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I. INTRODUCTION

There has been significant interest in recent years in
gravitational field theories that involve a fundamental
vector field as well as the usual metric field. These in-
clude the paramerized family of Einstein-aether theories
[1] and the TeVeS theory [2]. In addition, the Horava
theory [3] can be viewed as a particular case of Einstein-
aether theory, so it too is effectively a gravitational field
theory with a fundamental vector field coupled to a met-
ric field. A number of years ago, Isenberg and Nester
[4] noted a possible difficulty for certain field theories
involving a vector field coupled to a spacetime metric
field.1 This difficulty involves the number of constraint
equations the theory imposes on the choice of initial data
for the theory, and how this number changes if one com-
pares (i) the field theory with both the vector field and
the metric field fully dynamic; and (ii) the field theory
with the spacetime metric fixed and flat, and only the
vector field fully dynamic.

To understand the problem, it is useful to first recall
the situation for the Einstein-Maxwell field theory. On
a fixed flat spacetime background, with no dynamical
gravitational fields, the Maxwell theory imposes the two
constraints DcE

c = 0 and DcB
c = 0 on the choice of the

Maxwell initial data {Ea, Ba}. For the fully dynamic
Einstein-Maxwell theory, there are 2 + 4 constraints—
including the four Einstein constraints R − KcdKcd +
K2 = η[EcEc + BcBc] and DcK

c
a − DaK = η[E × B]a

as well as the two Maxwell divergence constraints listed
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1 The same problem can arise for field theories involving tensor
fields coupled to a metric field.

above — restricting the choice of the Einstein-Maxwell
data {hab,Kab, E

a, Ba}.2 This (Einstein-Maxwell the-
ory) is the normal situation for a well-behaved theory:
there are l = 2 constraints for the fixed background
(Maxwell) theory, there are l + 4 constraints in the
dynamical gravitational field (Einstein-Maxwell) theory,
and the constraints behave well in the weak gravitational
field limit.
If alternatively one considers the Einstein-vector field

theory with the spacetime action principle3

S[Uα, gαβ] =

∫

d4x
√−g

{

R

− ρ[−1

2
∇αUβ∇βUα − 1

2
m2UαU

α]
}

, (1)

one finds the following alternative situation (See [4] for
details): For the flat background theory, if one does
a space + time decomposition Uα → {U⊥, Ua} of
the fields, and if one defines the conjugate momenta
{Π⊥,Πa}, then there are six constraint equations on the
initial data, of the following form

Πa = DaU⊥ (2)

DbΠ⊥ = DbDcU
c +m2U b. (3)

2 Here Ea and Ba are the electric and magnetic spatial vector
fields, hab is the spatial metric field, Kab is the extrinsic cur-
vature, K is the trace of Kab (with respect to hab), Da is the
covariant derivative compatible with hab, R is the spatial scalar
curvature, η is a coupling constant, and lower case Latin indices
range over the three spatial directions.

3 Here Uα is a spacetime vector field, gαβ is the spacetime metric
field with the compatible spacetime covariant derivative ∇α and
spacetime scalar curvature R, ρ is a coupling constant, m is a
(“mass”) constant, and lower case Greek indices range over four
spacetime directions.
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These constraints effectively reduce the theory to one
(vector field) degree of freedom. However, for the
fully dynamic Einstein-vector version of this theory, in-
stead of having 6 + 4 constraints on the initial data
{hab,Kab, U

⊥,Π⊥, U
a,Πa}, one finds that there are only

four constraints (analogous to, but much messier alge-
braically than the usual four Einstein constraints). There
are then effectively four vector field degrees of freedom,
plus two gravitational degrees of freedom. However, if
the Einstein-vector theory is well behaved then its weak
field limit must reduce to vacuum linearized gravity for
the metric and the flat background theory for the vector
field. Consequently, the mismatch between the number
of constraints shows that the Einstein-vector theory be-
haves poorly as the gravitational field approaches flat-
ness.

There are two features of the Einstein-vector theory
with action S[Uα, gαβ ] (as in (1) above) which lead to this
problem with constraints (and correspondingly with de-
grees of freedom) in the weak field limit: (i) the flat back-
ground version of the theory has constraints; and (ii) the
theory is “derivative-coupled” in the sense that the non-
gravitational part of the action involves covariant deriva-
tives. This first feature is crucial, since the difficulty of
interest involves the “loss” of constraints that occurs as
the dynamical gravitational field is turned on. The sec-
ond feature is also crucial, since it is the presence of terms
involving Kab in the non-gravitational part of the action
principle (following its 3 + 1 decomposition) that leads
to the loss of constraints. We note that the Einstein-
Maxwell theory has constraints in its flat background
version, but is not derivative-coupled; consequently it
avoids this problem. The Einstein-massive Klein-Gordon
theory, whose action is the same as S[Uα, gαβ] above
except that the term − 1

2∇βUα∇βUα replaces the term

− 1
2∇αUβ∇βUα in (1), is derivative-coupled, but has no

constraints in its flat background version; consequently
it too avoids the problem.

Where do these constraints in the flat space theory
come from? The easiest way to see this is to consider the
process of finding a Hamiltonian formulation of the the-
ory. Recall that to find a Hamiltonian formulation of a
theory, one begins with a Lagrangian and varies the La-
grangian with respect to the velocities to obtain the mo-
menta. The next step is to invert the velocity-momentum
relation to obtain the velocity in terms of the momentum.
However, that step can fail if the velocity-momentum re-
lation is not invertible. Such a lack of invertibility gives
rise to constraints, and it is precisely this situation that
gives rise to the constraints found in the flat space theo-
ries studied in [4].

What about the Einstein-aether theories? As we dis-
cuss below in Section II, these theories form a four-
parameter set, with (essentially) every theory in the set
involving derivative-coupling. Hence, the first step in ap-
plying the methods of [4] to the Einstein-aether theories
is to determine which of the theories, in their flat back-
ground versions, involve constraint equations. We do this

in Section III, working with the theories in Hamiltonian
form. We find that some of the flat background theories
involve no constraints (“safe” theories), some of them
involve constraints regardless of the initial data (“endan-
gered” theories) and the rest involve constraints for some
ranges of data, but not for others (“conditionally endan-
gered” theories). In Section IV we consider the impli-
cations of the results of Section III for Einstein-aether
theories. This is not as straightforward as for the vector
theories of [4] because the weak field limit of Einstein-
aether theories is not the flat background theory, but
rather a theory that still couples the vector field to the
metric perturbation. Nonetheless we find that the the-
ories that we call “endangered” really are pathological
in the weak field limit. We also consider the possible
implications of the “conditionally endangered” theories.

II. EINSTEIN-AETHER THEORIES

The Einstein-aether theories make up a four-parameter
family of classical metric-vector theories specified by the
spacetime action principles

SEa[u
α, gαβ] =

∫

d4x
√−g

{

R−Kαβ
µν ∇αu

µ∇βu
ν

+ λ(1 + gαβu
αuβ)

}

, (4)

where our conventions on the spacetime metric and in-
dices are as above, where uα denotes a spacetime vector
field, where λ is a Lagrange multiplier, and where the
aether-parameter matrix Kαβ

µν takes the form

Kαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ − c4u

αuβgµν . (5)

with (constant) parameters {c1, c2, c3, c4}. We note that
if c2 = c3 = c4 = 0 and λ = 0, then this is the Einstein-
Klein-Gordon (massless) theory; if c1 = c2 = c4 = 0
and λ = 0, then we have essentially the Einstein-vector
theory (1) discussed above. If c1 + c3 = c2 = c4 = 0 and
λ does not vanish, then this is the particular version of
the Einstein-aether theory discussed in [5].
The presence of the Lagrange multiplier term serves to

enforce the a priori restriction

gαβu
αuβ = −1, (6)

which says that the vector field must always be a unit-
length timelike vector field. While this restriction is cru-
cial to the physical application of the Einstein-aether the-
ories, it does not appear to have a major qualitative effect
on the issue under discussion here.
As noted above, our focus here is on the Einstein-

aether theories with a fixed flat background. In that
case, with ηαβ representing the Minkowski metric, the
action reduces to

SEa(flat)[u
α] =

∫

d4x
{

−Kαβ
µν ∇αu

µ∇βu
ν

+ λ(1 + ηαβu
αuβ)

}

, (7)
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the aether-parameter matrix takes the form

K
αβ

(flat)µν = c1η
αβηµν + c2δ

α
µδ

β
ν + c3δ

α
ν δ

β
µ

− c4u
αuβηµν , (8)

and the unit length condition (6) can be written as

ηαβu
αuβ = −1. (9)

One way to determine the presence of constraint equa-
tions in the initial value formulation of the (flat back-
ground) aether theories is to first obtain the spacetime
covariant field equations for uα (by varying the action
SEa(flat)[u

α]), then rewrite these equations in 3+1 form,
and finally search among the 3 + 1 equations for explicit
constraints. The Hamilton-Dirac approach provides a
more systematic way to find the constraints. Since we
are primarily concerned here with determining for which
of the four-parameter family of aether theories there are
constraints (rather than determining the exact nature of
these constraints), in fact we need only carry out the
first part of the Hamilton-Dirac analysis, as we discuss
in the next section. For completeness, we summarize the
covariant approach in the Appendix.

III. HAMILTON-DIRAC ANALYSIS

The first step in the Hamilton-Dirac analysis of a given
field theory is to carry out a 3+1 (space + time) decom-
position of the fields and their derivatives, and to substi-
tute the resulting expressions into the Lagrangian for the
given theory. For the present case, we choose a standard
slicing for the flat background spacetime with nα as the
unit time-like normals, and introduce the tensor

hαβ := gαβ + nαnβ . (10)

We note that spacetime tensors which are orthogonal to
nα can also be considered as spatial tensors. Viewed in
this way, hαβ (which we can also write as hab) is both
the spatial metric and a projection operator that takes
spacetime tensors to their spatial part. Using projection
with respect to hαβ and contraction with nα we can de-
compose any spacetime tensor into spatial tensors. In
particular, the four vector uα can be decomposed as

uα = V nα + wα, (11)

where V is a scalar and wα (which we can also write as
wa) is a spatial vector. The unit-length condition (9)
then implies that V is not an independent field but is
instead determined by wa through the relation

V 2 = 1 + wawa. (12)

Similarly, we can decompose the spacetime derivative of
uα as

∇αuβ = −nαnβV̇ + nβDαV − nαẇβ +Dαwβ , (13)

where an overdot denotes the derivative with respect to
time, and Dα (which we can also write as Da) denotes
the spatial covariant derivative operator.
Using eqn. (13) in eqn. (7) we find that the Lagrangian

corresponding to the action SEa(flat)[u
α] takes the form

L = Mẇaẇa − (M + c23)V̇
2

+ 2ẇa(−c3DaV + c4V wbDbwa)

− 2V̇ (c2Daw
a + c4V waDaV ) + Z . (14)

Here the quantities M and Z are given by

M := c1 + c4V
2, (15)

Z := c1(DaV DaV −DawbD
awb)

− c2(Daw
a)2 − c3DawbD

bwa

+ c4((w
aDawb)(w

cDcw
b)− (waDaV )

2
), (16)

and we are using the notation of [1] in which c23 is an ab-
breviation for c2 + c3 (with corresponding abbreviations
for any other sums of the ci).
While the condition (12) is a constraint, it is one which

(if we restrict attention to non-negative V ) can be elimi-
nated algebraically. More specifically, we adopt the point
of view that (flat background) aether theory is a theory
of the spatial vector field wa, and that any terms in the
Lagrangian that depend on V are to be viewed as sim-
ply more complicated functions of wa given by substitut-
ing

√
1 + wawa for each occurrence of V . In this way,

the aether theory Lagrangian has no a priori constraints
and correspondingly no need for the Lagrange multiplier
term. In particular we may substitute

V̇ = V −1waẇ
a (17)

along with V =
√
1 + wawa into the Lagrangian expres-

sion (14), thereby obtaining

L = qabẇ
aẇb + 2ẇaBa + Z, (18)

where the tensor qab and vector Ba are given by

qab := Mhab − (M + c23)V
−2wawb, (19)

Ba := c4V
2wbDb(V

−1wa)− c3DaV

− c2V
−1waDbw

b. (20)

This is the 3 + 1 form of the Lagrangian expression for
the aether theories which we work with here.
The next step of the Hamilton-Dirac analysis is to cal-

culate the expressions for the momenta pa conjugate to
the fields wa as functions of wa and ẇa, and then attempt
to invert these expressions to obtain new expressions for
ẇa as functions of wa and pa. It is at this step—a key
step in the specification of the Legendre transform which
maps from a Lagrangian formulation to a Hamiltonian
formulation of a given theory—that one finds out if the
theory has any constraints on the choice of initial data
sets. Such constraints exist if and only if one cannot

invert the map from pa(w, ẇ) to ẇa(w, p).
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To determine the full explicit set of constraints for a
given theory via the Hamilton-Dirac analysis, one pro-
ceeds from this step to construct the Hamiltonian (or
set of Hamiltonians) for the theory, incorporating the
constraints obtained from the non-invertibility just dis-
cussed, and one calculates the time derivatives of the
constraints using this Hamiltonian. We leave the remain-
ing details to other references (see, e.g., [6]). Here, our
only real concern is to determine the sets of choice of the
Einstein-aether parameters {c1, c2, c3, c4} for which there
are constraints and those choices for which there are not.
Calculating the conjugate momentum pa by varying

the Lagrangian (18) with respect to ẇa,

paδẇ
a = δL = δẇa2(qabẇ

b +Ba), (21)

we obtain

pa = 2(qabẇ
b +Ba). (22)

From eqn. (22), one immediately sees that the
momentum-velocity relation can be inverted if and only
if the matrix qab is invertible. It is easy to see that if qab
is not invertible then there is a constraint, since for any
vector sa for which qabs

b = 0 it follows from eqn. (22)
that

sa(pa − 2Ba) = 0. (23)

To find the conditions under which qab is invertible,
we note (from eqn. (19)), that any vector orthogonal to
wa is necessarily an eigenvector of qab, with eigenvalue
M . Furthermore, it also follows from eqn. (19) that wa

is generally an eigenvector of qab with eigenvalue V −2N ,
where

N = M − c23waw
a. (24)

Therefore qab is invertible if and only ifMN 6= 0. This re-
sult immediately gives rise to a classification of (flat back-
ground) aether theories, depending on whether MN van-
ishes at all points of configuration space (“endangered”
theories), at no points of configuration space (“safe” the-
ories), or at only some points of configuration space
(“conditionally endangered” theories). We would like to
express this classification directly in terms of the parame-
ters of the theory. From eqns. (15) and (24) we determine
that

MN = (c14 + c4waw
a)(c14 + (c4 − c23)waw

a). (25)

Consequently, we find that the endangered theories sat-
isfy either the condition

c1 = c4 = 0, (26)

or the condition

c1 6= 0, c4 = c23 = −c1. (27)

In particular, the theories studied in [4] are analogs for
non-unit massive fields of endangered aether theories.
The safe theories satisfy the conditions

c14 6= 0,
c4

c14
≥ 0,

c4 − c23

c14
≥ 0. (28)

Any theory that is neither endangered nor safe is condi-
tionally endangered. This completes our classification.
For the safe theories, it is straightforward to proceed

to construct a Hamiltonian. In particular, so long as
MN 6= 0, we calculate from eqn. (19) that

(q−1)
ab

=
1

MN
(Nhab + (M + c23)w

awb). (29)

It then follows that the velocity-momentum relation can
be inverted to yield

ẇa = 1
2 (q

−1)
ab
(pb − 2Bb). (30)

Using the non-constrained definition of the Hamiltonian,
we have

H = paẇ
a−L = 1

4 (q
−1)

ab
(pa−2Ba)(pb−2Bb)−Z. (31)

Then using eqn. (29), we obtain

H =
1

4MN
(Nhab+(M+c23)w

awb)(pa−2Ba)(pb−2Bb)−Z.

(32)
A Hamiltonian which incorporates the collateral con-

straints can also be constructed for the endangered and
conditionally endangered theories; the details of this con-
struction (peripheral to our concerns here) are discussed
in [6].

IV. CONCLUSIONS

What are the possible physical implications of our clas-
sification of (flat background) aether theories? In [4] it
is shown that the extra constraints in the flat space vec-
tor theories studied in that paper are not present in the
gravitating versions of those theories, as a consequence
of the presence of many terms containing ḣab appearing
throughout the 3 + 1 expression for the Lagrangian of
the coupled theories. We have not performed the cor-
responding analysis for the Einstein-aether theories, en-
dangered or otherwise. Their Lagrangians do, however,
contain a similar number of ḣab terms. We note in ad-
dition that it has been shown that the diffeomorphism
invariance of Einstein-aether theories gives rise in each
of them to at least four constraints, just as in general
relativity.[7, 8]. We are consequently led to believe that
in general the Einstein-aether theories have four (and no
more) constraints. However, unlike the case of [4] even if
we were to show that the Einstein-aether theories have
exactly four constraints, that would not allow us to con-
clude that the weak field limit of the endangered theories
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is pathological, because the weak field limit of Einstein-
aether theories is not the non-gravitating aether theory,
but still contains a residual coupling between the vector
field and the metric perturbation. Nonetheless, the pres-
ence of constraints in the flat space endangered theories
at least leads to the suspicion that there is something
wrong with the corresponding Einstein-aether theories.
And that suspicion turns out to be justified. The en-
dangered theories all have c14 = 0. (see eqns. (26)-(27)).
However, as noted in [10] Einstein-aether theories with
c14 = 0 have infinite speed for the spin 0 and spin 1 modes
of the theory. Thus the endangered flat space theories
serve as a diagnostic of a pathology in the corresponding
gravitating theory.

What about the conditionally endangered theories?
Here the number of constraints changes at particular
“bad” points of configuration space. Certainly, this
should lead one to worry about the physical viability
of the flat space theory itself, since even if one were to
restrict initial data to a “good” region of configuration
space (where no constraints are present) there remains
the possibility of the dynamics causing the system to
evolve to a “bad” part of configuration space, thus re-
sulting in an ill-defined or singular evolution. However,
it is not clear that these properties of the flat space the-
ory give any cause to worry about the gravitating theory:
note that the bad points of configuration space typically
have wa ∼ 1 and are thus far from the weakly gravitating
case. Thus the pathologies of the conditionally endan-
gered theories cannot be considered as a reliable guide
to the behavior of the Einstein-aether theory with the
same ci. Nonetheless, a non-gravitating theory with sin-
gular evolution may give rise to naked singularities when
coupled to gravity. This raises the question of whether
gravitational collapse gives rise to naked singularities in
some of the Einstein-aether theories. This question could
be addressed numerically using e.g. the methods of [11]
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Appendix A: Covariant field equations

Varying the Lagrangian of eqn. (5) with respect to the
aether field uα yields the field equation

∇αJ
α
β + λuβ + c4aα∇βu

α = 0, (A1)

where Jα
β = Kαµ

βν∇µu
ν and aβ = uα∇αuβ. Contract-

ing eqn. (A1) with uβ and solving for λ yields

λ = uβ∇αJ
α
β + c4a

αaα (A2)

and substituting this into eqn (A1) yields

0 = ∇αJ
α
β+c4aα∇βu

α+uβ(u
γ∇αJ

α
γ+c4a

αaα). (A3)

However, we have

Jα
β = c1∇αuβ + c2δ

α
β∇γu

γ + c3∇βu
α − c4u

αaβ. (A4)

So after some straightforward but tedious algebra the
field equation becomes

0 = c1[∇α∇αuβ − uβ∇αuγ∇αuγ ]

+ c23[∇β∇γu
γ + uβu

γ∇γ∇αu
α]

+ c4[aα∇βu
α + 2uβa

αaα − uα∇αaβ

− aβ∇αu
α]. (A5)

We now want to produce an evolution equation for wa

by substituting the decomposition of uα of eqn. (11)
into eqn. (A5). At first it might then seem that the field
equations might be an overdetermined system, since they
seem to provide four equations for the three components
of wa. However, the field equation vector is automati-
cally orthogonal to uα so it suffices to impose the spatial
projection of the field equations since spatial part of the
field equations along with orthogonality to uα implies
time part of the field equations. Some straightforward
but tedious calculation then shows that the spatial pro-
jection of eqn (A5) becomes

Mẅb − c23V V̈ wb = Rb, (A6)

where M is given by eqn. (15) and Rb is given by

Rb = c1[D
aDawb

− wb(V̇
2 −DaV DaV − ẇaẇa +DawcD

awc)]

+ c23[DbV̇ +DbDaw
a

+ wb(V Daẇ
a + waDa(V̇ +Dcw

c))]

+ c4[−(V̇ +Daw
a)Lb − V V̇ ẇb − V ẇaDawb

− V waDaẇb − waDaLb − (V V̇ + waDaV )DbV

+ LaDbwa + 2wb(L
aLa − (V V̇ + waDaV )

2
)].(A7)

Here the vector La is the spatial projection of the accel-
eration vector aα. A straightforward computation yields

La = V ẇa + wbDbwa. (A8)

The field equation is not quite in the form that we
would like, namely with ẅa alone on one side of the equa-
tion and no quantities with second time derivatives on the
other side of the equation. However, we can easily put it
in that form by using eqn. (12) and its time derivatives.
In particular, the first time derivative of eqn. (12) yields
eqn. (17) while a second time derivative yields

V̈ = V −1[waẅa + ẇaẇa − V̇ 2]. (A9)
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Then contracting eqn (A6) with wa and using eqn. (A9)
we find

NV V̈ = Raw
a +M(ẇaẇ

a − V̇ 2), (A10)

where the quantity N is given by eqn. (24). Then on
substituting this result into eqn (A6) we obtain

MNẅa = NRa + c23[Rbw
b +M(ẇbẇ

b − V̇ 2)]wa. (A11)

We note that if MN 6= 0, eqn. (A11) is an equation
of motion for wa, while if MN = 0 it is a constraint
equation.
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