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The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-
wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars
with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate
that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of
the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless
spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that
the neutron stars have isotropically distributed spin orientations. We present a new method for
constructing template banks for gravitational wave searches for systems with spin. We present a
new metric in a parameter space in which the template placement metric is globally flat. This new
method can create template banks of signals with non-zero spins that are (anti-)aligned with the
orbital angular momentum. We show that this search loses more than 3% of the maximium signal-
to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and
isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-
wave searches and allow a more accurate exploration of the distribution of spins in binary neutron
stars.

PACS numbers: 04.80.Nn, 04.25.Nx, 04.30.Db,

I. INTRODUCTION

The second-generation gravitational wave detectors
Advanced LIGO (aLIGO) and Advanced Virgo (AdV) [1,
2] are expected to begin observations in 2015, and to
reach full sensitivity by 2018-19. These detectors will
observe a volume of the universe more than a thousand
times greater than first-generation detectors and estab-
lish the new field of gravitational-wave astronomy. Esti-
mated detection rates for aLIGO and AdV suggest that
binary neutron stars (BNS) will be the most numer-
ous source detected, with plausible rates of ∼ 40/yr [3].
Gravitational wave observations of BNS systems will al-
low measurement of the properties of neutron stars and
allow us to explore the processes of stellar evolution.

The gravitational waves that advanced detectors will
observe from inspiralling BNS systems are well described
by post-Newtonian theory [4]. As the neutron stars or-
bit each other, they lose energy to gravitational waves
causing them to spiral together and eventually merge.
If the angular momentum (spin) of the component neu-
tron stars is zero, the gravitational waveform emitted
depends at leading order on the chirp mass of the bi-

nary M = (m1m2)
3/5

/ (m1 +m2)
1/5

[5], where m1,m2

are the component masses of the two neutron stars,
and at higher order on the symmetric mass ratio η =
m1m2/(m1 +m2)2 [6–11]. If the neutron stars are rotat-
ing, coupling between the neutron stars’ spin S1,2 and
the orbital angular momentum L of the binary will af-
fect the dynamics of BNS mergers [12–15]. We measure
the neutron stars’ spin using the dimensionless parameter
χ1,2 = S1,2/m

2
1,2.

The maximum spin value for a wide class of neutron

star equations of state is χ ≡ |χ| ∼ 0.7 [16]. How-
ever, the spins of neutron stars in BNS systems is likely
to be smaller than this limit. The spin period at the
birth of a neutron star is thought to be in the range
10–140 ms [17, 18]. During the evolution of the binary,
accretion may increase the spin of one of the stars [19],
however neutron stars are unlikely to have periods less
than 1 ms [20], corresponding to a dimensionless spin of
χ ∼ 0.4. The period of the fastest known pulsar in a dou-
ble neutron star system, J0737–3039A, is 22.70 ms [21],
corresponding to a spin of only χ ∼ 0.05. In this pa-
per, we therefore consider two populations of neutron
star binaries: the first has spins uniformly distributed
from χ = 0 to 0.4, the second, a sub-set of this, has
spins between 0 and 0.05. This extended spin distribu-
tion allows for the possibility of serendipitous discovery
of BNS systems in globular clusters, where the evolution-
ary paths may be different than that in field binaries [22].
Since supernova kicks may cause the direction of the neu-
tron star’s angular momentum to be misaligned with the
orbital angular momentum of the binary [23], or the bi-
naries may be formed by direct capture, we consider a
population of binaries with an isotropic spin distribution.

Searches for binary neutron star systems in
gravitational-wave detectors use template-based
searches [24]. Data from the detector is correlated
against a bank of known template waveforms, which
cover the space of parameters searched over [25]. The
template bank is constructed so that it covers the pa-
rameter space of interest so that any signal in this region
will lose no more than 3% of the signal-to-noise ratio
obtained by an exactly matching template. Alternative
search methods have been proposed [26, 27], however
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these still require the construction of a template bank
to perform the search. The effect of spin-orbit and
spin-spin interactions were neglected in previous BNS
searches [28], as they do not have a significant effect on
the ∼ 1600 gravitational wave cycles in the 40–2000 Hz
sensitive band of first-generation detectors [29]. However,
aLIGO and AdV will be sensitive to gravitational-wave
frequencies between 10–2000Hz, increasing the number
of cycles in band by an order of magnitude. Initial
studies have demonstrated that over this band, the small
secular effects produced by spin-orbit and spin-spin
coupling will have a significant effect on the detectability
of BNS systems with non-trivial component spins [30].
However, the current geometric method for placing
BNS templates [31] does not incorporate spin. While
numerical (stochastic) methods could be used to include
spin, these require substantially more templates than a
comparable geometric approach [32].

We present a new geometric algorithm for placing tem-
plates for BNS systems with spin, which has a signifi-
cantly higher sensitivity than previous searches. Our new
algorithm constructs a metric on the parameter space us-
ing the various coefficients of the TaylorF2 expansion of
the orbital phase as coordinates. In such a coordinate
system the parameter space metric is globally flat, there-
fore we can transform into a Euclidean coordinate sys-
tem. Finally, our method uses a Principal Coordinate
Analysis to identify a two dimensional manifold that can
be used to cover the aligned spin BNS parameter space
using existing two dimensional lattice placement algo-
rithms.

To demonstrate our new method, we first perform
a systematic evaluation of the ability of a search that
neglects spin to detect gravitational waves for BNS in
aLIGO and AdV. We show that this search will lose
more than 3% of the matched filter signal-to-noise ra-
tio for 59% (6%) of signals if it is used to search for
BNS systems with spins uniformly distributed between
0 ≤ χ1,2 ≤ 0.4(0.05); this is unsatisfactory over a large
region of the signal parameter space. We show that by
considering BNS systems where the spin of the neutron
stars are aligned with the orbital angular momentum
(i.e. the binary is not precessing), we can create a two-
dimensional template bank that is efficient at detecting
spin-aligned BNS signals. Finally we demonstrate that
this bank is sufficient to detect signals from generic spin-
ning, precessing binaries in aLIGO and AdV. The spin-
aligned bank loses more than 3% of the signal-to-noise ra-
tio for only 9% (0.2%) of signals, sufficient to construct a
sensitive and unbiased search for BNS systems in aLIGO
and AdV.

II. BNS SEARCH SENSITIVITY

We quantify the performance of templated matched-
filter searches by the fitting factor (FF) of the search [33].
The fitting factor is the fraction of the signal-to-noise

ratio that would be recovered when matching a given
signal with the best matching waveform in the template
bank. We first define the overlap between two templates
h1 and h2 as

O(h1, h2) = (ĥ1|ĥ2) =
(h1|h2)√

(h1|h1)(h2|h2)
. (1)

which is defined in terms of the noise-weighted inner
product [34]

(h1|h2) = 4 Re

∫ ∞
0

h̃1(f)h̃∗2(f)

Sn(f)
df. (2)

This overlap is the fraction of signal power that would be
recovered by searching for the signal h1 using a matched
filter constructed from h2. Maximizing the overlap over
the time of arrival and waveform phase yields the match

M(h1, h2) = max
φc,tc

(ĥ1|ĥ2(φc, tc)). (3)

The mismatch, 1 − M, is the fraction of the optimal
signal-to-noise ratio that is lost when searching for a sig-
nal h1 with a template waveform h2.

When searching for BNSs, we do not know the exact
physical parameters of the system. We assume that the
masses of the neutron stars lie between 1 and 3M� and
construct a bank of waveform templates {hb} to span
this region of the mass parameter space. To measure the
sensitivity of this bank to a gravitational waveform hs
with unknown parameters, we compute the fitting factor

FF(hs) = max
h∈{hb}

M(hs, h), (4)

where we have maximized the match over all the tem-
plates in the bank. In searches for gravitational waves
using LIGO and Virgo, the bank is constructed such that
the fitting factor for any signal in the target parameter
space will never be less than 0.97. At least one of the
templates in the bank must have a maximized overlap of
0.97 (or more) with the signal. This value is chosen to
correspond to an event rate loss of no more than 10% of
possible sources within the range of the detectors [35].
In this paper, we use a fitting factor of 0.97 to construct
search template banks.

We now test whether a bank of templates that does
not model the effect of spin is sufficient to detect generic,
spinning BNS sources in aLIGO and AdV. We create a
bank of non-spinning templates that would recover any
non-spinning BNS system with a fitting factor greater
than 0.97. This bank is constructed using TaylorF2 wave-
forms, which are constructed using the stationary phase
approximation to the gravitational-wave phasing accu-
rate to 3.5 post-Newtonian (PN) order [4, 36]. To cre-
ate a bank of these waveforms we use the hexagonal-
placement method defined in [37], which was used in the
majority of previous searches in LIGO and Virgo [38–
40]. This template bank is placed using the metric given
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in [25], which is valid, by construction, for templates at
2PN order. Our signal waveforms are constructed using
the SpinTaylorT4 waveform [41], a time-domain wave-
form accurate to 3.5PN order in the orbital phase which
includes the leading order spin-orbit, spin-spin, and pre-
cessional modulation effects and implemented in the LSC
Algorithm Library Suite [42]. We first confirm that al-
though the bank is constructed at 2PN order, it yields
fitting factors greater than 0.97 for both the TaylorF2
and SpinTaylorT4 non-spinning waveforms at 3.5PN or-
der. To simulate a population of spinning BNS sources,
we generate 100,000 signals with component masses uni-
formly distributed between 1 and 3 M� and dimension-
less spin magnitudes uniformly distributed between 0
and 0.4. The orientation of the spin, the orientation
of the orbital angular momentum, and the sky location
are isotropically distributed. To model the sensitivity
of a second generation gravitational wave interferometer,
we use the aLIGO zero-detuned, high-power sensitivity
curve [43]. For our simulations, we use a lower frequency
cutoff of 15Hz.

We note that for non-precessing systems the fitting fac-
tor is independent of the detector alignment and location;
however this statement is not true for precessing systems.
For such systems, however, the distribution of fitting fac-
tors over a population of sources will be independent of
the detector alignment and location. Therefore, for this
study we calculate the fitting-factor for a single detector
with an arbitrary location and position.

In Fig. 1 we show the distribution of fitting factors ob-
tained when searching for our population of BNS sources
with the non-spinning template bank. We see that 59%
of signals were recovered with a fitting factor less than
0.97. If the maximum spin magnitude is restricted to
0.05, we find that 6% of signals are recovered with a FF
less than 0.97. If BNS systems do exist with spin magni-
tudes up to 0.4, a template bank that captures the effects
of spin will be required to maximize the number of BNS
detections. Detection efficiency will be greatly reduced
by using a template bank that only contains waveforms
with no spin effects. Even under the assumption that
component spins in BNS systems will be no greater than
0.05, detection efficiency will be decreased if the effect of
spin on the signal waveform is ignored.

III. A TEMPLATE PLACEMENT ALGORITHM
FOR ALIGNED-SPIN BNS TEMPLATES

As we have demonstrated in the previous section, there
is a substantial region of the BNS parameter space where
a significant loss in signal-to-noise ratio would be en-
countered when searching for astrophysically plausible,
spinning BNS systems with non-spinning templates. It
has been suggested that using BNS templates where the
spins of the system are aligned with the orbital angular
momentum is sufficient for detecting generic BNS sys-
tems with second-generation detectors [30] using Tay-
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FIG. 1. The distribution of fitting factors obtained by search-
ing for the precessing BNS systems described in section II with
component spins up to 0.4 (blue solid line), 0.2 (green dashed
line), and 0.05 (red dotted line) using the non-spinning BNS
template bank described in section II and the advanced LIGO,
zero-detuned, high-power PSD with a 15Hz lower frequency
cutoff.

lorF2 templates that incorporate the leading order spin-
orbit and spin-spin corrections [44].

In this section we use these spin-aligned waveforms to
construct a template bank that attempts to cover the
full space of astrophysically plausible BNS spin configu-
rations. This template bank should contain as few tem-
plates as possible, while still being able to detect any BNS
system that might be observed with aLIGO and AdV.
To achieve this, it is important to assess the “effective
dimension” of the space, which is defined as the number
of orthogonal directions over which template waveforms
need to placed in order to cover the full physically possi-
ble parameter range. We demonstrate that the effective
dimension of this parameter space is only two dimen-
sional. For BNS systems in aLIGO and AdV the extent
of the physical parameter space in the remaining direc-
tions is smaller than the coverage radius of a template
and can be neglected.

As the effective dimension of the space is two-
dimensional, a hexagonal placement algorithm, similar
to that used in previous searches of LIGO and Virgo
data, could be employed to cover the space. This allows
our new method to be incorporated into existing search
pipelines in a straightforward way.

Since BNS systems coalesce at ∼ 1500 Hz, significantly
higher than the most sensitive band of the detectors, the
waveform will be dominated by the inspiral part of the
signal [45]. The effect of component spin on BNS inspiral
waveforms has been well explored in the literature [12–
14, 41]). For spin-aligned (i.e. non-precessing) wave-
forms, the dominant effects of component spin are spin-
orbit coupling, which enters the waveform phasing at
1.5PN order, and spin1-spin2 coupling, which enters the
waveform phasing at 2PN order. Other spin-related cor-
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rections to the PN phasing have been computed [46, 47],
however, in this work we mainly restrict to only the two
dominant terms. The methods described here are easily

extendable to include additional spin correction terms
and this does not significantly change our results, as we
demonstrate at the end of this section.

To construct a bank to search for generic BNS signals, we use TaylorF2 waveforms accurate to 3.5PN order in
orbital phase and including the leading order spin-orbit and spin-spin terms given by [44, 45]

h̃(f) = A(f ; θx)eiΨ(f ;λi) (5)

where θx describe the various orientation angles that only affect the amplitude and overall phase of the observed
gravitational waveform [24]. The phase Ψ is given by

Ψ = 2πf0xtc − φc + λ0x
−5/3 + λ2x

−1 + λ3x
−2/3 + λ4x

−1/3 + λ5L log(x) + λ6x
1/3 + λ6L log(x)x1/3 + λ7x

2/3, (6)

where f is the frequency, f0 is a fiducial frequency, x = f/f0, tc is the coalescence time, φc is a constant phase offset.
The PN phasing terms are

λ0 =
3

128
(πMf0)−5/3, (7)

λ2 =
5

96η2/5

(
743

336
+

11

4
η

)
(πMf0)−1, (8)

λ3 = − 3π

8η3/5

(
1− 1

4π
β

)
(πMf0)−2/3, (9)

λ4 =
15

64η4/5

(
3058673

1016064
+

5429

1008
η +

617

144
η2 − σ

)
(πMf0)−1/3 (10)

λ5L =
3

128η

(
38645π

756
− 65π

9
η

)
(11)

λ6 =
3

128η6/5

(
11583231236531

4694215680
− 640π2

3
− 6848

21

(
γE + log 4− 1

5
log η +

1

3
log(πMf0)

)
− 15737765635

3048192
η +

2255π2

12
η +

76055

1728
η2 − 127825

1296
η3

)
(πMf0)1/3 (12)

λ6L = − 1

128η6/5

6848

21
(πMf0)1/3 (13)

λ7 =
3

128η7/5

(
77096675π

254016
+

378515π

1512
η − 74045π

756
η2

)
(πMf0)2/3, (14)

where γE is the Euler gamma constant, β (the dominant spin-orbit coupling term) and σ (the dominant spin-spin
coupling term) are given by

β =
1

12

2∑
i=1

[
113

(
mi

m1 +m2

)2

+ 75η

]
L̂ · χi (15)

σ =
η

48

(
−247χ1 · χ2 + 721L̂ · χ1L̂ · χ2

)
. (16)

and L̂ is the unit vector in the direction of the orbital angular momentum. Note that above we have omitted the λ5

term, as it has no dependance on frequency and is therefore included in the constant phase offset, φc.

Our goal is to construct a template bank containing
the minimum number of waveforms for which any plau-
sible BNS signal has a FF of 0.97 or higher. To place a
template bank, we follow the method of Owen [48]. We
first construct a metric on the waveform parameter space
that describes the mismatch between infinitesimally sep-

arated points,

O(h(θ), h(θ + δθ)) = 1−
∑
ij

gij(θ) δθi δθj , (17)
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with the metric given by,

gij(θ) = −1

2

∂2O
∂δθi∂δθj

=

(
∂h(θ)

∂θi

∣∣∣∣∂h(θ)

∂θj

)
(18)

and where θ describes the parameters of the signal, in
this case the masses and the spins.

This metric is used to approximate the mismatch in the
neighborhood of any point. When doing this care must be
taken to choose a “good” set of coordinates where extrin-
sic curvature is minimized. If a “bad” set of coordinates
is chosen, the region in which this approximation can be
used will be very small. To minimize this issue when plac-
ing the two-dimensional non-spinning bank, the masses
m1,m2 are transformed into the “chirp times” τ0, τ3 [25].
In this coordinate system, ellipses are constructed that
describe fitting factors greater than 0.97 around a point
and hexagonal placement is used to efficiently tile the
space to achieve the desired minimal match [31].

To construct our new bank, we treat the six λi and two
λiL components, given in Eq. (7), as eight independent
parameters, as in [49]. The range of possible physical val-
ues will trace out a four-dimensional manifold in the eight
dimensional parameter space given by the λα, where α is
an index that takes both i and iL values. We will demon-
strate that this eight-dimensional parameter space allows
us to construct a metric without intrinsic curvature.

As shown in [48] it is possible to evaluate the derivative
in (18), maximizing over the phase, φC , to give the metric
in terms of a 9 dimensional space:

γαβ =
1

2
(J [ψαψβ ]− J [ψα]J [ψβ ]) . (19)

In this expression ψα is given by

ψ0 =
∂Ψ

∂tc
= 2πf0x (20)

ψi =
∂Ψ

∂λi
= x(i−5)/3 (21)

ψiL =
∂Ψ

∂λiL
= x(i−5)/3 log(x) (22)

and J is the moment functional of the noise PSD [44, 48]

J [a(x)] =
1

I(7)

∫ xU

xL

a(x)x−7/3

Sh(xf0)
dx , (23)

where

I(q) ≡
∫ xU

xL

x−q/3

Sh(xf0)
dx (24)

and xU and xL correspond to the lower and upper bounds
of frequency in the integral. Unless stated otherwise we
use fL = xLf0 = 15Hz for the aLIGO PSD and choose
2000Hz for the upper frequency cutoff, fU = xUf0. While
it is unphysical to use the same upper frequency cutoff for
all systems, especially as we are not including a merger
in our waveform model, it is necessary to make this as-
sumption to ensure that our metric will be flat. For BNS

systems this approximation is fair to use as such systems
will merge at frequencies that are outside the sensitive
range of the advanced detectors and thus our calculation
of signal power is not affected by assuming that all BNS
systems merge abruptly at 2000Hz. This approach was
also used in [31] for computational efficiency.

Following [48] we can then maximize this expression
over tC to give the metric in terms of the eight λα

gαβ = γαβ −
γ0αγ0β

γ00
. (25)

It is worth highlighting that the parameter space metric
gαβ , in the λα coordinate system, has no dependence on
the values of λα. In other words, the parameter space is
globally flat in this eight-dimensional parameter space.

Although this eight-dimensional metric is globally flat,
we have increased the dimensionality of the physical
waveform space by a factor of two. However, we can
transform this metric to a new coordinate system that
will allow us to assess the effective dimensionality of the
parameter space.We first rotate and rescale the metric
to transform to a Cartesian coordinate system. We now
use indicies i, j to number the remaining eight λα coor-
dinates. As gij is a real, symmetric matrix we can use
the eigenvalues and eigenvectors of the metric to rotate
into an orthonormal coordinate system defined by

µi =
∑
j

(
Vij
√
Ei

)
λj , (26)

where Vij describes the eigenvectors of gij and Ei its
corresponding eigenvalues. We use the convention that
Vij is the jth component of the ith eigenvector, and the
eigenvectors are normalized by V TV = I. In this coor-
dinate system, the metric, g′ij , will be the identity ma-
trix. Next, we perform a rotation to align the axis of
the parameter space with the principal components of
the physically possible region of the space. The physi-
cally allowed ranges of the masses and spins cover only a
limited region in the parameter space. The extent of the
physically relevant region of the space in a certain direc-
tion may be thin relative to the desired mismatch. By
orienting the coordinate system along the principal direc-
tions we can easily identify any orthogonal directions in
which the physical region is sufficiently thin that we do
not need to place templates in those directions. This will
allow us to assess the effective dimension of the param-
eter space, or, in other words, how many directions we
need to consider when placing a template bank. Trans-
forming to a Cartesian coordinate system also helps with
template placement, as it is trivial to place templates us-
ing the optimal A∗n lattice [50] in a 2, 3 or 4 dimension
Cartesian coordinate system

To perform the second rotation we make use of the
fact that in a Cartesian coordinate system we are free to
rotate the coordinates without changing the form of the
metric. We would like to rotate the coordinates so that
the greatest extent of the template bank lies along as few
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directions as possible. To accomplish this we first draw
many examples of physical parameters of the masses and
spins, and calculate the corresponding values of µi for
each of these points. We then do a Principal Component
Analysis on this dataset, which amounts to finding the
eigenvectors of the covariance matrix from the set of µi.
This produces a rotation into a new set of coordinates
given by

ξi =
∑
j

(
Cijµ

j
)
, (27)

where Cij contains the eigenvectors of the covariance ma-
trix using the same conventions as for Vij . The rotation
of course leaves the metric Cartesian, but now the bank
is oriented along the principal axes and it is much easier
to visualize the shape of the boundaries and determine
how to perform the template placement.

We now use this method to construct a template bank
where the spin of each component neutron star is re-
stricted to 0.4. When this metric is constructed using the
aLIGO, zero-detuned high-power noise curve with a lower
frequency cut-off of 15Hz we show that, although many
additional templates are required to cover an aligned
spinning parameter space when compared to the non
spinning space, the effective dimension for these BNS
systems is still two.

We begin by attempting to visualize the space. We
will refer to ξ1 as the direction along which the parame-
ter space has the biggest extent (the dominant direction)
and ξ8 as the direction with the smallest extent (the least-
dominant direction). We draw a large set of points, with
random values of masses and spins, and transform these
points into the ξi coordinate system. The position of
these points is shown in Figure 2, where we plot the ex-
tent of ξ2,3,4 against ξ1.

In Figure 2 and subsequent plots, we have scaled the ξi
direction such that one unit corresponds to the coverage
diameter of a template at 0.97 mismatch. Equivalently,
we have scaled the directions such that two points sepa-
rated by 0.5 units (one template radius) in any direction
have a match of 0.971. We remind that mismatch is pro-
portional to distance squared and therefore two points
separated by one unit would have a match of 0.88

Immediately we notice that the extent along the ξ4 di-
rection is small compared to the diameter of a template.
We can also see that the extent along the ξ3 direction is
comparable to a template diameter, while the ξ1 and ξ2
directions have much larger extents and clearly need to
be gridded over. The extent in the other 4 directions is
smaller than ξ4 and can be completely ignored. This hier-
archy of measurable parameters may be a generic feature
according to the model of [51].

1 The unscaled distance between two points with a match of 0.97
would be (1− 0.97)0.5 = 0.17

FIG. 2. The extent of the binary neutron star, χi < 0.4, pa-
rameter space in the ξ2, ξ3 and ξ4 directions, plotted against
ξ1. The ξi coordinates have been scaled such that one unit
corresponds to the coverage diameter of a template at 0.97
mismatch. Generated using the zero-detuned, high-power ad-
vanced LIGO sensitivity curve with a 15Hz lower frequency
cut off.

The plot of ξ1 against ξ3 in Figure 2 can be somewhat
misleading as we have projected out the ξ2 direction. It
is more informative to investigate the depth of ξ3 at fixed
values of ξ1 and ξ2 and translate this into the maximum
mismatch that would be obtained if one were to assume
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FIG. 3. The mismatch between the edge and centre of the
physically possible range of ξ3 (top) and ξ4 (bottom) values
as a function of ξ1 and ξ2. The ξi coordinates have been scaled
such that one unit corresponds to the coverage diameter of a
template at 0.97 mismatch. Plotted for a binary neutron star
parameter space with spins restricted to 0.4 using the zero-
detuned, high-power advanced LIGO sensitivity curve with a
15Hz lower frequency cut off.

that there is no width in the third direction. In Figure 3
we show the maximum mismatch between the central and
extremal values of the possible range of ξ3 (and ξ4) as a
function of the two primary directions. This is calculated
by binning the points mentioned above into bins in ξ1
and ξ2, where the bin width is equal to one template
radius. We then determine the extremal values of ξ3
(and ξ4) for the points in each bin. From Figure 3 we
can see that, while there are small areas of parameter
space where up to a 1.6% loss in SNR would be incurred
from assuming the ξ3 direction had no depth, most areas
of the parameter space are very thin in the ξ3 direction.
This figure also helps to reinforce the fact that the depth
in the fourth direction is negligible, as, even in the worst
region of the space, no more than 0.01% of SNR would
be lost by assuming ξ4 had no depth. The depth of the
ξ5,8 directions are even smaller than ξ4.

In this coordinate system it is easy to explore how the

size of the parameter space depends on the maximal spins
of the component neutron stars. In Figure 4 we show the
extent of the physical space for aligned spinning BNS
systems, with maximum component spins of 0.4, 0.2 and
0.1, compared to that of non-spinning systems. Ignoring
any issues related to the depth of the ξ3 direction, one
can clearly see that to cover the aligned spin parameter
space will require a great deal more templates than the
non spinning parameter space.

From these results we can see that a 2 dimensional
template bank would be sufficient to cover the aligned
spin parameter space for BNS systems in the advanced
detector era. Specifically, we would advocate placing a
hexagonal lattice in the ξ1, ξ2 coordinates and setting the
value of ξ3..8 to be the middle of the possible range of
those parameters at the given position of ξ1, ξ2. For the
regions of parameter space where the depth of ξ3 is not
negligible, one could either ignore it, understanding that
the resulting bank will not have a fitting factor of 0.97 in
this region. Alternatively, one could stack templates in
the region where ξ3 is deepest to minimize this effect.

For this work we chose to employ a hexagonal template
bank in the ξ1, ξ2 coordinates, stacking the templates
in the ξ3 direction, where necessary, to ensure that the
maximum mismatch due to the depth of ξ3 is no more
than 0.25%. For an aligned-spin template bank where the
spin of each component is restricted to 0.4, using the ad-
vanced LIGO, zero-detuned high-power noise curve with
a lower frequency cut-off of 15Hz, we find that approxi-
mately 520,000 templates are required. Roughly 100,000
of these templates were added by the stacking process.

We can verify that the template bank algorithm is
working correctly by repeating the simulation described
in section II, but evaluating the fitting factor between
our bank of aligned-spin template waveforms and a set
of signals that is restricted to having spins that are (anti-
)aligned with the orbital angular momentum. The results
of this simulation are shown in figure 5 and one can see
that with our bank we do not observe fitting factors lower
than 0.97 when searching for aligned spin BNS systems.

In the previous paragraphs we have restricted atten-
tion to the aLIGO zero-detuned, high-power predicted
sensitivity with a 15Hz lower frequency cut off. How-
ever, we should verify that the conclusions we have drawn
are valid for AdV, whose PSD is different from that of
aLIGO, as shown in Figure 6. Additionally we should
also show that the choice to use a 15Hz cut off in the
aLIGO PSD does not affect the conclusions made in this
section.

The process we described above is applicable for any
PSD, and therefore we can use it directly to determine
the ξi directions for the AdV PSD, or the aLIGO PSD
with a 10Hz lower frequency cutoff. In Figure 7 we plot
ξ1 against ξ2 for both PSDs while the color shows the
mismatch between the center and edges in the ξ3 direc-
tion. This plot can be directly compared to Figure 3. We
notice that the size of the parameter space for the AdV
PSD is significantly smaller than for the aLIGO PSD in



8

FIG. 4. The size of the BNS parameter space as a function
of the maximum spin. The darkest points indicate points
with spin on both components constrained to 0.4, then, in
order of increasing lightness, we show points constrained to a
maximal spin of 0.2 and 0.1, finally the lightest points show
points with no spin. The ξi coordinates have been scaled
such that one unit corresponds to the coverage diameter of
a template at 0.97 mismatch. This plot was generated using
the zero-detuned, high-power aLIGO sensitivity curve with a
15Hz lower frequency cut off.
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FIG. 5. The distribution of fitting factors obtained by search-
ing for aligned spin, binary neutron star systems, with spin
magnitudes restricted to 0.4 using the aligned-spin BNS tem-
plate bank described in section III and the aLIGO, zero-
detuned, high-power PSD with a 15Hz lower frequency cutoff.

all 3 of the dominant directions. Therefore our conclu-
sions for aLIGO are still valid for AdV. Using our method
we find that we require approximately 120,000 templates
to cover the parameter space for AdV, in comparison to
approximately 520,000 templates for aLIGO.

By comparing the results when using the aLIGO PSD
with a 10Hz and 15Hz lower cut off we observe that us-
ing a 10Hz lower frequency cut off will increase the num-
ber of necessary templates from ∼ 520000 to ∼ 860000.
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FIG. 6. The amplitude spectral density for the aLIGO zero-
detuned high-power design sensitivity (blue solid curve), AdV
design sensitivity (red dashed curve), initial LIGO design sen-
sitivity (blue bot-dash curve) and initial Virgo design sensi-
tivity (red dotted curve).

However the shape of the parameter space, and thus our
final conclusions, are unaffected when using a 10Hz lower
frequency cutoff. However, in this case we see larger mis-
matches due to the depth of ξ3 and therefore the process
of stacking templates is important when using a 10Hz
lower cut off. However, even in this case, we do not feel
that the depth is large enough everywhere in the space to
justify using a fully 3-dimensional placement algorithm.

Finally, we wish to investigate the effect that the
higher order spin contributions to the orbital phase
have on our method. To do this we repeat the pro-
cess described above, but include the spin(1)-spin(1) and
spin(2)-spin(2) contributions to the σ term at 2PN order
and also the 2.5PN spin-orbit term as given in [47]. In
Figure 8 we plot ξ1 against ξ2 when these higher order
spin terms are included, the color shows the mismatch
between the center and edges in the ξ3 direction. This
plot can be directly compared to Figure 3. By compar-
ing these plots we can see that including the higher or-
der spin terms has caused the parameter space to have a
larger extent in the ξ2 direction. However, the depth of
the space in the ξ3 direction has reduced by almost an
order of magnitude. In this case the stacking process is
not required and the resulting bank consists of ∼ 560000
templates.

IV. COMPARISON TO ALTERNATIVE
PLACEMENT METHODS

An alternative approach to template placement for
aligned spin systems is to use templates with “unphys-
ical” values of the symmetric mass ratio, η. That is,
to use non-spinning templates, with the desired range of
chirp mass but where the range of η values is extended
to include both values of η that are much lower than the
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FIG. 7. The mismatch between the edge and centre of the
third dominant direction as a function of the first and second
dominant directions when using the Virgo noise curve (top)
and when using the advanced LIGO noise curve with a 10Hz
lower frequency cut off (bottom). The ξi coordinates have
been scaled such that one unit corresponds to the coverage
diameter of a template at 0.97 mismatch. Plotted for a binary
neutron star parameter space with spins restricted to 0.4.

relevant parameter space and values of η that are much
higher, including templates with η greater than the phys-
ically possible limit of 0.25.

We can understand this unphysical η approach in terms
of our ξi coordinate system by noting that it is always
possible to produce a template with any possible value of
ξ1 and ξ2 that is within the BNS parameter space, by us-
ing non-spinning templates with unrestricted values of η.
By generating a set of templates in the ξ1, ξ2 directions,
where we restrict the chirp mass to be that possible for
BNS systems, but where η ranges from 0.1 to 0.7 we are
able to cover the full physically possible space in ξ1, ξ2.
However, the disadvantage to using unphysical η tem-
plates is that the points will not take the correct values
of ξ3. The colorbar on Figure 9 indicates the mismatch
between unphysical η templates and aligned-spin tem-
plates as a function of ξ1 and ξ2. In making this plot we
assume that ξ3 has no depth in the aligned spin case by

FIG. 8. The mismatch between the edge and centre of the
third dominant direction as a function of the first and sec-
ond dominant directions using waveforms incorporating the
sub-dominant spin corrections to the orbital phase. The ξi
coordinates have been scaled such that one unit corresponds
to the coverage diameter of a template at 0.97 mismatch.
Plotted for a binary neutron star parameter space with spins
restricted to 0.4 using the zero-detuned, high-power aLIGO
sensitivity curve with a 15Hz lower frequency cut off.

taking the central value where ξ3 has a range of values.

While unphysical η templates will produce an increase
in efficiency when compared with non-spinning tem-
plates, the method is not as efficient as the aligned spin
geometrical placement we have described. In addition,
both methods require the same number of templates to
cover the parameter space. Therefore, we would recom-
mend using aligned spin templates placed using our met-
ric algorithm as opposed to unphysical η templates.

Finally, we wish to compare the performance of this
geometrical algorithm with the stochastic bank proposed
in [32, 52]. The stochastic placement works by randomly
placing points within the parameter space and rejecting
points that are too “close” to points already in the bank.
This has the advantage that it is valid for any parameter
space metric, so we could use any of the metrics discussed
above. However, it is more computationally efficient to
use the Cartesian ξi or µi coordinate system rather than
the non-Cartesian metric given above.

The disadvantage to a stochastic bank, when compared
to a geometrically placed bank, is that it will require more
templates to achieve the same level of coverage [32, 53].
For our parameter space, consisting of BNS signals with
component spins up to 0.4 and using the advanced LIGO
zero-detuned high-power design curve with a 15Hz lower
frequency cut-off, we found that the stochastic placement
produced a bank containing ∼ 750000 templates, which
is 44% more than with the geometrical placement. How-
ever, stochastic placement can still be used to place tem-
plates when no analytical metric is known, such as when
the merger becomes important. In such regions of pa-
rameter space, the stochastic placement may still be the
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FIG. 9. The mismatch between unphysical η and aligned spin
BNS templates as a function of the first and second dominant
directions. In making this plot we assume that ξ3 has no depth
in the aligned spin case by taking the central value where ξ3
has a range of values. This plot was generated with spins
restricted to 0.4 using the zero-detuned, high-power advanced
LIGO sensitivity curve with a 15Hz lower frequency cut off.

best algorithm to use to place a template bank.

V. PERFORMANCE OF THE ALIGNED SPIN
TEMPLATE BANK

In this section we would like to investigate the improve-
ment in the detection of generic BNS systems that results
from using a template bank that includes the dominant,
non-precessing, spin effects. To do this we use the aligned
spinning bank that we detail in section III and compare
this to the results of using a nonspinning bank as shown
in section II.

Using our aligned spin template bank, we repeat the
investigation from section II. We create a population
of source BNS signals identical to those used in II, and
compute the fitting factor between these signals and the
aligned spin template bank. The results of this are shown
in FIG.10. To decrease the computational cost of this
test, we only calculated the overlaps between a signal
and templates that were within a range of ±0.1M� in
chirp mass. This is reasonable because the overlap will
decrease rapidly with small changes in chirp mass, there-
fore we expect templates with very different values of
chirp mass to have low overlaps with each other. We ver-
ified that this approach did not cause us to underestimate
the fitting-factor of our banks.

We can now compare the results obtained in this sec-
tion, using our aligned-spin template bank, with the re-
sults obtained in section II, using a non-spinning tem-
plate bank. One can clearly see an improvement in the
distribution of fitting factors when using the aligned spin
template bank. The fraction of signals that fall below a
fitting factor of 0.97, when the spin magnitudes are re-
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FIG. 10. The distribution of fitting factors obtained by
searching for the precessing signals described in section II
with component spins up to 0.4 (blue solid line), 0.2 (green
dashed line), and 0.05 (red dotted line) using the aligned spin
BNS template bank described in section III and the advanced
LIGO, zero-detuned, high-power PSD with a 15Hz lower fre-
quency cutoff.

stricted to 0.4, falls from 59% to 9%. We also see an
improvement for signals that have spin magnitudes re-
stricted to 0.05, where the fraction of signals falling below
a fitting factor of 0.97 drops from 6% to 0.2%. We can
also compare the performance of the aligned-spin bank to
that of the non-spinning bank as a function of the maxi-
mum spin magnitude, as shown in Figure 11. From this
Figure we can see that regardless of the maximum com-
ponent spin, the aligned spin bank will greatly reduce the
number of signals recovered with fitting factors less than
0.97.

A small fraction of signals fall below a FF of 0.97, even
when using the new aligned-spin template bank. We ex-
pect that these poor matches with the aligned template
bank are due to precession. In general, precessional ef-
fects will not be important in BNS systems as the orbital
angular momentum is significantly larger than the com-
ponent spins. In such cases there is only a small angle
between the total and orbital angular momenta and pre-
cession has only a small effect on the waveform.

However, there is a small region of parameter space
where precessional effects will have an effect for BNS
systems. Using the model of Ref. [54], applied to the
small precession angles in BNS systems, we can predict
for which systems precession will be most important. The
orientation of a precessing binary must be defined using
the total angular momentum rather than the orbital an-
gular momentum as done with non-precessing binaries.
The orientations with the worst matches should be those
where the system is edge-on (angular momentum perpen-
dicular to the viewing direction) and where the detector
is nearly insensitive to the plus polarization and only sees
the cross polarization (a binary overhead of the detector
would have its angular momentum oriented 45◦ between
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FIG. 11. The fraction of the precessing signals described in
section II recovered with a fitting factor less than 0.97 as
a function of the maximum component spin. Shown for the
non-spinning BNS template bank described in section II (blue
solid line), and the aligned spin BNS template bank described
in section III (red dotted line). The advanced LIGO, zero-
detuned, high-power PSD with a 15Hz lower frequency cutoff
was used when computing the fitting factors.

the arms of the detector). We find that this is indeed the
case; in fact, all cases with fitting factors less than 0.95
are close to this configuration. All of these cases also
have biases in the recovered mass and spin parameters
due to the secular effects of precession on the phasing of
the waveform.

VI. CONCLUSION

In this work we have investigated the effects of neglect-
ing spin when searching for binary neutron star systems
in aLIGO and AdV. We have found that, if component
spins in binary neutron star systems are as large as 0.4,
then neutron star spin cannot be neglected, and there
is a non-trivial loss in signal-to-noise ratio even if the
maximum spin is restricted to be less than 0.05. We
have developed a new algorithm for placing an aligned
spin template bank in the BNS parameter space. We

have shown that this bank works for aligned spin systems
and have demonstrated that it does significantly better
for generic, precessing BNS systems than the traditional
non-spinning bank. However, for the BNS aligned spin
χi < 0.4 parameter space the aligned spin bank requires
approximately five times as many templates as the non-
spinning bank. This increased number of templates will
increase the computational cost of the search and increase
the number of background events, so needs to be bal-
anced against the potential gain in being able to cover
a larger region of parameter space. A further advantage
of our method is the ease with which it can be incor-
porated into existing or future search pipelines, which
include the use of signal-based vetoes [55] and coinci-
dence algorithms [56]. In future work we will investi-
gate how this template bank performs in data from the
aLIGO and AdV detectors which includes non-Gaussian
and non-stationary noise features. Finally we note that
the method proposed in this work should be applicable
wherever the TaylorF2 waveforms closely represent ac-
tual gravitational waveforms. In a future work we will
investigate how well this method performs in the binary
black hole and neutron-star, black-hole regions of the pa-
rameter space. Wherever the TaylorF2 approximation
begins to break down, a stochastic bank placement may
still be the most viable option.
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