This is a sense in

which we mean the frame-drag field is robust. A sim-
ple calculation can show that one vorticity is unchanged,
B
φ̂φ̂

= 3aM cos θ/r4, but the corresponding vortex line

will no longer be a circle of constant (r, θ). Instead, it
will wind on a sphere of constant r relative to these closed
azimuthal circles with an angle whose tangent is given by

vθ̂ csc θ
√
r2 + 2Mr. The poloidal vortex lines must twist

azimuthally to remain orthogonal to these spiralling az-
imuthal lines, as well.

Although we will not see this specific kind of spiral-
ing vortex lines in the next section on rapidly rotating
Kerr black holes, we will see a different spiraling of the
azimuthal vortex lines: spiraling on cones of constant θ.
We describe the reason for this in Appendix C.
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VI. RAPIDLY ROTATING (KERR) BLACK
HOLE

We shall now explore a rapidly rotating black hole de-
scribed by the precise Kerr metric.

A. Kerr metric in Boyer-Lindquist coordinates

The Kerr metric is usually written in Boyer-Lindquist
(BL) coordinates {t, r, θ, φ}, where it takes the form

ds2 = −
(

1− 2Mr

Σ

)

dt2 +
Σ

∆
dr2 +Σdθ2 +

sin2 θ

Σ
Adφ2

−4Mar sin2 θ

Σ
dtdφ ,

Σ = r2 + a2 cos2 θ ,

∆ = r2 − 2Mr + a2 ,

A = (r2 + a2)2 − a2∆sin2 θ , (6.1)

Because the slices of constant t are singular at the hori-
zon (and therefore not of much interest to us), we relegate
to Appendix A the details of their tidal and frame-drag
fields, and their vortex and tendex lines.

B. Horizon-penetrating slices

In our study of Kerr black holes, we shall employ two
different slicings that penetrate the horizon smoothly:
surfaces of constant Kerr-Schild time coordinate t̃, and
surfaces of constant Cook-Scheel time coordinate t̄. By
comparing these two slicings’ tendex lines with each
other, and also their vortex lines with each other, we
shall gain insight into the lines’ slicing dependence.
The Kerr-Schild ([29, 30], see also, e.g., Exercise 33.8

of [27]) time coordinate (also sometimes called ingoing-
Kerr time) is defined by

t̃ = t+ r∗ − r , where
dr∗
dr

=
r2 + a2

∆
. (6.2)

The Cook-Scheel [31] time coordinate is

t̄ = t+
r2+ + a2

r+ − r−
ln

∣

∣

∣

∣

r − r+
r − r−

∣

∣

∣

∣

= t̃+ 2M ln

∣

∣

∣

∣

2M

r − r−

∣

∣

∣

∣

, (6.3)

(see Eqs. (19) and (20) of [31]) where r+ is the value of the
Boyer-Lindquist radial coordinate r at the event horizon,
and r− is its value at the (inner) Cauchy horizon:

r± = M ±
√

M2 − a2 . (6.4)

Figure 3 shows the relationship between these slicings
for a black hole with a/M = 0.95. In this figure, hori-
zontal lines are surfaces of constant Kerr-Schild time t̃.
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FIG. 3: Slices of constant Boyer-Lindquist time t, Kerr-Schild
time t̃, and Cook-Scheel time t̄, drawn in a Kerr-Schild space-
time diagram for a black hole with a/M = 0.95.

Since t, t̄ and t̃ differ solely by functions of r, the sur-
faces of constant Cook-Scheel time t̄ are all parallel to
the t̄ = 0 surface shown in the figure, and the surfaces
of constant Boyer-Lindquist time t are all parallel to the
t = 0 surface. The Kerr-Schild and Cook-Scheel surfaces
penetrate the horizon smoothly. By contrast, the Boyer-
Lindquist surfaces all asymptote to the horizon in the
deep physical past, never crossing it; i.e., they become
physically singular at the horizon.

C. Horizon-penetrating coordinate systems

Not only is the Boyer-Lindquist time coordinate t sin-
gular at the event horizon; so is the Boyer-Lindquist az-
imuthal angular coordinate φ. It winds around an infinite
number of times as it asymptotes to the horizon. We shall
use two different ways to unwind it, associated with two
different horizon-penetrating angular coordinates: The
ingoing-Kerr coordinate

φ̃ = φ+
a

r+ − r−
ln

∣

∣

∣

∣

r − r+
r − r−

∣

∣

∣

∣

= φ+

∫ ∞

r

a

∆
dr , (6.5)

and the Kerr-Schild coordinate

ϕ = φ̃− tan−1(a/r) . (6.6)

Figure 4 shows the relationship of these angular coor-
dinates for a black hole with a/m = 0.95. Notice that:
(i) all three angular coordinates become asymptotically
the same as r → ∞; (ii) the two horizon-penetrating

coordinates, ingoing-Kerr φ̃ and Kerr-Schild ϕ, differ by
less than a radian as one moves inward to the horizon;
and (iii) the Boyer-Lindquist coordinate φ plunges to −∞
(relative to horizon-penetrating coordinates) as one ap-
proaches the horizon, which means it wraps around the
horizon an infinite number of times.
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FIG. 4: Curves of constant Boyer-Lindquist angle φ, Kerr-
Schild angle ϕ, and ingoing-Kerr angle φ̃ for a black hole with
a/M = 0.95.

In the literature on Kerr black holes, four sets of space-
time coordinates are often used:

• Boyer-Lindquist coordinates, {t, r, θ, φ} .
These are the coordinates in Sec. VIA.

• Ingoing-Kerr coordinates, {t̃, r, θ, φ̃}. Often in
this case t̃ is replaced by a null coordinate, v = t̃+r
(curves v = const, θ = const, and φ̃ = const are
ingoing null geodesics).

• Quasi-Cartesian Kerr-Schild coordinates,
{t̃, x, y, z} and their cylindrical variant {t̃, ̟, z, ϕ}.
Here

x+ iy = (r + ia)eiφ̃ sin θ , z = r cos θ ,

̟ =
√

x2 + y2 =
√

r2 + a2 sin2 θ ,

ϕ = arctan(y/x) = φ̃+ arctan(a/r) . (6.7)

The Kerr-Schild spatial coordinates {x, y, z} re-
semble the coordinates typically used in numeri-
cal simulations of binary black holes at late times,
when the merged hole is settling down into its fi-
nal, Kerr state. These coordinate systems resemble
each other in the senses that (i) both are quasi-
Cartesian, and (ii) for a fast-spinning hole, the
event horizon in both cases, when plotted in the
coordinates being used, looks moderately oblate.
For this reason, in our study of Kerr black holes, we
shall focus our greatest attention on Kerr-Schild co-
ordinates. The Kerr metric, written in Kerr-Schild
coordinates, has the form

ds2 =

(

ηµν +
2Mr3

r4 + a2z2
kµkν

)

dxµdxν ,

kµ =

(

1,
rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)

, (6.8)

where r is the Boyer-Lindquist radial coordinate,
and is the larger root of

x2 + y2 + z2 = r2 + a2
(

1− z2

r2

)

, (6.9)

and ηµν is the usual flat Minkowski metric.

• Cook-Scheel harmonic coordinates [31],
{t̄, x̄, ȳ, z̄} where t̄ is given by Eq. (6.3), while the
spatial coordinates are defined by

x̄+ iȳ = [r −M + ia] eiφ̃ sin(θ) (6.10)

z̄ = [r −M ] cos(θ) (6.11)

These coordinates are harmonic in the sense that
the scalar wave operator acting on them vanishes.
In these coordinates, the event horizon of a spin-
ning black hole is more oblate than in Kerr-Schild
coordinates—and much more oblate for a/M near
unity.

D. Computation of tendex and vortex lines, and
their tendicities and vorticities

Below we show pictures of tendex and vortex lines,
color coded with their tendicities and vorticities, for our
two horizon-penetrating slicings and using our three dif-
ferent sets of spatial coordinates. In all cases we have
computed the field lines and their eigenvalues numeri-
cally, beginning with analytical formulas for the metric.
More specifically, after populating a numerical grid us-
ing analytical expressions for the metric, we numerically
compute Eij and Bij , as well as their eigenvalues and
eigenvectors. A numerical integrator is then utilized to
generate the tendex and vortex lines. Finally, we apply
analytical transformations that take these lines to what-
ever spatial coordinate system we desire.
Although not required for the purpose of generating

the figures in the following sections, it is nevertheless
possible to find analytical expressions for Eij and Bij , and
subsequently their eigenvalues and eigenvectors. These
expressions provide valuable insights into the behavior of
the tendex and vortex lines, and we present such results
for the ingoing-Kerr coordinates in Appendix B.

E. Kerr-Schild slicing: Tendex and vortex lines in
several spatial coordinate systems

Once the slicing is chosen, the tidal and frame-drag
fields, and also the tendex and vortex lines and their
tendicities and vorticities, are all fixed as geometric,
coordinate-independent entities that live in a slice. If
we could draw an embedding diagram showing the three-
dimensional slice isometrically embedded in a higher-
dimensional flat space, then we could visualize the tendex
and vortex lines without the aid of a coordinate system.
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However, the human mind cannot comprehend embed-
ding diagrams in such high-dimensional spaces, so we are
forced to draw the tendex and vortex lines in some coor-
dinate system for the slice, in a manner that makes the
coordinate system look like it is one for flat space.
Such a coordinate-diagram plot of the lines makes

them look coordinate dependent—i.e., their shapes de-
pend on the coordinate system used. Nevertheless, the
lines themselves are geometrically well-defined, indepen-
dent of coordinate system, and they map appropriately
between them. The visual features of these lines are also
qualitatively similar in reasonable coordinate systems.
Figure 5 is an important example. It shows the tendex

lines (left column of plots) and vortex lines (right col-
umn of plots) for a fast-spinning Kerr black hole, with
a = 0.95M . We have also colored the horizon of the black
hole according to its horizon tendicity and vorticity, re-
spectively. In all cases the slicing is Kerr-Schild; i.e., the
lines lie in a slice of constant t̃. The three rows of figures
are drawn in three different spatial coordinate systems:
ingoing-Kerr, Kerr-Schild, and Cook-Scheel.
Notice the following important features of this figure:

• As expected, the qualitative features of the ten-
dex lines are independent of the spatial coordi-
nates. The only noticeable differences from one co-
ordinate system to another are a flattening of the
strong-gravity region near the hole as one goes from
ingoing-Kerr coordinates (upper row of panels) to
Kerr-Schild coordinates (center row of panels) and
then a further flattening for Cook-Scheel coordi-
nates (bottom row of panels).

• The azimuthal (toroidal) tendex and vortex lines
(those that point predominantly in the ~eφ̃ direc-

tion) spiral outward from the horizon along cones
of constant θ, as for the tendex lines of a slowly

spinning black hole [cf. the form of ~V ˆ̃
φ
in Eqs. (B6)].

As we shall discuss in Appendix C, this is a charac-
teristic of a large class of commonly used, horizon-
penetrating slicings of spinning black holes.

• All the poloidal tendex and vortex lines have
(small) azimuthal (φ̃) components, which do not
show up in this figure; see the ~e ˆ̃

φ
components of

the eigenvectors ~V E
r , ~V E

θ , ~V B
− and ~V B

+ in Eqs. (B6)
and (B7).

• Left column of drawings: For this rapidly spinning
black hole, the horizon tendicity is positive (blue)
in the north and south polar regions, and negative
(red) in the equatorial region, by contrast with a
slowly spinning hole, where the horizon tendicity
is everywhere negative (Fig. 2). Correspondingly,
a radially oriented person falling into a polar re-
gion of a fast-spinning hole gets squeezed from head
to foot, rather than stretched, as conventional wis-
dom demands. The relationship ENN = −R/2 be-
tween the horizon’s tendicity and its scalar curva-

ture tells us that this peculiar polar feature results
from the well-known fact that, when the spin ex-
ceeds a/M =

√
3/2 ≈ 0.8660, the scalar curvature

goes negative near the poles, at angles θ satisfying
2(a/M)2 cos2 θ > 1 +

√

1− (a/M)2. This negative
scalar curvature is also responsible for the fact that
is it impossible to embed the horizon’s 2-geometry
in a 3-dimensional Euclidean space when the spin
exceeds a/M =

√
3/2 [32].

• Left column of drawings: The blue (positive ten-
dicity) tendex lines that emerge from the north po-
lar region sweep around the hole, just above the
horizon, and descend into the south polar region.
In order to stay orthogonal to these blue (squeez-
ing) tendex lines, the red (stretching) lines descend-
ing from radial infinity get deflected away from the
horizon’s polar region until they reach a location
with negative tendicity (positive scalar curvature),
where they can attach to the horizon; see the cen-
tral panels, which are enlargements of the north
polar region for the left panels.

• Right column of drawings: The vortex-line struc-
ture for this fast-spinning black hole is very similar
to that for the slow-spinning hole of Fig. 2, and sim-
ilar to that for a spinning point mass in the linear
approximation to general relativity (Fig. 3 of Pa-
per I [2]). The principal obvious change is that the
azimuthal vortex lines are not closed; instead, they
spiral away from the black hole, like the azimuthal
tendex lines.

• Right column of drawings: Most importantly, as for
a slow-spinning black hole, there are two vortexes
(regions of strong vorticity): as a counterclockwise
vortex emerging from the north polar region, and
a clockwise vortex emerging from the south polar
region. As we shall see in Paper IV, when two spin-
ning black holes collide and merge, these vortexes
sweep around, emitting gravitational waves. In
Fig. 5(d), these vortexes are indicated by contours
of r̃4 times vorticity, where r̃2 = x2 + y2 + z2 for
Kerr-Schild coordinates {x, y, z}. Notice in partic-
ular that each contour consists of one cone together
with one bubble attached to the horizon, with the
bubbles enclosing the polar regions excluding them
from the vortexes. This is a feature not seen for
the slow-spinning case.

F. Slicing-dependence of tendex and vortex lines

To explore how a Kerr black hole’s vortex and tendex
lines depend on the choice of slicing, we focus in Fig. 6
on a black hole with a/M = 0.875, viewed in a slice of
constant Kerr-Schild time, t̃ =constant, and in a slice
of constant Cook-Scheel harmonic time, t̄ =constant. In
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FIG. 5: Kerr black hole with a/M = 0.95 in Kerr-Schild slicing, drawn in three different spatial coordinate systems. The
left and center columns of drawings [panels (a), (c), (e)] show tendex lines; the right column of drawings [panels (b), (d), (f)]

show vortex lines. The three rows, from top downward, use ingoing-Kerr spatial coordinates {r, θ, φ̃} [panels (a) and (b)],
Kerr-Schild spatial coordinates {x, y, z} [panels (c) and (d)], and Cook-Scheel spatial coordinates {x̄, ȳ, z̄} [panels (e) and (f)].
In all cases, the lines with positive tendicity or vorticity are colored blue; those with negative tendicity or vorticity are colored
red. The horizon is shown with its horizon tendicity (left column of drawings) and horizon vorticity (right column) color coded
from dark blue for strongly positive to dark red for strongly negative. In Kerr-Schild coordinates [panels (c) and (d)], we have
also shown as semi-transparent surfaces, contours of r̃3 times tendicity and r̃4 times vorticity, where r̃2 = x2 + y2 + z2 for
Kerr-Schild spatial coordinates. In panel (c), the innermost equatorial contour has the most negative tendicity while the others
have 90%, 80%, 30%, 20%, and 10% this value, and the innermost polar contour has the least negative tendicity. In panel (d)
the contour with the most negative vorticity consists of the innermost red cone and the outermost red bubble (at the north
pole), and the others are at 90% and 80% this value. The blue contours of panel (d) are arranged similarly but with positive
vorticity.
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the two slices, we use the same spatial coordinates: Kerr-
Schild. (We chose a/M = 0.875, rather than the 0.95
that we used for exploring spatial coordinate dependence,
because it is simpler to handle numerically in the Cook-
Scheel slicing.)

The most striking aspect of Fig. 6 is the close similarity
of the tendex lines (left column of drawings) in the two
slicings (upper and lower drawings), and also the close
similarity of the vortex lines (right column of drawings) in
the two slicings (upper and lower). There appears to be
very little slicing dependence when we restrict ourselves
to horizon-penetrating slicings.

By contrast, if we switch from a horizon-penetrating
to a horizon-avoiding slice, there are noticeable changes
in the field lines: Compare the top row of Fig. 6 (a/M =
0.875 for a Kerr-Schild, horizon-penetrating slice) with
Fig. 7 (the same hole, a/M = 0.875, for a Boyer-
Lindquist, horizon-avoiding slice), concentrating for now
on panels (a) and (b) depicting tendex and vortex lines
in Boyer-Lindquist spatial coordinates. The most strik-
ing differences are (i) the radial tendex lines’ failure to
reach the horizon for horizon-avoiding slices, contrasted
with their plunging through the horizon for horizon-
penetrating slices, and (ii) the closed azimuthal tendex
and vortex lines for Boyer-Lindquist horizon-avoiding
slices, contrasted with the outward spiraling azimuthal
lines for horizon-penetrating slices. In Appendix C we
show that this outward spiral is common to a class of
horizon-penetrating slices. Lastly, we note that Fig. 7
(a) and (b) are plotted using Boyer-Lindquist spatial co-
ordinates in order to compare with analytical expressions
given in that appendix. When we use Kerr-Schild spa-
tial coordinates, as is done in Fig. 6, in order to facil-
itate a more appropriate comparison, we observe that
the Boyer-Lindquist azimuthal coordinate singularity de-
picted in Fig. 4 causes the tendex and vortex lines in
Boyer-Lindquist slicing to wind in φ direction when close
to horizon. This feature is clearly visible in Fig. 7 (c)
and (d), where we display the tendex and vortex lines in
Kerr-Schild spatial coordinates.

Based on our comparison of Kerr-Schild and Cook-
Scheel slicings (Fig. 6), and our analysis of the ubiquity
of azimuthal spiraling lines in horizon-penetrating slices
(Appendix C), we conjecture that horizon-penetrating
slicings of any black-hole spacetime will generically share
the same qualitative and semi-quantitative structures of
tendex and vortex lines. This conjecture is of key impor-
tance for our use of tendex and vortex lines to extract
intuition into the dynamical processes observed in nu-
merical simulations. More specifically:

Numerical spacetimes have dynamically chosen slic-
ings, and the primary commonality from simulation to
simulation is that the time slicing must be horizon pen-
etrating, to prevent coordinate singularities from arising
on the numerical grid near the horizon. Our conjecture
implies that, regardless of the precise slicing used in a
simulation, we expect the tendex and vortex lines to
faithfully reveal the underlying physical processes. We

will build more support for this conjecture in Paper III,
by comparing the final stages of a numerical black-hole
merger with a perturbed Kerr black hole, using very dif-
ferent slicing prescriptions.
We conclude this section with a digression from its

slicing-dependence focus:
When we compare the a/M = 0.875 black hole of Fig.

6 with the a/M = 0.95 hole of Fig. 5, the most striking
difference is in the tendex lines very near the horizon.
The value a/M = 0.875 is only slightly above the critical

spin a/M =
√
3/2 = 0.8660 at which the horizon’s poles

acquire negative scalar curvature. Correspondingly, for
a/M = 0.875, the blue tendex lines that connect the two
poles emerge from a smaller region at the poles than for
a/M = 0.95, and they hug the horizon more tightly as
they travel from one pole to the other; and the red, radial
tendex lines near the poles suffer much smaller deflections
than for a/M = 0.95 as they descend into the horizon (see
insets).

VII. CONCLUSION

Using vortex and tendex lines and their vorticities
and tendicities, we have visualized the spacetime cur-
vature of stationary black holes. Stationary black-hole
spacetimes are a simple arena in which to learn about
the properties of these visualization tools in regions of
strong spacetime curvature. From the features of the
vortex and tendex lines and their vorticities and tendic-
ities that we describe below, we have gained an under-
standing of these visualization tools and made an impor-
tant stride toward our larger goal of using these tools to
identify geometrodynamical properties of strongly curved
spacetimes—particularly those in the merger of binary
black holes.
Black hole spacetimes have an event horizon (a feature

that was absent in our study of weakly gravitating sys-
tems in Paper I). To understand our visualization tools
on the horizon, we defined and discussed the horizon ten-

dicity and horizon vorticity of stationary black holes. The
horizon tendicity and vorticity are directly proportional
to the intrinsic and extrinsic curvature scalars of a two-
dimensional horizon. As a result, the average value of
the horizon tendicity must be negative, and the horizon
vorticity must average to zero. Any region of large vor-
ticity on the horizon (a horizon vortex), therefore, must
be accompanied by an equivalent vortex of the opposite
sign, but there is not an analogous constraint for horizon
tendexes.
Outside the horizon, we also visualized the tendex lines

and vortex lines, the tendicities and vorticities, and the
regions of large tendicity (tendexes) and large vorticity
(vortexes) for Schwarzschild and Kerr black holes (the
latter both slowly and rapidly spinning). In particu-
lar, we investigated how the vortex and tendex lines of
Kerr black holes changed when they were drawn in dif-
ferent time slices and with different spatial coordinates—
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FIG. 6: Tendex lines and vortex lines for a Kerr black hole with a/M = 0.875 in Kerr-Schild spatial coordinates, for two
different slicings: Kerr-Schild t̃ =constant, and Cook-Scheel t̄ =constant. The left and center columns of drawings [panels
(a) and (c)] show tendex lines; the right column of drawings [panels (b) and (d)] show vortex lines. The top row of drawings
[panels (a) and (b)] is for Kerr-Schild slicing; the bottom row [panels (c) and (d)] is for Cook-Scheel slicing. Since the slicings
are different, it is not possible to focus on the same sets of field lines in the Kerr-Schild (upper panels) and Cook-Scheel (lower
panels) cases. However, we have attempted to identify similar field lines by ensuring they pass through the same Kerr-Schild
spatial coordinate locations on selected surfaces.

within the set of those time slices that smoothly pass
through the horizon and spatial coordinates that are ev-
erywhere regular. We found our visualizations are quite
similar between two commonly used, though rather dif-
ferent, horizon-penetrating time functions: Kerr-Schild
and Cook-Scheel. The spatial-coordinate dependence
was also mild, and was easily understandable in terms
of the relation between the different coordinate systems.
Because the coordinate systems used in numerical simu-
lations of black holes are also horizon penetrating, this
suggests that the vortex and tendex lines will not be very
different, even though the dynamical coordinates of the
simulation may be.

This study is a foundation for future work on com-
puting the tendexes and vortexes of black-hole space-
times. A recent work by Dennison and Baumgarte [4]—in

which the authors calculated the tendex and vortex fields
of approximate initial data representing non-spinning,
boosted black holes, and also black-hole binaries—will
also be helpful for understanding binaries. In addi-
tion, our investigations of the slicing and coordinate de-
pendence of tendexes and vortexes is complemented by
another recent study of Dennison and Baumgarte [33],
where expressions are given for computing curvature in-
variants in terms of the vorticities, tendicities, and the
eigenvector fields which give the tendex and vortex lines.
These expressions will likely be of use in future analytic
and numerical studies of tendexes and vortexes.

In a companion paper (Paper III), we turn to per-
turbed black holes. We aim to deepen our understanding
of tendex and vortex lines in these well-understood sit-
uations and to see what new insights we can draw from
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these spacetimes by using vortex and tendex lines. Ulti-
mately, we will apply these visualization techniques and
our intuition from simpler analytical spacetimes to study
numerical simulations of strongly curved and dynamic
spacetimes and their geometrodynamics. In Paper IV,
we will do just this, focusing on binary-black-hole merg-
ers.
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Appendix A: Kerr Black Hole in Boyer-Lindquist
Slicing and Coordinates

For a rapidly rotating Kerr black hole in Boyer-
Lindquist (BL) coordinates {t, r, θ, φ}, the metric is given
by Eq. (6.1) above. A “BL observer”, who moves orthog-
onally to the slices of constant BL time t, has a 4-velocity
~u and orthonormal tetrad given by

~u =

√

A

Σ∆

(

∂t −
2Mar

A
∂φ

)

, ~er̂ =

√

∆

Σ
∂r ,

~e
θ̂
=

1√
Σ
∂θ , ~e

φ̂
=

√

Σ

A

1

sin θ
∂φ .

(A1)

This tetrad is also often called the locally nonrotating
frame [34, 35]. In this orthonormal basis, the tidal and
frame-drag fields are given by (cf. Eqs. (6.8a-6.9d) of [36])

E
âb̂

=





−Qe
2+ξ
1−ξ

µQm 0

∗ Qe
1+2ξ
1−ξ

0

∗ ∗ Qe



 , (A2a)

B
âb̂

=





−Qm
2+ξ
1−ξ

−µQe 0

∗ Qm
1+2ξ
1−ξ

0

∗ ∗ Qm



 , (A2b)

with entries denoted by ∗ fixed by the symmetry of the
tensors, and where

Qe =
Mr(r2 − 3a2 cos2 θ)

Σ3
, (A2c)

Qm =
Ma cos θ(3r2 − a2 cos2 θ)

Σ3
, (A2d)

ξ =
∆a2 sin2 θ

(r2 + a2)2
, (A2e)

µ =
3a

√
∆(r2 + a2) sin θ

A
=

3
√
ξ

1− ξ
. (A2f)

The functions Qe and Qm are related to the real and
imaginary parts of the complex Weyl scalar Ψ2 calculated
using the Kinnersley null tetrad by Ψ2 = −Qe + iQm.
Note that there is a duality between the electric and the
magnetic curvature tensors: namely, by replacing Qe →
Qm and Qm → −Qe, the tensor transforms as E

âb̂
→ B

âb̂
.

The block diagonal forms of E
âb̂

and B
âb̂

imply that
one of the eigenvectors for each will be ~eφ. When inte-
grated, this gives toroidal tendex and vortex lines (i.e.,
lines that are azimuthal, closed circles). The other two
sets of lines for each tensor are poloidal (i.e., they lie in
slices of constant φ).
More specifically, the eigenvectors of the tidal field are

~V E
r =

(λE
r − E

θ̂θ̂
)~er̂ + E

r̂θ̂
~e
θ̂

√

(λE
r − E

θ̂θ̂
)2 + (E

r̂θ̂
)2

,

~V E
θ =

(λE
θ − E

θ̂θ̂
)~er̂ + E

r̂θ̂
~e
θ̂

√

(λE
θ − E

θ̂θ̂
)2 + (E

r̂θ̂
)2

,

~V E
φ = ~e

φ̂
. (A3)

The labeling of these eigenvectors is such that, as a → 0,
they limit to the corresponding eigenvectors (4.6) of a
Schwarzschild black hole. The tendicities (eigenvalues)
associated with these three eigenvectors, which appear
in the above formulas, are

λE
r = −Qe

2
−

√

(

3Qe

2

)2 (
1 + ξ

1− ξ

)2

+ µ2Q2
m ,

λE
θ = −Qe

2
+

√

(

3Qe

2

)2 (
1 + ξ

1− ξ

)2

+ µ2Q2
m ,

λE
φ = Qe , (A4)

The eigenvectors of the frame-drag field are

~V B
± =

(λB
± − B

θ̂θ̂
)~er̂ + B

r̂θ̂
~e
θ̂

√

(λB
± − B

θ̂θ̂
)2 + (B

r̂θ̂
)2

,

~V B
φ = ~e

φ̂
. (A5)

Here the labeling + and − of the poloidal eigenvectors
corresponds to the signs of their eigenvalues (vorticities).
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FIG. 7: (a) Tendex lines for a Kerr black hole with a/M = 0.875 on a slice of constant Boyer-Lindquist time t, plotted
in Boyer-Lindquist spatial coordinates. The lines with positive tendicity are colored blue and negative are colored red.
(b) Vortex lines for this same black hole, slicing and coordinates, with lines of positive vorticity colored blue and negative
colored red. (c) and (d) Tendex and vortex lines for the same black hole and same Boyer-Lindquist slicing, but drawn in the
Kerr-Schild spatial coordinates.

The eigenvalues are

λB
± = −Qm

2
±

√

(

3Qm

2

)2 (
1 + ξ

1− ξ

)2

+ µ2Q2
e ,

λB
φ = Qm . (A6)

The tendex and vortex lines tangent to the eigenvec-
tors (A3) and (A5) are shown in Fig. 7 for a rapidly
rotating black hole, a/M = 0.875. The lines with posi-
tive eigenvalues (tendicity or vorticity) are colored blue,
and those with negative eigenvalues are colored red. Far
from the black hole, the tendex lines resemble those of
a Schwarzschild black hole, and the vortex lines resem-
ble those of a slowly spinning hole. However, near the
horizon the behavior is quite different. The nearly radial
tendex lines in the inset of Fig. 7 are bent sharply as they
near the horizon, because of the black hole’s spin.

Before closing this appendix, we describe the behavior
of the eigenvalues near the poles. From Eqs. (A4), we
see that as θ → 0 and θ → π, λE

θ → λE
φ. Along the

polar axis, therefore, the poloidal and axial eigenvectors
of E

âb̂
become degenerate, and any vector in the plane

spanned by these directions is also an eigenvector at the
axis. Meanwhile, for B

âb̂
, Eqs. (A6) show that as θ →

0, λB
+ → λB

φ , and as θ → π, λB
− → λB

φ . Once again
there is a degenerate plane spanned by two eigenvectors
at the polar axis. In Paper III, in which we study the
tendex and vortex lines of perturbed Kerr black holes,
the degenerate regions have a strong influence on the
perturbed tendex and vortex lines (see Appendix F of
Paper III).
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Appendix B: Kerr Black Hole in Kerr-Schild Slicing
and Ingoing-Kerr Coordinates

In ingoing-Kerr coordinates {t̃, r, θ, φ̃} [Eqs. (6.2) and
(6.5)], the Kerr metric takes the form (see, e.g., Chapter
33 of [27], though we use the Kerr-Schild time t̃ [29, 30],
or Eq. (D.4) of [37])

ds2 = −
(

1− 2Mr

Σ

)

dt̃2 +
4Mr

Σ
drdt̃− 4Mar sin2 θ

Σ
dt̃dφ̃

+H2dr2 +Σdθ2 − 2aH sin2 θdrdφ̃ +
A sin2 θ

Σ
dφ̃2 ,

H2 = 1 +
2Mr

Σ
, (B1)

where Σ and A are defined in Eq. (6.1). The 4-velocities
of ingoing-Kerr observers, who move orthogonally to
slices of constant t̃, and the orthonormal tetrads they
carry, are given by

~u = H∂t̃ −
2Mr

HΣ
∂r , ~er̂ =

√
A

HΣ
∂r +

aH√
A
∂φ̃ ,

~e
θ̂
=

1√
Σ
∂θ , ~e ˆ̃

φ
=

√

Σ

A

1

sin θ
∂φ̃ (B2)

(see, e.g., [38] or [37]).

The components of the tidal field in this orthonormal
basis are

E
âb̂

=









−Qe
2+ξ
1−ξ

Qm
3a(r2+a2) sin θ

H
√
AΣ

Qe
6aMr(r2+a2) sin θ

HA
√
Σ

∗ Qe

(

1 + 3a2 sin2 θ
H2Σ

)

−Qm
6a2Mr sin2 θ

H2Σ
√
A

∗ ∗ Qe
2+ξ
1−ξ

−Qe

(

1 + 3a2 sin2 θ
H2Σ

)









, (B3)

where Qe, Qm, and ξ are defined in Eqs. (A2c), (A2d),
and (A2e). Just as in Boyer-Lindquist slicing and coor-
dinates (Appendix A), so also here, the components B

âb̂

of the frame-drag field can be deduced from E
âb̂

by the
duality relation

B
âb̂

= E
âb̂
|Qe→Qm, Qm→−Qe

. (B4)

The eigenvalues of the tidal field (B3), i.e. the tendic-
ities, and their corresponding eigenvectors are

λE
r = − 3ζ

2H2Σ
− Qe

2
,

λE
θ =

3ζ

2H2Σ
− Qe

2
,

λE
φ = Qe , (B5)

ζ2 = Q2
e(H

2Σ)2 +
(2Ma sin θ)2F

Σ3
,

F = r2 + 2Mr + a2 ;

~V E
r =

1

vr

(

H
√
Σ(r2 + a2)~er̂ +

√
A

2Qma sin θ

[

Qe(F + a2 sin2 θ)− ζ
]

~e
θ̂
− 2Mar sin θ~e ˆ̃

φ

)

,

~V E
θ =

1

vθ

(

H
√
Σ(r2 + a2)~er̂ +

√
A

2Qma sin θ

[

Qe(F + a2 sin2 θ) + ζ
]

~e
θ̂
− 2Mar sin θ~e ˆ̃

φ

)

,

~V E
φ̃

=
1

vφ̃

(

2Mar sin θ~er̂ +H
√
Σ(r2 + a2)~e

φ̂

)

. (B6)
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Here the quantities vr, vθ, and vφ̃ are the norms of the

vectors in large parentheses (which give the eigenvectors
~V E unit norms). As for Boyer-Lindquist slicing, our r, θ,
φ labels for the eigenvectors and eigenvalues are such that
as a → 0, they limit to the corresponding Schwarzschild
quantities in Eddington-Finkelstein slicing. Note that

although the expressions for ~V E
r and ~V E

θ appear nearly

identical, the coefficient of the term in front of ~e
θ̂
for ~V E

r

includes −ζ, and that in front of ~e
θ̂
for ~V E

θ includes +ζ.
This seemingly small difference determines whether the
eigenvectors are predominantly radial or poloidal. Note
also that the limit a → 0 must be taken carefully with
the vectors written in this form in order to recover the
eigenvectors of a Schwarzschild hole.
As for Boyer-Lindquist slicing, so also here, the eigen-

vectors and eigenvalues (vorticities) for B
âb̂

can be de-
rived from those for E

âb̂
using the Kerr duality relations:

{~V B
− , ~V B

+ , ~V B
φ̃
} = {~V E

r , ~V E
θ , ~V E

φ̃
}|Qe→Qm, Qm→−Qe

(B7)

{λB
−, λ

B
+, λ

B
φ̃
} = {λE

r , λ
E
θ , λ

E
φ̃
}|Qe→Qm ,Qm→−Qe

(B8)

As in the case of Boyer-Lindquist slicing, so also for Kerr-
Schild slicing, the transverse (nonradial) eigenvectors are
degenerate on the polar axis. This can be seen, for ex-
ample, from the form of E

âb̂
in Eq. (B3), or from the

corresponding eigenvalues in Eqs. (B5): as sin θ → 0, the
matrix becomes diagonal with two equal eigenvalues, λθ

and λφ. This is an inevitable consequence of axisymme-
try.

Appendix C: Spiraling Axial Vortex and Tendex
Lines for Kerr Black Holes in Horizon-Penetrating

Slices

In Figs. 5, 6, and 7, the azimuthal tendex and vor-
tex lines of a Kerr black hole in horizon-avoiding Boyer-
Lindquist slices are closed circles, while those in horizon-
penetrating Kerr-Schild and Cook-Scheel slices are out-
ward spirals. In this section, we argue that outward spi-
rals are common to a wide class of horizon-penetrating
slices, including ingoing-Kerr and Cook-Scheel slicings.
The class of time slices that we will investigate are

those that differ from Boyer-Lindquist slices, t, by a func-
tion of Boyer-Lindquist r,

t′ = t+ f(r) . (C1)

For example, both ingoing Kerr and Cook-Scheel times
fall into this category. By computing the normal to a
slice of constant t′ [when expressed in terms of the locally
non-rotating frame of Eq. (A1)] we find that

~u′ =

√

gtt

gt′t′

(

~u+

√

grr

gtt
df(r)

dr
~er̂

)

. (C2)

Here gtt and grr are the contravariant components of the
metric in Boyer-Lindquist coordinates, and gt

′t′ are those
in coordinates that use t′ instead. Defining

γ =

√

gtt

gt′t′
, v =

√

grr

gtt
df(r)

dr
, (C3)

we can see that the above transformation has the form of
a set of local Lorentz transformations between the locally
non-rotating frame and the new frame, and that γ2 =
1/(1− v2). This implies that we can express the timelike
normal and the new radial vector as

~u′ = γ(~u+ v~er̂) , (C4a)

~er̂′ = γ(v~u+ ~er̂) , (C4b)

and that we need not change the vectors ~e
θ̂
and ~e

φ̂
in

making this transformation.

From the expressions for how the tidal and frame-drag
fields transform under changes of slicing (see Appendix
B of [28]), we find that we can compute the new com-
ponents of the tidal field in the transformed slicing and
tetrad from the tidal and frame-drag fields in the Boyer-
Lindquist slicing and tetrad [Eq. (A2a) and (A2b)]. For
a change in slicing corresponding to a radial boost, these
general transformation laws simplify to

Er̂′r̂′ = EBL
r̂r̂ , (C5a)

Er̂′Â′ = γ(EBL
r̂Â

− vǫ
Âr̂Ĉ

BBL
Ĉr̂

) , (C5b)

E
Â′B̂′ = γ2[(1 + v2)EBL

ÂB̂
+ v2EBL

r̂r̂ δ
ÂB̂

− 2vǫr̂Ĉ(ÂBBL
B̂)Ĉ

] ,

(C5c)

where Â, B̂, and Ĉ = θ̂ and φ̂, and where repeated low-
ered index Ĉ is summed over its two values. To under-
stand how B is transformed, we use the duality E → B

and B → −E in the transformation laws (C5a)–(C5c).

By substituting the explicit expressions for the Boyer-
Lindquist slicing and tetrad tidal fields and the definition
of µ in Eq. (A2f), we see

E
â′b̂′

=











−
(

2+ξ
1−ξ

)

Qe γ
(

3
√
ξ

1−ξ

)

Qm γv
(

3
√
ξ

1−ξ

)

Qe

∗ γ2
(

1+2ξ
1−ξ

− v2
)

Qe −γ2v
(

3ξ
1−ξ

)

Qm

∗ ∗ γ2
(

1− v2 1+2ξ
1−ξ

)

Qe











. (C6)



18

In calculating B, we could again use the duality in Eq.
(B4).
To compute the tendex lines and the tendicity, we ex-

press Eq. (C6) in a new basis given by

~er̂′′ =
1

√

1 + γ2v2ξ
(~er̂′ − γv

√

ξ~e
φ̂
) , (C7a)

~e
φ̂′′ =

1
√

1 + γ2v2ξ
(γv

√

ξ~er̂′ + ~e
φ̂
) , (C7b)

and where ~e
θ̂
is again unchanged. In this basis, the tidal

field becomes block diagonal

E
â′′ b̂′′

=









γ2
(

2v2 − 2+ξ
1−ξ

)

Qe
3γ
√

ξ(1+γ2v2ξ)

1−ξ
Qm 0

∗ γ2
(

1+2ξ
1−ξ

− v2
)

Qe 0

∗ ∗ Qe









.

(C8)
We then see that the tendicities are

λr′′ = −Qe

2
− 3

2(1− ξ)

×
√

[(1 + γ2v2ξ) + γ2ξ]2Q2
e + 4γ2ξ(1 + γ2v2ξ)Q2

m ,
(C9a)

λθ′′ = −Qe

2
+

3

2(1− ξ)

×
√

[(1 + γ2v2ξ) + γ2ξ]2Q2
e + 4γ2ξ(1 + γ2v2ξ)Q2

m ,
(C9b)

λφ′′ = Qe , (C9c)

and the corresponding vectors have an identical form to
those in Eq. (A3), when one replaces the components of
the tidal field, the tendicities, and the unit vectors there
with the equivalent (primed) quantities in Eqs. (C7)–
(C9):

~Vr′′ =
(λr′′ − E

θ̂′′θ̂′′)~er̂′′ + E
r̂′′θ̂′′~eθ̂

√

(λr′′ − E
θ̂′′θ̂′′)2 + (E

r̂′′θ̂′′)2
, (C10a)

~Vθ′′ =
(λθ′′ − E

θ̂′′θ̂′′)~er̂′′ + E
r̂′′θ̂′′~eθ̂

√

(λθ′′ − E
θ̂′′θ̂′′)2 + (E

r̂′′θ̂′′)2
, (C10b)

~Vφ′′ = ~e
φ̂′′ . (C10c)

From the expressions for the eigenvectors, we can ex-
plain several features of the tendex lines in Figs. 5, 6,
and 7. When v = 0 [i.e., when f(r) = 0 and the slicing
is given by the horizon-avoiding, Boyer-Lindquist time],
the azimuthal lines formed closed loops, and the radial
and polar lines live within a plane of constant φ. For all
other slicings in this family [i.e., v 6= 0 and f(r) 6= 0], the
azimuthal lines pick up a small radial component, and
they will spiral outward on a cone of constant θ with a
pitch angle whose tangent is proportional to γv

√
ξ; the

radial and polar lines will also wind slightly in the az-
imuthal direction (an effect that is more difficult to see

in Figs. 5 and 6). By duality, an identical result holds
for the azimuthal vortex lines of B, and an analogous
behavior holds for the poloidal vortex lines (in Boyer-
Lindquist slicing, they remain in planes of constant φ, but
in horizon-penetrating slicings, they twist azimuthally).
For this class of slices, the azimuthal eigenvector of the

tidal field changes linearly in the velocity of the boost,
but the tendicity along the corresponding tendex line is
unchanged. The other eigenvectors also change linearly
in the velocity, but their tendicities are quadratic in v;
therefore, for small changes in the slicing, the tendici-
ties change more weakly. This result is reminiscent of a
similar qualitative result for perturbations of black holes
in the next paper of this series: the tendex lines appear
to be more slicing dependent than their corresponding
tendicities.
In the relatively general class of slicings investigated

here, we showed that the generic behavior of the az-
imuthal lines in horizon-penetrating slices is to spiral
outward radially (and the other lines must also wind az-
imuthally as well). This, however, is not the most gen-
eral set of slicings that still respect the symmetries of the
Kerr spacetime [e.g., those of the form t′ = t+g(r, θ) are].
These slicings will have a θ component to their boost ve-
locities, and (based on the argument for slowly spinning
black holes in Sec. VC), the azimuthal vortex lines will
also wind in the polar direction. A more generic, behav-
ior, therefore, would be azimuthal lines that no longer
wind on cones of constant θ. Because we were not aware
of any simple analytical slicings of this form, we did not
investigate here; however, we suspect that this more gen-
eral behavior of the lines may appear in numerical simu-
lations.
Before concluding, we note that by choosing

γ =

√

A

H2∆Σ
, v =

2Mr√
A

, (C11)

we can recover the results given in Appendix B for the
tidal field (and by duality, the frame-drag field). Simi-
larly, if we choose

γ =

√

A(r − r−)

∆[(r − r−)Σ + 2M(r2 + r+r + r2+ + a2)]
,

(C12a)

v =
r2+ + a2√

A
, (C12b)

then we can use Eq. (C6) to calculate the tidal and frame-
drag fields in time-harmonic Cook-Scheel slicing (and its
associated tetrad). The expressions were not as simple as
those in Appendix B, and for this reason, we do not give
them here. Because the velocity in Cook-Scheel slicing
falls off more rapidly in radius than that in ingoing-Kerr
slicing the azimuthal lines should have a tighter spiral (a
feature that we observe in Fig. 6).
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