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1 Introduction

For a single cosmic string in four Euclidean dimensions the metric is [1, 2]

ds2 = dr2 + r2dψ2 + dτ 2 + dz2 (1)

The string tension produces a deficit angle, ψ ≈ ψ + β where

β = 2π − 8πλ (2)

Here λ = Gµ where G is Newton’s constant and µ is the mass per unit length of the string.

We will be interested in the interaction between two parallel cosmic strings. At the
classical level there is no force between strings,1 but (as in the Casimir effect) an interaction
potential can be generated at one loop by a quantum field propagating on this background.
For simplicity we will take a perturbative approach, and calculate the interaction energy at
first order in the product of the two deficit angles. We consider two types of fields – scalar
fields with a non-minimal coupling to curvature, and abelian gauge fields – as the main point
of this paper is to highlight a relation between these two cases. Vacuum polarization in the
presence of a single cosmic string has been studied before; see for example [5, 6, 7] for scalar
fields and [8, 9] for gauge fields. For related calculations in the presence of multiple cosmic
strings see [10, 11].

We begin by recalling the argument that, to first order in the background curvature,
there should be a relation between gauge fields and scalar fields with specific non-minimal
couplings to curvature. To our knowledge this relation was first stated in [12], although
the essence of the following argument is taken from [13]. Consider a spacetime which is a
productMn×Rd−n of a weakly-curved n-dimensional Einstein manifoldMn with flat space
Rd−n. The metric takes the form

ds2 = gαβdx
αdxβ + δijdx

idxj (3)

where xα are coordinates on Mn and xi are coordinates on Rd−n. The Einstein manifold
has Ricci curvature Rαβ = 1

n
gαβR.2 Choose a vielbein gαβ = eaαe

b
βδab and denote the corre-

sponding spin connection ωα.

To establish the relation between gauge and scalar fields we compare their equations of
motion. For a gauge field, the equations of motion in Feynman gauge are

−∇ν∇νAµ +RµνA
ν = 0 (4)

1In classical gravity there is, however, a non-trivial scattering amplitude which results from the conical
boundary conditions [3, 4].

2By Einstein manifold we mean a manifold with Ricci curvature locally proportional to the metric,
Rαβ(x) = f(x)gαβ(x). In two dimensions all manifolds are Einstein. In higher dimensions the contracted
Bianchi identity ∇µ

(
Rµν − 1

2gµνR
)

= 0 requires that f be a constant. In either case it follows from the
definition that Rαβ = 1

ngαβR.
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where xµ = (xα, xi). There are ghosts associated with this choice of gauge which behave like
a pair of minimally-coupled scalar fields [14]. The components of the gauge field tangent to
Rd−n obey

−∇β∇βAi − ∂j∂jAi = 0 (5)

where the covariant derivative ∇α treats Ai as a singlet of SO(n). That is, the components
Ai behave like minimally-coupled scalar fields. The components of the gauge field tangent
to Mn, on the other hand, obey

−∇β∇βAa − ∂j∂jAa +
1

n
RAa = 0 (6)

Here∇α acts onAa = ea
αAα in the fundamental representation of SO(n), and we’ve made use

of the fact that Rαβ = 1
n
gαβR. So the components Aa are in the fundamental representation

of SO(n) and have an explicit non-minimal coupling to curvature.

Physical quantities can be computed perturbatively, as an expansion in powers of the
background curvature. As a concrete example imagine computing the effective action for
the background which results from integrating out Aµ. The spin connection can appear
in the effective action, but only through its field strength F = dω + ω2. In fact the field
strength can first appear in the effective action in terms such as FαβF

αβ that are quadratic
in the curvature. So to first order in the background curvature we can forget about the spin
connection and treat Aa as a collection of n scalar fields with a non-minimal coupling to
curvature. The equation of motion for a non-minimal scalar is

−∇β∇βφ− ∂j∂jφ+ ξRφ = 0 , (7)

and comparing to (6) we identify the effective non-minimal coupling parameter ξ = 1/n.
Thus to first order in the background curvature a gauge field is equivalent to n scalar fields
with ξ = 1/n, plus d− n minimally-coupled scalars.

This discussion is relevant to parallel cosmic strings because in two dimensions every
manifold is an Einstein manifold. The argument suggests that, to first order in the product
of the deficit angles, the interaction between two cosmic strings induced by a gauge field
should be the same as the interaction induced by an appropriate collection of non-minimal
scalars.

In the remainder this paper we verify this claim, by computing the interaction energy
between cosmic strings perturbatively. In section 2 we compute the interaction energy for a
scalar field, and in section 3 we carry out the corresponding computation for a gauge field.
We conclude in section 4, where we comment on our results and point out the relation to
studies of black hole entropy.
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Figure 1: Two parallel cosmic strings, separated by a distance b.

2 Non-minimal scalar energy

The Euclidean action is

S =

∫
d4x
√
g

(
1

2
gµν∂µφ∂νφ+

1

2
ξRφ2

)
For the conical geometry (1) the scalar curvature is3

R = 16πλδ2(x)/
√
g (8)

The action on a cone can be split into three pieces,

Scone = S0 + Sint, Sint = Swedge + Stip (9)

where

S0 =

∫
d4x

1

2
δµν∂µφ∂νφ (10)

is the action in flat space,

Swedge = −
∫
dτdz

∫ ∞
0

rdr

∫ 4πλ

−4πλ
dψ

1

2
δµν∂µφ∂νφ (11)

cancels the flat-space action in the region corresponding to the deficit angle, and

Stip =

∫
dτdz 8πλξφ2 (12)

arises from the non-minimal coupling to curvature. It’s straightforward to extend this to a
pair of cosmic strings, just by putting the deficit angles in opposite directions as shown in
Fig. 1.

3The easiest way to see this is to note that a truncated cone, i.e. a disc with a conical singularity at the
center, has Euler characteristic χ = 1

4π

∫
d2x
√
gR+ 1

2πβ = 1.
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We will treat Sint as a perturbation.4 To find the interaction energy per unit length along
the strings Hint we use [15] ∫

dτdzHint = 〈1− e−Sint〉C,0 (13)

where the subscript C, 0 denotes a connected correlation function computed in the unper-
turbed theory (10). Expanding in powers of Sint, the leading O(λλ′) interaction between the
strings comes from ∫

dτdzHint ≈ −〈S(1)
int S

(2)
int 〉C,0 (14)

where the superscripts (1), (2) refer to the first and second cosmic string, respectively. Some
useful unperturbed correlators are

〈φ(x)φ(x′)〉 =
1

4π2

1

(x− x′)2
(15)

and 〈
(∂φ)2(x) (∂φ)2(x′)

〉
=

6

π4

1

(x− x′)8〈
(∂φ)2(x)φ2(x′)

〉
=

1

2π4

1

(x− x′)6〈
φ2(x)φ2(x′)

〉
=

1

8π4

1

(x− x′)4

There are three types of interactions. For generality we can imagine that the two strings
have different non-minimal couplings ξ, ξ′.

wedge – wedge

To first order in λ and λ′ the wedges can be treated as very narrow, so that

Hint = −16π2λλ′
∫
dτdz

∫ ∞
0

xdx

∫ ∞
0

x′dx′
6

π4

1(
τ 2 + z2 + (x+ x′ + b)2

)4
= − 4λλ′

15πb2

4This is somewhat subtle, since it’s not manifest that perturbation theory in Sint will enforce the proper
conical boundary condition φ(r, ψ) = φ(r, ψ+β). Fortunately the boundary conditions are controlled by the
spin connection on the cone, which as we argued in the introduction can only enter at second order in the
deficit angle.
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wedge – tip

For wedge 1 with tip 2 we have

Hint = 32π2λλ′ξ′
∫
dτdz

∫ ∞
0

xdx
1

2π4

1(
τ 2 + z2 + (x+ b)2

)3
=

4λλ′ξ′

3πb2

tip – tip

The interaction between the two tips is

Hint = −64π2λλ′ξξ′
∫
dτdz

1

8π4

1(
τ 2 + z2 + b2

)2
= −8λλ′ξξ′

πb2

Assembling these results, to first order in λ and λ′ the interaction energy per unit length
due to a non-minimally coupled scalar field is

Hint =
λλ′

πb2

(
− 4

15
+

4

3
(ξ + ξ′)− 8ξξ′

)
(16)

To check the validity of our perturbative approach consider computing 〈φ2〉 for a minimally-
coupled scalar field in the presence of a single cosmic string. At first order in perturbation
theory, after subtracting the divergence which is present in flat space, we have

〈φ2〉 = −〈φ2Swedge〉C,0 =
λ

6π2r2
(17)

where r is the distance from the tip of the cone. On the other hand 〈φ2〉 can be computed
exactly,

〈φ2〉 =

∫ ∞
0

dsK(s, x, x) (18)

where the scalar heat kernel on a cone is5

K(s, x, x) = − 1

2β

1

(4πs)2

∫ ∞
−∞

dy e−
r2

s
cosh2(y/2)

(
cot

π

β
(π + iy) + cot

π

β
(π − iy)

)
(19)

Expanding the heat kernel to first order in the deficit angle and integrating over s reproduces
(17).

5See for example [16]. We dropped the term in the heat kernel 1/(4πs)2 which is responsible for the
divergence in flat space.
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3 Gauge field energy

We start from the Euclidean action

S = SMaxwell + Sgauge fixing

=

∫
ddx
√
g

(
1

4
FµνF

µν +
1

2

(
∇µA

µ
)2)

There are ghosts associated with this choice of gauge that behave like a pair of minimally-
coupled scalars.

If we smooth out the conical singularities, so that we can freely integrate by parts, the
action becomes

S =

∫
ddx
√
g

(
1

2
∇µAν∇µAν − 1

2
Aµ
(
∇µ∇ν −∇ν∇µ

)
Aν
)

=

∫
ddx
√
g

(
1

2
∇µAν∇µAν +

1

2
RµνA

µAν
)

In the second line we used [∇µ,∇ν ]A
ν = −RµνA

ν . We work on a space which is a product
of a two-dimensional cone with coordinates xα and a (d − 2)-dimensional flat space with
coordinates xi.

ds2 = gαβdx
αdxβ + δijdx

idxj

In two dimensions the Ricci tensor is proportional to the metric, so from (8)

Rαβ = 8πλgαβδ
2(x)/

√
g (20)

where 8πλ is the deficit angle. Thus the action for a gauge field on a cone can be decomposed
into

Scone = S0 + Sint, Sint = Swedge + Stip (21)

For example in four dimensions

S0 =

∫
d4x

1

2
(∂µAν)

2 (22)

is the Feynman gauge action in flat space,

Swedge = −
∫
dτdz

∫ ∞
0

rdr

∫ 4πλ

−4πλ
dψ

1

2
(∂µAν)

2 (23)

cancels the flat-space action in the region corresponding to the deficit angle, and

Stip = 4πλ

∫
dτdz gαβA

αAβ (24)
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arises from the explicit coupling to curvature. Aside from the sums over photon polarizations,
this is identical to the decomposition of the non-minimal scalar action (9).

The interaction between two cosmic strings can be calculated perturbatively, just as for a
non-minimal scalar field.6 In fact the two calculations are identical. There are d−2 polariza-
tions transverse to the cone which behave in perturbation theory just like minimally-coupled
scalars. Two of these polarizations are canceled by the ghosts, leaving no contribution in
four dimensions. The two polarizations tangent to the cone behave like non-minimal scalars
with ξ = 1/2. So the overall interaction energy coming from a gauge field in four dimensions
is simply twice the scalar result (16) evaluated at ξ = 1/2. That is, for a gauge field in four
dimensions

Hint =
2λλ′

πb2

(
−14

15

)
(25)

To check the validity of our perturbative approach consider computing 〈AµAµ〉 around a
single cosmic string. In perturbation theory, after subtracting the divergence present in flat
space, we have

〈AµAµ〉 = 〈AµAµ (−Swedge − Stip)〉C,0 =
4λ

6π2r2
− λ

π2r2
(26)

The first term comes from Swedge and is four times the scalar field result (17). The second
term comes from Stip and reflects the non-minimal coupling to curvature. The same quantity
can be computed exactly,

〈AµAµ〉 =

∫ ∞
0

ds gµνK
µν
vector(s, x, x) (27)

where the vector heat kernel is [16]

gµνK
µν
vector = 4Kscalar(s, x, x) +

2

r
∂rsKscalar(s, x, x) (28)

Expanding to first order in the deficit angle and integrating over s reproduces (26).7

4 Conclusions

In this paper we considered a cosmic string spacetime and argued that to first order in the
deficit angle there is an equivalence between a gauge field and a collection scalar fields with

6Again it’s not manifest that perturbation theory in Sint enforces the proper conical boundary conditions
on Aα, but this effect is controlled by the spin connection which can only enter at second order in the deficit
angle.

7Note that the last term in (28), which in the black hole context captures the contact interaction of a
gauge field with the horizon, corresponds at first order in perturbation theory to effects associated with Stip.
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specific non-minimal couplings to curvature. More generally the equivalence holds on the
product of any weakly-curved Einstein manifold with flat space. We tested the equivalence
by computing the interaction energy between two cosmic strings to first order in perturbation
theory, showing that it indeed matched for the appropriate value of the non-minimal coupling
parameter.

Throughout this paper we worked in Feynman gauge, which is adequate for studying
gauge-invariant quantities. However it would be interesting to study the relation between
gauge and scalar fields in other choices of gauge. Also it would be interesting to study the
interaction between strings at higher orders in perturbation theory. Beyond leading order
there is no reason to expect an equivalence between gauge and scalar fields, since the spin
connection distinguishes between the two types of fields and can appear in the interaction
energy at second order in the deficit angle.

Besides their direct application to cosmic strings, our results also have relevance to the
thermodynamics of black holes. In a Euclidean formalism the entropy of a black hole mea-
sures the response of the partition function to an infinitesimal conical deficit angle inserted
at the horizon [17, 18]. This has been used to study the renormalization of black hole entropy
due to matter fields, with the somewhat surprising conclusion that a gauge field can make
a negative contribution to the entropy. In [16] it was shown that this is due to a contact
term in the partition function for a gauge field, associated with particle paths that begin
and end on the horizon. Here we’ve shown that, to first order in the deficit angle, a gauge
field is equivalent to a collection of non-minimal scalars. So the contact interaction of [16]
is visible at the level of the equations of motion, as the explicit non-minimal coupling to
curvature seen in (6). This makes the negative renormalization of black hole entropy less
mysterious, since it maps a gauge field to the well-studied problem of a non-minimally cou-
pled scalar field in a black hole background [19]. Our results also show the physical relevance
of these contact interactions: besides contributing to black hole entropy, they make a (finite,
observable, gauge invariant) contribution to the force between two cosmic strings.

We conclude with some additional evidence in support of the relation between gauge and
scalar fields at first order in the background curvature. The partition function for a gauge
field on a cone was evaluated in [16]. Including the ghosts, the result is

βFgauge = (d− 2)βFminimal
scalar + A⊥(2π − β)

∫ ∞
ε2

ds

(4πs)d/2
(29)

Here d is the total number of spacetime dimensions, A⊥ is the area of the d − 2 transverse
dimensions corresponding to the horizon, s is a Schwinger parameter, and ε is a UV cutoff.
The partition function for a non-minimal scalar was evaluated to first order in the deficit
angle in [19], with the result

βF ξ
scalar = βFminimal

scalar + ξA⊥(2π − β)

∫ ∞
ε2

ds

(4πs)d/2
(30)
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Comparing the partition functions again shows that a gauge field corresponds to two non-
minimal scalars with ξ = 1/2, together with d−2 minimal scalars (two of which are canceled
by the ghosts). The same relation can be seen in the one-loop renormalization of Newton’s
constant,

1

4GN,ren

=
1

4GN

+
c1

(4π)
d−2
2 (d− 2)εd−2

(31)

where the Seeley – de Witt coefficients are [20]

c1 =

{
1
6
− ξ non-minimal scalar

d−2
6
− 1 gauge field including ghosts

(32)

On a d-dimensional Einstein manifold the gauge field result corresponds to d non-minimal
scalars with ξ = 1/d, plus two minimally-coupled scalar ghosts.
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