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We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically
motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in nu-
merical relativity (NR) simulations. We fix two of the coordinate degrees of freedom of the metric,
namely the radial and latitudinal coordinates, using the Coulomb potential associated with the
quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be
used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley
frame (and thus can be used to choose a preferred quasi-Kinnersley tetrad). In the limit of small per-
turbations about a Kerr spacetime, these geometrically motivated coordinates and quasi-Kinnersley
tetrad reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simula-
tion gauge choice. We explore the properties of this construction both analytically and numerically,
and we gain insights regarding the propagation of radiation described by a super-Poynting vector,
further motivating the use of this construction in NR simulations. We also quantify in detail the
peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly
well suited for a rapidly converging wave-extraction algorithm as the extraction location approaches
infinity, and we explore numerically the extent to which this property remains applicable on the
interior of a computational domain. Using a number of additional tests, we verify numerically that
the prescription behaves as required in the appropriate limits regardless of simulation gauge; these
tests could also serve to benchmark other wave extraction methods. We explore the behavior of the
geometrically motivated coordinate system in dynamical binary-black-hole NR mergers; while we
obtain no unexpected results, we do find that these coordinates turn out to be useful for visualizing
NR simulations (for example, for vividly illustrating effects such as the initial burst of spurious
“junk” radiation passing through the computational domain). Finally, we carefully scrutinize the
head-on collision of two black holes and, for example, the way in which the extracted waveform
changes as it moves through the computational domain.

PACS numbers: 04.25.D-,04.30.-w,04.25.dg

I. INTRODUCTION

Numerical relativity (NR) has made great strides in
recent years and is now able to explore binary black
hole, black hole - neutron star, and neutron star - neu-
tron star mergers in a wide variety of configurations
(see [1, 2] for recent reviews). Numerical simulations
are crucial tools for calibrating and validating the large
template bank of analytic, phenomenological waveforms
that will be used to search for gravitational waves in
data from detectors such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [3, 4], Virgo [5]
and the Large-scale Cryogenic Gravitational-wave Tele-
scope (LCGT) [6]. Numerical simulations also make it
possible, for the first time, to explore fully dynamical
spacetimes in the strong field region, such as the space-
time of a compact-binary merger.
An important attribute of any analysis performed on

numerical simulations is the ability to extract informa-
tion in a manner independent of the gauge in which one
chooses to perform the simulation. In this paper, we sug-
gest one such strategy: using a quasi-Kinnersley tetrad
adapted to a choice of coordinates that are computed us-
ing the curvature invariants of the spacetime. Most cal-
culations presented in this paper are local, allowing our

tetrad and choice of geometrically motivated coordinates
(and all quantities derived from them) to be computed
in real time during a numerical simulation (i.e. without
post-processing). The proposed scheme is also applica-
ble throughout the spacetime, allowing us to study phe-
nomena in both the strongly curved and asymptotic flat
regions with the same tools.

In order to extract the 6 physical degrees of freedom of
a general Lorentzian metric in four dimensions expressed
in terms of a tetrad formulation, 10 degrees of freedom
have to be specified [see e.g. [7]]. Of these 10 degrees of
freedom, 6 are associated with the tetrad at a particular
point on the spacetime manifold and 4 originate from
the freedom to label that point (the choice of gauge).
A common choice of tetrad and the one adopted here
is the Newman-Penrose (NP) null tetrad, which consists
of two real null vectors denoted l and n as well as a
complex conjugate pair of null vectors m and m. As we
demonstrate explicitly in Sec. II, where we consider the
mathematical details in greater depth, the tetrad choice
is not unique. The freedom to orient and scale the tetrad
is expressed by 6 parameters associated with a general
Lorentz transformation between two different null tetrads
at a fixed point in the spacetime.

In order to extract physically meaningful quantities
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and to compare results from different simulations and
numerical codes, an explicit prescription for the tetrad
choice must be made. Two geometrically motivated pre-
scriptions for orientating the tetrad immediately suggest
themselves: choosing i) the principle null frame (PNF)
or ii) the transverse frame (TF). (By “frame”, we mean
a set of tetrads related by a Type III transformation
[Sec. II C].) The relationship between these two frames
and their properties are discussed in greater detail in
Secs. II and III; either one of these two choices imme-
diately removes 4 of the 6 possible tetrad degrees of free-
dom. The remaining 2 degrees of freedom in the tetrad
choice are more subtle [see the discussion in Sec. III C].

The procedure we adopt in this paper is to choose
a special transverse tetrad that becomes the Kinnersley
tetrad [8] in Type-D spacetimes. The properties of these
tetrads (known as quasi-Kinnersley tetrads, or QKTs)
and their importance for NR have previously been ex-
plored in detail [9–14]. Part of the motivation for choos-
ing a QKT is implicit in Chandrasekhar’s work on the
gravitational perturbations of the Kerr black hole [15]:
in this work, he showed that for a given perturbation of
the Kerr metric (expressed in terms of the Weyl scalar
δΨ4) it is always possible, working to linear order, to
find a transverse tetrad and a gauge constructed from
the Coulomb potential associated with this tetrad such
that the Coulomb potential of the perturbed and back-
ground metrics are the same.

We revisit these ideas in Sec. III, where we investigate
the properties of the quasi-Kinnersley tetrad choice. We
concentrate on the implications of the intrinsic geomet-
rical properties of the tetrad, rather than (as previous
works have done) focusing on the tetrad’s properties in
a perturbative limit. For example, we explore the di-
rections of energy flow using the super-Poynting vector,
showing that the choice of a QKT naturally aligns the
tetrad with the wave-fronts of passing radiation. This ob-
servation suggests that, even in the strong field regime,
the QKT is a natural, geometrically motivated tetrad
choice for observing the flow of radiation and other space-
time dynamics.

After specializing to the transverse frame there exist
two remaining degrees of tetrad freedom: the freedom
of the spin-boost transformations. We fix this remaining
tetrad freedom by relying on a straightforward extension
of Chandrasekhar’s work [15] to the strong field regime.
We present the mathematical details in Secs. III D and
III E: specifically, we use the Coulomb potential Ψ̂2 on
the QKT to introduce a pair of geometrically motivated
radial and latitudinal coordinates. Note that Ψ̂2 on the
transverse frame is spin-boost independent, that the re-
sulting coordinates can be constructed from the curva-
ture invariants I and J only, and that these coordinates
reduce to the Boyer-Lindquist radial and latitudinal co-
ordinates for Kerr spacetimes. We then use these ge-
ometrically motivated coordinates to fix the spin-boost
freedom by ensuring that the projection of the tetrad
base vectors onto the gradients of the new coordinates

obey the relations found for the Kinnersley tetrad in the
Kerr limit.
One application of our chosen QKT and geometrically

motivated coordinates is gravitational-wave extraction.
For isolated, gravitating systems, gravitational radiation
is only strictly defined at future null infinity; this is a con-
sequence of the so-called “peeling property” that governs
the behavior of the Weyl curvature scalars as measured
on an affinely parametrized out-going geodesic. With
the goal of using our tetrad and gauge prescription as a
possible wave extraction method, we work out the impli-
cations that this peeling property has for the Weyl curva-
ture scalar expressed on the QKT in Sec. III H. We high-
light not only the falloff behavior of the QKT Newman-
Penrose quantities but also the behavior of the geomet-
rically constructed radial coordinate. We explore graph-
ically some of the implications of the peeling property
for the bunching of principle null directions and argue
that the directions associated with QKT are the optimal
out-going directions for ensuring rapid convergence of the
computed radiation quantities to the correct asymptotic
results.
We implement our geometrically motivated coordi-

nates and QKT numerically within the context of a pseu-
dospectral NR code in Sec. IV, and we present a number
of numerical simulations demonstrating the behavior of
our coordinates and QKT in Sec. V. First, we carry out,
for both non-radiative and radiative spacetimes, a few
checks to verify that our scheme works correctly regard-
less of the choice of gauge in the simulation [Secs. VA
and VB, respectively]. We confirm that we obtain nu-
merically the correct perturbation-theory results, and we
suggest that these tests could be used to benchmark other
wave-extraction algorithms.
Finally, we examine the application of the QKT

scheme to NR simulations of binary-black-hole collisions
in Sec. VI, considering both the wave zone and the strong
field regions. We consider a 16 orbit, equal-mass binary-
black-hole in-spiral and a head-on plunge, merger, and
ringdown, explicitly illustrating many of the ideas in the
theoretical discussions of the previous sections. We then
briefly conclude with a discussion of our results and of
prospects for the further development of our proposed
scheme in Sec. VII.

II. MATHEMATICAL PRELIMINARIES

In this section, we briefly summarize some important
properties of Newman-Penrose and orthonormal tetrads
[Sec. II A], the Weyl curvature tensor [Sec. II B], the
Lorentz transformations of the Newman-Penrose tetrad
[Sec. II C], and the Kinnersley tetrad in Kerr spacetime
[Sec. II D]. Note that here and throughout this paper, let-
ters from the front part of the Latin alphabet are used for
four dimensional coordinate bases, those from the middle
part of the Latin alphabet denotes quantities in three di-
mensional coordinate bases, while Greek indices are used
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for tetrad bases. Bold-face fonts denote vectors and ten-
sors.

A. Newman-Penrose and orthonormal tetrads

Two types of tetrad basis are particularly useful for
the exploration of generic spacetimes, such as the space-
times of numerical-relativity simulations of compact-
binary mergers: i) the Newman-Penrose (NP) tetrad
basis {eαa} = {la, na,ma,ma}, and ii) an orthonormal
tetrad {Eα

a } = {Ta, E2
a, E

3
a , Na}, which is closely related

to the NP tetrad as follows. The quantities E2 and
E3 are generally associated with angular variables on
a closed 2-surface and are related to the complex null
vector m by E2

a =
√
2ℜ(ma), E

3
a =

√
2ℑ(ma). Here

ℜ(m) and ℑ(m) denote the real and imaginary parts
of m, respectively. The timelike vector T and spacelike
vector N are related to the null vectors l and n by the
transformations

la =
1√
2
(T a +Na), na =

1√
2
(T a −Na). (2.1)

The metric expressed on the orthonormal basis is the
Minkowski metric, γαβ = diag{−1, 1, 1, 1}, while on the
NP tetrad basis the metric is

ηαβ =







0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0






. (2.2)

On the coordinate basis, the components of the metric
are given by

gab = ηαβeaαe
b
β = −2n(alb) + 2m(amb). (2.3)

B. Representations of Weyl curvature tensor

One aim of this paper is to uniquely fix the NP tetrad
basis to obtain a set of NP scalars from which an un-
ambiguous measure of the Weyl curvature (equal to the
Riemann curvature in vacuum) can be read off.
On the NP tetrad, the curvature content of the Weyl

tensor can be expressed in terms of five complex scalar
functions

Ψ0 = −Cabcdl
amblcmd (2.4)

Ψ1 = −Cabcdl
anblcmd (2.5)

Ψ2 = −Cabcdl
ambmcnd (2.6)

Ψ3 = −Cabcdl
anbmcnd (2.7)

Ψ4 = −Cabcdn
ambncmd. (2.8)

An equivalent description of the Weyl curvature can be
found on the orthonormal frame with associated time-
like vector T . This is done by defining gravitoelectric
E and gravitomagnetic B tensors by, respectively, twice

contracting T with the Weyl tensor and with its Hodge
dual:

Eij = hi
ahcjCabcdT

bT d , (2.9)

Bij = −1

2
hi

ahj
cǫabefC

ef
cdT

bT d . (2.10)

Here h denotes the projection operator onto the local
spatial hyper-surface orthogonal to T . The normaliza-
tion for the Levi-Civita tensors is such that ǫ0123 = 1
and ǫ123 = 1 in right-handed orthonormal tetrads and
spatial triads respectively [see [16] for a discussion of dif-
ferent conventions in literature]. These two tensors can
be combined to obtain a complex tensor

Qij ≡ Eij + iBij . (2.11)

The curvature information contained in Q is exactly the
same as that contained in the five NP scalars. Recasting
this information in terms of Q allows us to make use
of the fact that the E and B tensors describe the tidal
acceleration and differential frame-dragging to visualize
the curvature of spacetime [see, e.g., Refs. [16–20]].
To make the equivalence between Ψ0,Ψ1,Ψ2,Ψ3,Ψ4

and Q explicit, we note that the components of the com-
plex gravitoelectromagnetic tensor expressed on the spa-
tial triad {E2,E3,N} are

Q =





Ψ2 − Ψ0+Ψ4

2 iΨ0−Ψ4

2 Ψ1 −Ψ3

iΨ0−Ψ4

2 Ψ2 +
Ψ0+Ψ4

2 −i(Ψ1 +Ψ3)
Ψ1 −Ψ3 −i(Ψ1 +Ψ3) −2Ψ2



 .

(2.12)
Furthermore Q is symmetric and trace free (Qi

i = 0).
These results follow from direct substitution of the def-
inition of the orthogonal basis vectors in terms of the
NP basis vectors [Eq. (2.1)] and the definition of the
NP scalars [Eqs. (2.4)–(2.8)] into the definition of Q

[Eqs. (2.9), (2.10) and (2.11)].
Finally, note that for any spacetime in general relativ-

ity, there are a set of 16 scalar functions or Carminati-
McLenaghan curvature invariants [21] that can be con-
structed from polynomial contractions of the Riemann
tensor. In vacuum, four of these scalars are non-vanishing
and comprise a complete set of invariants. These four
scalars can be combined into two complex functions I
and J and are independent of tetrad choice. In terms
of the quantities already computed in this section, these
curvature invariants can be expressed as

I =
1

2
(Ek

iE i
k − Bk

iBi
k) + i(Ek

iBi
k)

=Ψ4Ψ0 − 4Ψ1Ψ3 + 3Ψ2
2

J =
1

6
(Ek

iE i
lE l

k − 3Ek
iBi

lBl
k)

− i

6
(Bk

iBi
lBl

k − 3Ek
iE i

lBl
k)

=

∣

∣

∣

∣

∣

∣

Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣

∣

∣

∣

∣

∣

(2.13)
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The invariants I and J play a key role in constructing
our geometrically motivated coordinate system [Sec. III].

C. Lorentz transformations

There are six transformations of the NP basis vec-
tors eαa that retain the form of the metric given in
Eq. (2.2). These are the six Lorentz transformations,
which parametrize the six degrees of tetrad freedom [15].
The Lorentz transformations can be decomposed into
three types depending on which null vector a particular
transformation leaves unchanged:

• Type I: (l unchanged)

l → l, n → n+ am+ am+ aal

m → m+ al, m → m+ al
(2.14)

• Type II: (n unchanged)

l → l+ bm+ bm+ bbn, n → n

m → m+ bn, m → m+ bn
(2.15)

• Type III: (both l and n unchanged up to rescaling)

l → A−1l, n → An

m → eiΘm, m → e−iΘm
(2.16)

Here the scalars a and b are complex, while A and Θ are
real and can be combined into a single complex number
A = A−1 exp(iΘ). The rescaling of l and n in Eq. (2.16)
is called boost freedom, and the phase change of m is
called the spin freedom. We will follow the convention
of Ref. [10] and call a set of tetrads related by Type III
transformations a frame.
Under the different Lorentz transformations, the NP

scalars transform as follows:

• Type I:

Ψ0 → Ψ0

Ψ1 → Ψ1 + aΨ0

Ψ2 → Ψ2 + 2aΨ1 + a2Ψ0 (2.17)

Ψ3 → Ψ3 + 3aΨ2 + 3a2Ψ1 + a3Ψ0

Ψ4 → Ψ4 + 4aΨ3 + 6a2Ψ2 + 4a3Ψ1 + a4Ψ0

• Type II:

Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4

Ψ1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4

Ψ2 → Ψ2 + 2bΨ3 + b2Ψ4 (2.18)

Ψ3 → Ψ3 + bΨ4

Ψ4 → Ψ4

• Type III:

Ψ0 → A−2e2iΘΨ0, Ψ1 → A−1eiΘΨ1, Ψ2 → Ψ2

Ψ4 → A2e−2iΘΨ4, Ψ3 → Ae−iΘΨ3 (2.19)

For any algebraically general spacetime, two special
frame choices exist: the principle null frame (PNF) and
the transverse frame (TF). The PNF is characterized by
the property that Ψ4 = 0 = Ψ0; starting from a generic
tetrad a PNF can be constructed by appropriate Type I
and Type II Lorentz transformations. The TF is charac-
terized by the property that Ψ3 = 0 = Ψ1; starting from
a PNF, a TF can be constructed by additional Type I
and Type II Lorentz transformations.
There are three TFs, but only one contains the Kin-

nersley tetrad in the Kerr limit [10]. In keeping with
earlier literature [9, 10], we will call this frame the quasi-
Kinnersley frame (QKF) and the particular tetrad we
pick out of this frame the quasi-Kinnersley tetrad (QKT).

D. The Kerr metric and the Kinnersley tetrad

The no-hair theorems [22, 23] lead us to expect
all binary-black-hole collisions to ring down to the
Kerr spacetime after enough time has elapsed. The
limiting Kerr metric in Boyer-Lindquist coordinates
(t, r, θ, φ)BL can be expressed as:

ds2 = −
(

1− 2Mr

Σ

)

dt2 − 4Mar sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+Σdθ2 +
sin2 θ

Σ

[

(

r2 + a2
)2 − a2∆sin2 θ

]

dφ2,

(2.20)

where M and a are the mass and spin of the black hole,
respectively, and the functions entering the metric are
defined by

Σ = ρρ, ρ = r − ia cos θ, ∆ = r2 − 2Mr + a2.
(2.21)

For the Kerr spacetime, one tetrad introduced by Kin-
nersley is particularly conducive for calculation. Among
other things, on this tetrad the perturbation equations
in the NP formalism decouple [15, 24]; this feature al-
lows the perturbation problem to be reduced to the study
of a single complex scalar (δΨ4) that governs the radia-
tion content of the perturbed spacetime. The Kinnersley
tetrad expressed on a Boyer-Lindquist coordinate basis
is given by

la =
1

∆

[

r2 + a2,∆, 0, a
]

(2.22)

na =
1

2Σ

[

r2 + a2,−∆, 0, a
]

(2.23)

ma =
1

ρ
√
2
[i a sin(θ), 0, 1, i csc(θ)] (2.24)
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On the Kinnersley tetrad, the only non-vanishing NP cur-
vature scalar is

Ψ2 =
M

ρ3
. (2.25)

In the next section, we explore the behavior of the
tetrad and curvature quantities defined in this section
in cases where the physical metric is well understood.
So doing, we build up some physical intuition that mo-
tivates our QKT choice, which we then apply to more
complicated spacetimes, such as those found in numeri-
cal simulations.

III. PHYSICAL CONSIDERATIONS FOR

CHOOSING A TETRAD

In this section, we introduce several ideas that mo-
tivate the choice of tetrad and gauge; we will use
these ideas to explore spacetimes produced by numerical-
relativity simulations.
For our purposes, we wish to adopt a tetrad and gauge

with the following properties (not in order of impor-
tance):

1. The tetrad (gauge) reduces to the Kinnersley tetrad
(Boyer-Lindquist coordinates) when the spacetime
is a weakly perturbed black hole.

2. The choice of tetrad and gauge should be indepen-
dent of the coordinate system, including the slicing
specified by the time coordinate, used in the NR
simulation.

3. To facilitate their real-time computation during a
NR simulation, all calculation should be local as far
as possible.

4. The prescribed use for all computed quantities
should be valid in strong field regions as well as
in asymptotic regions of the spacetime.

5. The choice of tetrad directions should as far as
possible be tailored to the physical content of the
spacetime. For example, in asymptotic regions, one
important direction is that of wave propagation; we
seek a tetrad that asymptotically is oriented along
this direction.

6. To facilitate gravitational-wave extrapolation (from
the location on the NR simulation’s computational
domain where the waves are extracted to future
null infinity I +), the falloff with radius of what we
identify as the radiation field should match that of
an isolated, radiating system; i.e., it should satisfy
the expected “peeling properties”.

We now consider in detail how we may achieve these cri-
teria in the course of constructing our QKT.
This section roughly breaks into three parts:

1. We start [in Sec. III A] by motivating the use of
QKF with a new insight regarding the relation-
ship between its l basis vector and the super-
Poynting vector, which allows it to satisfy crite-
rion 5. We then review the construction of the QKF
in Sec. III B.

2. Next, we concentrate on fixing the spin-boost free-
dom to select the QKT out of the QKF. First of
all, in Sec. III C we discuss several methods for fix-
ing this freedom that have appeared in literature.
Then we present our proposal to achieve a global
and gauge independent fixing [in Sec. III E] using a
pair of geometrically motivated coordinates defined
in Sec. III D. We conclude this part with a brief dis-
cussion of issues related to the proposed scheme in
Secs. III F and III G.

3. Finally, we discuss [in Sec. III H] the conformity of
the final QKT to criterion 6 and further motivate
its use.

A. The TF and wave-propagation direction

The Kinnersley tetrad [Eqs. (2.22)–(2.24)] is both a
PNF and a TF [25] [cf. Sec. II C]; this implies that the
Kerr spacetime is Petrov Type D. Generic non-Type-D
spacetimes do not have this property: for them no tetrad
that is both a PNF and a TF exists, so one must decide
which if either of these properties to preserve. Here, we
do not want Ψ4, which plays an important role in the
perturbation problem, to vanish; therefore, we choose a
tetrad that is a TF [9–13]. In fact, one particular ad-
vantage of selecting the TF is its ability to identify the
direction of wave propagation in the asymptotic region
[cf. criterion 5].
In electromagnetism, a local wave vector that points

in the normal direction to the surfaces of constant phase
(wavefronts) can be defined. If the medium through
which the wave is travelling is isotropic, this direction
corresponds to the direction of the waves’ energy flow, or
the “wave-propagation direction”, which is determined
by the direction of the Poynting vector,

Pi = ǫijkE
jBk (3.1)

where the vectors Ej and Bk are the electric and mag-
netic field vectors. In this subsection, we summarize
the relationship between the QKT and the gravitational
waves’ counterpart to Poynting vector.
One approach for constructing a geometrically moti-

vated tetrad follows a suggestion by Szekeres [26], which
is to create a gravitational compass out of a number of
springs. Such a device is sensitive to the spacetime cur-
vature and can be oriented so that the longitudinal grav-
itational wave components vanish; mathematically, this
amounts to reorienting the observer’s tetrad so that it
is a TF, which can be done using Type I and Type II
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transformations to set Ψ1 = 0 = Ψ3. We note that
Chandrasekhar [15] employed the use of a TF for his pro-
gram of metric reconstruction from a small perturbation
in curvature δΨ4 on a background Kerr metric.
Choosing a TF turns out to orient the tetrad along the

direction of energy flow, i.e., along the super-Poynting
vector [27, 28]

Pi = ǫijkEj
lBkl, (3.2)

which defines a spatial direction associated with
the wave-propagation direction [29]. The super-
Poynting vector’s components in the orthonormal triad
{E2

i , E
3
i , Ni}, using the explicit form of gravitoelectro-

magnetic tensor in Eq. (2.12), are

PE2 = −P0(0, 1)− 3P0(1, 2)− 3P0(2, 3)− P0(3, 4)

PE3 = P1(0, 1) + 3P1(1, 2) + 3P1(2, 3) + P1(3, 4)

PN =
1

2

(

−|Ψ0|2 − 2|Ψ1|2 + 2|Ψ3|2 + |Ψ4|2
)

, (3.3)

where the functions P0 and P1 are defined to be

P0(p, q) ≡ ℜ(Ψp)ℜ(Ψq) + ℑ(Ψp)ℑ(Ψq) (3.4)

P1(p, q) ≡ ℜ(Ψp)ℑ(Ψq)−ℜ(Ψq)ℑ(Ψp). (3.5)

By transforming to a TF, where Ψ1 = 0 = Ψ3, Eq. (3.3)
simplifies significantly, becoming

P =
1

2

(

|Ψ4|2 − |Ψ0|2
)

N , (3.6)

where its direction corresponds to spatial normal direc-
tion N fixed by our choice of TF and Eq. (2.1), which
relates N to the NP tetrad vectors l and n. By selecting
the TF, we have oriented the tetrad according to the flow
of energy within the spacetime, achieving criterion 5. We
believe this is one of the strongest motivating factors for
making the TF choice.

B. Computing the quasi-Kinnersley frame on a

given spacelike hyper-surface

In this subsection, we review the procedure for con-
structing the TF that contains the Kinnersley tetrad in
the Kerr limit. This, as stated before, is named the quasi-
Kinnersley frame, or QKF. We follow mostly the deriva-
tion of Ref. [9].

1. A spatial eigenvector problem for the QKF

Numerical relativity simulations typically split the 4-
dimensional spacetime to be computed into a set of 3-
dimensional spatial slices. In the usual 3+1 split, the
spacetime metric gab is split into a spatial metric hij ,
lapse α, and shift βi according to

gabdx
adxb = −α2dt2+hij(dx

i+βidt)(dxj+βjdt), (3.7)

while the Einstein equations in vacuum split into evolu-
tion equations (for advancing from one slice to the next)

Rij −
1

2
gijR = 0 (3.8)

and constraint equations (satisfied on all slices)

RTT − 1

2
gTTR = 0, (3.9)

RTj −
1

2
gTjR = 0, (3.10)

where Rab and R are the Ricci tensor and Ricci scalar
of the spacetime, respectively, the component T is in the
direction normal to the spatial slice, and the components
i and j lie within the spatial slice.
As mentioned in Sec. II, for a given spatial slice with

future directed unit normal T , the curvature can be ex-
pressed in terms of the gravitoelectric tensor E and the
gravitomagnetic tensorB defined in Eqs. (2.9) and (2.10).
In terms of the 3+1 quantities typically computed in NR
codes, provided that the Einstein constraint equations
are satisfied, the gravitoelectromagnetic tensors in vac-
uum can be expressed as

Eij = 3Rij +KKij −KikK
k
j

Bij = −ǫ kl
i DkKlj (3.11)

where K is the trace of the extrinsic curvature Kij , while
3Rij and Dk are the Ricci curvature and connection, re-
spectively, associated with the spatial metric hij .
Given the gravitoelectric and gravitomagnetic tensors,

a powerful tool [16, 17] for visualizing the curvature of
spacetime is a plot of the “vortex” and “tendex” lines,
which are the flow lines of the eigenvectors of the grav-
itoelectromagnetic tensors Eij and Bij . The QKF is
also related to an eigenvalue problem involving Eij and
Bij , albeit a complex one involving the complex tensor
Q ≡ E + iB. Specifically, it was shown in Ref. [9] that
the QKF can be constructed from the eigenvector σ̃i that
satisfies the eigenvector equation

Qi
jσ̃

j = −2Ψ̂2σ̃
i (3.12)

where the eigenvalue −2Ψ̂2 has the value of −2Ψ2 com-
puted on the QKF. Here and throughout the rest of this
paper, we adopt the convention of denoting quantities
associated with a QKF (such as the NP tetrad vector

l̃) with an overscript tilde and quantities associated with
the final tetrad, whose spin-boost degrees of freedom have
been uniquely fixed (yielding a preferred QKT), with an

overscript hat (e.g. l̂). As we will show in greater de-
tail later in the section, the QKF’s Coulomb potential
Ψ̂2 can be constructed out of the curvature invariants I
and J of the spacetime and is invariant under spin-boost
transformations; therefore, we denote Ψ̂2 with a hat to
indicate it has been fixed to its final value.
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2. Selecting the correct eigenvalue

For any symmetric matrix M, the eigenvalues associ-
ated with the eigenvector problem Mi

jξ
j = λξi obey the

characteristic equation p(λ) = 0 where p(λ) = det(M−
λI) and I is the identity matrix. For a 3× 3 matrix, the
characteristic equation becomes

p(λ) =− λ3 + λ2tr(M)

+
1

2
λ
(

tr(M2)− tr2(M)
)

+ det(M), (3.13)

If Mi
j = Qi

j , direct calculation using Eqs. (2.12) and
(2.13) can verify that tr(Q) = 0, det(Q) = 2J and
tr(Q2) = 2I, which reduces the characteristic polyno-
mial to

pQ(λ) = −λ3 + λI + 2J. (3.14)

The solution to this cubic equation can be expressed us-
ing the speciality index [30] S = 27J2/I3 as

λ =
3J

I

W (S)1/3 +W (S)−1/3

√
S

(3.15)

where W (S) ≡
√
S −

√
S − 1. There are three solutions1

corresponding to the three transverse frames, but only
one (namely the QKF) contains the Kinnersley tetrad in
the Kerr limit [10] (and thus satisfies criterion 1).
We must now select the correct eigenvalue to define the

QKF. Only one of the three eigenvalues has an analytic
expansion around S = 1 (which holds for all Type-D
spacetimes, including Kerr [30]). We select this eigen-
value (which we denote λ0) to define the QKF, and so

−2Ψ̂2 = λ0. For reference, the series expansion of λ0 and
also the other two eigenvalues λ± around S = 1 is

λ0 = −2Ψ̂2 ∼ −2J

I

[

−3 +
4

3
(S − 1) + · · ·

]

, (3.16)

λ± ∼ −2J

I

[

3

2
± i

√
3

2

√
S − 1− 2

3
(S − 1) + · · ·

]

.

In practice, this selection criterion is equivalent to choos-
ing the eigenvalue with the largest magnitude [10].

3. Constructing the QKF tetrad vectors

We now summarize the necessary results that allow
the reconstruction of the QKF from the eigenvector of

1 The fraction on the right of Eq. (3.15) has a three-sheeted Rie-
mann surface with branch points of order two at S = 0 and
S = 1, as well as a branch point of order three at S = ∞.
The three different eigenvalues arise from the values on the three
sheets respectively [9].

the matrix Q; for a complete derivation, see Ref. [9].

The eigenvector corresponding to the eigenvalue −2Ψ̂2

can be expressed as

σ̃j = x̃j + iỹj (3.17)

where the real vectors x̃j and ỹj are orthogonal with
respect to the spatial metric hij and their normalization
obeys the condition

‖x̃‖2 − ‖ỹ‖2 = 1. (3.18)

Here and throughout this section, we will use ‖v‖ and v ·
w to represent norm and inner product of spatial vectors
under hij . The vectors x̃j and ỹj can in turn be used to
define the vectors

λ̃i =
x̃i + ǫijkx̃j ỹk

‖x‖2 , ν̃i =
−x̃i + ǫijkx̃j ỹk

‖x‖2 ,

µ̃i =
λ̃i + ν̃i + iǫijkλ̃j ν̃k

1 + λ̃ · ν̃
, (3.19)

where the normalization condition on σ̃ [Eq. 3.18] ensures

‖λ̃‖ = ‖ν̃‖ = ‖ℜ(µ̃)‖2 − ‖ℑ(µ̃)‖2 = 1. (3.20)

The resulting vectors λ̃, ν̃ and µ̃ turn out to be propor-
tional to the spatial projections of QKF basis vectors l̃,
ñ and m̃ respectively. To see this, let the spatial vectors
be expressed in terms of a spatial triad Ea

i which is part
of an orthonormal tetrad Ea

α with Ea
0 = T a; then, the

full QKF tetrad can be constructed as follows:

l̃a =
|A|−1

√

1− λ̃ · ν̃
(T a + λ̃iEa

i ),

ña =
|A|

√

1− λ̃ · ν̃
(T a + ν̃iEa

i ),

m̃a =
eiΘ√
2

√

1 + λ̃ · ν̃
√

1− λ̃ · ν̃
(T a + µ̃iEa

i ).

(3.21)

Note that the residual spin-boost freedom [cf. Eq. (2.16)]
has been made explicit in Eq. (3.21) by means of the
parameters A and Θ (which have yet to be determined).
Also note that the equation for m̃ above must be mod-

ified if the normal to the spatial slice T lies in the plane
spanned by l̃ and ñ, since in this special case the vectors
λ̃ and ν̃ turn out not to be independent of each other (as

is true generally) but are instead related by λ̃i = −ν̃i.
It is unclear whether such a slicing can be found for any
spacetime, but once found, it is closely associated with a
TF. In this case the vector µ̃ is undefined and m̃ should
be constructed from any real unit vector r̃ in the spatial
2-plane orthogonal to λ̃ and T̃ according to

m̃a =
eiΘ√
2
(r̃i + iǫijkλ̃j r̃k)E

a
i . (3.22)
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Because the spatial eigenvector problem (3.12) can be
solved point-wise, the construction of the QKF is a lo-
cal procedure and satisfies criterion 3. Furthermore, the
procedure can be applied in the strong field region [cf.
criterion 4], although the physical interpretation is only
clear if the tetrad can be smoothly extended from there
to infinity. By choosing our tetrad to be a QKF, we have
used up four of the six possible degrees of tetrad freedom
and have uniquely fixed the directions associated with the
real null vectors l̃ and ñ. We will address the remaining
spin-boost freedom in the next three subsections.

C. The spin-boost tetrad freedom

After electing to work in the QKF, the residual tetrad
freedom is restricted to a Type III spin-boost transforma-
tion [Eqs. (2.16) and (3.21)]. As seen in Eq. (2.19), the

boost transformation affects the magnitude of Ψ̃4, while
the spin transformation modifies the phase of Ψ̃4.
To gain some insight into what the spin-boost transfor-

mations do physically, consider a congruence of observers
whose world lines are the integral curves of the T field in
Eq. (2.1). For these observers, a spin transformation of
the tetrad mixes up the two polarizations of gravitational
wave by the induced phase rotation2; in practice, this
rotation occurs because the observers are rotating the
orientation of their coordinates and thus redefining what
they consider to be the latitudinal and longitudinal direc-
tions. Similarly, the boost transformation in Eq. (2.16)
alters the velocity with which these observers move along
the direction of wave-propagation, causing the gravita-
tional wave they observe to be redshifted or blueshifted.
In order to identify the gravitational wave and curva-

ture content contained in Ψ4 in an unambiguous man-
ner, we need to provide a prescription for fixing A and Θ
throughout the spacetime. Note that λ̃ and ν̃ constructed
in Eq. (3.19) are dependent on the choice of slicing; thus
simply setting A and Θ in Eq. (3.21) to particular values
does not select a tetrad in a slicing independent manner.
Fixing these parameters but altering the slicing will lead
to different tetrads in the same frame (the QKF), thus
when we leave A and Θ undetermined, the frame as a
whole that we obtain from Eq. (3.21) is slicing indepen-
dent.
One example of fixing the spin-boost freedom in a

gauge independent way often used in mathematical anal-
ysis is selecting the so-called canonical transverse tetrad
(CTT) [25], which is defined by the condition that

Ψ1 = 0 = Ψ3 and Ψ0 = Ψ4. (3.23)

The CTT has the property that the super-Poynting vec-
tor given in Eq (3.6) has vanishing magnitude; in this

2 Recall that for plane waves on Minkowski background, we have
Ψ4 = −ḧ+ + iḧ×, where h is the metric perturbation.

tetrad, the observers are co-moving with local wave-
front in the asymptotic region and consequently measure
‖P‖ = 0. Since no physical observer can travel at the
speed of light and co-move with the wavefront, we re-
quire a more physically motivated prescription for fixing
the spin-boost freedom.
Several approaches for providing such a physically mo-

tivated prescription have been suggested. A common ap-
proach is to impose conditions on spin coefficients (such
as ǫ = 0 [8]). The Kinnersley tetrad for the Kerr metric
has spin coefficients3 that obey κ = σ = λ = ν = ǫ = 0.
The meaning of some of these coefficients can be gleaned
from the equations governing how the tetrad evolves
along the l direction, namely [15]

lbla;b = 2ℜ(ǫ)la − κma − κma, (3.24)

lbma
;b = 2iℑ(ǫ)ma + πla − κna. (3.25)

If κ = 0 for example, the null vector l is tangent to a
geodesic and further if ℜ(ǫ) = 0 this geodesic is affinely
parameterized.
Note that choosing l to be geodesic or κ = 0 is not

necessarily consistent with choosing to work in a TF, al-
though these conditions are consistent in the Kerr limit.
In a TF, the only freedom available to set the spin co-
efficients to zero is the spin-boost transformation. Since
κ transforms as κ→ A−2eiΘκ under Eq. (2.16), the spin
coefficient κ cannot be set to zero. The spin coefficient
ǫ, on the other hand, transforms as

ǫ→ A−1ǫ− 1

2
A−2la∇aA+

i

2
A−1la∇aΘ, (3.26)

and can be made to vanish by suitably chosen A and Θ.
Equations (3.24) and (3.25), indicate that the condition
ǫ = 0 can be used to fix the scaling of l as well as the
phase of m. Setting ǫ = 0 can therefore be used as a
means of fixing the spin-boost freedom, but this choice
has the disadvantage that Eq. (3.26) must be solved in
order to obtain A and Θ, which can be expensive numer-
ically.
In the following subsections, we present an alternative

method of fixing the spin-boost freedom by constructing
a coordinate system based on the curvature invariants.
Differentials of these new coordinates are then used to
set the scale or fix the spin degree of freedom of the final
QKT. This method avoids the need to solve differential
equations by directly imposing local conditions of the
tetrad basis vectors.

D. A geometrically motivated coordinate system

In this paper, we fix the spin-boost freedom by exploit-
ing the curvature invariant Ψ̂2 [identified in Eqs. (3.12)

3 For how the spin coefficients [which are complex scalars] are de-
fined in terms of the null tetrad, see e.g. Eq. (1.286) of Ref. [15].
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FIG. 1: Properties of the (r̂, θ̂) coordinates constructed from the Coulomb potential in the QKF. (a) The equatorial plane of a
Kerr spacetime in a Kerr-Schild slicing with contours of constant Boyer-Lindquist radius r̂ at equal increments. The inset zooms
in around the event horizon (indicated by a transparent black disk). The r̂ contour increments in the inset, while still uniform,
are smaller than in the main figure, and the thick contour line coinciding with the event horizon matches the Boyer-Lindquist
radius r̂+ in Eq. (3.30). (b) Surfaces of constant latitudinal coordinate θ̂ for the Kerr-Schild slicing.

and (3.16) and computed using Eq. (3.15)] to define geo-
metrically motivated and unambiguous radial and latitu-
dinal coordinates. The quantity Ψ̂2 can be interpreted as
the Coulomb potential experienced by an observer [26],
and all observers in a QKF agree on its value. Our pre-
scription for fixing the spin-boost freedom is to effectively
tether our observers to a fixed position with respect to
the coordinates associated with the instantaneous back-
ground Coulomb potential they experience. By doing
this, we choose “stationary” observers that watch grav-
itational waves pass, in contrast to the CTT observers
(Sec. III C) that co-move with the waves. In the Kerr
limit, our choice amounts to selecting a set of stationary
observers associated with the Boyer-Lindquist coordinate
system.
To illustrate this idea more fully, note that when we

work within the QKF, the complex gravitoelectromag-
netic tensor from Eq. (2.12) reduces to

Q̃ =





Ψ̂2 − (Ψ̃0 + Ψ̃4)/2 i(Ψ̃0 − Ψ̃4)/2 0

i(Ψ̃0 − Ψ̃4)/2 Ψ̂2 + (Ψ̃0 + Ψ̃4)/2 0

0 0 −2Ψ̂2



 ,

(3.27)

making Ñ an eigenvector. Of particular interest is the
component

Q̃ÑÑ = −2Ψ̂2 = EÑÑ + iBÑÑ . (3.28)

As illustrated in detail in [17] and particularly in Sec. IV
A of Ref. [16], within the context of vortexes and ten-
dexes, EÑÑ measures tidal acceleration and BÑÑ the dif-
ferential frame-dragging experienced by a person whose
body is aligned along the radial Ñ eigenvector. The
frame dragging induced by the angular momentum of
the source implies a latitudinal coordinate, and the ra-
dial tidal acceleration implies a radial coordinate. The
Coulomb potential Ψ̂2 thus contains information about a

pair of geometrically motivated coordinates r̂ and θ̂.
To relate the Coulomb potential Ψ̂2 to the geometric

coordinates r̂ and θ̂ in a meaningful way that reduces to
the Boyer-Lindquist coordinates in the Kerr limit (thus
satisfying criterion 1), we make use of expressions for
the Kerr spacetime [Eqs. (2.25) and (2.21)] to define the

coordinates. In other words, we define r̂ and θ̂ using the
complex equation

ρ̂ = r̂ − iâ cos(θ̂) =

(

M̂

Ψ̂2

)1/3

(3.29)

where M̂ and â are real constants that become just the
mass and spin of the central black hole in the Kerr limit.
A discussion regarding these parameters in dynamical
simulations follows in Sec. III F. Recall that the Coulomb
potential Ψ̂2 can be constructed directly from the curva-
ture invariants I and J of the spacetime; the construction
of the coordinates out of curvature invariants makes them
slicing or gauge independent, thus satisfy criterion 2.

Figures 1 and 2 explore some properties of r̂ and θ̂.
The first property is the ability to recover the Boyer-
Lindquist radial and latitudinal coordinates from a Kerr
spacetime expressed in any slicing. A particular exam-
ple using Kerr-Schild slicing is shown in Fig. 1, where we

plot the contours of r̂ and θ̂ under Kerr-Schild spatial
coordinates (r, θ, φ). The resulting figures show that the

coordinate transformations between (r̂, θ̂) and (r, θ) (un-
like those for Boyer-Lindquist t and φ) do not become
singular at the event horizon [cf. criterion 4], which co-
incides with the contour of

r̂ = r̂+ ≡ M̂ +

√

M̂2 − â2 (3.30)

as expected. The (r̂, θ̂) coordinate system for a dynami-
cal simulation of two equal-mass, nonspinning black holes
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FIG. 2: (a) Snapshot surfaces of constant r̂ for an equal-mass nonspinning binary merger simulation taken during the inspiraling
phase. Far away from the black holes, the contours represent those expected from a monopole moment. When moving closer
to the black holes, higher order multipoles become important. (b) Constant θ̂ surfaces for the same simulation as in (a), shows
a “spiral-staircase” pattern generated by rotating deformed cones as discussed in greater detail in Sec. VIA.

during their inspiral phase is shown in Fig. 2. The peanut
shaped features in panel (a) makes apparent the fact that
the coordinate system is adjusting to the intrinsic geom-
etry of the simulation. The cones of constant angular

coordinate θ̂ display a wavy feature when compared to
the simulation coordinate θ. This feature and its origin
will be discussed in greater detail in Sec. VIA, where we
explore the binary simulation in more detail.

E. Fixing the spin-boost degrees of freedom

The previous subsection provides us with an unam-
biguous and geometrically motivated set of radial and lat-
itudinal coordinates that are valid throughout the space-
time and that are independent of the choice of slicing.
Our strategy for fixing the last two degrees of tetrad free-
dom is to require that the tetrad frames can be associ-
ated with observers that are in some sense “stationary”
with respect to our geometrically motivated coordinates
while also requiring that the selected tetrad reduces to
the Kinnersley tetrad in the Type-D limit.
To achieve this construction (and thus to provide a

global prescription for fixing the spin-boost freedom),
note that dr̂ provides a measuring rod in the radial di-
rection, relative to the wavefront, against which the scale

of the radial component of l̂ can be fixed. Similarly dθ̂
provides a transverse direction which can be used to fix
the phase of m̂. Let us now begin with any tetrad in the
QKF {l̃, ñ, m̃, m̃}, constructed according to Eq. (3.21).
The prescription we use to fix the parameters A and Θ
associated with the spin-boost degrees of freedom to ob-
tain the final QKT {l̂, n̂, m̂, m̂} is to require that the
final tetrad obeys

(dr̂)a l̂
a = 1; (3.31)

arg
[(

dθ̂
)

a
m̂a
]

= arg [ρ̂] . (3.32)

Note that these conditions are exactly the conditions sat-
isfied by the Kinnersley tetrad in Eq. (2.22) and (2.24)
except that the Boyer-Lindquist coordinate has been re-
placed by its corresponding geometrically constructed
counterpart introduced in Sec. III D. The reduction to
the Kinnersley tetrad in the Type-D limit is thus triv-
ial [cf. criterion 1]. Furthermore, conditions (3.31) and
(3.32) contain only local differentiation and algebraic cal-
culations and thus obey criterion 3. They also inherit
gauge independence from the QKF and the geometric
coordinates, thus satisfy criterion 2.
It turns out that the final QKT can be constructed by

starting with a tetrad in the QKF with A = 1 and Θ = 0
in Eq (3.21), computing the quantities

A = (dr̂)a l̃
a, (3.33)

Θ = − arg
[(

dθ̂
)

a
m̃a
]

+ arg [ρ̂] , (3.34)

and then substituting these values back into Eq. (3.21)
to obtain the final tetrad. Our fictitious observers have
now oriented and scaled their tetrads according to the
Coulomb potential they experience by observing the lo-
cal changes in tidal acceleration and differential frame
dragging.

F. The effect of â and M̂ on the tetrad choice

In the definition of the geometric coordinates (r̂, θ̂)

in Eq. (3.29), two constants M̂ and â corresponding to
the mass and spin of a Kerr black hole in the Type-D
limit entered our prescription. We now clarify their in-
fluence on the final computed quantities of Ψ̂4 and the
constructed tetrad.
First, we observe that the spin â does not affect the

spin parameter Θ in expression (3.34) and can be left

undetermined, since only the direction of dθ̂ is required
to determine the argument of its inner product with m̃.
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The final computed quantities are however dependent
on the value of M̂ , which enters as a constant factor scal-
ing the boost parameter A. The computed Ψ̂4 is simply
rescaled by a constant scaling factor if the value of M̂ is
changed. This allows one to compute all quantities real
time during the simulation with (say) M̂ = 1 and to a
posteriori rescale the results once the final mass of the
remnant black hole is known.

G. The remaining gauge freedom

Using the appropriate combination of the curvature
invariants [Sec. III D] to prescribe radial and latitudinal

coordinates (r̂, θ̂) fixes two of the four degrees of gauge
freedom, while the choice of a TF [Sec. III B] and the
subsequent fixing of the spin-boost freedom [Sec. III E]
removes all six degrees of tetrad freedom. What remains
is to fix the final two degrees of gauge freedom: the slicing

(or time coordinate t̂) and the azimuthal coordinate φ̂.
For a given slicing, “far enough” from the strong field

region, surfaces of constant r̂ and θ̂ intersect in a circle.
This can be seen graphically in Fig. 2 by superimposing
plot (a) and (b) and taking “far enough” to mean the re-
gion where the mass monopole and current dipole are the
dominant terms in the Coulomb background. The pre-

scription of the azimuthal coordinate φ̂ is then as simple
as requiring that given a specific (as yet undetermined)

starting point, the proper distance increments dφ̂ along
the circle remains constant.
Fixing the time slicing requires more finesse. One

method of specifying the time slicing indirectly is by
means of a congruence of outward propagating affinely
parameterized null geodesics [see Sec. III H 2 below for a
suggested congruence] starting from a fixed radius r̂; the
affine parameter τ is then used as a coordinate. This ap-
proach is particularly suited to the task of wave extrac-
tion where the quantities computed should exhibit the
scaling laws predicted by the peeling property [31, 32].
The prescriptions given above contain residual free-

dom. Fixing them is beyond the scope of our current
work. In this paper, wherever needed, we simply use the
coordinate time in the simulation and the simulation’s
azimuthal coordinate.

H. The peeling theorem

1. Peeling in Newman-Penrose scalars

In this section, we consider the peeling property, which
describes the way in which, for an isolated gravitating
system that is asymptotically flat, the components of the
curvature tensor fall off as one moves farther away from
the source of the emitted gravitational radiation. At suf-
ficiently large distances, only Type N radiation is notice-
able; the limiting Type N radiation can be identified as

the gravitational-wave (GW) content of the spacetime
(typically denoted as Ψ4 on an affinely parameterized
out-going geodesic null tetrad). [Note that gravitational
radiation is only rigorously defined at future null infinity
(denoted I +).] A caricature of this behavior is given in
Fig. 3.
Here we review the usual derivation of the peeling

property [25, 31–34], commenting on some of the prop-
erties of the QKT within this context; an alternative
derivation of the peeling property using spinor notation
can be found in [34].
The basic idea of the usual derivation is to introduce

a new ‘unphysical’ metric dś that is conformally related
to the physical metric ds by dś = Ω ds. The metric
dś is finite and well defined where the physical metric
blows up (points on I + are infinitely distant from their
neighbors [25]) and allows us to explore the properties of
the spacetime at I + or at conformal null infinity, where
Ω → 0. All quantities associated with the conformal
metric dś will be denoted with an acute.
The relationship between metric tensors can be ex-

pressed as

ǵab = Ω2gab, ǵab = Ω−2gab, (3.35)

and the topology at I + is S2×R. Now let la be tangent
to an affinely parameterized out-going null geodesic on
the real spacetime, with an affine parameter τ such that

la∇aτ = 1. Then let ĺa be tangent to an affinely param-
eterized geodesic in the conformally related spacetime

with affine parameter τ́ . Note that if we take la = Ω2 ĺa,
then the geodesic equation in physical spacetime implies
its counterpart in the conformal spacetime [25]; further-
more, if we choose na = ńa at I +, then we have that
the direction of (na = ńa)|I + does not depend on the
geodesic and is tangent to I

+ [25].
Substituting these choices into the expressions for the

metric [Eq. (2.3)] and subsequently into Eq. (3.35) we
have that at I + the conformal tetrad relates to the phys-
ical tetrad by means of the expressions

la = Ω2 ĺa, ma = Ωḿa, na = ńa. (3.36)

Departing from I + by moving into the manifold, differ-
ences in parallel transport in the physical and conformal
manifolds lead to higher order terms in the m and n

equations (see Eqs. (9.7.30) and (9.7.31) in Ref. [25]).
By comparing the affine parameter on the two manifolds
along a geodesic and imposing Einstein’s vacuum field
equations, we can show that in general dτ = Ω−2dτ́ and
that for large affine parameter τ or small conformal affine
parameter τ́ we have [25]

τ́ = −A−2τ−1 +
∑

n=2

Dnτ
−n, (3.37)

τ = −A−2τ́−1 +
∑

n=0

Cnτ́
n, (3.38)

Ω = A−1τ−1 +
∑

n=2

Enτ
−n, (3.39)
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Ω = −Aτ́ −
∑

n=3

Anτ́
n, (3.40)

where An, Cn, Dn, En are constants and A = − dΩ
dτ́ |Ω→0

is a non-zero constant. Any quantity θ́··· that is C
h con-

tinuous at I + can be expressed in terms of a series ex-
pansion about I

+ as follows

θ́··· =

h
∑

n=0

τ́nθ́
(n)
··· + o(τ́h)

=

h
∑

n=0

τ−nθ
(n)
··· + o(τ−h). (3.41)

Since the Weyl tensor is conformally invariant, Ca
bcd =

Ća
bcd, or

Cabcd = Ω−2Ćabcd, (3.42)

all the relevant quantities can be computed on the confor-
mal manifold where the metric is finite and well behaved,
and then interpreted on the physical manifold where
the metric quantities may have diverged. At I + in an
asymptotically flat spacetime, the Weyl tensor Ćabcd van-
ishes and the dynamics of the gravitational field as one
approaches I + can be described using a tensor Ḱabcd,
where

Ćabcd = ΩḰabcd (3.43)

and the components of Ḱ expressed on the tetrad basis
{ĺ, ń, ḿ, ḿ} admit expansions in the form of Eq. (3.41).
The peeling-off property of the Weyl scalars naturally

arises when one expresses the quantities related to Ḱ

in terms of the physical metric and the tetrad basis
{l, n, m, m}. Let us take a detailed look at Ψ4: anal-
ogous to the definition of Ψ4 in Eq (2.8), let

Ψ́4 = −Ḱabcdń
aḿ

b
ńcḿ

d
(3.44)

The fact that Ḱ is regular as we approach I + implies
that Ψ́4 admits a series expansion of the form

Ψ́4 =
∑

n=0

τ−nΨ
(n)
4 , (3.45)

where in particular Ψ
(0)
4 = Ψ́4|I + . Similar expansions

can be found for Ψ́i, i = 0, 1, 2, 3. At I +, the physical
Ψ4 [defined by Eq. (2.8)] is related to Ψ́4 by

Ψ4 = −(Ω−2Ćabcd)(ń
a)(Ωḿ

b
)(ńc)(Ωḿ

d
) = ΩΨ́4,

(3.46)

where we have used Eqs. (3.36), (3.42) and (3.43). By a
similar argument as used for Ψ4, the differing powers of
Ω appearing in Eq. (3.36) result in a hierarchy being set
up where

Ψi = Ω5−iΨ́i. (3.47)

This expression is merely a product of the series in
Eq. (3.39) and (3.41). Resumming the product of series
implies that the physical Weyl scalars along an affinely
parameterized out-going null geodesic can be expressed
as

Ψi = τ i−5
∑

n=0

τ−nψ
(n)
i (3.48)

where ψ
(n)
i are constant along the geodesic.

2. Peeling in principal null directions

Note that the peeling property is not a function of
which geodesic is chosen (provided that the geodesic
strikes I + and is affinely parameterized); on the con-
trary, it is a feature of the spacetime curvature and the
distribution of principal null directions (PNDs) as one
approaches I +. This feature is illustrated graphically in
Fig. 3 (a): as one moves in toward the source from I

+

along a null geodesic, the PNDs “peel off” away from the
geodesic direction [34].
Let us now quantify this behavior more precisely.

Starting from the l vector associated with the out-going
null geodesic, perform a Type II Lorentz transformation,
so from Eqs. (2.15) and (2.18) we have that the four prin-
ciple null direction (PNDs) can be expressed as:

k = l + bm+ bm+ bbn, (3.49)

where b takes on the values of the four roots of the com-
plex equation

Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 = 0. (3.50)

From Eq (3.49) it becomes apparent that the magnitude
of b determines the extent to which the PNDs depart
from the null vector l since kala = −bb. By making the
identification proposed in [10] between a pair of spherical
coordinates (θ, φ) and the boost b,

b(i) = cot

(

θi
2

)

eiφi , i ∈ {1, 2, 3, 4}, (3.51)

we can graphically demonstrate the motion of the PNDs
by plotting the four roots on the anti-celestial sphere as
shown in Fig. 3 (b). (The anti-celestial sphere can be
thought of as the space of all possible directions asso-
ciated with out-going null rays.) If θi = π, then the
magnitude of the boost b(i) vanishes and k = l is a PND;
on the other hand, if θi = 0 then k ∝ n.
Asymptotically, where the Weyl scalars admit power

series expansions such as Eq. (3.48), we can obtain the
dominant behavior of b by setting

b =
∑

n=0

τ−nb(n) (3.52)
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FIG. 3: (a) A pictorial representation of the peeling property as bunching of principal null directions (PNDs) [25], with the inset
showing a top-down view. (b) The relationship between the PNDs and the quasi-Kinnersley tetrad (QKT). Points A,B,C,D
correspond to PNDs on the anti-celestial sphere, and are arranged as the vertexes of a tetrahedron. The anti-celestial sphere
can be thought of as a spatial slice of the future null cone, where each point on the sphere represents a null direction. The
line EF linking the mid-points of a pair of opposite edges strike the anti-celestial sphere at opposite poles which correspond to
the null direction l̂ associated with the QKT at point (F) and to the null direction n̂ associated with the QKT at point (E)
[cf. Fig. 8-5 in Ref. [25]]. (c) The four principal null directions recorded during a head-on numerical simulation [described in
Sec. VIB] are represented as points (in four different colors) on the anti-celestial sphere. We begin integrating a null geodesic

in the l̂ direction and then compute the PNDs at discrete intervals along that geodesic. Darker colored points correspond to
values farther along the geodesic (farther removed from source region). For cleaner visualization, the angular coordinates on
the anti-celestial sphere in this figure are simply those of the simulation coordinates and not the abstract ones in Eq. (3.51). We
nevertheless see that the PNDs are distributed in a pairwise symmetric manner relative to tangent ℓ of the geodesic (denoted
by the black radial line). Two of the PNDs stay close to ℓ, whose close-ups are shown in the framed inset. The other two
demonstrate a clear motion toward ℓ, where arrows indicate progress along the null geodesic. The numerical findings are thus
consistent with the bunching behavior depicted in panel (a).

and substituting this expression into Eq. (3.50). We then
have that b(0) = 0 and b(1) can be found by finding the
four roots of the equation

ψ
(0)
0 + 4b(1)ψ

(0)
1 + 6

(

b(1)
)2

ψ
(0)
2

+ 4
(

b(1)
)3

ψ
(0)
3 +

(

b(1)
)4

ψ
(0)
4 = 0. (3.53)

Further higher order terms become more complicated and
involve mixtures of higher order terms in the expansions
of the Weyl tensor components.

The leading order coefficients ψ
(0)
i in Eq. (3.48) are in-

dependent of the choice of geodesic path, while higher

order terms ψ
(n)
i with n > 0 are path or geodesic-

dependent, which implies in turn that the b(n+1) are
geodesic-dependent. This path dependence suggests the
possible existence of an optimal null trajectory along
which the series converges most rapidly and from which
the GW content can be most effectively extracted. One
approach to finding the optimal trajectory is to minimize

the higher order terms, ψ
(n)
i (n > 0), achieving a rapidly

converging series. Possibly the most rigorous method of
ensuring rapid convergence would be to identify the Kin-
nersley tetrad and thus the wave propagation direction
at I

+ and then to integrate backward in time, but such
a strategy cannot be executed real time during a numer-

ical simulation. 4 Instead, the method advocated here is
to align the initial geodesic direction with the wave prop-
agation direction in the computational domain and then
to integrate forward in time. This direction can be iden-
tified in a slicing independent way by l̂ in the QKT as
was shown in Sec. III A. In Sec. VI, we will demonstrate
numerically the rapid convergence rate that results from
this approach.

Choosing the QKT l̂ as the initial direction is further
justified by considering the manner with which PNDs
converge onto the outgoing geodesic’s tangent direction.
In the QKT Ψ̂1 = 0 = Ψ̂3, which greatly reduces the
complexity of Eq. (3.50). The transformation from l̂ to
PND takes the simplified form

b̂2 =
1

Ψ̂4

(

−3Ψ̂2 ±
√

9Ψ̂2
2 − Ψ̂4Ψ̂0

)

. (3.54)

The four roots now occur in pairs and can be parameter-

4 Note that methods that include I + in the computational do-
main, such as hyperboloidal evolution or characteristic extrac-
tion provide alternatives to this approach.
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ized using only two angles.

b̂(1) =cot

(

θ̂1
2

)

eiφ̂1 , b̂(2) = cot

(

θ̂1
2

)

eiφ̂1+iπ

b̂(3) =cot

(

θ̂2
2

)

eiφ̂2 , b̂(4) = cot

(

θ̂2
2

)

eiφ̂2+iπ

(3.55)

The out-going null direction l̂ of the QKT thus finds it-
self in the center of the four PNDs due to the added sym-
metry imposed by the QKT. This situation is depicted
graphically in Fig. 3 (b). By initially selecting a QKT di-
rection in the interior of the computational domain from
which to shoot the geodesics to infinity, we impose an
additional symmetry on the manner in which the PNDs
approach the geodesic’s tangent initially, hoping that this
additional symmetry is maintained as the geodesic ap-
proaches I + to ensure the clean pairwise convergence of
the PNDs to the geodesic’s tangent.
Once the geodesic is shot off in the l̂ direction, there

is nothing to ensure that it remains in the QK out-going
null direction. In practice, however, the QK property
appears to be maintained to a high degree of accuracy,
as is indicated by the symmetric pairwise convergence
of the PNDs onto the null geodesic shown in Fig. 3 (c).
For this plot the angle between the QKT direction of
l̂ and the tangent ℓ to the geodesic remains less than
4.2× 10−4π.

3. Peeling of QKT quantities

We close this section on the peeling property by re-
visiting the geometrically motivated coordinate system
(introduced in Sec. III D) in the asymptotic region. The

curvature invariants I and J (and thus Ψ̂2) can be con-
structed using the series expressions Eq. (3.48). The
dominant behavior of the curvature invariants are

I ∼ τ−6I(0), J ∼ τ−9J (0), Ψ̂2 ∼ τ−3ψ̂
(0)
2 (3.56)

[see Eq. (2.13)] where the quantities with a superscript (0)

are constant along the geodesic. Assigning the radial
coordinate using Eq (3.29) sets

r̂ ∼ τℜ
[

(

M̂/ψ̂
(0)
2

)1/3
]

. (3.57)

The peeling property states that the PNDs converge onto
the out-going geodesic direction ℓ. Since each pair of
PNDs are equidistant from the QKT l̂, this implies that
l̂ approaches the ℓ direction. The asymptotic relationship
between r̂ and τ given in Eq. (3.57), together with the
condition Eq. (3.31) that we use to fix the boost freedom

of the QKF, implies that l̂ not only asymptotes to the di-
rection of ℓ, it is also affinely parameterized in this limit.
The geometrically constructed r̂ asymptotically denotes
the spherical wavefronts of light-rays approaching I +.

Lastly, we underscore the fact that using the QKT has
the advantage of identifying a unique affine parameteri-
zation of the geodesic as it approaches I +. The prescrip-
tion given in Eq. (3.31) for fixing the boost freedom of
the QKT has used the geometry of the spacetime implicit
in the Coulomb potential to fix the parameterization of
l̂ in a global manner, removing the freedom to choose
a different affine parameter through the transformation
τ → Aτ . These ideas will be revisited in greater de-
tail when we look at extrapolation in the context of the
numerical simulations in Sec. IVB.

IV. NUMERICAL IMPLEMENTATION

In this section, we detail the numerical implementation
of the analytic ideas mentioned in the previous sections
using the Spectral Einstein Code (SpEC). A description
of SpEC and the methods it uses are given in Ref. [35]
and the references therein.

A. Constructing the QKT

We construct the QKT in a numerical simulation by
first constructing an orthonormal tetrad adapted to the
simulation’s coordinate choice and then the orthonor-
mal tetrad’s null counterpart {l, n, m, m} and the
associated NP scalars Ψi. In order to find a QKF
{l̃, ñ, m̃, m̃}, the construction described in Sec. III B
can be used; alternatively, the appropriate Type I and
Type II transformations [Eqs. (2.14) and (2.15)] to the
QKF can be found. Finally, we construct the geomet-

rically motivated coordinate system (r̂, θ̂) described in
Sec. III D, and we use these coordinates to fix the remain-
ing Type III tetrad freedom to obtain the QKT.

1. Implementing a coordinate tetrad

Specifically, we begin our construction by noting that
the SpEC code stores the spacetime metric gab on a
Cartesian coordinate basis {xa} = {t, x, y, z}. (Note
that henceforth the index 0 refers to the time coordinate.)
We can also define a set of related spherical coordinates
{t, r, θ, φ} by using the standard definitions

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (4.1)

We further define the time-like unit normal to the spatial
slicing and radially outward-pointing vector as

T a =
δa0 − βa

α
, Na =

ra
√

rbrb
, (4.2)

respectively, where α is the lapse and βa is the shift, and
r is the spatial location vector. Inserting these orthonor-
mal vectors into Eq. (2.1) yields l and n, two legs of the
null tetrad tied to the simulation’s coordinates.
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We next construct the remaining two tetrad legs
{m, m}, ensuring that the normalization conditions of
Eq. (2.2) are satisfied. In other words, we seek to con-

struct the null vector m = 1/
√
2(E2 + iE3) where E2

and E3 are orthogonal to T and N and to each other
and obey the normalization condition

‖E2‖2 = ‖E3‖2 = 1. (4.3)

Our construction begins by computing the vectors

K =
1

r sin θ

∂

∂φ
, F =

1

r

∂

∂θ
, (4.4)

where θ, φ are spherical coordinates defined in Eq. (4.1).
Then, we ensure orthogonality by means of the Grams-
Schmidt-like construction

(F̂ )a = F a + F blbn
a + F bnbl

a, (4.5)

rescaling appropriately to obtain the correct normaliza-
tion as follows:

(E2)a =
F̂ a

√

F̂ aF̂a

. (4.6)

Similarly, for the final tetrad leg, we construct the or-
thogonal vector

(K̂)a = Ka +Kblbn
a +Kbnbl

a −KbE2
b (E

2)a, (4.7)

normalizing it as follows:

(E3)a =
K̂a

√

K̂aK̂a

(4.8)

2. Obtaining a tetrad in the QKF

Given the orthonormal coordinate tetrad
{T a, (E2)a, (E3)a, Na}, we next construct a tetrad

{l̃, ñ, m̃, m̃} in the QKF by using the results of
Sec. III B, in particular Eqs. (3.12), (3.17), (3.19) and
(3.21). We can alternatively construct a QKF tetrad
by explicitly rotating our initial coordinate tetrad into
a transverse one via Type I and II transformations
[Eqs. (2.14) and (2.15)]. We have implemented both
constructions numerically and verified that they agree;
in the remainder of this subsubsection, we discuss details
of each implementation in turn.
The hyper-surface approach of Sec. III B requires us to

solve the complex eigenvector problem in Eq. (3.12), with
Q calculated either from Eq. (3.11) or from Eq. (2.12).
Using Eq. (2.12), the eigenvector problem can be solved
analytically. After computing the desired eigenvalue
λ = −2Ψ̂2, which is the root of Eq (3.15) that admits
the expansion (3.16) (in practice, it suffices to select the
eigenvalue with the largest norm as suggested by Beetle

et al. [9]), the corresponding un-normalized eigenvector

Σ̃ of matrix (2.12) is

Σ̃E2 =2λ2 − λ (Ψ0 +Ψ4 − 2Ψ2)

+ 2
[

(Ψ1 +Ψ3)
2 −Ψ2 (Ψ0 +Ψ4 + 2Ψ2)

]

,

Σ̃E3 =i
[

λ (Ψ0 −Ψ4) + 2
(

Ψ2
3 −Ψ2

1 +Ψ2 (Ψ0 −Ψ4)
)]

,

Σ̃N =2 [(Ψ0 +Ψ2)Ψ3 + λ (Ψ1 −Ψ3)−Ψ1 (Ψ2 +Ψ4)] .
(4.9)

where the Ψi values are those extracted on the coordinate
tetrad. (Note that this formula fails when Ψ1 = 0 = Ψ3,
but in this case the coordinate tetrad is already in the
QKF.) To normalize Σ̃ into σ̃ that satisfies Eq. (3.18),
we multiply it with a suitable complex number, namely

σ̃ =

[

− 1√
2

( |α|
α

) √
β + γ

γ
+

√
2|α|

γ
√
β + γ

i

]

Σ̃ (4.10)

where

Σ̃a = Xa + iY a, α = XaYa, (4.11)

β = ||X||2 − ||Y ||2, γ =
√

β2 + 4α2. (4.12)

Alternatively, we can construct the QKF using the
Type I and II transformations applied to the coordi-
nate frame as follows. Starting from a general Petrov
Type I spacetime with five non-vanishing Weyl scalars,
we perform a Type I rotation, introducing a parameter
a, followed by a Type II rotation that introduces a pa-
rameter b. These parameters can then be chosen to set
Ψ1 = Ψ3 = 0 by solving the resulting system of two
equations for the two parameters a and b. Reference [10]
shows that the appropriate choice of parameters can be
found by defining the intermediate quantities

H = Ψ0Ψ2 −Ψ2
1, G = Ψ2

0Ψ3 − 3Ψ0Ψ1Ψ2 + 2Ψ3
1

(4.13)

and then setting

Ψ1 +Ψ0a =
G±

√

G2 + (Ψ0λ− 2H)2(H +Ψ0λ)

Ψ0λ− 2H
(4.14)

b = − Ψ3 + 3aΨ2 + 3a2Ψ1 + a3Ψ0

Ψ4 + 4aΨ3 + 6a2Ψ2 + 4a3Ψ1 + a4Ψ0

(4.15)

Note that this prescription becomes ill defined when Ψ0

on the initial tetrad approaches zero or when Ψ0λ−2H =
0, making it difficult to find a by solving Eq. (4.14); this
problem is easily resolved by first applying a Type II
transformation that takes the initial tetrad into one in
which these pathologies do not arise. Furthermore, we
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have two possible solutions for a resulting from the free-
dom to interchange the l̃ and ñ legs associated with the
transverse frame; the convention we use is to choose the
root that gives (l̃ − ñ)al

a > 0, i.e. we choose l̃ to be
outgoing in the simulation coordinates.

3. Obtaining the quasi-Kinnersley tetrad from the

geometric coordinates

With a QKF in hand, we next seek to specialize to
the particular QKT described in Sec. III E, where we

use geometrically motivated coordinates (r̂, θ̂) given by
Eq. (3.29) to fix the final Type III degrees of freedom. In
order to fix these freedom using Eqs. (3.31) and (3.32),

we must calculate the one-forms dr̂ and dθ̂. We com-
pute the spatial derivatives spectrally, and we compute
the time derivatives using the Bianchi identities in the
3 + 1 form [36]

∂tEij =LβEij + α
[

DkBl(iǫ
kl
j) − 3Ek

(iKj)k

+Kk
kEij − ǫ kl

i EkmKlnǫ
mn
j + 2akBl(iǫ

kl
j)

]

,

∂tBij =LβBij + α
[

−DkEl(iǫ kl
j) − 3Bk

(iKj)k

+Kk
kBij − ǫ kl

i BkmKlnǫ
mn
j − 2akEl(iǫ kl

j)

]

,

(4.16)

where L denotes Lie derivative, D is induced 3-D covari-
ant derivative operator, α denotes the lapse, β the shift,
K the extrinsic curvature, and ak = ∂klnα. The time
derivative of the metric ∂tgij is already known from the
numerical evolution of the spacetime. Using the above
equations and applying the chain rule, we compute the

time derivatives of r̂ and θ̂:

(∂tgij , ∂tEij , ∂tBij)
Eqns. (2.13),(3.15),(3.29)−−−−−−−−−−−−−−−−→

(

∂tr̂, ∂tθ̂
)

.

Equipped with all the components of dr̂ and dθ̂, we can
apply Eqs. (3.33) and (3.34) to fix spin-boost degree of
freedom, finally obtaining the QKT on which we can then
extract Newman-Penrose scalars Ψ̂i via Eqs. (2.4-2.8).
We note that it may not always be possible to de-

fine the r̂ and θ̂ coordinates using Eq. (3.29) for space-
times with additional symmetries. For example, in ax-
isymmetric spacetimes admitting a twist-free azimuthal

Killing vector, Ψ̂2 is real, and as a result the θ̂ coordi-
nate cannot be computed using Eq. (3.29). In fact, for
Minkowski spacetimes, we cannot even define the r̂ coor-
dinate, because Ψ̂2 = 0. In such cases, the symmetries of
the spacetime typically provide a set of preferred coor-
dinates, which one would naturally adopt in a numerical
simulation. In our QKT implementation, we presume
that any such preferred coordinates are adopted, and we

replace (dr̂, dθ̂) by their simulation-coordinate counter-
parts when degeneracies occur. The majority of astro-
physically relevant simulations however result in an end

state that is spinning such as the Kerr black hole. It
should be noted that although this solution is axisymmet-
ric, the azimuthal Killing vector is not twist free. In this
event the method correctly identifies the Boyer-Lindquist

r̂ and θ̂ coordinates and no degeneracies arise.

B. Extrapolation

We now turn to extracting the asymptotic gravita-
tional wave content at I + by using the peeling property,
i.e., to extrapolation, which necessarily involves informa-
tion from several spatial slices in the spacetime. Our pro-
cedure is to shoot a null geodesic affinely parametrized
by τ toward I +, monitoring Ψ̂4 along the geodesic. The
best possible polynomial in 1/τ is fitted to the result.
The existence of this polynomial follows from the peel-
ing property, which is made explicit in Eq. (3.48). We

identify the coefficient of the 1/τ term or ψ
(0)
4 with the

radiation content at I +.
In contrast to the usual method (extrapolating Ψ4

as computed using a tetrad parallel-transported along
an outgoing null geodesic), note that here we choose

to extrapolate Ψ̂4 (defined using the QKT), which we
expect to also display the correct peeling behavior [see
Sec. III H 3]. In addition, the initial direction of the out-

going null geodesic is along l̂, so at the geodesic’s starting
point Ψ4 = Ψ̂4, and [Sec. III H], at I + also the outgoing

null geodesic is along l̂ so that Ψ4 = Ψ̂4. In practice,
as we integrate along these outgoing null geodesics, we
monitor the difference between the null vector ℓ tangent
to the outgoing geodesic and l̂ from the QKT, and we
find that this difference remains small (cf. Fig. 3 and the

surrounding discussion). Therefore Ψ4 and Ψ̂4 are not
significantly different for the simulations we examined.
When we extract the Ψ̂4 waveform, it converges rapidly
to its asymptotic value with increasing extraction radius
[Fig. 16].

Selecting the initial tangent of the geodesics to be l̂

determines the parameterization of these geodesics up to
an additive constant B corresponding to the freedom to
shift the zero point of the affine parameter, τ → τ + B.
The asymptotic waveform is insensitive to the choice of
the field B. Nevertheless, to provide an exact prescrip-
tion we fix B by recalling that in the Kerr limit, the
affine parameter is just the Boyer-Lindquist r̂ [15]. We
thus choose B on the initial world tube (where we start
shooting out null geodesics) to be such that τ = r̂.

C. Sensitivity of QKT method to numerical error

The numerical implementation of the QKT described
in this section keeps the computation “as local as pos-
sible” in the following sense: the bulk of the calculation
requires only local derivatives and knowledge of the met-
ric and the extrinsic and intrinsic curvature of the spa-
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tial slice. However, this says nothing about the accuracy

of our method, which depends on how susceptible our
method is to numerical noise.

To begin addressing this issue, we first recall exactly
how many numerical derivatives are to be taken. Equa-
tion (3.11), which is used to construct the gravitoelec-
tromagnetic tensors E and B, requires i) second spatial
derivatives of the spatial metric in order to get the in-
trinsic Ricci curvature, in addition to ii) the first spatial
derivatives of the extrinsic curvature of the slice. Once
the gravitoelectromagnetic tensor is obtained and the re-
sulting curvature invariants I and J are computed, an-
other derivative is required to compute the gradients of

the coordinates (r̂, θ̂) that then fix the Type III free-
dom of the tetrad. Note that the first step, i.e. the
computation of the gravitoelectromagnetic tensors only
requires spatial derivatives, which we can compute spec-
trally (i.e., inexpensively and accurately, since we expect
to observe exponential convergence in spatial derivatives
with increasing spatial resolution). However, taking the
gradient of the coordinates constructed out of the cur-
vature invariants requires both spatial derivatives and
a time derivative. Fortunately, this time derivative can
be computed using the Bianchi identities as described in
Sec. IVA3, which again reduces the operation to spatial
differentiation (although here the accuracy of the deriva-
tives are also limited by the accuracy at which the con-
straint equations are satisfied).

What we find in practice is that the higher derivatives
needed by our QKT method can at places have a signif-
icantly higher amount of numerical noise than the nu-
merical derivatives directly used in the actual evolution
system. This is a significant challenge to our method,
since SpEC presently evolves the Einstein equations in
first-order form, i.e., as a set of coupled partial differen-
tial equations containing only first derivatives in space
and time. Therefore, the evolution equations themselves
will only guarantee the existence of one derivative of the
evolution variables (e.g., of the metric). Constraints show
convergence which means, among other things, that the
auxiliary variables (defined during the reduction of sec-
ond order differential equations to first order) do converge
to the appropriate metric derivative quantities. How-
ever, the evolution system, although quite capable at
constraining the size of numerical error, does not nec-
essarily force it to be smooth (differentiable to higher
orders) at subdomain boundaries.

Consider the hypothetical example of adding white
noise to a smooth analytical metric, such as the Kerr
metric (2.20). No matter how small the magnitude of the
noise, it would prevent us from taking derivatives analyt-
ically. Numerically, under-resolving the high-frequency
noise would smooth out the data and allow differenti-
ations to proceed without significantly amplifying the
added noise; therefore, we expect that filtering (the spec-
tral equivalent of finite-difference dissipation) would im-
prove the smoothness of the numerical data and thus
reduce difficulty in taking higher numerical derivatives.

FIG. 4: (a) θ̂ contours displaying a pulse of high frequency
junk radiation propagating outward. Ahead of the pulse, the
geometric coordinate contours are consistent with the Kerr-
like initial data, but behind the pulse of junk radiation, the
spacetime settles down to an actual binary inspiral with a
signature “spiral-staircase” pattern also seen in Fig. 2(b). (b)
The surface is a 2-D spatial slice containing the symmetry axis
in a head-on simulation, warped and colored according to r̂
value. The sub-domain boundaries are marked out with dense
black lines, and appear to be a source of non-smooth noise.
These noisy features are reduced by increasing resolution.

However, such filtering can effectively under resolve not
only noise but also physical information. In other words,
overly dissipative schemes tend to be less accurate; there-
fore, the current choice in SpEC is to dissipate as little as
possible while still maintaining robust numerical stabil-
ity. This criterion is different from the use of filtering to
damp out on short time scales any high frequency modes
that would be produced during an evolution.

A better approach for reducing non-smooth numeri-
cal error is to go directly to their source. The lack
of smoothness in the constraints observed in a typical
SpEC evolution is partly due to the penalty algorithm,
which is known to produce convergent but non-smooth
numerical errors at subdomain boundaries. [See Fig. 4(b)
for an illustration of the penalty-algorithm induced non-
smooth error.] Because this non-smoothness converges
away with increased resolution, our method is observed
to be viable given a sufficiently high numerical resolu-
tion; however, it remains to be seen whether “sufficiently
high” means “significantly higher” than typical resolu-
tions currently in use. Alternatively, improvement to
non-smooth numerical error could come through the use
of newer inter-patch boundary algorithms, such as Dis-
continuous Galerkin methods [37]. There also exists an
ongoing effort to bring a (currently experimental) first-
order-in-time, second-order-in-space version of SpEC [38]
into a state suitable for accurate gravitational-wave pro-
duction, with the hope of added efficiency and of achiev-
ing numerical error of higher differential order. Such pos-
sibilities as these, however, are future work, well outside
the scope of this paper.

Lastly, we consider the non-smooth noise sensitivity of
our QKT quantities from another point of view: it can
be used as a diagnostic of high-frequency, non-smooth
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numerical error. For instance, one source of non-smooth
constraint violation in numerical simulations is the high-
frequency, spurious “junk” radiation present at the be-
ginning of numerical simulations (because of how the ini-
tial data are constructed), which poses a particularly dif-
ficult numerical problem. The frequency of these modes
is of O(M), orders of magnitude higher than that of the
orbital motion (and the associated gravitational waves).
This makes resolving the junk radiation a difficult task.
In the effort to reduce junk radiation, the geometric coor-
dinates can be used as a visualization tool. Fig. 4(a) is an

illustration of how the θ̂ contours, plotted as a function
of code coordinates, react to the junk travelling through
the grid, while adjusting themselves to reflect a more re-
alistic spacetime. By comparing the difference ahead and
behind the easily identifiable junk pulse in Fig. 4(a), one
gets a glimpse of the missing pieces in the initial data.

V. NUMERICAL TESTS OF THE QKT

SCHEME

We now consider several numerical tests used to gauge
the effectiveness of our proposed QKT scheme for wave-
form extraction. Most of these tests are motivated by
analytic solutions and are used to verify that our choices
of geometric coordinates and the QKT are yielding the
expected results. These tests broadly fall into two classes:
i) non-radiative spacetime tests and ii) radiative space-
time tests. Each will be considered in turn in the follow-
ing subsections.

A. Non-radiative spacetimes

1. Kerr black hole in translated coordinates

The spacetime in this test is a Kerr black hole in Kerr-
Schild coordinates, but the coordinate origin is trans-
lated away from the black hole along x or z axis. Here
we work in units of the black hole mass, and the dimen-
sionless spin is J/M2 = 0.5 pointing in the z direction.
Tetrads determined only by our simulation coordinates
[see Eqs. (4.2)-(4.8)] would not be aware of the transla-
tion, and the spatial projection of n would point toward
the coordinate center instead of the black hole itself. In
contrast, the QKT should adjust to the displaced origin,
picking up the true geometrical origin of the gravitat-
ing system determined by the Coulomb potential of the
QKF. Figure 5 shows the direction of spatial projection of
n and n̂ associated with the two tetrads. The QKT iden-
tifies the black hole at the center of the circular shape,
as do the geometrically motivated coordinate r̂.

Figure 6 compares Ψ4 extracted using the coordinate
and quasi-Kinnersley tetrads, respectively, using the so-
called “L2 norm” as a measure. The L2 norm of a quan-

FIG. 5: A Kerr-Schild black hole with J/M2 = 0.5, with the
coordinates translated a distance 9M along x axis. The red
sphere indicates location of the black hole’s horizon, and the
black cross indicates the coordinate origin. The colored circles
are constant geometric radius r̂ contours; these demonstrate
the ability of our geometric coordinates to select an origin
based on the Coulomb potential of the QKF, i.e., an origin
which reflects the gravitational curvature of the spacetime.
Also shown are the spatial projections of the n direction of
the coordinate and quasi-Kinnersley tetrads, at points on a
narrow strip marked by a grey ring. The black lines indicate
the n direction associated with the coordinate tetrad, which
point toward the coordinate origin, and the red lines/arrows
are QKT n̂ directions that identify the black hole as the geo-
metric origin, away from which the gravitational waves travel.

tity X is defined here as

L2(X) =

√

√

√

√

Ntot
∑

i=1

X(xi)2

Ntot
, (5.1)

where xi are the spectral collocation points of a pseudo-
spectral grid and Ntot is the total number of points. The
present study uses four spherical shells between radii 50M
and 140M with Ntot ≈ 4 × 453 collocation points. The
QKT correctly produces vanishing Ψ̂4 (up to numerical
round-off error), while the coordinate tetrad fails to iden-
tify the correct out-going direction and as a result misin-
terprets Ψ̂2 as gravitational radiation content in Ψ4. (We
observe similar behavior for Ψ0.) Using such a coordinate
tetrad in a simulation with a displaced center will result
in spurious effects being picked up in the extracted ra-
diation, of a magnitude not necessarily smaller than the
physical gravitational wave content of the spacetime.
In a simulation of a dynamical spacetime, a similar ef-

fect should be expected when the “center of mass” (e.g.
in a Newtonian approximation) of the system does not
coincide with coordinate center. For example, consider a
binary merger of unequal mass holes with the coordinate
origin placed at the midpoint between the black holes;
Ψ4 extracted at finite radii would pick up a slowly vary-
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FIG. 6: (a): The L2 norm [Eq. (5.1)] of Newman-Penrose
scalar Ψ4 computed (between radii 50M and 140M) for the
Kerr-Schild black hole in translated coordinates on the coor-
dinate tetrad. (b): The Newman-Penrose scalar Ψ̂4 computed
in the quasi-Kinnersley tetrad. Note the L2 norm is eleven
orders of magnitudes smaller for the QKT when compared to
that of the coordinate tetrad, showing that the QKT correctly
adapts to the underlying curvature of the spacetime.

ing offset at an integer multiple of the orbital frequency,
and this contribution would complicate the extrapolated
waveform.

2. A Schwarzschild black hole with translated coordinates

and a gauge wave

We further explore the effects of coordinate choice or
gauge by introducing a time dependent gauge wave into a
Schwarzschild solution whose origin has been translated
by a constant amount. The resulting metric components
now have an explicit time dependence, and we expect the
coordinate tetrad to produce a false gravitational wave
signal, even though the Schwarzschild spacetime is static
and emits no physical radiation.
The exact analytic solution we use for this test is

constructed from the Schwarzschild solution in ingoing
Eddington-Finkelstein coordinates. We then apply a
time-dependent coordinate transformation that yields a

metric of the form

ds2 =− (1 + C)2
(

1− 2M

r

)

dt2

+ 2(1 + C)

[

2M

r
−
(

1− 2M

r

)

C

]

dtdr

+ (1 + C)

[

1 +
2M

r
−
(

1− 2M

r

)

C

]

dr2 + r2dΩ2

(5.2)

where C(r, t) is the radial waveform of the introduced
gauge wave. For our test we select generically chosen
parameters

C = 0.7 sin(0.03(t+ r) + 3.1), M = 1 (5.3)

Note that again we translate the black hole off the coor-
dinate origin by a constant amount (here r = 20M) as
described in the previous subsubsection.
Figure 7 shows spin-weighted spherical harmonic ex-

pansion coefficients Ψ
(l,m)
4 of Ψ4, computed using the co-

ordinate and quasi-Kinnersley tetrads. While only the
three largest amplitudes are shown, we have computed all
amplitudes up through l = 35. These scalars are com-
puted on a sphere at a radius of 120M from the black
hole, with the poles of harmonics aligned with the direc-
tion in which the black hole is shifted. As expected, the
waveform extracted using the coordinate tetrad picks up
a time dependence associated with the gauge wave, while
the QKT returns vanishing values, correctly identifying
the static spacetime solution.
In the generalized harmonic form of the Einstein field

equations, the gauge may be set by the covariant wave
equations

2xa = Ha (5.4)

where H is either a specified or evolved source func-
tion [39–42]. It is thus probable that gauge modes similar
to the one considered in this example may be present in
fully dynamical simulations. Consider a gauge wave that
generates a deviation between the coordinate tetrad ba-
sis vectors {l, n, m, m} and their counterparts in the
QKT. Such differences can be represented by a sequence
of type II, I and then III transformations parameter-
ized by the time dependent transformation parameters
b(t), a(t) and A(t) that appear in Eqs. (2.15), (2.14) and
(2.16) respectively. If we restrict ourselves to asymptotic

regions where Ψ̂4 dominates over other NP scalars, then
according to Eqs. (2.18), (2.17) and (2.19), we have that
to leading order in a and b the coordinate Ψ4 is given by

Ψ4 = (1 + 4a(t)b(t))A−2(t)Ψ̂4. (5.5)

If the gauge wave falls off when we move away from the
source region, then we may have

(1 + 4a(t)b(t))A−2(t) → 1 (5.6)
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FIG. 7: Spherical harmonic coefficients of Newman-Penrose
Ψ4 computed for the gauge wave solution, on a sphere of
radius r = 120M centered on the black hole. (a): Ψ4 extracted

on the coordinate tetrad. (b): Ψ̂4 extracted on the QKT.
Only the three largest (l,m) spin-weighted spherical harmonic
modes (up through l = 35) are shown. Note the scaling on
the two figures differ by nine orders of magnitude.

and its effect can in principle be extrapolated away. How-
ever, for some cases, such as a plane gauge wave, the time
dependent perturbation introduced into Ψ4 could persist
in the extrapolated waveform. Therefore, minimizing any
such gauge-dependent content in Ψ4 extracted at finite
radii is preferable to relying on extrapolation to remove
them; some pathological gauge modes might not fall off
sufficiently quickly with radius.

B. Radiative spacetimes

Having observed that the QKT correctly reflects the
curvature content of non-radiative spacetimes, including
in the presence of a gauge wave, we next apply the QKT
to spacetimes emitting gravitational radiation. In this
subsection, we verify that the scheme is consistent with
analytic perturbation theory results.

The QKT by construction reduces to the Kinnersley

FIG. 8: ℜ(Ψ4) resulting from a traveling-wave perturbation
on the equatorial plane of the computational domain. Pan-
els (a) and (b) correspond to results obtained with and with-
out the coordinate transformation (5.20), plotted with respect
to the background Schwarzschild coordinates. We use Ψ4,

Ψ4 and Ψ̂4 to respectively denote the analytical result and
the values computed on the coordinate and quasi-Kinnersley
tetrads. The height of the surface in the vertical direction
indicates the value of ℜ(Ψ4), the solid grey surface denotes

ℜ(Ψ4), the red wire-frame ℜ(Ψ4) and the black dots ℜ(Ψ̂4).
The amplitude of the red wireframe has been suppressed by
a factor of 103 in (a) so that it fits into the figure. The sup-
pression factor has not been applied to Panel (b).

tetrad in the Kerr limit. Therefore, if we perturb a
Kerr black hole by a small amount, the Ψ̂4 computed
on the QKT should reproduce the analytic perturbation
theory results computed on the Kinnersley tetrad asso-
ciated with the unperturbed Kerr background. Verify-
ing this correspondence provides us with the means to
quantitatively test whether the QKT extracts the correct
waveform and that we have all normalization conventions
implemented correctly. The idea of ensuring the corre-
spondence between the computed waveform and the per-
turbation theory results is what motivated the authors
of Ref. [9] to adopt transverse tetrads in the first place;
Chandrasekhar [15] also used the transverse tetrad in his
metric reconstruction program, where he explicitly com-
puted the perturbed tetrad and curvature perturbations
on the tetrad, obtaining the expected correspondence.
For simplicity, here we perturb a Schwarzschild black hole
with an odd-parity Regge-Wheeler-Zerilli (RWZ) pertur-
bation, as described in Ref. [43].
We start with a background Schwarzschild metric in

Schwarzschild coordinates expressed in the standard form
of [43]

ds2 = (−α2 + γ2β2)dt2 + 2γ2βdtdr + γ2dr2

+r2(dθ2 + sin2 θdφ2) (5.7)

where

α(r) =

√

1− 2M

r
, β(r) = 0, γ(r) =

1

α(r)
. (5.8)

We then introduce l = 2,m = ±2 radiative perturba-
tions. The full RWZ formalism giving the explicit calcu-
lation of the perturbed metric is expounded concisely in
Appendix A of [43]; it turns out that the construction of
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FIG. 9: Testing the QKT’s ability to recover perturbation theory results. An l = 2,m = ±2 perturbation, with magnitude
Ac, is added as a function of retarded time in addition to an l = 1, m = 0 perturbation, and finally a cubic coordinate
distortion is applied as described in Eq. (5.20). The spherical harmonic coefficients of the coordinate-tetrad Ψ4 and QKT Ψ̂4

are then extracted at Boyer-Lindquist radius 95M and compared with the analytic results Ψ4. (a): The magnitude of the Ψ4,
(l,m) = (2, 0) mode as a function of spin parameter a, with the radiative (2,±2) perturbation held fixed at Ac = 10−9M. (b):
Exploring the effect of cubic rescaling. The rescaled first component of r̃ vector, r̃1, is plotted against the original component
r1. The identity map (r̃1 = r1) is given for comparison. (c) and (d): The real and imaginary parts of the −2Y22 coefficient
vs the amplitude Ac of the radiative perturbation. The l = 1,m = 0 mode amplitude is chosen so that the resulting angular
momentum perturbation is held constant at a = 0.001M.

the perturbed metric and the associated perturbed cur-
vature quantities (such as Ψ4) hinges on one function,
the RWZ function Z, which obeys the RWZ equation

∂2Z

∂t2
= c1

∂2Z

∂t∂r
+ c2

∂2Z

∂r2
+ c3

∂Z

∂t
+ c4

∂Z

∂r
− α2V Z.

(5.9)

In the RWZ equation, the coefficients ci are functions
of α, β and γ, which for our chosen values [Eq. (5.8)]
become

c1(r) = 0 = c3(r), (5.10)

c2(r) =

(

1− 2M

r

)2

, (5.11)

c4(r) =
2M

r2

(

1− 2M

r

)

, (5.12)

α2V =

(

1− 2M

r

)(

l(l + 1)− 6M

r

)

1

r2
. (5.13)

Note that in the discussion that follows, Ψ4 denotes

the analytic result while Ψ4 and Ψ̂4 are, respectively, the
computed values on the coordinate and quasi-Kinnersley
tetrads in the numerical implementation. Given Z, the
analytic solution Ψ4 for the gravitational wave content
in the spacetime can be computed to first order using

Ψ
(1)
4 = −

∑

lm

[

i

r
(∆̃ + 2γ + 2µ)∆̃Zlm

]

Cl

[

−2Y
lm
]

,

(5.14)

where Cl =
√

(l − 1)l(l + 1)(l + 2)/4, the operator ∆̃ is
na∇a with n being a null direction associated with the
background Kinnersley tetrad, and γ and µ are spin co-
efficients associated with the same background tetrad,
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which for our case are [15]

µ = − ∆

2Σρ
, γ = µ+

r −M

2Σ
(5.15)

where ∆, Σ and ρ are defined in Eq. (2.21).
In order to solve the linear second order partial dif-

ferential equation (5.9) for Z, an initial value and time
derivative for Z must be specified. For our investigation,
we make use of a traveling-wave perturbation of the form

Z(t0, r) = Ace
iω(t0−r∗),

∂Z

∂t
(t0, r) = iωAce

iω(t0−r∗)

(5.16)

where r∗ is the usual tortoise coordinate defined by
dr∗/dr = r/(r − 2M), while t0 = 0, ω = 0.1 and Ac

is a constant initial amplitude. For our test, we also
set M = 1. This perturbation is graphically depicted in
Fig. 8, plotted as surfaces warped according to the ℜ(Ψ4)
value as a function of the background Schwarzschild co-
ordinates. The waveform constructed from the perturba-
tion has the classical profile for Ψ4, often observed dur-
ing numerical binary black hole mergers; this is to be
expected, since l = 2 is the dominant mode contributing
to the gravitational radiation emitted by a binary.
Next, we numerically compare the coordinate-tetrad

Ψ4 and the QKT Ψ̂4 with the analytic perturbation-
theory result Ψ4. In this test, we adopt the Boyer-
Lindquist coordinates; therefore, the corresponding coor-
dinate orthonormal tetrad [see Eq. (4.2)] happens to co-
incide with a Kinnersley frame of the background space-
time [although it is boosted with respect to the Kinner-
sley tetrad in Eqs. (2.22)-(2.24)].
To illustrate this more clearly, observe that the stan-

dard coordinate tetrad we constructed in Sec. IVA 1 re-
sults in orthonormal vectors T a and Na that are respec-
tively

T a =

[

1

α
, 0, 0, 0

]

, Na = [0, α, 0, 0] (5.17)

when expressed on the coordinate basis, where α =
√

1− 2M/r is the lapse of the background metric. The
resulting null vector la constructed according to Eq. (2.1)
is

la =
1√
2
(T a +Na) =

1√
2

[

1

α
, α, 0, 0

]

. (5.18)

In the static limit, the Kinnersley tetrad [Eqs. (2.22) and
(2.23)] reduces to

l̂a =

[

1

α2
, 1, 0, 0

]

, n̂a =
1

2

[

1, −α2, 0, 0
]

(5.19)

so l̂a =
√
2la/α and there exists a relative boost factor

of A = α/
√
2 between the coordinate and Kinnersley

tetrads.

Therefore, to account for the difference, we will multi-
ply the coordinate-tetrad Ψ4 by (1−2M/r)/2 throughout
this subsection to facilitate comparison with analytical
and QKT values. With this adjustment, the extracted
quantities Ψ4 and Ψ̂4 both match the analytically cal-
culated Ψ4 from perturbation theory. These results are
graphically depicted in Fig. 8(b).
Next, we explore the gauge dependence of the QKT

result. To this end, we introduce a coordinate trans-
formation into some other gauge. As a result, the co-
ordinate tetrad associated with the new “non-privileged
gauge” differs from the QKT, resulting in a mismatch be-
tween the coordinate Ψ4 and the analytic perturbation
theory result Ψ4 [see Fig. 8(a)]. The QKT Ψ̂4 imple-
mented in the code should then be able to recover the
analytic result. As an illustrative example, for a gauge
transformation we choose a cubic rescaling of the spatial
coordinates, which takes the radial vector ra expressed
on a Cartesian coordinate basis defined in Sec. IVA to a
vector with components r̃a using the equation

r̃a =

(

ν +
ν0 − ν

R2
|r − r0|2

)

(ra − ra0 ) + ra0 . (5.20)

where we choose ra0 = (5M, 0, 0), R = 100M , ν0 = 1 and
ν = 1.1. Panel (b) of Fig. 9 compares the coordinates
before and after rescaling.
We now calculate the perturbed metric in the new dis-

torted coordinates and extract the gravitational waves
using both the coordinate tetrad and the QKT, com-
paring the results with the analytical Ψ4 calculated in
the Boyer-Lindquist coordinates and visually portrayed
in Fig. 8. When no coordinate distortions have been in-
troduced [Fig. 8 (b)], the coordinate tetrad and the QKT
both generate Ψ4 that matches the analytical prediction.
When we apply the cubic coordinate distortion described
above however, the coordinate tetrad result deviates from
Ψ4, but the QKT still recovers the analytical value [Fig. 8
(a)].
In addition to the coordinate transformation we also

add a l = 1, m = 0 mode [explicit expressions for metric
perturbation due to this mode can be found in Appendix
A1a of Ref. [43]]. This mode should make no contribution

to the detected radiation in Ψ̂4, but should introduce a
small angular momentum perturbation affecting the spin

of the spacetime, thus avoiding degeneracy in θ̂. The am-
plitude of the perturbation is usually set so that the spin
of the resulting spacetime is a = J/M = 0.001. After
imposing the coordinate distortion and adding the l = 1
m = 0 mode, we extract −2Ylm coefficients of Ψ4 and

Ψ̂4 on a sphere of Boyer-Lindquist radius 95M from the
black hole. We begin by exploring the effect of the l = 1,
m = 0 mode. Figure 9 (a) shows the effect of increasing
the strength of the l = 1, m = 0 perturbation on the
l = 2, m = 0 mode of extracted waveform; recall that we
did not introduce an l = 2, m = 0 mode into the met-

ric perturbation. The coordinate quantity Ψ
(2,0)
4 shows a

constant value possibly originating from the cubic coordi-
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nate distortion. The quantity Ψ̂
(2,0)
4 , on the other hand,

shows a strong dependence on the l = 1 perturbation am-
plitude; this could be due to the fact that the projection
onto spherical harmonics, as opposed to spheroidal har-
monics, is no longer correct when the perturbing spin is
introduced. The effect is however small when compared
to the magnitude of the l = 2, m = 2 modes.
The lower panels of Fig. 9 explore the effect of increas-

ing the l = 2, m = ±2 perturbation amplitude Ac on the
extracted l = 2, m = ±2 modes. In general the QKT
shows very good agreement with analytical result over a
range of perturbation magnitudes as desired, while the
quantities computed on the coordinate tetrad disagree
significantly with the analytic perturbative result.

VI. APPLICATION OF THE QKT TO

NUMERICAL SIMULATIONS OF BINARY

BLACK HOLES

We now turn to exploring the properties and effective-
ness of the QKT scheme when applied to more generic
numerical simulations involving the collision of two black
holes. We consider two examples: a circular inspiral
of two equal-mass, nonspinning black holes [Sec. VIA]
and the head-on collision of two nonspinning, equal-mass
black holes [Sec. VIB].

A. Equal-mass, nonspinning binary-black-hole

inspiral

In this subsection, we apply our QKT method to a
fully dynamical simulation of two equal-mass, nonspin-
ning black holes that inspiral through 16 orbits, merge,
and ring down. We summarize some of the physical pa-
rameters of this simulation in Table I (which is a repro-
duction of Table II of Ref. [44]); further details of this
simulation and the numerical method used are given in
Ref. [44] and the references therein.

Initial orbital eccentricity: e ∼ 5× 10−5

Initial spin of each hole: Si/M
2 ≤ 10−7

Duration of evolution: ∆T/M = 4330
Final black hole mass: Mf/M = 0.95162 ± 0.00002
Final spin: Sf/M

2
f = 0.68646 ± 0.00004

TABLE I: Physical properties of the equal-mass, nonspinning
binary-black-hole inspiral reported in Ref. [44]. Here M is the
sum of the Christodoulou masses of the initial holes, and Mf

is the Christodoulou mass of the final hole.

We examine two aspects of the QKT that we have con-
sidered in previous sections: i) that the direction l̂ iden-
tified by the QKT corresponds to the wave-propagation
direction (as discussed in Sec. III A) and the implica-

tions this has for the geometric coordinates r̂ and θ̂, and
ii) that the falloff rates of the Newman-Penrose scalars

FIG. 10: Geometrical coordinates obtained from the QKF Ψ̂2.
(a) Contours of r̂ on a slice of the null preferred characteris-
tic surface (PCS) generated by the geodesic developments of

l̂. (b) Contours of r̂ on a constant-simulation-time Cauchy

slice. (c) Contours of θ̂ on the same null surface as (a). (d) θ̂
contours in the same Cauchy slice as (b).

are consistent with the peeling property (as described in
Sec. III H).

1. Wave-propagation direction

If (as claimed in Sec. III A) the vector l̂ associated
with the QKT correctly identifies the out-going wave-
propagation direction, one would expect that as one fol-
lows the wavefront out to infinity, the spacetime cur-
vature along this trajectory and the associated derived
quantities should become quite simple. To illustrate
this, we consider an S2 coordinate sphere in the origi-
nal Cauchy slice and identify the correct null direction
l̂ associated with the QKT at each point. We then in-
tegrate the null geodesic equations outward to produce
a null hyper-surface and consider this null hyper-surface
to be a new slicing and a preferred characteristic sur-
face (PCS) of the spacetime. Identifying the geometri-

cal coordinates r̂ and θ̂ within this slicing, we plot their
contours in the left-hand panels [plots (a) and (c) respec-
tively] of Fig. 10. For comparison, we also show r̂ and

θ̂ computed within the original Cauchy slice. Note the
simplicity of the computed geometric quantities within
the PCS associated with the out-going wavefront as op-
posed to the corresponding quantities computed within
the Cauchy surface.
The structure observed within the Cauchy surface can

be understood as follows. The holes generate a rotating
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mass quadrupole approximately given by the Newtonian
relation

Iij(t, r) ≈Mqi(t− r)qj(t− r)− MR2

12
δij

=
MR2

24





3 cos [2Ωt′] + 1 3 sin [2Ωt′] 0
3 sin [2Ωt′] −3 cos [2Ωt′] + 1 0

0 0 −2



 ,

(6.1)

where M is total mass of the binary, R is the separation
between the two black holes, q is the location of one of
the black holes, and the choice of coordinates is such
that the other black hole is located at −q. In the matrix,
Ω =

√

M/R3 is the orbital angular velocity and t′ = t−r.
This quadrupole moment deforms the r̂ contour into an
ellipsoid (or peanut shape when closer to the two holes
[see Fig. 2 (a)]), while its time dependence causes the
orientation of the ellipsoid to rotate at a frequency of
2Ω.
On the PCS, the structure is much simpler. The in-

ner contour sets the basic shape for constant r̂ surfaces,
which are roughly ellipsoidal. These surfaces then ex-
pand, retaining their orientation as the distortion is prop-
agated outward at the speed of light along the wavefront.
Figure 10 (a) shows a concentric pattern of r̂ contours
on the null hyper-surfaces, in contrast to the rotating
contours on a spatial Cauchy hyper-surface that slices
through many PCSs, as depicted in Figure 10 (b). The

angular θ̂ coordinates similarly display a relative simplic-
ity on the PCS, taking on the shape of a slightly deformed
(squashed sideways) cone. Figures 10 (c) and (d) show

the θ̂ surfaces on a PCS and in a spatial slicing respec-

tively; the orientation of the deformed constant θ̂ cones
is independent of the distance to black hole in the PCS,
but rotates around when moving outwards on the spatial
slice, forming a “spiral-staircase” pattern.

2. Peeling property

Next, we explore the falloff rate of the Newman-
Penrose scalars computed on the QKT as one moves
outward along the PCS generators (i.e., along the null

geodesics tangent to the QKT l̂ where they originate).
This rate allows us to quantify to what extent the QKT
obeys the peeling property derived in Sec. III H and to
what extent the computed quantities are suitable for use
in the extrapolation procedure prescribed in Sec. IVB.
To this end, we start with 3510 null geodesics from the

grid points of a mesh (of 351 points) covering a sphere
of radius r̂ ≈ 150M surrounding the source region. Over
a small time interval of 10M , a new set of geodesics are
shot off every 1M . The affine parameter τ is initially set
to r̂ and the geodesics are evolved for around 150M . The
Newman-Penrose Ψ̂i’s are recorded at intervals of ∆τ =
1M along the geodesics. A histogram of the best fits for
the power-law falloff (i.e., of the slopes of the ln(|Ψ̂i|) vs
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FIG. 11: The distribution of power-law falloff rates of
Newman-Penrose scalars Ψ̂i against affine parameter τ . The
three concentrations (colored blue, green and red) from left

to right indicate falloff rates of Ψ̂0, Ψ̂2 and Ψ̂4, respectively.
The vertical axis indicates the number of geodesics (totaling
3510) with falloff rate falling inside bins of width 0.08, and
the number of geodesics for the center-most bins are shown.

ln(τ) graphs) for the 3510 geodesics are plotted in Fig.
11.
Recall that in fixing the spin-boost or Type III freedom

of the QKF to obtain the QKT, the l̂ vector was scaled
so that Ψ̂2 ∝ (r̂)−3. The very sharply defined peak at
−3 in Fig. 11 provides direct numerical evidence that the
relation τ ∝ r̂ [cf. Secs. III H and IVB] remains valid at
leading order for the considered range of the computa-
tional domain.
Figure 11 also indicates that |Ψ̂0| and |Ψ̂4| scale as τ−5

and τ−1, respectively, as expected from Eq. (3.48). Here,
the peaks are not as sharply defined, since we do not by
construction enforce the power-law scalings of Ψ̂0 and Ψ̂4

(as we do for Ψ̂2).

B. Head-on nonspinning binary merger

To further examine the properties of the QKT and the
geometrical coordinates we now take a detailed look at
the numerical simulation of a head-on merger. The phys-
ical parameters of the simulation are given in Table II.
The axisymmetric head-on collision of two nonspinning

black holes has been studied extensively [45–49]; in many
respects, these collisions serve as a simple, strongly non-
linear test of numerical relativity codes. The existence
of a twist-free azimuthal Killing vector on this spacetime
implies that the metric does not explicitly depend on
the azimuthal coordinate φ defined about the symmetry
axis and that the angular momentum of the spacetime
is zero. We note that because of the symmetry of this
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Initial separation: d/M = 20
Initial spin of each hole: S/M2 ≤ 2× 10−12

Duration of evolution: ∆T/M = 600
Final black hole mass: Mf/M = 0.987 ± 2× 10−3

Final black hole spin: Sf/M
2
f = 3.× 10−7 ± 2× 10−7

TABLE II: Physical parameters of the head-on binary-black-
hole merger considered in Sec. VIB. Here M is the sum of the
initial black hole Christodoulou masses, and all initial quan-
tities are measured at the initial time t = 0 of the simulation.

FIG. 12: Here we show the evolution of r̂ contours during
the merger in the near zone; the black surfaces in these plots
are the apparent horizons, and at t = 112M , the common
apparent horizon forms.

configuration, the Coulomb potential associated with the
transverse frame is real and thus that only one geometric
coordinate, the radial coordinate r̂, can be determined
from it. Therefore, we fix the latitudinal coordinate to
the simulation coordinate θ.

1. Geometric radial coordinate

We now explore some of the properties of radial coordi-
nate r̂, the emitted radiation profile, and the waveform.
We show contour plots of the r̂ coordinate at various
times near merger in Fig. 12. The characteristic peanut

FIG. 13: A snapshot (at t = 242.25M) of latitudinal distri-
bution of radiation emitted by the head-on collision. The col-
oring is according to |ℜ(Ψ̂4)|, with large values corresponding
to darker color. The disk is a vertical slice of the computa-
tional domain with the thick red line denoting the symmetry
axis.

shape expected from the merger event is clearly visible,
and surfaces of constant r̂ coordinate trace both the in-
dividual apparent horizon surfaces at early times and the
final apparent horizon surface at late times. Far from the
source, constant r̂ surfaces become roughly spherical, in-
dicating that there the geometrical concept of radius and
the gauge choice for the radial coordinate in the simula-
tion coincide well. For the head-on collision, as well as in
the more dynamical spacetimes depicted in Fig. 2, plot-
ting surfaces of constant r̂ turns out to be a useful tool
for visualizing the spacetime geometry in a way that cor-
responds to an intuitive feel of the Coulomb potential’s
behavior.

2. Gravitational waveform

For twist-free axisymmetric spacetimes, one can show
in general [45] that if the imaginary part of the tetrad
null vector m or E3 (as defined in Sec. II A) has the
same direction as the azimuthal Killing vector, then Ψ4

expressed on this tetrad is real. Figure 13 depicts ℜ(Ψ̂4)
for the head-on collision presently under consideration.
Note the absence of radiation along the symmetric axis
in Fig 13; this is a feature we will examine further later
in this section in the context of PNDs.
We show two possible spherical harmonic decomposi-

tions of Ψ̂4 in Fig. 14. Panel (a) corresponds to the case
where the azimuthal Killing vector determines the θ = 0
direction; because the symmetry-axis corresponds to the
θ = 0 direction, axisymmetry implies that there are no
l = 2, m = ±2 modes in the spherical harmonic decom-
position, only m = 0 modes exist, and of those the l = 2,
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FIG. 14: (a) The Ψ̂4 waveform for the head-on simulation ex-
tracted at coordinate radii of r = 100M and r = 150M . For
the waveform at r = 100M , all −2Ylm modes up to l = 35

are shown. Only ℜ(Ψ̂
(2,0)
4 ) and ℜ(Ψ̂

(4,0)
4 ) are discernibly

non-vanishing, with the former clearly dominating. For the

r = 150M waveform, only ℜ(Ψ̂
(2,0)
4 ) is shown, it is shifted

temporally and rescaled by ≈ 1.5 so that its maximum peak
location and magnitude match those of the r = 100M wave-
form. The difference between the two waveforms is shown
in the top-right inset. (b) The spherical harmonic decompo-

sition for Ψ̂4 at r = 100M obtained by choosing the poles
of harmonics along a direction orthogonal to the symmetry
axis. Multiple modes are visible, and a few with the largest
magnitudes are labelled.

m = 0 mode makes the dominant contribution.

On the other hand, if one relabels the θ and φ coor-
dinates on the extraction sphere, the spherical harmonic
decomposition of the same waveform is very different.
Panel (b) of Fig. 14 instead chooses the θ = 0 line to
be orthogonal to the axisymmetry axis rather than along
it [as in panel (a)]; a significant l = 2, m = 2 mode
appears. This is a simple example illustrating the well-
known fact that unless a clear prescription for the pre-
ferred axis of a simulation is given, the l = 2,m = 2 mode
is an ambiguous description of the radiation. Solutions
to this problem for generic black hole binary simulations
(which include precession) have been proposed in liter-
ature. For example, one may first choose a “radiation

axis” [50, 51] to maximize the component of the angular
momentum along itself and secondly choose a preferred
rotation about that axis [52]. Although not yet fully ex-
plored, our geometric coordinates suggest an alternative
resolution. Namely that on the wave extraction sphere,

Eq. (3.29) can be used to identify the term â cos θ̂ whose
maximum and minimum values respectively identify the
north and south pole regions of the sphere.
Another question especially relevant to wave extrac-

tion is how rapidly the waveform computed from Ψ̂4

in the computational domain converges to “the” cor-
rect asymptotic waveform. In Sec. III H, we argue that
asymptotically the QKT quantities on the correct out-
going geodesics (as described in Sec. IVB) should con-
verge very rapidly to the desired result. We now explore
this statement quantitatively for the emitted radiation
on the equatorial plane in the head-on binary-black-hole
merger we are considering. The goal is to determine at
which radius a reliable approximation of the asymptotic
waveform is attained.
To locate a good cut-off radius for wave extraction,

consider a set of non-inertial observers hovering at dif-
ferent fixed spatial (simulation) radii in the equatorial

plane. For each observer, in Fig. 15 we record the r̂Ψ̂4

value as a function of time and plot the resulting curves,
with the origin shifted so that the central maxima of all
the curves coincide at around t = 140M . For clarity, we
have divided the curves into two sets, those originating at
r < 30M and at r > 30M , which we display in panels (a)
and (b), respectively. In both panels the curve traced out
at r = 160M is given for comparison, and we will refer
to it as the reference waveform. Panels (c) and (d) show
the absolute difference between the curves extracted at
the various interior points and the reference waveform.
In Fig. 16, we plot the fractional difference between

reference waveform and the interior waveform as a func-
tion of extraction radius. The quantity plotted is the L2

norm of the absolute difference between the two wave-
forms divided by the L2 norm of the reference waveform.
The L2 norm is defined here as

L2[f ] =

√

∫ 200

t=125

f2(t)dt. (6.2)

Comparing Fig. 16 and panel (b) in Fig. 15, we find that
for radii greater than r = 40M the extracted waveform
corresponds closely, within ∼ 5%, to the reference wave-
form. Figure 16 quantifies this further: for r < 40M , the
errors in the extracted Ψ̂4 waveform are large but the con-
vergence to the reference waveform is super-exponential,
while for r > 40M , the errors converge exponentially.
This provides quantitative justification for the rapid-
convergence claims we made in Secs. III H with respect to
the Newman-Penrose scalars calculated on the QKT. We
conclude that the radius r̂ = 40M appears to be a good
minimal extraction radius for QKT quantities for head-
on binary-black-hole collisions. It would be interesting
to explore, using a similar analysis, whether the expo-
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FIG. 15: Panels (a) and (b): The gravitational-wave signal r̂ℜ(Ψ̂4) curves extracted at several fixed spatial (simulation)
coordinates. Panels (c) and (d): The absolute difference between these waveforms with a reference waveform computed at
r = 160M .
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FIG. 16: Exponential convergence of the QKT waveform ex-
tracted in the interior to the reference waveform measured at
r = 160M . This plot shows the L2 norm [defined in Eq. 6.2] of
the absolute difference between the waveform at a particular
extraction radius and the reference waveform at r = 160M
normalized by dividing by the L2 norm of the reference wave-
form. Also shown is the red fitted exponential curve for radii
r > 40M , which has a slope of −0.011.

nential convergence properties and the value for a good
minimal extraction radius change considerably when ap-

plied to generic spacetimes (i.e., to spacetimes with less
symmetry than the head-on collision we consider here).

3. Principal null directions

We conclude our investigation of the spacetime associ-
ated with the head-on collision of two black holes by ex-
ploring the behavior of the PNDs on and off the axis. As
we have observed and shown graphically in Fig. 13, no ra-
diation is emitted along the symmetry axis. This lack of
radiation suggests that the PNDs do not all converge into
a Type N pure radiation configuration as seen in Fig. 3
(c); instead, we would expect the PNDs to remain in a
Type-D configuration, with two pairs of PNDs trapped
at antipodal points of the anti-celestial sphere. On the
axis, the only non-vanishing Newman-Penrose scalar on
the QKT is Ψ̂2. The four solutions in Eq. (3.54) then
divide into a pair whose values diverge and a pair that
approaches zero. The diverging solutions give us two
PNDs pointing along the n̂ direction, while the vanish-
ing solutions coincide with l̂. This situation is depicted in
Fig. 17 (a): the two PNDs at the bottom of the sphere

point away from l̂ (represented by the radial line) and
do not converge onto the other two PNDs that coincide
with l̂ at the top of the anti-celestial sphere. All the
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FIG. 17: A graphical representation of the peeling-off behav-
ior of the PNDs along out-going null geodesics for the head-
on collision. The null geodesics start at r = 30M at time
t = 152M. The tangent ℓ to the geodesics coincide with l̂

along the geodesic and is denoted in the figures by black ra-
dial lines. The geodesic shown in panel (a) travels outward
along the symmetry axis where no gravitational radiation is
emitted. The geodesic shown in panel (b) starts off near the
equatorial plane, and all PNDs converge toward the out-going
l̂ direction pointing toward the front of the sphere. In this
figure, the arrows indicate the movements of the PNDs as
one travels further along the geodesic. Darker coloring indi-
cates points calculated at larger affine parameter along the
geodesic.

PNDs on the top of the sphere form angles smaller than
4×10−7π with the spatial projection of l̂, while the other
two PNDs form angles with the spatial projection of n̂
that are smaller than 4 × 10−6π. For comparison, in
Fig. 17(b), we show the PND behavior on the celestial
sphere as one moves along a geodesic that points away
from the symmetry axis. The geodesic shown in this plot
starts out at an orientation of 0.508π to the symmetry
axis. (A similar plot is made in Fig. 3(c) where we showed
a geodesic starting at 0.396π to the symmetry axis). In
these two cases, the presence of radiation causes the two
PNDs pointing away from l̂ to converge onto the other
two PNDs surrounding l̂ as one moves outward along the
geodesic. The dominant rate of convergence is 1/τ [cf.
Eq. (3.53)].

The existence of “critical” directions as demonstrated
here in the special case of axisymmetric spacetimes, is a
generic feature of all dynamical spacetimes: it is a topo-
logical necessity [see [53] and page 173 of [34]]. Specif-
ically, in Ref. [53], the authors explain this feature as
follows: In the asymptotic region, gravitational radia-
tion is transverse and can be represented by tendex and
vortex lines tangent to spheres of constant r̂. Then, the
Poincaré-Hopf theorem dictates that there must be loca-
tions on the sphere where the tendicity associated with
the two transverse eigenbranches of the gravitoelectric
tensor E become degenerate. The trace-free property of
E then further constrains the tendicity to be zero—i.e.,
requires the gravitational radiation to vanish at the crit-
ical points.

Another useful characterization of dynamical numer-
ical simulations is a measure of how rapidly the space-
time settles down to Petrov Type D at late times [see for
example [54, 55]]. As a graphic depiction of this evolu-
tion of spacetime, one may generate PND diagrams sim-
ilar to Fig. 17 along timelike worldlines (instead of null
geodesics). If one desires a quantitative estimate of the
rate at which this “settling down” occurs, a metric on the
anti-celestial sphere has to be defined in order to calcu-
late distance between the PNDs. However a unique pre-
scription of this metric requires a unique prescription of
the tetrad, since Lorentz transformations on tetrad result
in conformal transformations on the anti-celestial sphere.
The QKT construction is useful in this context, because
it uniquely prescribes all the tetrad degrees of freedom si-
multaneously across spacetime, including along timelike
worldlines.

VII. CONCLUSION

As the numerical relativity codes mature, it is becom-
ing increasingly important to introduce a protocol that
allows us to extract and compare physics from these codes
in an unambiguous fashion. In particular, the quantities
computed should be independent of the gauge or the for-
mulation used. Ideally, such a protocol should be valid
in the strong-field and wave zones and meet the physical
criteria outlined in Sec. III.
In this paper, we have suggested one such approach.

Based on the Newman-Penrose formalism, our method
fully specifies the tetrad degrees of freedom using purely
geometric considerations, and two of the gauge degrees
of freedom are also uniquely fixed using the curvature in-
variants I and J . In particular, our tetrad construction
makes use of the quasi-Kinnersley frame (QKF) [9–13],
which is a transverse frame (TF) that contains the Kin-
nersley tetrad in the Kerr limit.
By exploiting the relationship between QKF and eigen-

vectors of the matrix representation Q [as in Eq. (2.12)]
of the Weyl tensor, one can arrive at several insights re-
garding the physical properties of the QKF: i) its null

vector l̃ has a spatial projection pointing along the super-
Poynting vector [Sec. III A] and thus along the direction
of wave propagation, and ii) there is [Sec. III H] a close
relationship [Fig. 3(b)] between the QKF null basis and
principal null directions (PNDs) that makes the QKF
naturally suited to measuring how quickly PNDs bunch
together (as they converge onto l̃). These features help
Newman-Penrose scalars extracted using a QKT to fall
off correctly in accordance with predictions by the peel-
ing theorem.
In the QKF, the eigenvalue Ψ̂2 of the complex matrix

Q corresponding to the eigenvector that gave us QKF
is a curvature invariant thus independent of the slicing
in which the calculation was performed. The physical
interpretation of Ψ̂2 is that it represents the Coulomb
background portion of Weyl tensor; using this quan-
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tity, we define a pair of geometric coordinates r̂ and θ̂
[Sec. III D]. These geometric coordinates vividly depict
the multipolar structure in the Coulomb potential (as
can be seen from Figs. 10 and 12). For example, they
were used to demonstrate that far enough away from
their source [see Sec. VIB for an empirical cutoff], the

Coulomb background Ψ̂2 [Fig. 10] appears to propagate
with an almost invariant form along preferred character-
istic surfaces whose generators are geodesics started off in
the QKT l̂ direction. Besides fixing the gauge freedom,

we have also used the differentials dr̂ and dθ̂ [Sec. III E]
to eliminate the spin-boost freedom remaining in QKF,
yielding a final, gauge-invariant quasi-Kinnersley tetrad
(QKT).
As our QKT is constructed from the gauge-invariant

characteristic structure of Weyl tensor, it can be used
to explore the physical features of numerical spacetimes
in a gauge-invariant way. We have demonstrated this
desirable property of our QKT with i) a stationary black
hole spacetime where the hole is offset from the origin
[Sec. VA 1] as well as ii) a gauge wave [Sec. VA2] or
iii) physical wave [Sec. VB] added to the spacetime of a
Schwarzschild black hole. These examples serve as useful
test beds for codes seeking to unambiguously extract the
physically real effects as opposed to gauge induced false
signals.
We have also used the QKT to analyze two equal-

mass, nonspinning binary-black-hole merger simulations.
In the first, the two black holes inspiral [Sec. VIA] to-
ward each other, while in the second they plunge head-on
[Sec. VIB]. We have confirmed that the Newman-Penrose
scalars under the QKT do indeed fall off at the rates ex-
pected from peeling theorem in these simulations [Fig. 11
and Fig. 15], and we have explicitly examined the special
peeling behavior along “critical” directions whose exis-
tence is ensured by topology [Fig. 17].
The gauge invariant feature of the proposed framework

lends itself to several uses. One possible application is
that they could help eliminate ambiguities such as the
pole direction of harmonics used to express gravitational
waves [see Sec. VIB 2]. A further application is to use the
QKT to reduce the ambiguity in measuring how quickly
a spacetime settles down to a Type-D spacetime [see the
end of Sec. VIB]. The QKT also is promising as a wave
extraction method that can be performed in real time
and ensures that waveform approaches its asymptotic
value at infinity as rapidly as possible (this is illustrated
in Fig. 15). For future work, we plan to make a com-

parison between QKT-based wave extraction and other
wave extraction techniques (such as Cauchy Character-
istic Extraction [56–61]) using various numerical simula-
tions with generic initial conditions.
The validity of geometric coordinates and the QKT

throughout spacetime, including the strong field regions,
suggests that they could be effectively utilized as a vi-
sualization and diagnostic tool capable of tracking the
evolution of dynamical features of the spacetime. For
example, in Fig. 4 (a), the geometric coordinates point
out the missing rotating quadrupolar moment in the ini-
tial data. We expect this type of visualization to prove
valuable in ongoing efforts to construct more realistic ini-
tial data and reduce spurious “junk” radiation. Other
utilities for the geometric coordinates include, e.g., their
potential for helping to improve boundary matching algo-
rithms [see Fig. 4 (b)]. We would further like to examine
in greater depth, with the help of QKT, the mechanics
behind the changes in waveform, as one moves closer to
the source region [see Fig. 15].
Finally, we note that there should exist a close rela-

tionship between the QKT and the tendex and vortex
infrastructure introduced in [16, 17], which is based on
the real eigenvectors and eigenvalues of E and B. Our
geometric coordinates and QKT are, in contrast, based
on the complex eigenvalues and eigenvectors of Q. We
expect this connection to yield important insights, for ex-
ample regarding the slicing dependence of the tendexes
and vortexes.
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