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A new method for solving the relativistic inverse stellar structure problem is presented. This
method determines a spectral representation of the unknown high density portion of the stellar
equation of state from a knowledge of the total masses M and radii R of the stars. Spectral
representations of the equation of state are very efficient, generally requiring only a few spectral
parameters to achieve good accuracy. This new method is able, therefore, to determine the high
density equation of state quite accurately from only a few accurately measured [M,R] data points.
This method is tested here by determining the equations of state from mock [M,R] data computed
from tabulated “realistic” neutron-star equations of state. The spectral equations of state obtained
from these mock data are shown to agree on average with the originals to within a few percent
(over the entire high density range of the neutron-star interior) using only two [M,R] data points.
Higher accuracies are achieved when more data are used. The accuracies of the equations of state
determined in these examples are shown to be nearly optimal, in the sense that their errors are
comparable to the errors of the best-fit spectral representations of these realistic equations of state.

PACS numbers: 04.40.Dg, 97.60.Jd, 26.60.Kp, 26.60.Dd

I. INTRODUCTION

The standard stellar structure problem consists of de-
termining the structure of a star by solving the coupled
gravitational and hydrodynamic equations with an as-
sumed equation of state for the stellar matter. The so-
lutions to the standard problem determine the various
observable properties of the stars with a given equation
of state like their total masss M , their total radii R, etc.
The inverse stellar structure problem determines what
equation of state is required to produce stellar models
having a given set of macroscopic obserables. The goal of
this paper is to find efficient and robust methods of solv-
ing this inverse stellar structure problem. The method
developed here is based on the use of spectral expan-
sions to represent the equation of state. The values of
the spectral coefficients in these expansions are fixed in
this method by matching stellar models based on these
equations of state to observed values of the masses and
radii of the stars. Once fixed, these coefficients determine
the equation of state that represents the (approximate)
solution to the inverse stellar structure problem.
For non-rotating stars in general relativity theory, the

simplest version of the stellar structure equations were
first derived by Oppenheimer and Volkoff [1],

dm

dr
= 4πr2ǫ, (1)

dp

dr
= −(ǫ+ p)

m+ 4πr3p

r(r − 2m)
, (2)

where m(r) represents the mass contained within a
sphere of radius r; p(r) is the pressure; and ǫ(p) is the
total energy density of the fluid. Solving these equations
with a given equation of state is the standard relativis-
tic stellar structure problem. Once an equation of state
ǫ = ǫ(p) is specified, these equations determine a one
parameter family of stellar models, m = m(r, pc) and

p = p(r, pc), where pc is the value of the pressure at the
center of the star r = 0. These solutions then deter-
mine various macroscopic properties of the stars, includ-
ing their outer radii R(pc) where p[R(pc), pc] = 0, and
their total masses M(pc) = m[R(pc), pc]. These macro-
scopic properties are (at least in principle) observable.

The standard stellar structure problem can be thought
of as a map that takes the equation of state [a curve in
energy density – pressure space ǫ = ǫ(p)], into a curve in
the space of macroscopic observables, e.g. [M(pc), R(pc)].
The inverse stellar structure problem consists of finding
the inverse of this map [2], i.e. determining the equation
of state of the stellar matter from a knowledge of some
information about the macroscopic structures of the stars
(like their masses M and radii R). The solution to this
problem, like the solutions to many inverse problems, is
less straightforward than the solution to the standard
problem.

The inverse stellar structure problem is probably more
relevant for practical relativistic astrophysics, however,
than the standard problem. The highest density part
of the equation of state in neutron stars, for example,
is not well known. Matter in this state is well beyond
the reach of laboratory experiments, so there is no in-
dependent way of directly measuring its properties, in-
cluding its equation of state. Numerous attempts have
been made to model this matter theoretically, but even
today there is no consensus among theoreticians. Pre-
dictions of the energy density for a typical neutron-star
central pressure, for example, often differ by an order
of magnitude. Therefore, the standard stellar structure
problem for neutron stars is not terribly useful. In con-
trast, the inverse problem may provide an important tool
for learning about high density nuclear matter. Numer-
ous high quality measurements of the masses of neutron
stars are now available [3], and a few (fairly imprecise
and model-dependent) radius measurements are starting
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to become available as well [4–7]. In principle then, the
inverse stellar structure problem should (eventually) al-
low us to measure the high density equation of state of
neutron-star matter directly. This measurement would
provide important information about nuclear interactions
that can not be obtained at present in any other way.

One naive approach to solving the inverse stellar struc-
ture problem for neutron stars would simply be to match
their observed properties, e.g. their [M,R] data, with
models of those stars based on different micro-physical
models of the dense material in their cores. In this ap-
proach the model equation of state whose stellar models
best matches the data would be declared the observed
neutron-star equation of state. This approach would
clearly be ideal if there were wide consensus on exactly
what the high density core material is, and if there were
a reasonably simple model for this material that were
known, up to a few undetermined parameters that could
be fixed by these observations. Unfortunately the wide
diversity of “realistic” neutron-star equations of state in
the literature, suggest that (in the near term at least)
this approach is not likely to be effective or conclusive.

A more practical variation of this approach uses some
knowledge about the expected properties of neutron-star
matter in an intermediate range of densities, and a more
empirical description of the equation of state for larger
densities [4, 8]. This approach is more promising, but the
proposed model equations of state of this type have many
free parameters that must all be fit by the observational
data. Since these data are likely to be sparse for some
time, we take a different approach here.

Our goal is to find efficient and robust methods for
solving the inverse stellar structure problem that use no
prior knowledge of the high density micro-physics at all.
A (somewhat impractical) method for solving the inverse
stellar structure problem that uses no information about
the micro-physics of the high density equation of state
was given in the literature about 20 years ago [2]. This
traditional method can be summarized as follows. The
total masses M and radii R of all of the stars associ-
ated with a particular equation of state are assumed to
be known. The equation of state is also assumed to be
known up to some pressure pi with corresponding energy
density ǫi = ǫ(pi). Let Mi = M(pi) and Ri = R(pi) de-
note the mass and radius of the star whose central pres-
sure is pc = pi. Now choose another point, [Mi+1, Ri+1],
along the mass-radius curve, with a slightly larger central
pressure. The outer layers of this new star are composed
of low pressure material, p ≤ pi, where the equation of
state is known. The stellar structure equations, (1) and
(2), can therefore be solved in this outer region starting at
the surface of the star, r = Ri+1, where p(Ri+1) = 0 and
m(Ri+1) = Mi+1, by integrating inward toward r = 0.
This integration can be continued until the point r = ri+1

where p(ri+1) = pi and the known equation of state ends.
This integration determines the radius ri+1 and the mass
mi+1 = m(ri+1) of a “small” core of high pressure mate-
rial, p ≥ pi where the equation of state is not yet known.

If this core is small enough, the stellar structure equations
can be solved there as a power series expansion about
r = 0. The coefficients in this expansion are functions
of the central density ǫi+1 and pressure pi+1 of this little
core. Since the mass and radius of this core are known,
mi+1 and ri+1, this power series can be “inverted” to
determine ǫi+1 and pi+1 [2]. This new point [ǫi+1, pi+1]
provides a small extension of the equation of state beyond
[ǫi, pi]. Iterating these steps then determines a sequence
of closely-spaced points along the high density portion of
the equation of state curve.

This traditional solution to the inverse stellar structure
problem is unfortunately very impractical. A large num-
ber of points [Mi, Ri] are needed from the mass-radius
curve to achieve modest accuracy in the calculation of the
corresponding points [ǫi, pi] along the equation of state
curve. Since [Mi, Ri] points are very difficult to mea-
sure (at least for neutron stars) it is unlikely that there
will ever be enough data to use this traditional method to
determine the unknown high density part of the neutron-
star equation of state.

This paper proposes a rather different approach to the
solution of the inverse stellar structure problem, an ap-
proach that can be very effective even when only a small
number of [Mi, Ri] data points are available. The equa-
tion of state in this new approach is expressed as a para-
metric equation, e.g. ǫ = ǫ(p, γk), instead of a table of
values [ǫi, pi] . The parameters γk are adjusted to give the
best-fit approximation to a particular equation of state
model. Parametric representations of this sort, based on
spectral expansions, have been shown to be extremely
efficient at representing the high density portions of “re-
alistic” neutron-star equations of state [9]. Only a few
non-vanishing γk are generally needed to achieve 1% ac-
curacy in most cases.

The basic idea of this new method for solving the in-
verse stellar structure problem is to choose the equation
of state parameters γk by minimizing the differences be-
tween the masses and radii of real neutron stars, Mi

and Ri, with those based on the parametric model equa-
tion of state, M(pc, γk) and R(pc, γk). Once the γk are
fixed, the parametric equation ǫ = ǫ(p, γk) then provides
an approximate solution of the inverse stellar structure
problem. Spectral expansions typically converge expo-
nentially as the number of terms in the expansion are
increased (for smooth functions). These approximate so-
lutions to the inverse stellar structure problem are there-
fore expected to converge to the exact equation of state
as the number of data points [Mi, Ri] and the number of
parameters γk fixed by this method are increased.

The remainder of this paper presents details on how to
implement this new spectral approach to the solution of
the inverse stellar structure problem, along with practical
tests of its accuracy and efficiency. Section II reviews the
particular spectral representation of the equation of state
used in the solution presented here. Section III describes
how the spectral parameters γk are fixed by matching to
the given [Mi, Ri] data points. Section IV presents a se-
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ries of numerical tests of the accuracy and efficiency of
this new method. Mock [Mi, Ri] data computed from a
collection of 34 “realistic” neutron-star equations of state
are used as input in these tests. These tests show, for ex-
ample, that the resulting spectral equation of state agrees
with the exact to within a few percent (on average) when
only two [Mi, Ri] data points are used. Higher accuracies
are (generally) achieved when more data points are used.
Section V discusses some of the limitations of the numer-
ical tests presented here, and proposes several ways that
the basic method developed here might be extended and
improved. Some of the more complicated technical de-
tails needed to implement this method are described in
two Appendices. Appendix A describes how to evaluate
the derivatives of M(hc, γk) and R(hc, γk), with respect
to the parameters hc and γk. Appendix B describes the
interpolation method used here to bridge the gaps be-
tween points in the exact “realistic” equation of state
tables.

II. SPECTRAL REPRESENTATIONS OF THE

EQUATION OF STATE

The version of the relativistic stellar structure equa-
tions most useful for our analysis here requires that the
equation of state be written in a form where the energy
density ǫ and pressure p are given as functions of the rel-
ativistic enthalpy, h. The usual form of the equation of
state, ǫ = ǫ(p), must therefore be re-written as a pair of
equations ǫ = ǫ(h) and p = p(h), where the enthalpy h is
defined as

h(p) =

∫ p

0

dp′

ǫ(p′) + p′
. (3)

The needed expressions, ǫ = ǫ(h) and p = p(h), can
be constructed by inverting h = h(p) from Eq. (3) to
obtain p = p(h), and then by composing the result with
the standard form of the equation of state, ǫ = ǫ(p), to
obtain ǫ(h) = ǫ[p(h)].
The transformations needed to construct ǫ = ǫ(h) and

p = p(h) in this way are difficult to perform efficiently
and accurately in numerical computations. Therefore it
is best to construct a spectral representation of the equa-
tion of state that is based directly on h. This can be done
by introducing an enthalpy based spectral expansion of
the adiabatic index Γ [9]:

Γ(h) ≡
ǫ+ p

p

dp

dh

(

dǫ

dh

)−1

, (4)

= exp

{

∑

k

γk

[

log

(

h

h0

)]k
}

, (5)

where h0 is the lower bound on the enthalpy, h0 ≤ h, in
the domain where the spectral expansion is to be used.
This is a standard spectral expansion of the function
log Γ(h) in which the [log(h/h0)]

k are the spectral basis

functions and the γk are the spectral expansion coeffi-
cients (or parameters).
The functions p(h) and ǫ(h) are obtained from Γ(h) by

integrating the system of ordinary differential equations,

dp

dh
= ǫ+ p, (6)

dǫ

dh
=

(ǫ+ p)2

pΓ(h)
, (7)

that follow from the definitions of h and Γ in Eqs. (3)
and (4). The general solution to these equations can be
reduced to quadratures:

p(h) = p0 exp

[

∫ h

h0

eh
′

dh′

µ(h′)

]

, (8)

ǫ(h) = p(h)
eh − µ(h)

µ(h)
, (9)

where µ(h) is defined as.

µ(h) =
p0 e

h0

ǫ0 + p0
+

∫ h

h0

Γ(h′)− 1

Γ(h′)
eh

′

dh′. (10)

The constants p0 and ǫ0 are defined by p0 = p(h0) and
ǫ0 = ǫ(h0) respectively. While these quadratures can
not be done analytically for the spectral expansion of
Γ(h) given in Eq. (5), they can be done numerically very
efficiently and accurately using Gaussian quadratures.1

The method of solving the inverse stellar structure
problem proposed in Sec. III is based on this spectral
representation of the equation of state: ǫ = ǫ(h, γk) and
p = p(h, γk). Any equation of state can be represented
approximately in this way by using a finite number of
spectral parameters γk in the expression, Eq. (5), for
Γ(h). In analogy with other spectral expansions, the ac-
curacy of these approximations are expected to converge
exponentially (for smooth equations of state) as the num-
ber of spectral coefficients is increased. Numerical tests
that fit “realistic” neutron-star equations of state using
this method [9] are consistent with this expectation about
the convergence of these expansions.

III. FIXING THE SPECTRAL PARAMETERS

The spectral approach to the inverse stellar structure
problem fixes the equation of state parameters γk by
choosing the values whose stellar models best match a

1 The numerical accuracy (and hence the efficiency) of the numeri-
cal integrations in Eqs. (8) and (10) can be improved significantly
by changing integration variables from h to x = log(h/h0) before
performing standard Gaussian quadratures. Our tests achieved
accuracies about 10−11 for ǫ(h, γk) and p(h, γk) with 10 Gaus-
sian integration points using the x variable, compared to about
10−3 accuracies for the same tests using the h variable.
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collection of points [Mi, Ri] from the exact mass-radius
curve. The process of fixing the γk in this way can be
made more efficient numerically by using a somewhat
non-standard version of the stellar structure equations.
Therefore, we digress briefly here to review this alternate
formulation.
The Oppenheimer-Volkoff version of the stellar struc-

ture problem, Eqs. (1) and (2), determines m and p as
functions of r. That traditional approach has two incon-
venient features: First the integration domain, [0, R], is
only known after the fact when the surface of the star at
r = R is found numerically by solving p(R) = 0. Second,
the equation p(R) = 0 that defines the surface of the star
is somewhat difficult to solve numerically because dp/dr
typically vanishes at r = R. These inconveniences can be
avoided by transforming the equations into a form where
m and r are determined as functions of the relativistic
enthalpy h (see Ref. [2]):

dm

dh
= −

4πr3ǫ(r − 2m)

m+ 4πr3p
, (11)

dr

dh
= −

r(r − 2m)

m+ 4πr3p
. (12)

Solving the equations in this form begins by specifying
“boundary” conditions, m(hc) = r(hc) = 0, at the center
of the star where h = hc, and then integrating toward the
surface of the star where h = 0. The derivative dr/dh
in Eq. (12) is non-zero and bounded at the surface of
the star, so this formulation completely eliminates the
problems associated with solving p(R) = 0 to locate the
star’s surface. This version of the problem is also eas-
ier to implement numerically because it is carried out on
the domain [hc, 0], which is fixed before the integration
is performed. The total mass and radius of the stellar
model are obtained in this formulation simply by evalu-
ating the solutions m(h) and r(h) at the surface of the
star where h = 0: M = m(0) and R = r(0). More details
about how to implement this formulation of the stellar
structure problem are given in Ref. [2] and in Appendix A
of this paper.
This alternate formulation of the stellar structure

problem, Eqs. (11) and (12), requires that the equation
of state be expressed in terms of the enthalpy, i.e. that
ǫ = ǫ(h) and p = p(h) be provided. The spectral rep-
resentations, ǫ = ǫ(h, γk) and p = p(h, γk), described
in Sec. II are therefore ideal for this purpose. The gen-
eral solution to this form of the stellar structure prob-
lem is a pair of functions of the form m(h, hc, γk) and
r(h, hc, γk). These solutions are determined uniquely by
the parameter hc, the central enthalpy of the star, and
γk, the spectral parameters that determine the equation
of state. The total mass M(hc, γk) and radius R(hc, γk)
associated with one of these stellar models are deter-
mined from these solutions by M(hc, γk) = m(0, hc, γk)
and R(hc, γk) = r(0, hc, γk).
The new method of solving the inverse stellar struc-

ture problem, which we introduce here, fixes the
values of the spectral parameters γk by minimizing

the differences between the model mass-radius values
[M(hc, γk), R(hc, γk)] and points [Mi, Ri] from an exact
mass-radius curve. Thus we fix the values of the γk by
minimizing

χ2(hj
c, γk) =

1

Nstars

Nstars
∑

i=1

{

[

log

(

M(hi
c, γk)

Mi

)]2

+

[

log

(

R(hi
c, γk)

Ri

)]2
}

, (13)

with respect to each of the γk. Each of the Nstars stellar
models used in this fit has a central enthalpy, hi

c, whose
value is also needed (along with the γk) to construct
the mass-radius values [M(hi

c, γk), R(hi
c, γk)]. Since the

hi
c will not be known a priori, these additional parame-

ters must also be determined as part of the fitting pro-
cess. These parameters are fixed, therefore, by minimiz-
ing χ2(hj

c, γk) with respect to variations in each of the
hj
c.
In summary then, this new method of solving the in-

verse stellar structure problem determines the equation
of state by fixing the spectral parameters γk in a way that
minimizes the differences between the model mass-radius
values [M(hi

c, γk), R(hi
c, γk)] and values [Mi, Ri] from an

exact mass-radius curve. This minimization problem is
equivalent to solving the Nstars equations

∂χ2

∂hi
c

= 0, (14)

and the Nγk
(the number of spectral parameters) equa-

tions

∂χ2

∂γk
= 0, (15)

for the parameters hi
c and γk. Since the number of in-

dependent Mi and Ri data values used in this fitting
process is 2Nstars, it follows that the maximum number
of spectral parameters that can be fixed in this way is
Nγk

≤ Nstars.
A number of numerical methods for solving non-linear

least squares problems such as Eqs. (14) and (15) are dis-
cussed in the literature. Many of these methods require
only that χ2(hi

c, γk) be provided numerically for arbi-
trary values of the parameters hi

c and γk. Some methods
also require in addition that the values of the deriva-
tives ∂χ2/∂hi

c and ∂χ2/∂γk be provided. The numerical
tests described in Sec. IV use the Levenberg-Marquardt
method for solving these equations, and this method re-
quires that both the values and the derivatives of χ2 be
provided.
The derivatives of χ2 are determined by the deriva-

tives of M(hi
c, γk) and R(hi

c, γk) with respect to hi
c and

γk. These derivatives can be approximated numerically
by expressions of the form, ∂M/∂γk ≈ [M(hi

c, γk+δγk)−
M(hi

c, γk − δγk)]/2δγk. We find it is more efficient (and
more accurate) however to evaluate these derivatives by
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solving an auxiliary system of ordinary differential equa-
tions, that are obtained by differentiating Eqs. (11) and
(12) with respect to these parameters. This method
of evaluating the needed derivatives of M(hi

c, γk) and
R(hi

c, γk) is described in some detail in Appendix A.

IV. TESTING THE SPECTRAL INVERSION

METHOD

In this section we test the spectral method of solving
the inverse stellar structure problem by analyzing sets of
mock [Mi, Ri] data points from mass-radius curves based
on known “realistic” neutron-star equations of state. We
use these mock [Mi, Ri] data to construct best-fit values
for the spectral equation of state parameters γk, using
the least-squares method outlined in Sec. III. Then we
compare the equation of state ǫ(h, γk) constructed in this
way with the exact equation of state ǫ(h) used to compute
the mock [Mi, Ri] data points. We perform these com-
parisons using different numbers of [Mi, Ri] data points
to determine how the accuracy of the approximate equa-
tion of state improves as the number of data points is
increased. We construct the mock [Mi, Ri] data points
using 34 different realistic neutron-star equations of state
to explore how well the method works for a fairly wide
variety of different equations of state.
The 34 equations of state used to construct the [Mi, Ri]

data points used in these tests are the same ones used by
Read, Lackey, Owen and Friedman [10] in their study
of approximate piecewise polytropic fits to the equation
of state. These 34 realistic equations of state are based
on a variety of different models for the composition of
neutron-star matter, and a variety of different models for
the interactions between the particle species present in
the model material. Descriptions of these realistic equa-
tion of state models, and references to the original pub-
lications on each of these equations of state are given
in Ref. [10], and are not repeated here. The individual
equations of state are referred to here using the abbrevia-
tions used in Ref. [10], e.g. PAL6, APR3, BGN1H1, etc.
The list of these equations of state are given in the first
column of Table III of Ref. [10] as well as the first column
of Table I here. Spectral fits have already been shown to
provide excellent approximations to these 34 equations of
state in Ref. [9]. Only two or three spectral coefficients
γk are needed to achieve accuracies at the few percent
level. The new question being studied here, therefore, is
whether the spectral parameters γk can be determined
by fitting [Mi, Ri] data instead of fitting directly to the
equation of state itself.
These 34 exact realistic equations of state are provided

to us as tables of energy density and pressure points
[ǫi, pi]. We compute the enthalpy values hi corresponding
to the points in these tables, interpolate between these
tabulated points whenever necessary, and construct com-
plete enthalpy based equations of state [ǫ(h), p(h)] from
these tabulated data using the methods described in Ap-

pendix B. Whenever we refer to one of these exact real-
istic equations of state, we mean the one constructed by
interpolating the tabulated equation of state data in this
way.
We construct sets of mock [Mi, Ri] data points by solv-

ing the standard stellar structure problem using each of
the exact realistic equations of state described above.
Figure 1 illustrates these exact mass-radius data for three
of the realistic equations of state: PAL6, APR3, and
BGN1H1. We select subsets of these points for each of
our tests of the spectral inversion method. We limit the
points used for our tests to small numbers of models
(since we do not anticipate that large numbers of ob-
servations are likely to be available any time soon) that
fall within the astrophysically relevant range of masses:
1.2M⊙ ≤ M ≤ Mmax, where Mmax is the maximum mass
star allowed for a particular equation of state. We choose
models for our tests that are (approximately) evenly
spaced in mass within this range:

Mi ≈ 1.2M⊙

Nstars − i

Nstars − 1
+Mmax

i− 1

Nstars − 1
, (16)

for i = 1, ..., Nstars. The large dots on each curve in Fig. 1
illustrate the points in the data sets with Nstars = 5 from
three of these equations of state.

10 12 14
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M
 / 
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R (km)

FIG. 1: Exact mass-radius curves for the three realistic
neutron-star equations of state, PAL6, APR3, and BGN1H1.
Large dots illustrate the data points for the spectral method
tests that use Nstars = 5 stellar models.

We have used these spectral methods to find solutions
to the inverse stellar structure problem with mass-radius
data sets [Mi, Ri] having Nstars = 2, 3, 4 and 5 stellar
models. In each case, we have constructed approximate
equations of state with Nγk

non-vanishing spectral pa-
rameters, for Nγk

= 2, ..., Nstars. We use the Levenberg-
Marquardt algorithm for solving the non-linear least
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squares problem, Eqs. (14) and (15), as described in
Ref. [11]. We find that this method is extremely efficient
at finding solutions that minimize the χ2(hi

c, γk) defined
in Eq. (13), given a reasonably accurate initial guess for
the values of the parameters hi

c and γk. Our purpose here
is to explore the overall accuracy of the spectral inver-
sion method, and is not (at this point) directly aimed at
producing an optimal robust method for analyzing real
neutron-star observational data. Therefore we use our
knowledge of the exact equation of state to provide the
initial guesses for hi

c and γk in the test solutions reported
here. In particular we use the values of hc for the stel-
lar models computed from the exact equation of state as
initial guesses for hi

c. Similarly we use the values of γk ob-
tained by directly fitting the exact equation of state data
as the initial guesses for these quantities. While these
initial guesses are not precisely the solutions to the non-
linear least squares problem, Eqs. (14) and (15), they are
close enough that the Levenberg-Marquardt algorithm
easily converges.
We assess the accuracy of our solutions by evaluat-

ing the differences between the approximate equation of
state ǫ(h, γk) produced by the inversion process, and the
exact equation of state ǫ(h) that was used to construct
the [Mi, Ri] data. We measure these differences by con-
structing the error measure,

∆2
Nγk

=
1

Neos

Neos
∑

i=1

[

log

(

ǫ(hi, γk)

ǫi

)]2

. (17)

The sum in Eq. (17) is taken over the points, [ǫi, hi], from
the tabulated realistic equation of state. Only the Neos

points that lie within the range of densities ǫ0 ≤ ǫi ≤ ǫmax

present in the neutron-star models associated with a par-
ticular equation of state are used in this sum. Table I lists
the values of ∆Nγk

for each of the 34 realistic equations of
state used in our tests. The results reported in Table I are
for tests that fit the maximum number of spectral param-
eters, Nγk

= Nstars, for each set of [Mi, Ri] data points.
Fitting Nstars = 2 data points gives equations of state ap-
proximations with average errors of only a few percent,
∆2(Average) = 0.040. Using larger numbers of [Mi, Ri]
data points (generally) results in higher accuracy approx-
imations to the equation of state, with average values of
∆3 = 0.029, ∆4 = 0.023 and ∆5 = 0.017. Thus, the
spectral approach to the inverse stellar structure prob-
lem is capable of giving high accuracy measurements of
the high density equation of state using only a very small
number of [Mi, Ri] data points.
Table I also contains two additional measures of the

accuracy of our test solutions to the inverse stellar struc-
ture problem. One of these,

ΥN =
∆MR

N

∆EOS
N

, (18)

provides another way to measure the error in the ap-
proximate spectral equation of state. The quantity ∆MR

N

in Eq. (18) refers to the error in the approximate equa-
tion of state obtained by fitting [Mi, Ri] data, as defined
in Eq. (17). The quantity ∆EOS

N in Eq. (18) refers to
the error of the best possible N -parameter spectral fit to
this particular equation of state. The values of ∆EOS

N
for the equations of state studied here were determined
in Ref. [9], and are given in Table II of that reference.
The quantity ΥN therefore measures the accuracy of the
approximate spectral equation of state obtained by solv-
ing the inverse stellar structure problem, relative to the
accuracy of the best possible approximate N -parameter
spectral equation of state. Table I shows that (almost)
all of these ΥN measures are of order unity: the ap-
proximate equation of state obtained with this spectral
inversion method is almost as accurate as the best pos-
sible N -parameter spectral fit to the equation of state.
Table I also contains the values of the quantity χ(hi

c, γk),
defined in Eq. (13), for each of the test solutions found
here. These values of χ(hi

c, γk) are all much less than
unity, which shows that the least squares method is do-
ing a good job of minimizing the differences between the
model values of [M(hi

c, γk), R(hi
c, γk)] and the exact data

points [Mi, Ri].

In addition to the accuracy measures given in Table I,
we have made in depth studies of the errors associated
with a few of these solutions to the inverse stellar struc-
ture problem. We have selected for closer examination
the equation of state whose Nstars = 2 solution has the
smallest error, PAL6 with ∆2 = 0.0034, the equation of
state whose error is the median of the cases studied in
these tests, APR3 with ∆2 = 0.0266, and the equation
of state having the largest error, BGN1H1 with ∆2 =
0.1352. Figure 2 shows the quantity log[ǫ(h, γk)/ǫ(h)],
which measures the fractional difference between the best
fit model equation of state ǫ(h, γk) and the exact PAL6
equation of state ǫ(h). This figure shows that the errors
in these solutions to the inverse stellar structure problem
become smaller as the number of data points used in the
fits with Nγk

= Nstars becomes larger. This figure also
shows that the model equations of state ǫ(h, γk) do a very
good job of approximating the actual equation of state
ǫ(h) over the entire range of densities that are present in
the interiors of neutron stars. Figures 3 and 4 illustrate
the analogous error measures for the equations of state
obtained from [Mi, Ri] data based on the APR3 and the
BGN1H1 equations of state.

These three cases illustrate the range of errors obtained
using the spectral inversion method: the best case, a typ-
ical average case, and the worst case. We point out that
the worst case, BGN1H1, equation of state has a strong
phase transition within the neutron-star density range.
Non-smooth equations of state of this type are difficult
to fit using spectral methods, and convergence in these
cases is typically a power law rather than exponential.
Many more spectral parameters are therefore needed to
approximate these cases accurately. We point out, how-
ever, that the values of ∆N for the BGN1H1 case are
about ten percent, so even in this worst case the spectral
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TABLE I: Accuracies of the neutron-star equations of state obtained by solving the inverse stellar structure problem. ∆N

measures the average fractional error of the equation of state obtained by fitting N different [Mi, Ri] data pairs. The parameter
ΥN measures the ratio of ∆N to the accuracy of the optimal N-parameter spectral fit to each equation of state. The parameter
χN measures the accuracy with which the model masses M and radii R produced by the best fit equation of state match the
exact data Mi and Ri.

EOS ∆2 ∆3 ∆4 ∆5 Υ2 Υ3 Υ4 Υ5 χ2 χ3 χ4 χ5

PAL6 0.0034 0.0018 0.0007 0.0003 1.06 1.09 1.33 1.91 1.1× 10−9 7.3 × 10−10 2.0× 10−9 1.9 × 10−9

SLY 0.0107 0.0040 0.0022 0.0011 1.17 1.13 1.30 1.68 1.5× 10−9 8.5 × 10−10 3.1× 10−9 3.9 × 10−9

APR1 0.0745 0.0420 0.0225 0.0121 1.05 1.26 1.21 1.48 4.3× 10−7 1.1× 10−6 2.4× 10−4 3.5 × 10−5

APR2 0.0312 0.0164 0.0093 0.0056 1.01 1.17 1.47 1.65 1.0× 10−6 3.6× 10−7 4.5× 10−7 5.0 × 10−6

APR3 0.0266 0.0060 0.0030 0.0022 1.06 1.11 1.23 1.47 9.8× 10−8 7.0× 10−7 9.2× 10−7 6.4 × 10−7

APR4 0.0257 0.0036 0.0017 0.0017 1.03 1.20 1.28 1.24 7.0× 10−7 3.8× 10−7 7.7× 10−7 2.9 × 10−6

FPS 0.0048 0.0061 0.0096 0.0048 1.06 1.45 2.52 2.67 1.3× 10−9 7.7× 10−9 4.3× 10−9 4.7 × 10−9

WFF1 0.0551 0.0168 0.0220 0.0157 1.04 1.57 3.19 2.40 4.2× 10−7 2.5× 10−7 7.9× 10−7 3.0 × 10−7

WFF2 0.0276 0.0145 0.0084 0.0055 1.01 1.21 1.18 1.45 3.2× 10−7 2.9× 10−7 5.5× 10−7 8.5 × 10−7

WFF3 0.0126 0.0147 0.0124 0.0085 1.13 1.43 2.08 1.54 3.2× 10−7 4.4× 10−7 4.9× 10−7 3.9 × 10−5

BBB2 0.0332 0.0328 0.0303 0.0116 1.01 1.14 1.39 1.26 4.9 × 10−10 2.3× 10−9 7.0× 10−9 3.5 × 10−5

BPAL12 0.0181 0.0107 0.0068 0.0032 1.06 1.08 1.37 1.43 3.2× 10−9 3.1× 10−9 1.9× 10−9 1.8 × 10−5

ENG 0.0204 0.0247 0.0200 0.0346 1.01 1.33 1.36 3.08 6.2× 10−7 5.1× 10−7 8.1× 10−7 1.3 × 10−4

MPA1 0.0328 0.0040 0.0049 0.0049 1.27 1.23 1.60 2.15 2.6× 10−7 7.6× 10−7 4.4× 10−7 2.2 × 10−5

MS1 0.0475 0.0159 0.0132 0.0008 1.65 2.79 3.64 2.21 2.6× 10−6 2.5× 10−6 1.8× 10−6 3.6 × 10−6

MS2 0.0156 0.0042 0.0005 0.0005 1.67 2.00 2.15 5.98 1.5 × 10−10 2.6× 10−9 4.6 × 10−10 1.6 × 10−9

MS1b 0.0305 0.0149 0.0084 0.0017 1.53 2.33 2.82 6.20 3.5× 10−7 7.8× 10−7 1.8× 10−6 1.3 × 10−6

PS 0.1045 0.0789 0.0894 0.0246 1.66 2.62 2.97 1.47 6.1× 10−6 5.2× 10−6 1.2× 10−3 1.7 × 10−4

GS1 0.0966 0.0586 0.0416 0.0709 1.08 1.52 1.10 2.83 9.7 × 10−10 3.1 × 10−10 2.8× 10−4 1.7 × 10−4

GS2 0.0885 0.0911 0.0977 0.0495 1.46 2.08 2.25 1.57 3.0× 10−9 4.7× 10−9 1.6× 10−3 3.5 × 10−4

BGN1H1 0.1352 0.1714 0.0948 0.1081 1.54 3.42 2.14 3.08 5.8× 10−9 5.9× 10−9 2.2× 10−3 5.9 × 10−4

GNH3 0.0174 0.0186 0.0394 0.0169 1.27 1.96 4.78 2.91 2.2× 10−9 1.9× 10−9 4.2× 10−9 6.0 × 10−9

H1 0.0294 0.0162 0.0128 0.0091 1.44 1.30 1.48 1.25 1.0× 10−6 1.3× 10−6 2.7× 10−6 1.4 × 10−5

H2 0.0210 0.0278 0.0145 0.0091 1.18 2.00 2.10 1.32 1.0× 10−6 1.3× 10−6 2.8× 10−6 1.2 × 10−4

H3 0.0139 0.0202 0.0177 0.0088 1.09 1.80 2.09 1.26 2.9× 10−6 1.1× 10−6 4.4× 10−6 4.3 × 10−5

H4 0.0136 0.0251 0.0179 0.0144 1.32 2.51 2.69 2.18 5.4× 10−9 4.8× 10−9 4.8× 10−9 7.7 × 10−5

H5 0.0139 0.0295 0.0117 0.0099 1.02 2.21 1.98 2.02 1.7× 10−9 5.0× 10−9 3.2× 10−9 5.6 × 10−5

H6 0.0149 0.0141 0.0204 0.0158 1.08 1.03 1.56 1.39 3.3× 10−9 3.8× 10−9 8.8× 10−9 8.5 × 10−9

H7 0.0133 0.0211 0.0123 0.0110 1.09 1.88 2.15 1.93 2.0× 10−9 1.7× 10−9 2.6× 10−9 9.7 × 10−5

PCL2 0.0372 0.0152 0.0100 0.0100 1.38 1.14 1.15 1.28 3.8× 10−7 1.8× 10−6 1.7× 10−6 1.5 × 10−4

ALF1 0.0796 0.0664 0.0456 0.0331 1.08 1.39 1.13 1.17 2.1× 10−9 2.2× 10−9 7.2× 10−4 1.1 × 10−4

ALF2 0.0724 0.0600 0.0488 0.0213 1.04 1.22 1.76 1.19 4.3× 10−9 4.5× 10−9 6.5× 10−9 7.8 × 10−5

ALF3 0.0405 0.0178 0.0185 0.0176 1.04 1.19 1.31 1.31 2.1× 10−9 2.6× 10−9 5.8× 10−5 1.0 × 10−4

ALF4 0.0839 0.0182 0.0218 0.0171 1.18 1.35 2.19 1.81 1.6× 10−8 7.1× 10−9 5.8× 10−9 1.1 × 10−4

Averages 0.0396 0.0289 0.0233 0.0165 1.22 1.65 1.97 2.08

inversion method gives a reasonably accurate estimate
of the equation of state. The values of the ΥN for the
BGN1H1 case all have values below 3.5, which shows that
while it is difficult to model an equation of state of this
type using a spectral fit, the spectral inversion method
nevertheless does provide a solution that is comparable
to the optimal Nγk

-parameter spectral fit.

Given an approximate spectral equation of state,
ǫ(h, γk), we can use it to compute the complete mass-

radius curve [M(hc, γk), R(hc, γk)] for the full range of
central enthalpies, hc. This model mass-radius curve
should agree with the exact curve [M(h), R(h)] very well,
at least at the points [Mi, Ri] used in the inversion pro-
cess. However, they will not agree everywhere, and the
size of the differences is another measure of how well
the approximate equation of state agrees with the exact.
Figure 5 illustrates the differences between the model
masses M(hc, γk) and the exact masses M(hc) for the
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FIG. 2: Ratios between various approximate equations of
state, ǫ(h, γk), obtained by fitting [M,R] data, and the exact
PAL6 equation of state, ǫ(h). Note that log[ǫ(h, γk)/ǫ(h)] ≈
[ǫ(h, γk)− ǫ(h)]/ǫ(h) measures the fractional error.
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FIG. 3: Ratios between various approximate equations of
state, ǫ(h, γk), obtained by fitting [M,R] data, and the ex-
act APR3 equation of state, ǫ(h).

PAL6 equation of state.2 Figures 6 and 7 make simi-

2 Note that the masses in Figs. 5– 7 are compared between models
having the same central enthalpy hc. The central enthalpy of
the exact model with M = Mi need not be exactly equal to the
central enthalpy of the best fit model, hi

c. Therefore these curves
need not have zeros at those points.
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FIG. 4: Ratios between various approximate equations of
state, ǫ(h, γk), obtained by fitting [M,R] data, and the ex-
act BGN1N1 equation of state, ǫ(h).

lar comparisons for the APR3 and the BGN1H1 cases.
We note that the error measures, log[M(hc, γk)/M(hc)],
shown in Figs. 5–7, are somewhat smaller in size than
the error measures, log[ǫ(h, γk)/ǫ(h)], shown in Figs. 2–4.
These error measures provide one more piece of evidence
that the spectral solutions to the inverse stellar structure
problem are quite accurate.
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FIG. 5: Ratios between the masses, M(hc, γk) computed from
the various fits, and M(hc) computed from the exact PAL6
equation of state, for a range of values of the central enthalpy
hc of those models.
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FIG. 6: Ratios between the masses, M(hc, γk) computed from
the various fits, and M(hc) computed from the exact APR3
equation of state, for a range of values of the central enthalpy
hc of those models.
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FIG. 7: Ratios between the masses, M(hc, γk) computed from
the various fits, andM(hc) computed from the exact BGN1H1
equation of state, for a range of values of the central enthalpy
hc of those models.

V. DISCUSSION

In summary, we have developed a new method for
solving the relativistic inverse stellar structure problem
based on the construction of a spectral expansion of the
unknown high density part of the equation of state of
the star. The results of our numerical tests of this new
method, described in Sec. IV, are quite impressive. Us-

ing only two [Mi, Ri] data points, this new method can
determine the entire high density part of the neutron-
star equation of state with errors (on average) of just a
few percent. The addition of more data points (gener-
ally) results in higher accuracy approximations. We also
show that N -parameter spectral approximations to the
equation of state determined in this way are almost as
accurate as the best possible N -parameter spectral ap-
proximations. This is quite remarkable. It shows that
macroscopic mass-radius measurements are strongly cor-
related to the properties of the equation of state, and such
measurements should therefore allow us (eventually) to
measure the high density part of the neutron-star equa-
tion of state with great precision.

A close inspection of the results from the various tests
summarized in Table I reveals a number of anomalies
that merit further study. For example, the error measure
∆Nγk

, defined in Eq. (17), is expected to decrease as the
number of spectral parameters Nγk

is increased, i.e. that
∆Nγk

≥ ∆Nγk
+1. This seems to be true for most of our

tests, but there are also a number of exceptions in Table I.
The equation of state FPS, for example, has ∆2 = 0.0048,
∆3 = 0.0061, ∆4 = 0.0096, and ∆5 = 0.0048. What is
going on? Such a sequence of errors would be consistent,
for example, with the idea that this particular equation
of state is not well represented by these low order spectral
expansions, i.e. that these expansions in this case are not
yet in the convergent regime. This does not seem to be
the case however since the optimal spectral fits to the
FPS equation of state do appear to be convergent with
these same numbers of spectral parameters, cf. Table
II of Ref. [9]. Another (more likely) explanation of the
anomalous results found in Table I is that the minima of
χ2(hc, γk) found by the Levenberg-Marquardt algorithm
for these cases are just local minima and not the desired
global minima. An interesting area for further research
on this problem, therefore, will be to explore the use of
more robust numerical methods for finding global minima
of complicated non-linear functions like χ2(hc, γk).

Another interesting direction for future research on
this problem will be to explore how robust this kind of
solution to the inverse stellar structure problem will be
when applied to more realistic [Mi, Ri] data sets. The
data used here were idealized in two important ways.
First, the mock [Mi, Ri] data used here were supplied
with very high precision. Real astrophysical measure-
ments of these quantities will have significant errors. How
will measurement errors influence the accuracy of the
equation of state that is constructed by these techniques?
Second, the mock [Mi, Ri] data used here were chosen
to cover uniformly the astrophysically relevant range of
neutron-star masses. Real astrophysical measurements
will not be distributed in such an orderly way. How will
the accuracy of the implied equation of state be affected
by different, presumably less ideal, data distributions?

The version of the inverse stellar structure problem
studied here is based on the use of mass M and radius
R measurements to determine the high density part of
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the equation of state. These are not the only macro-
scopic properties of neutron stars that could potentially
be measured. It is not too difficult to imagine for ex-
ample that the moment of inertias or the tidal Love
numbers might be more easily observable for some types
of observations. Another interesting direction for future
study will therefore be to explore the use of other mea-
surement data, say the mass and Love number (which
could be measured using gravitational wave observations
of neutron-star mergers), as input for solving the inverse
stellar structure problem using the spectral methods de-
veloped here.
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Appendix A: Computing Derivatives of M and R.

This Appendix describes how the derivatives of the to-
tal masses M(hc, γk) and radii R(hc, γk) are computed
with respect to the parameters hc and γk. To begin,
however, we present a little more detail on how the alter-
nate form of the stellar structure Eqs. (11) and (12) are
solved numerically. These equations are,

dm

dh
= M(m, r, ǫ, p) ≡ −

4πr3ǫ(r − 2m)

m+ 4πr3p
, (A1)

dr

dh
= R(m, r, p) ≡ −

r(r − 2m)

m+ 4πr3p
, (A2)

where the quantities M(m, r, ǫ, p) and R(m, r, p) merely
represent the expressions on the right sides. These equa-
tions are solved numerically by specifying conditions,
m(hc) = r(hc) = 0, at the center of the star where h = hc

and then integrating out to the surface of the star where
h = 0. Like the standard Oppenheimer-Volkoff version of
the problem, Eqs. (1) and (2), the right sides of Eqs. (A1)
and (A2), i.e. the functions M(m, r, ǫ, p) and R(m, r, p),
have the ill behaved form 0/0 there. Consequently it
is necessary to start any numerical integration of these
equations slightly away from the singular point h = hc.
The needed starting conditions can be obtained using a
power series solution to the equations. The needed power
series are given in Eqs. (7) and (8) of Ref. [2], and can

be written in the form,

r(h) = r1(hc − h)1/2 + r3(hc − h)3/2

+O(hc − h)5/2, (A3)

m(h) = m3(hc − h)3/2 +m5(hc − h)5/2

+O(hc − h)7/2, (A4)

where r1, r3, m3 and m5 are given by

r1 =

[

3

2π(ǫc + 3pc)

]1/2

, (A5)

r3 = −
r1

4(ǫc + 3pc)

[

ǫc − 3pc −
3(ǫc + pc)

2

5pcΓc

]

, (A6)

m3 =
4π

3
ǫcr

3
1 , (A7)

m5 = 4πr31

[

r3ǫc
r1

−
(ǫc + pc)

2

5pcΓc

]

. (A8)

The quantities ǫc, pc and Γc in these expressions are the
energy density, pressure and the adiabatic index evalu-
ated at the center of the star where h = hc, ǫc = ǫ(hc),
pc = p(hc), and Γc = Γ(hc).

It will be useful for our least-squares minimization
problem to know how the solutions to Eqs. (A1) and
(A2) change as the parameters hc and γk are varied. Let
λ denote any one of the parameters: λ = {hc, γk}. We
wish to derive equations for the derivatives of the solu-
tions to these equations with respect to these parameters:
∂m/∂λ and ∂r/∂λ. It is straightforward to determine the
needed auxiliary equations by differentiating, Eqs. (A1)
and (A2) with respect to λ:

d

dh

(

∂m

∂λ

)

=
∂M

∂m

∂m

∂λ
+

∂M

∂r

∂r

∂λ
+

∂M

∂ǫ

∂ǫ

∂λ

+
∂M

∂p

∂p

∂λ
, (A9)

d

dh

(

∂r

∂λ

)

=
∂R

∂m

∂m

∂λ
+

∂R

∂r

∂r

∂λ
+

∂R

∂p

∂p

∂λ
. (A10)

The various derivatives ∂M/∂m, etc. are determined
directly from the stellar structure equations, Eqs. (A1)
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and (A2):

∂M

∂m
=

8πr3ǫ −M

m+ 4πr3p
, (A11)

∂M

∂r
= −4πr2

3pM+ 2ǫ(2r − 3m)

m+ 4πr3p
, (A12)

∂M

∂p
= −

4πr3M

m+ 4πr3p
, (A13)

∂M

∂ǫ
= −

4πr3(r − 2m)

m+ 4πr3p
, (A14)

∂R

∂m
=

2r −R

m+ 4πr3p
, (A15)

∂R

∂r
= −

12πr2pR+ 2(r −m)

m+ 4πr3p
, (A16)

∂R

∂p
= −

4πr3R

m+ 4πr3p
. (A17)

For the case when λ = γk, the derivatives ∂ǫ/∂γk and
∂p/∂γk are determined from Eqs. (8)–(10). The needed
expressions are given by:

∂µ̃(h)

∂γk
=

∫ h

h0

[

log

(

h′

h0

)]k
eh

′

dh′

Γ(h′)
, (A18)

∂p(h)

∂γk
= −p(h)

∫ h

h0

∂µ̃(h′)

∂γk

eh
′

dh′

[µ̃(h′)]2
, (A19)

∂ǫ(h)

∂γk
=

∂p(h)

∂γk

ǫ(h)

p(h)
−

∂µ̃(h)

∂γk

ehp(h)

[µ̃(h)]
2 . (A20)

The integrals needed to determine these quantities can
be performed numerically with good efficiency and accu-
racy using Gaussian quadrature. The equation of state
does not depend on the parameter hc, and so ∂ǫ/∂hc =
∂p/∂hc = 0. Consequently the equations that determine
∂m/∂hc and ∂r/∂hc in Eqs. (A9) and (A10) are some-
what simpler than those for ∂m/∂γk and ∂r/∂γk.

The functions ∂m/∂λ and ∂r/∂λ are determined by
solving Eqs. (A9) and (A10) numerically. This can be
done by integrating them from the center of the star
where h = hc out to the surface of the star where h = 0.
To do this we need to impose the appropriate boundary
conditions for these functions at h = hc. The needed
boundary conditions can be found by differentiating the
power series solutions, Eqs. (A3) and (A4), with respect
to the parameters λ. The quantities r1, r3, m3 and m5,
which appear in these power series solutions, depend
on the central values of the thermodynamic quantities
ǫc = ǫ(hc), pc = p(hc), and Γc = Γ(hc), and through
them the parameters λ = {hc, γk}. For the case where

λ = γk these derivatives can be written as

∂r(h)

∂γk
=

[

∂r1
∂ǫc

∂ǫc
∂γk

+
∂r1
∂pc

∂pc
∂γk

]

(hc − h)1/2

+

[

∂r3
∂ǫc

∂ǫc
∂γk

+
∂r3
∂pc

∂pc
∂γk

+
∂r3
∂Γc

∂Γc

∂γk

]

(hc − h)3/2

+O(hc − h)5/2, (A21)

∂m(h)

∂γk
=

[

∂m3

∂ǫc

∂ǫc
∂γk

+
∂m3

∂pc

∂pc
∂γk

]

(hc − h)3/2

+

[

∂m5

∂ǫc

∂ǫc
∂γk

+
∂m5

∂pc

∂pc
∂γk

+
∂m5

∂Γc

∂Γc

∂γk

]

(hc − h)5/2

+O(hc − h)7/2. (A22)

The derivatives of r1, r3, m3 and m5 with respect to the
parameters ǫc, pc and Γc which appear in Eqs. (A21) and
(A22) are given by:

∂r1
∂ǫc

= −
r1

2(ǫc + 3pc)
, (A23)

∂r1
∂pc

= 3
∂r1
∂ǫc

. (A24)

∂r3
∂ǫc

=
r3
r1

∂r1
∂ǫc

−
r1

4(ǫc + 3pc)

[

1 +
4r3
r1

−
6(ǫc + 3pc)

5pcΓc

]

,

(A25)

∂r3
∂pc

=
r3
r1

∂r1
∂pc

+
3r1

4(ǫc + 3pc)

[

1−
4r3
r1

−
ǫ2c − p2c
5p2cΓc

]

,

(A26)

∂r3
∂Γc

= −
3r1(ǫc + pc)

2

20pc(ǫc + 3pc)Γ2
c

, (A27)

∂m3

∂ǫc
=

4π

3
r31

[

1 +
3ǫc
r1

∂r1
∂ǫc

]

, (A28)

∂m3

∂pc
= 4πǫcr

2
1

∂r1
∂pc

, (A29)

∂m5

∂ǫc
= 4πr21

[

r3 +
2ǫcr3
r1

∂r1
∂ǫc

+ ǫc
∂r3
∂ǫc

]

−
4πr21(ǫc + pc)

5pcΓc

[

2r1 + 3(ǫc + pc)
∂r1
∂ǫc

]

, (A30)

∂m5

∂pc
= 4πǫcr

2
1

[

2r3
r1

∂r1
∂pc

+
∂r3
∂pc

]

+
4πr31(ǫc + pc)

5p2cΓc

[

ǫc −
3pc(ǫc + pc)

r1

∂r1
∂pc

]

,(A31)

∂m5

∂Γc
= 4πr31

[

ǫc
r1

∂r3
∂Γc

+
(ǫc + pc)

2

5pcΓ2
c

]

. (A32)

The values of the derivatives ∂pc/∂γk and ∂ǫc/∂γk are
obtained by evaluating Eqs. (A19) and (A20) at h = hc,
while the derivative ∂Γc/∂γk is given by

∂Γc

∂γk
=

[

log

(

hc

h0

)]k

Γc. (A33)
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For the case where λ = hc the expressions for the
derivatives ∂r/∂λ and ∂m/∂λ have somewhat different
forms because hc appears explicitly in expansions in
Eqs. (A3) and (A4). Differentiating these series with
respect to hc, keeping only the two leading terms, gives

∂r(h)

∂hc
=

r1
2
(hc − h)−1/2

+

[

∂r1
∂ǫc

∂ǫc
∂hc

+
∂r1
∂pc

∂pc
∂hc

+
3r3
2

]

(hc − h)1/2

+O(hc − h)3/2, (A34)

∂m(h)

∂hc
=

3m3

2
(hc − h)1/2

+

[

∂m3

∂ǫc

∂ǫc
∂hc

+
∂m3

∂pc

∂pc
∂hc

+
5m5

2

]

(hc − h)3/2

+O(hc − h)5/2. (A35)

The derivatives of r1, r3, m3 and m5 with respect to
the parameters ǫc and pc which appear in Eqs. (A34)
and (A35) are given as before by the expressions in
Eqs. (A23)–(A31). The derivatives ∂ǫc/∂hc and ∂pc/∂hc

which appear in Eqs. (A34) and (A35) are obtained by
evaluating Eqs. (6) and (7) at h = hc:

∂pc
∂hc

= ǫc + pc, (A36)

∂ǫc
∂hc

=
(ǫc + pc)

2

pcΓ(hc)
. (A37)

Appendix B: Interpolating the Exact Equation of

State

We are often presented with an “exact” equation of
state that is represented as a table of energy densities
ǫi and the corresponding pressures pi. For our purposes
here we will convert these to an equation of state of the
form ǫ = ǫ(h) and p = p(h) in the following way. We
do this by assuming that the exact equation of state is
obtained for values intermediate between those given in
the table, ǫi ≤ ǫ ≤ ǫi+1, by the interpolation formula:

p

pi
=

(

ǫ

ǫi

)ci+1

, (B1)

ci+1 =
log(pi+1/pi)

log(ǫi+1/ǫi)
. (B2)

For smaller values of the density, ǫ ≤ ǫ1, we assume:

p

p1
=

(

ǫ

ǫ1

)c1

, (B3)

c1 =
log(p2/p1)

log(ǫ2/ǫ1)
. (B4)

Given this prescription for interpolation, it is straight-
forward to show that the values of the enthalpy

h(p) =

∫ p

0

dp′

ǫ(p′) + p′
, (B5)

are given at the table entry values hi = h(pi), by

h1 =
c1

c1 − 1
log

(

ǫ1 + p1
ǫ1

)

, (B6)

hi+1 = hi +
ci+1

ci+1 − 1
log

[

ǫi(ǫi+1 + pi+1)

ǫi+1(ǫi + pi)

]

. (B7)

The pressure is determined as a function of the en-
thalpy, by performing the integral in Eq. (B5) to give
h(p), and then inverting. It is slightly more convenient
to perform this inversion to give ǫ(h), from which it is
straightforward to determine p(h) through Eqs. (B3) and
(B1):

ǫ(h) = ǫ1

{

ǫ1
p1

[

exp

(

c1 − 1

c1
h

)

− 1

]}1/(c1−1)

(B8)

for h ≤ h1, and

ǫ(h) =

ǫi

{

ǫi + pi
pi

exp

[

ci+1 − 1

ci+1
(h− hi)

]

−
ǫi
pi

}1/(ci+1−1)

(B9)

for hi ≤ h ≤ hi+1.
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