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Abstract

Infrared growth of geometrical fluctuations in inflationary spacetimes is investigated.
The problem of gauge-invariant characterization of growth of perturbations, which is of
interest also in other spacetimes such as black holes, is addressed by studying evolution of
the lengths of curves in the geometry. These may either connect freely falling “satellites,”
or wrap non-trivial cycles of geometries like the torus, and are also used in diffeomorphism-
invariant constructions of two-point functions of field operators. For spacelike separations
significantly exceeding the Hubble scale, no spacetime geodesic connects two events, but
one may find geodesics constrained to lie within constant-time spatial slices. In inflation-
ary geometries, metric perturbations produce significant and growing corrections to the
lengths of such geodesics, as we show in both quantization on an inflating torus and in
standard slow-roll inflation. These become large, signaling breakdown of a perturbative
description of the geometry via such observables, and consistent with perturbative insta-
bility of de Sitter space. In particular, we show that the geodesic distance on constant
time slices during inflation becomes non-perturbative a few e-folds after a given scale
has left the horizon, by distances ~ 1/H3 ~ RS, obstructing use of such geodesics in
constructing [R-safe observables based on the spatial geometry. We briefly discuss other
possible measures of such geometrical fluctuations.
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1 Introduction

A long-standing problem has been formulation of a more complete quantum treatment of in-
flationary cosmology. Gravity has familiar short-distance problems (e.g. renormalizability,
singularities), but also long-distance problems that become evident in inflationary cosmology,
as well as in black holes. Those include apparent infrared (IR) growth of perturbations (see
e.g. [1]), the general problem of specifying gauge-invariant observables (see e.g. [2]), and, in the
former case, related problems of measures'.

Understanding the IR growth of perturbations, particularly of the “gas” of gravitons pro-
duced in inflation, has in part been confounded by the challenges of formulating observables
sensitive to these perturbations. Interpretations of this growth has ranged from the claim that
through backreaction they cause decay of the cosmologocal constant [4-11], to the belief that
they have little meaningful effect. What is needed is a gauge-invariant way to describe physical
effects of such fluctuations.

Here it is important to note a distinction: if we imagine that there is a yet-unknown com-
plete quantum-mechanical description of cosmology, then one of its basic features should be
a set of quantum-mechanical observables. However, it is clear that, due to our limitations as
Earth-bound observers in a particular era of cosmology, there is a much more restricted set of
quantities that we can actually measure — and that an observational cosmologist would describe
as “observable.” Much of the discussion of this paper focusses on the former notion of observ-
able. Where it is confusing, the former may be distinguished by calling them g-observables [12]:
a given g-observable may or may not be observable to Earth’s cosmologists.

One goal of this paper is to formulate candidate g-observables sensitive to fluctuations in
geometry. The latter in particular can have variance that becomes large at large times, and so a
related goal is to better understand the meaning of this growth. The considerations of this paper
are more formal than those of [12], which discussed possible observable (to us) effects. These
are related since an observable must ultimately be a g-observable. Moreover, there is common
problem with both (related also to the measure problem) and that is to provide quantities that
are “infrared safe,” and thus well-defined even in the presence of large IR fluctuations. In [12],
infrared-safe observables were defined, relevant for the observations of a late-time observer of
the CMB sky, by gauge transforming away metric fluctuations with wavelengths outside the
horizon of the observer; a similar prescription was investigated in [13,14].2

An alternate approach, in particular pursued in [16-20], is that correlation functions written
in terms of the unperturbed geometric distance on the reheating surface would constitute

IFor a review see [3].

2In particular, in [14] it was similarly argued that one could apply such a gauge transformation, removing
long wavelength modes. Their specific transformation leads to an exponential truncation of long wavelength
modes given essentially by multiplying the IR part of the spectrum by a factor 1 —e~?* with p > 0. For arbitrary
choice of p this does not correspond to the spectrum of the gauge invariant comoving curvature perturbation, in
terms of which late-time observables are usually expressed by cosmologists [15]. However if p is identified with
the size of the observed volume, then the proposal is essentially similar to the proposal of [12], with the only
difference that [12] applied a step function instead of a smooth exponential window function. In the language
of [12], p corresponds to a renormalization scale (in [12] labelled 1/q), set by the choice of observer.



candidate IR-safe observables. This is not necessarily what a late-time observer measures,
but is an interesting prescription to consider. Part of the problem with such a construction is
that the curvature perturbation is not conserved when written in terms of the geodesic distance
of the reheating surface. But even worse, as we show in section 6, when fluctuations of the
geodesic distance are taken into account, this distance receives large perturbative corrections,
and the description of the geometry in terms of geodesic distance becomes problematic. This
happens only a few e-folds after a given scale has exited the horizon.

In contrast, in terms of the comoving momentum the curvature perturbation is conserved on
large scales, which makes the correlation functions of the curvature perturbation in comoving
momentum at horizon crossing a convenient variable for discussing the observables for a late-
time observer after the end of inflation. For this correlation function the effect of longer
wavelength fluctuations, exiting the horizon even earlier, is to shift the background of the
shorter wavelength mode when it exits the horizon. This can be described in terms of the semi-
classical relations developed in [21]. To a late-time observer, who can measure the correlation
function in many different patches of the sky, this becomes a physical effect. For a very late-
time observer with access to a very large inflated volume set by of order N ~ 1/H? e-folds
(or a duration of order ¢t ~ RgsS4s, where R;s and Syg are the de Sitter radius and entropy
respectively) of inflation, this effect becomes non-perturbative, while a present day observer
with only access to the last 60 e-folds of inflation will see only a small effect on the CMB
sky. A renormalization group equation relates the different observers with different survey
volumes [12].

Despite the drawbacks from the viewpoint of present-day observation, g-observables based
on spacetime geometry have some promise for giving gauge-invariant descriptions of inflation.
For that reason, this paper will describe construction of g-observables of this kind, and investi-
gate what they tell us about the physics of inflation. A specific focus will be on g-observables
capable of probing growing variance, e.g. of tensor fluctuations, and interpreting its meaning
for the geometry of inflation. In short, while we cannot support arguments for decay of the
cosmological constant, rapid expansion produces buildup of long distance modes leading to
large cumulative fluctuations after sufficiently long time. So, the growing variance does appear
to indicate a quantum instability of inflationary spacetimes such as de Sitter (dS) space, to
large excursions from the semiclassical geometry, and indicates a breakdown of our perturba-
tive treatment. Indeed, this behavior is apparently another facet of the basic phenomenon
responsible for self-reproducing inflation [21].

In outline, the next section describes in more detail the problem of observables in infla-
tion, and the question of defining g-observables using geometrical measures such as lengths
of geodesics. In particular, we note that the latter cannot be formulated based on spacetime
geodesics spanning super-horizon distances, though one may base constructions on geometry
of specific time slicings. We turn to study of these in subsequent sections. Section 3 sets up
perturbative quantization of slow-roll inflation, in different gauge-fixings. Section 4 describes
a basic construction, where one diagnoses properties of a fluctuating geometry by the lengths
of curves in it. We note that growing metric fluctuations make important contributions, but
also that care must be exercised in order to find gauge-invariant quantities. In particular, an



arbitrary curve is not gauge invariant, and as a consequence it is natural to consider instead
curves that are geodesics of a fluctuating geometry.

A simple context to examine such curves, and effects of metric fluctuations on them, is on a
spatial torus 7%, where we use a cycle of the torus to avoid the problem of specifying endpoints.
Quantization on a toroidal version of dS is described. We find that tensor fluctuations do have
a significant effect on torus cycles, giving a gauge-invariant statement of large perturbative
corrections at sufficiently large times, which we take to be a diagnostic of large fluctuations in
the geometry of the spacetime. Section 6 then considers geodesics with endpoints, which may
be thought of as quantum particles or classical “satellites,” or as locations of field operators, in
gauge-invariant constructions. We find similar large contributions of metric fluctuations, due
to fluctuations of the geodesic in the geometry. These effects become particularly pronounced
in slow-roll. This section also describes various subleading effects, quantum and otherwise, in
such a construction. The large contributions of metric fluctuations to geodesic lengths signal
breakdown of our perturbative description of the geometry via such g-observables. Section
7 considers the related problem of fluctuations in geometrical volume, making contact with
[22,23]. Section 8 ends with brief description of other possible g-observable diagnostics of
quantum inflationary geometry, and with conclusions. An appendix contains additonal details
on gauge fixing.

2 Q-observables and tensor fluctuations

2.1 Challenges of gauge invariance

We seek gauge invariant observables in inflationary universes, particularly characterizing ge-
ometry. Such gauge-invariant observables are surprisingly difficult to formulate in quantum
gravity, where the symmetry of the effective field theory description is diffeomorphism invari-
ance. This means that local observables familiar from field theory are not gauge invariant, and
that observables must take a more non-local form. One would in particular like to formulate
such observables that reduce to the local observables of field theory in an approximation; gen-
eral aspects of this problem, and proposals for such “proto-local” observables, are described
in [2].

A focus of this paper will be on observables sensitive to fluctuations of geometry, and
specifically to their apparent growth as evidenced e.g. by growth in variance of the tensor
modes of the graviton. Here there are various puzzles. In particular, the growing variance
is associated with tensor fluctuations that exit the horizon scale and are redshifted to long
wavelength. However, at least locally a long-wavelength metric fluctuation is unobservable.
Consider, for example, a small perturbation in a cosmological metric, with scale factor a(t),

ds* = —dt* + a2(t)(6F)ijd$id$j ) (2.1)

where T';; is a spacetime-dependent metric perturbation (in notation of [12]), which generally
contains both scalar and traceless tensor parts.



Figure 1: Metric perturbations can lead to significantly different geometries, as illustrated for
the sphere.

In the long-wavelength limit, I';; is constant, and can be removed by a change of coordinates:
ot — (e7V?)a0 (2.2)

Indeed, this is reflected if one attempts to formulate observables in terms of local scalar quan-
tities, such as the curvature; the curvature due to the perturbation vanishes in the limit of
large redshift. This fact was also used in [12], where it was argued that IR-safe quantities
relevant to describing observations in a given observer’s horizon can be formulated by using a
transformation such as (2.2) to eliminate the effect of longer-wavelength fluctuations.

However, there is a different viewpoint indicating that there is physics in long-wavelength
perturbations of the gravitational field. In particular, the long-wavelength regime (compared
to the Planck scale) is precisely the regime that gravitational wave detectors such as LIGO
and Virgo are designed to probe. These detectors span kilometer sizes precisely because they
are not measuring local quantities, but instead integrated quantities, specifically the relative
displacement of two test masses separated by a finite distance. This physical picture suggests
that more “global” observables are important in gravity.

Indeed, consider spatial slices in an inflating spacetime; focus concretely on cases of closed
slices, such as S3 or 7°. While it is true that the perturbations redshift as the slices expand,
in order to compare two different slices one needs to perform a rescaling so that they have the
same size. Once such a rescaling has been performed, growth of perturbations such as in (2.1)
appear to lead to growing “lumpiness” of the space, as illustrated in fig. 1.

There are various quantities one could try to use to characterize such growth of lumpiness.
One possibility is to use an experimental apparatus to define an area, and measure rotation
of vectors upon parallel transport around its perimeter; this kind of “Wilson loop” integral is
sensitive to the curvature over the area’s span. While the curvature may fall with the scale
factor as 1/a?, the area of such a loop, if comoving, has opposite scaling, so the rotation of
the vector remains fixed under scaling. One problem, however, is that specification of such a
loop is not diffeomorphism-invariant, without additional physical structure. One could likewise
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describe other observable quantities (volume, etc.), though with similar problems of gauge
invariance.

An even more primitive kind of observable is the kind measured in gravitational-wave as-
tronomy, simply the distance between points defined by heavy point masses. These can be
thought of as giving gauge-invariant “reference points” for measuring geometry.

2.2 Q-observables via geodesic lengths

We will pursue such an approach to defining observables sensitive to tensor fluctuations in
cosmology. For example, one could consider a cosmology with a gas of massive test particles
(or “satellites”) present, and give one characterization of the gravitational fluctuations in terms
of fluctuations of the distances between the test particles; these distances are given in terms of
integrals of the metric over paths connecting the particles.

A more fundamental characterization of this problem takes into account the quantum nature
of the particles. Indeed, a related class of observables have been proposed, in order to reproduce
the two-point function in field theory. Let o be a scalar field, and define the two-point function
at a fixed geodesic separation S = s(z, 2'):

@@, - (2.3)

Such a construction has been investigated in [2,16-20, 24|, and used in the context of the
simplicial approach to quantum gravity® [25]. This non-local construction can also be given for
other local operators, such as the curvature scalar R(z).

However, one immediately encounters an important limitation to characterizations of the
geometry by lengths of geodesics, and of correlation functions via a construction like (2.3).
This arises from the statement that arbitrary spacelike-separated points cannot be connected
by a spacelike geodesic in inflationary geometries, and is most easily illustrated in de Sitter
space. While we are familiar with the statement that in inflationary geometry, objects quickly
become causally disconnected in the sense that there is no timelike or null geodesic connecting
them, this property at first seems rather surprising in comparison to more familiar spacetimes.
A quick argument is the following: suppose two points are connected by a spacelike geodesic.
Then, by a dS symmetry transformation, the points and the geodesic may be taken to lie on
the “equator” (minimal radius sphere) of the global slicing. But, no two points on this slice
are separated by a distance greater than 7/H, so this serves as an upper limit on the shortest
geodesic distance between two points.

This property can be investigated in the flat slicing (2.1). Consider vanishing perturbation
I', and, without loss of generality, a geodesic with tangent orthogonal to the 2? = y and 2% = 2
directions. The I' = 0 metric (2.1) has Killing vector

k" = (0,1,0,0) (2.4)

3 Although simplicial quantum gravity is formulated in Euclidean de Sitter, one is ultimately interested in
understanding the applicability of the results to Lorenzian de Sitter, which we discuss here.



and so k,dX*/ds = c is conserved along a geodesic. Introducing the conformal time 7 through
dt = a(t)dn , (2.5)

conservation immediately gives the equation

dn? = da* (1 - a_2) : (2.6)
2
For de Sitter space,
0= et — —1/(Hy) (2.7)
and (2.6) can be rewritten
d
dy = —l (2.8)
VP =g
with solution
(= w0)* =0 — 15 - (2.9)

This curve reaches maximum time at 7 =7y < 0 and = = zy . Rewriting it as
a2

-,
ag

H?*a*(x — 1)* =1 — (2.10)

we find that two such points in a time slice with n < 7y have a maximum “physical” distance
measured in the slice given by
aATyax = 2/H | (2.11)

from the curve with ag — oco. The geodesic distance is easily computed, and found to be

T 2 -1 1
S = T~ Etan <W> , (2.12)

with maximum Sy = m/H. Thus, for fixed comoving distance Az, points rapidly exceed the
bounds (2.11), (2.12), just outside the horizon, and there is no geodesic connecting them. This
emphasizes the extreme causal and geometrical separation between points that is intrinsic to
inflation.

If there are no geodesics connecting generic points in an inflationary geometry, one must
seek other ways to characterize the geometry. One approach which we will follow in this paper
is to find geodesics subject to an additional constraint, e.g. that they lie in a given spatial
slice, in a particular time slicing.* This requires some additional structure, to play the role
of a “clock.” One candidate is an evolving scalar field, though without a potential an initial
field velocity redshifts away. This does leave, however, the case of, e.g., slow-roll inflation. One

4 Another alternative is to consider curves with, e.g., fixed acceleration. We thank D. Marolf for discussions
on such an approach.



can seek other candidates in the geometry itself, e.g. using the local expansion in the volume
element as a clock. Or, one may consider additional physical structure.

In a construction involving satellites or such as (2.3), one faces the question of disentangling
the quantum dynamics of the particles from that of the gravitational field. For this reason, we
will first focus on what appears to be an even simpler problem, temporarily dispensing with the
particle “anchors” for the world-line ends, before returning to discuss these later in the paper.
Namely, if we consider a classical de Sitter cosmology, in the flat slicing, an equally good
solution results from periodic identification under translations in R? to give the the torus 7°.
In such a geometry, the proper lengths of the cycles of the torus, measured via the integrated
distance, appear to be useful characteristics of the geometry. Passing to the quantum theory,
we can consider gravitational fluctuations about our inflating torus, and see what their effect is
on these length variables. Of course a proper treatment of this problem involves examination of
possible gauge-dependencies of these length variables. However, we anticipate that this problem
might be easier here, given that the curves are anchored to the homotopy of the torus, which
is a topological invariant.

Specifically, describe the torus via the identification ' ~ ¢ + L. We will first consider as a
candidate g-observable the length around the x-cycle of T3, given by the line integral

S = ]{ds = ]{dm\/g; . (2.13)

This defines a good gauge-invariant quantum-mechanical observable (g-observable), although
it may not be in-practice observable to us today [12]. The zeroth-order in I' result is S = a(t)L.
However, fluctuations in I';; will produce fluctuations in this length, and in particular we might
anticipate significant corrections resulting from the infrared growth in these fluctuations. In
order to explore this question, we need a careful treatment of their quantization.

3 Action, perturbative expansion, quantization

3.1 Action and perturbative expansion

We begin with dynamical preliminaries. For concreteness we will focus on characterizing the
geometry of models of single-field, slow-roll inflation, or of its “no-roll” de Sitter limit. The
action is

5= [ dev= | — (Vo2 - 2v(o)| | (3.1)

where R is the spacetime Ricci scalar. In the de Sitter limit, V' is just the cosmological constant,
V' — A =const.

A perturbative description of the coupled metric and matter fluctuations can be derived [27]
using the Arnowitt—Deser—Misner [28] (ADM) parameterization of the line element,

ds® = —N?dt* + hy;(da’ + N'dt)(da’ + N7dt) (3.2)



where N, N* are the lapse and the shift functions.
We begin with a solution to the equations of motion,

N=1 s NZ =0 5 hij = (12(15)(5,']' y ¢ = (bo(t) y (33)

with instantaneous Hubble scale H = a/a, and satisfying the slow-roll conditions
e=(V)2RVP<l , n=V"V<1. (3.4)
An arbitrary perturbation about this may be parameterized as

hij = a2<t)e2<(e’y)ij , O=¢ot @, (3.5)

together with AN = N — 1 and N*, where v;; is a traceless matrix, 7;; = 0. (Here we adopt
the convention of summing over lower indices with the flat-space metric §;;.)

One requires a gauge condition fixing the diffeomorphism symmetry; different choices will
be discussed below. The lapse and shift act as Lagrange multipliers, whose equations of motion
are the constraint part of Einstein’s equations. After a gauge is fixed, one may solve these
equations perturbatively to determine AN and N* in terms of h;; and ¢. As a result, the
dynamical degrees of freedom consist of the two polarization modes of the graviton, contained
in v;;, and one scalar, described by a gauge-dependent combination of ( and ¢. In the de Sitter
limit, this scalar decouples from the metric at quadratic order; alternately, with no field ¢, the
“time translation” symmetry implies that the scalar curvature perturbation ( can be gauged
away.

One treats the fluctuations in a perturbation expansion in 1 /M]f = 871G, we will typically
work in units where M, = 1. In the slow-roll regime, H* ~ V/3M?.

3.2 Gauge fixing

The gauge symmetries are diffeomorphisms, x# = z#/ 4+ e*, under which the linear variation in
the metric is
g = Ve, + Ve, . (3.6)

This implies that the variations of 7;; + 2¢d;; and ¢ take the form
§(yij +2C0;;) = Oiej + Oje; + 2HeS;; + O (€%, €7, e0,eN' [ eAN)
580 = 60¢0 +0 (627 690) ) (37)
where subleading terms are higher-order in the 1/M, expansion. (Explicit formulas for these
and higher order gauge-fixing are described in the appendix.)

The traceless perturbation, 7;;, is independent of choice of time slice at this order. The
spatial diffeomorphisms are typically fixed by choosing transverse gauge,’

®Note that perturbations satisfying these conditions can be thought of as “gauge invariant” (see e.g. [29]).



Specifically, a spatial diffeomorphism gives the transformation (where we are careful to extract
the traceless piece)

1 .
@'%{j = 0iij + 8i2€j + gaj&;q +0 (62, ey, eN’ ,eAN) . (3.9)

Thus, at linear order, we can satisfy
by choosing
8 — 10,0,/ V?

g 4v2 Ok Vkj (3.11)
where 1/V? is the Green function for V? = 9;0;. One can use the expression (3.11) to fix the
gauge (3.10) at higher order in 1/M, as well, by working order-by-order and including the extra
contributions in (3.9) on the right hand side of (3.11) (see appendix).

Two commonly-used gauges for fixing the time-slicing are comoving gauge,

€ = —

©=0 (3.12)

and traceless or spatially-flat gauge,
(=0 . (3.13)

As we see from (3.7), these choices can be made order-by-order in an expansion in 1/M,. The
choice (3.12) is very physical, in that constant-¢ slices provide the time-slicing. The alternate
choice (3.13) can also be characterized physically, as the choice where the evolution of the local
volume element is given by the original unperturbed solution.

Once the gauge is fixed by (3.10) and either (3.12) or (3.13), the lapse N and shift N* are
determined by the constraint equations. For example, in pure de Sitter, with the gauge (3.13),
and at linear order, these are

1 1
2HO; N — 5aﬁN;” + 5@@]\7}“ —0 (3.14)

and 1
AN® = _3—H&N§” , (3.15)

which, when combined, imply

1
(0%, + gaiajw;” 0. (3.16)

Thus, a linear-order solution is NV = Ni(l) = 0, and this procedure can be generalized to slow
roll and higher-order contributions.

Note also that the transverse-traceless choice (3.10) and (3.13) may not completely fix the
gauge. In particular, we see that at linear level these conditions are unaffected by residual
gauge transformations satisfying
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with a corresponding €’ chosen to preserve v = 0. The residual transformations are of course
compatible with the constraints, as can be seen from the linear transformations

N =N+ N — N 4 é 4+ he (3.18)

and comparing (3.16) and (3.17). The dS isometries provide such residual transformations.

3.3 Quantization

Once a gauge has been fixed, the action (3.1) can be expanded in the parameter H/M,,
S=5+5%+5r. (3.19)

Here, Sy is the action of the classical solution (3.3), and the first-order term vanishes by the
equations of motion. The second order terms are given in, for example, [27]. For the tensors,
we have in transverse gauge

827,5 = é/dtd?’l’(lz)) [(’Y”)Q — G,_Q(ak’}/ij)Q] . (320)

The scalar action depends on the gauge. For example, in the gauge (3.12), one finds

12 2
Sy = % / dtd®x ai”gbg—f [@ - a—2(az-g)2] . (3.21)

Higher-order interaction terms described by S; can likewise be worked out, expanding in
~v+2¢ and in ¢. In doing so, one solves the constraints for AN and N?, order-by-order in terms
of the other degrees of freedom; these then contribute to the interaction terms.

Correlators are then computed perturbatively in these interactions, with the leading, gaus-
sian, correlators determined by the actions (3.20), (3.21). In particular, these correlators exhibit
a growing variance at long times; for example the two-point function for tensors, averaged over
the proper length scale a/H to regulate the UV, behaves as [26]

) 1 A a(t)
(2(0)) = 3l e)) 2050 o || (3.22)

where a; gives an IR cutoff corresponding to a “beginning” of inflation.

4 Fluctuating line integrals

It is well known that the variance of fluctuations of light fields in de Sitter can become large,
but, as explained in the introduction, an important question regards the gauge-invariant or
observable consequences of this statement. Naively, one might expect the inflated space to
be very smooth. But, further reflection suggests that the accumulation of fluctuations at zero
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physical momentum, driven by the expansion, could have an important effect, connected to the
growing variance (3.22). In particular, pile up of these fluctuations suggests that the spacetime
could have a very inhomogeneous structure at the longest scales.

We will study such inhomogeneities using the kinds of g-observable described in section
2, namely via integrated lengths of curves, which are basic characteristics of any geometry.
Given the issues with unconstrained (four-dimensional) geodesics described in section 2, our
focus will be on geodesics within the three-dimensional geometries corresponding to constant-
time slices in either of the gauges (3.12), (3.13). Our basic picture is that space becomes
lumpy on large scales (see fig. 1), and the geodesics are sensitive to that lumpiness. We will
investigate this question in two different contexts. The first is that where we imagine a pair
of “satellites” (freely moving heavy masses), and we consider the distance between them. The
second context, which is free of any such extra matter dynamics, is that where we imagine an
inflating spacetime whose spatial slices have the topology of the torus, 7%, and where we study
curves with non-trivial homotopy on 7.

In either case the basic expression for the distance is

Xz(t)
S(t) - \ hZ]dXZdX] y (41)
X1(t)

integrated along a curve X'(¢,0) in the spatial slice ¢ =const. In the satellite case, X;(t) are
the locations of the satellites, and in the torus case we take X;(t) = Xs(t). The fluctuating
spatial metric is given by (3.5). It is convenient to group the metric perturbations together by
defining

Fij(xa t) = Yij (Ia t) + 2C(ZL‘, t)(sij : (42)

Also, in some cases it is useful to define a scale-dependent metric, as introduced in [12],
which only incorporates fluctuations above a certain wavelength. To leading order in H, this

can be defined by

hij(q; 2,t) = a* () [exp{T'(q, z) }]i5, (4.3)
where I';;(¢,t, x) is the scale-dependent metric fluctuation at scale g,
7 Pk
Lii(g, t,z) = / = [2¢(k; t, )05 + i (ks t, )] (4.4)
L-1 (27T)

and C(k;t,x), v;;(k; t,2) are mode functions with comoving momentum £.° In what follows,
we will assume ¢ < a(t)H(t), such that this expression will be constant in time to a very good
approximation. In [12], a scale-dependent physical momentum was also introduced

Kgilk,x) = [e TPk 3 kP (k) = [e7 "] kiky (4.5)

and it was then argued that leading IR-dependent higher-order effects are incorporated into the
spectrum P by writing the tree-level two-point function Py(k) instead as a function of ki (k, x):

P(k,2)d®k = Py(r(k, z))d*ky, . (4.6)

6At higher orders, the limit in the integral (4.4) depends on I' [12].

11



The line integral (4.1) can be expanded in terms of the metric fluctuation I';;; if we use
the scale-dependent metric (4.3), S also depends on the scale ¢ determining which metric
fluctuations are included. For example, suppose that we choose comoving coordinates on an
initial slice so that the satellite separation or torus cycle are in the = direction. In that case,
we can compute the contribution of the fluctuations to the distance S along a line of constant

y and z connecting the endpoints; this can be expanded as

S = /ds:a(t)/dx\/@
1 1

= a(t) /d:v(l + =Ly + =Tl — ll“mfm +...). (4.7)
2 4 8

Here, for brevity we suppressed the arguments of I';;. Next, we can compute the average effect
of the fluctuations on this distance. In cases where our slices are chosen such that ¢ = 0, then
the linear contribution (I') vanishes,” and we need to consider quantities quadratic in I" to see
an effect. (While this no longer holds in the case of slow roll in a slicing with ¢ # 0, later in
the paper we will demonstrate slow-roll suppression of such contributions.) One possibility is
to look at the variance of S, via

(88) . (4.8)

The contribution to this from the linear term in I' can be computed, but is found to be small
(see section 6.2.4). Intuitively, the linear contributions to S average out when integrated around
the z-cycle.

The fluctuations also enter at quadratic order, suggesting a growing contribution to (S).
This can be written in terms of the variance of the fluctuations as

1

(8) =L (14 3 + Hmlonale) — gO2N +o) (@9

Eq. (3.22) and the analogous equation for ( show that these contributions grow with time.
However, while the basic message of this equation — growing contribution due to the variance —
is correct, this equation is not particularly physical as it stands. The problem is that the curve
y =const., z =const. is rather arbitrary from the viewpoint of the perturbed metric. This has
the effect of making the result (4.7) gauge-dependent, hence unphysical.

Specifically, we could have described this computation by still working at constant y and z,
but in a different gauge from (3.10) and get a different result. The general gauge transformation
corresponds to the action of the diffeomorphism x# — z# = x# —e#(z) on the metric. However,
from the diffeomorphism symmetry of the basic expression (4.7), we can alternately describe
the situation by working with fixed metric, and consider a deformation of the curve; this
corresponds to working in the 2’ coordinates, and has the effect 2# — z# + €* on the curve.®

"Validity of such gauge fixing to second order is checked in the appendix.

8What we have described is the standard switch between active and passive viewpoints, namely from a
transformation on the fields to a transformation on the underlying coordinates. Note also that in the case of
the path connecting satellites, the diffeomorphism also acts on the satellite trajectories.
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To make a gauge-invariant statement, we would like a quantity independent of such a
variation, which we rewrite in general as

XH*(o) = X} (o) +0X" (o), (4.10)
where X/'(0) is the original path. In our particular example
X/ = (0,,0,0) . (4.11)

We will first focus on the purely spatial gauge transformations § X, viewing € as fixed by
choice of physical “clock,” determined by either of the conditions (3.12) or (3.13); we will
examine these in particular cases. While §.X* introduces arbitrariness into S, one might expect
that there is a unique choice, corresponding to a geodesic in the new metric. Then, one could
calculate the average variation of the length of this geodesic, as a gauge invariant.

In order to explore this, we consider the change of S under a combined variation §X* and

hij = h(),ij + (WLW (412)

where hg;; is given in (3.3) (we work at fixed time). Expanding to second order, this change
takes the form

oS 0S
S[Xo+0X,hog+6h] = S[Xo,h —0h + —=0X
[Xo + 60X, ho + 6h] [0’0]+5h +5X
146%8 168 58S
Y S p——p '
s T T sxan
where integrals are implicit and all variational derivatives are evaluated at Xj, hg. The linear
term in 0.X vanishes because the original curve was a geodesic. The linear and second-order
terms in 0h combined are given in terms of v;; and ¢ by (4.7). Our problem, therefore, is to
understand the remaining 6 X-dependent terms, which were neglected in previous attempts to
formulate correlators in terms of the invariant distance [16-20].
Following the preceding discussion, we can try to fix § X by the condition that the perturbed
curve is a geodesic in the perturbed metric. Working to linear order in both perturbations, this

is the condition

SXSh+ ..., (4.13)

5S 28, 58
= 5x | xorex = 5x2°0% T 5xon

ho+6h

0

5X6h (4.14)

with second derivatives evaluated at X, hg. This can be rewritten

5 DX § DX,

0X =—
60X ds? oh ds?

(4.15)

found by varying the usual geodesic equation. For a solution of (4.14), (4.15), the last two
terms of (4.13) may then be written in terms of

58S A6 X" do X7 dxt —dX!
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For our x-path (4.11), the geodesic equation becomes
1
026X = —T'% =a2(t) (—8x5hm + §8a5hm> , a=y,z, (4.17)

where in the latter equation we find the linearized Christoffel symbols. A deformation §X*
corresponds to a reparameterization of the path and is unconstrained. We will study the
problem of solving these equations both for 7% and for the satellites, and of determining the
resulting change in path length in (4.13).

5 Cycles on the torus

5.1 Quantization on the torus

For simplicity we begin with the case of the spatial manifold 7%, and with no matter present.
We take the background metric to be (3.3), with the scale factor of dS, (2.7), now with the
identifications 2 ~ 2° + L. The preceding discussion of fluctuations and gauge fixing thus
carries over with minor modification.”

To investigate the possibility of residual gauge transformations, consider the positive definite
integral

os/ﬁ%@@qwk»+§@MX@m}:—/ﬁ%qv%+§@@m (5.1)

where the last equality arises from integration by parts, with no surface term for single-valued
¢'. For a residual gauge transform, the latter integral vanishes by (3.17), and then by positive
definiteness we find that d;e; = 0. Thus, the only residual gauge transformation is a trivial
shift by a constant.

In the transverse-traceless gauge (3.10), (3.13), the quadratic action is simply that for
tensors, (3.20). The corresponding general linearized solution is given by the mode expansion,

te) = 3 o)+ 37 S0 5 [ () + Bl (R0 R (5.2
I s=4,% k£0

Here the first term is a space-independent zero mode contribution with mode index I. The
momentum sum is over quantized values k = (27/L)(n,, ny, n.), with integer n;; specifically,
quantization is related to that in infinite space by the replacements

d3k
/ — 73 Z (27)20% (k — k') — L30ye . (5.3)
The ladder operators by, with s denoting the helicity, therefore satisfy the commutation relations

[ f;,bﬂ} = L0590 - (5.4)

9For previous discussion of quantization on T3, see [8].
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The polarization tensors €, are chosen to satisfy the transversality and tracelessness conditions
e;i(k) = kie;(k) = 0, together with a completeness relation obtained by tracing over spatial
indices, €;(k)e;; (k) = 2050. The mode functions are the same as those for a massless scalar,
up to normalization; they are most easily written in terms of the conformal time

xs’

= _H;(t) (5:5)
() = (1 4 ke (5.6)

V3

The quantization of the zero modes is handled separately. In the case of finite volume, these
modes have finite norm. The equation of motion for them has spatially homogenous solutions

of the form "
Yor = Q1 + Pr p; (5.7)

with conjugate variable
mor = a’Yor = Py - (5.8)

In particular, the canonical commutation relations for v, together with completeness, imply
commutation relations of the form ,
Q.Fl=
where V' is the volume of the compact space, and we drop the mode indices. The “dS-invariant”
zero-momentum vacuum P |P = 0) = 0 is non-normalizable just like the ground state for an
ordinary free particle [30]; the corresponding wavefunction is 7, independent, so it gives a
completely indefinite .
To specify an initial size/shape for the torus, we instead choose the vacuum wave function
for the zero modes 7y to be gaussian wave packets peaked around some definite values (here
taken to be zero) in position space

S

The initial velocity due to the finite width of the wave function quickly redshift away, and
since the energy density of the zero mode redshifts away like a®43 oc 1/a® it can effectively be
ignored.

This type of initial state belongs to a class of O(4) invariant Hadamard Fock vacuum
states [31], which can be constructed by defining

(5.9)

= <Aa0 + A"aé)

_ (Bao + B*ag> (5.11)
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where the commuation relation, [ao, ag} = 1, implies

1
A*B—B*A=—. 5.12
. (512
The Hadamard Fock vacua are then defined by
ao|0) =0 (5.13)
With the choice A = —i/(v2VAQ) and B = AQ/+/2, the vacuum wave function in position

space reduces exactly to the one in eq. (5.10); see [31] .

5.2 Growth of variance

The two-point function gives an important measure of the gravitational fluctuations; specifically,
as in (3.22), consider the double trace,

1

(e, 2) = @) = 030) + 75 3
k

2

(14 k2p?)eik =) (5.14)

Here, the IR divergence of the analogous expression for non-compact space has been regulated
by the finite size of the torus, which plays the role of a comoving IR cutoff, like was used
in [12,21,32]. The zero-mode contribution asymptotes to a constant oc (AQ)? at long time.
The coincident limit x = x’, which gives the variance, is UV divergent, but may be regulated
by choosing a minimum physical separation a(t)|x — x’| ~ 1/H, effectively providing a UV
cutoff at k ~ 2ma(t)H. This introduces a logarithmic time-dependence into the variance, as in
the non-compact case; specifically,

2 oma(t)H 2
(72(@)%2(%) /2 B ?(1+k2n2)z2(2HT)210g[a(t)HL], (5.15)

which grows linearly with time. We will also need the variance of specific tensor components,
which can be derived using the sum over polarizations [33]

wiju(Q) = Z e (e (@) = O+ 6udjr — dijon (5.16)

+ 05kt + OriGidy — 0ikGiGr — 0uGiQr — OjkdiQt — 01Giqr + 4id;iqrq:
where q is the unit vector in the direction q. For an arbitrary unit vector n, we find [21]
8
ning (Yav) & §<V2(1¢)> ;g (Yi ) R 1—5<72(5C)> : (5.17)
We can use (5.17) to evaluate the tensor variance in (4.9); for generality we likewise include

the scalar contribution, although in the present section it is gauged to zero. The result is that
on the unperturbed path the line integral yields
1 4

(S) =a(t)L (1 + §(C2(x)> + 1—5(72(:1:)) + .. > : (5.18)
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In de Sitter space or its T? version, the variance, (y?(x)), keeps growing linearly with time
like H3t at leading order, and the effect becomes order one at a time scale of order t ~ R;4Sys.
(This is in parallel with the apparently related case of black hole evolution [21,34,35].) But
even at the end of the non-eternal regime of chaotic inflation, we have (y?(x)) ~ 1 at the time
of reheating, if initial conditions are set at the end of the self-reproduction regime.

5.3 The line integral on the torus

Figure 2: Pictured is a torus, made “lumpy” by metric perturbations, along with a representa-
tive cycle along which distance S can be calculated.

As argued in section 4, the line integral along the unperturbed path does not give gauge-
invariant information, and it is no longer a geodesic in the perturbed metric. We can try to
remedy these by trying to solve the geodesic equation in the constant-time hypersurface to
second order, in order to find the curve with the shortest distance around the torus.

The geodesic equation (4.17) can be integrated, giving

(5.19)

TT )

0,0X" = a® — / dz'T
0

with integration constants a®. However, for a closed geodesic, (5.19) should be periodic, which
is the condition

L
/ daT =0 . (5.20)
0
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From the expression (4.17) we find that this requires

L
aa/ dz Ohgy =0 . (5.21)
0

Let us first consider the case with vanishing fluctuations d6h,, = 0. Then a perturbed
geodesic can be found by integrating and enforcing periodicity. It is useful to introduce a
notation for an average over the curve,

=7 pdaria). (5:22

with § the integral from 0 to L, in terms of which we find

« « 1 ’
X 6N = s /0 A2/ (5hse, — [5haal]), (5.23)

up to an overall constant shift. We can then evaluate the total effect on (S); since the geodesic
equation is satisfied and can be written as (4.14), we find that the last two terms of (4.13) have
average

2 2 2
! <‘S 85X2> + < S 5X5h> = —% < 0 S(SX2> = —@j{dx (0,6 X00:0X,)  (5.24)

2\ 6X2 SXOh 5X2

(c.f (4.16)). Using (5.23) then gives

The last term is subdominant, due to cancellation of the fluctuations in the path average, as
in (4.8).

Next, let us find the additional terms present when dh,, # 0. First, there are the quadratic
terms in 0h already present in (4.9). Then, there is also a cross term linear in 6.X and dh,

1
2a(t)

7{ d20a0hy0 X | (5.26)

If we write 06X = X + 0X5, with 60X, given in (5.23), then the term involving §X; averages
to zero since (YizVea) = 0 for v # x. There are also quadratic terms in 0.X. If 0X; and 0.X,
are uncorrelated, (0,0X70,0X$) = 0, so we have a term as in (5.24) involving only 0.X5.

Thus, combining these terms, the first, leading, term of (5.25) and the other terms in (4.13)
gives

(S) = a()L [1 - %Jq{dm G (Vai Vi) — g Wmvm)) +0 <<72(x)>2)}
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+

TG < jf 200 0han X > + 2 f d (0,6 X20,6X2) . (5.27)

Consider the case 6 Xy = 0. Using eq. (5.17), we find

(8) =)L |1 - Z () + 0 ((0))] (5.28)

in the spatially-flat time slicing (3.13), with (7?) as in (5.15). Comparing with eq. (5.18),
we observe that, while the circumference around the original curve becomes larger due to the
growing variance, we can always find a nearby curve that is shorter than the original curve, by
an amount that grows with the variance of the metric.

The effect becomes even more pronounced if we consider the effect of § X5 # 0 with nonzero
Ohys. If there is no zero mode, that is, (5.21) holds, we can also find solutions of the geodesic
equation for 6.X, # 0. Using the geodesic condition (4.14) for 6.X; and 6.X, independently, the
two terms in (5.27) involving 6 X5 become

_@](dx@é)(g@xé)@ _ _&13;()]{&5<(/0$dx'8a5hm)2>
= ——]{ L3Zk2]{;4 W) (5.29)

where we used that on the torus k, = 27n, /L, such that el = 1.

This expression is divergent from the limit k,/k, — oo. Using the continuum integral in
this limit, and defining r = k, /k and k2 = k*(1 — r?),

—@ f dz (0,0 X20,0X8) — —CL(;)L / (dk K () /0 i = (5.30)

27)2 72

Using rpin = k7" /K™ = 27 /(LA), with k™ = A, we have
—@ %dm (0,0X50,0X5) = —?[P/\ (v(z)) . (5.31)

The size of this effect can be estimated with the UV cutoff A = aH, which, when combined
with (5.28) gives

(S) ~ a(t)L {1 - [135 + %a(t)m] (12(z)) + O <<72(x)>2>} (5.32)

An intuitive picture for our statements is the following. First, variations dhg,,, 0h,, cor-
respond to a contraction of space in some directions, and expansion in other directions. The
basic idea is that by choice of the path, we can take advantage of the contraction and shorten
the total path length, and likewise for non zero-mode h,,. On the other hand, consider a
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variation dh.,(y,z). The zero has the effect of changing the circumference of the xz-cycle in a
y and z dependent fashion, as sketched in fig. 2. We can decrease the length of the curve by
sliding it towards smaller circumference, although reaching a minimum of the circumference,
corresponding to a geodesic, may require a large deformation.

If we disregard the zero mode, we can find a geodesic locally, and since the length can always
be lowered at least to the local geodesic value(5.32), we have an invariant statement: for some
curves in the relevant homotopy class, the average (S) is reduced by at least the amount in
(5.32), and this reduction grows rapidly with the scale factor times variance of y. Thus after a
very few e-folds, the perturbative corrections to the invariant circumference of the torus become
large.

6 Satellite distances and correlator modifications

An alternative way to make diffeomorphism invariant statements is to consider a length between
two physical comoving particles in an inflationary spacetime; in the classical limit we might
also describe them as “satellites.” We assume that at some initial time they are separated by
comoving distance L, in the x direction.

If we compute the distance between the satellites as a function of time, a number of effects
besides the inflationary expansion can contribute. First, the satellites can have an initial
velocity. Classically, this may be set to zero, but in the quantum case it has nonzero spread
due to position/momentum uncertainty. Secondly, with zero such velocity the satellites in
the zeroth-order metric stay at fixed comoving location in the (x,y, z) coordinates, but metric
fluctuations drive motion of the satellites. Thirdly, at sufficiently long times new “Boltzmann”
satellites that are indistinguishable from the original satellites can be created, confounding the
definition of the observables [36]. Finally, we have contributions of the metric fluctuations to
the path length between the satellites, both due to local changes in the length, and due to
the need to perturb to a new path satisfying the geodesic equation in the new metric on a
constant-time slice, as described in the preceding sections.

As we will argue in subsection 6.2, the inflationary expansion rapidly redshifts away an
initial velocity, as well as gradients responsible for satellite motion, and so these effects, as
well as those of Boltzmann satellites, are small on timescales where metric fluctuations make
significant contributions to the path length. For that reason, we will first consider the latter
set of effects.

6.1 Perturbations in path length

We begin by investigating the change in length of the path between two satellites with fixed
comoving coordinates. Thus, we want the contributions of metric and path fluctuations to the
integral (4.1), with endpoints taken to lie at X;(¢) = (0,0,0) and X5(¢) = (L,0,0). In the case
of slow-roll with the comoving gauge (3.12), there is a contribution due to (¢) # 0; however,
we will see in the next subsection that this is small relative to the other effects we consider.
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To second-order in fluctuations of the metric and path, the change in length is again given
by (4.13). In the satellite case, the geodesic equation (4.14) can be solved for the geodesic
connecting the endpoints. This allows us to eliminate the cross term proportional to dhd X in
(4.13). The result for the average (S) is

(S) = S+ alt) /0 o (}l (Cpili) — % <Pmrm>) - @ /0 “ i (020 X00,0X0) + -+ . (6.1)

In order to evaluate the last term in this equation, we must solve the geodesic equation, which
to linear order in perturbations is given by (4.17). The solution is of the form

IX = —/ dm'/ de"TS, + a®x + b (6.2)
0 0

where again a = (y,z). The boundary condition at z = 0 gives b = 0, and the boundary
condition at x = L fixes a®. If we introduce the notation

o / da'Te (6.3)
0

and use the path-average notation (5.22), the solution becomes

5X° = / " (- 1) (6.4)

Thus, the second-order variation in the path length, (6.1), is fully determined in terms of the
two-point functions of the metric fluctuations.

The fact that ¢ and v are independent random variables at quadratic level is sufficient for
us to be able to minimize the path in ( and v independently. Let us therefore consider the
physical time-slicing given by ¢ = ¢y, (3.12), and first focus on the effect of (; v fluctuations are
subdominant in the slow-roll expansion. In this case we have leading contribution (I';;I";,) =
(Tpxlsn) = 4(C?), thus

(S) =S + %a(t) /0 "o () - @ /0 C i (00 X00,0X0) . (6.5)

Let us first consider the situation where we neglect the perturbation of the path, as was
done in [17,18,20] (see e.g. sect. IV.B. of [17] or eqgs. (66), (67) of [18]) and [19]. Then we
simply have

(S) = a(t)L (1 + % (¢ +.. ) ~ aLe? (<) (6.6)

As described in section 2, we might consider the two-point correlation function, as a function
of path length. In terms of coordinate separation, this correlation function is

o) = [ om () e 67
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If we take x = (L,0,0), and write the correlation function in terms of (S) instead, then we

obtain
(€0)¢(z((S))) = / %4% (%H) 2 (s D(¢?) pika(S)/a (6.8)

where we defined k = ke 2(¢). In [17,19] this object was considered as a candidate IR-safe
observable, although this construction is not necessarily relevant for a late-time observer of the
CMB sky for which an IR-safe observable was instead constructed in [12]. One problem with
the construction above from the point of view of a late-time observer is that the curvature
perturbation is not conserved on super-horizon scales when written in terms of the geodesic
distance, since the geodesic distance receives large corrections on large scales. This implies
that in terms of the average of the actual distance (S) along the original path on the reheating

surface, neglecting the perturbation of the path, the spectrum becomes'’
~ ~ 1
P(k) = P (k) |1+ 5 = D)+ | (6.9)

where only modes that exit the horizon after the mode /~€, but before reheating, contributes to
the variance. Thus, for a cosmologically relevant scale exiting the horizon only 60 e-folds before
the end of inflation this effect is order H2N, which is small. But for very large scales, which
exited the horizon N ~ 1/H? e-folds (or At ~ RS) before the end of inflation, the effect is
large.!!

Moreover, we have argued that the original path does not have any invariant meaning in
the perturbed metric; the natural choice is to perturb to the new path which is a geodesic in
the perturbed metric. We will again find this has a significant effect.

Specifically, again focus just on the dominant scalar fluctuations, with

e, =—0.C. (6.10)
Using the notation (6.3), we now have
falz) = /Ox dr' 0, C(2") (6.11)
Thus, the contribution in (6.5) from the path perturbation becomes
@ /0 (05X, 0,0X,) — @ /OL da ((fal@) = [f))") - (6.12)

0The same formula was given by [37].

Note that this is different than the effect studied in [21]. There new semi-classical relations was used to find
the effect of long wavelength modes on the correlation functions written in comoving coordinates (not in terms
of geodesic distance on the reheating surface). In comoving coordinates the curvature perturbation is conserved
on super horizon scales, but long wavelength modes, exiting the horizon before the observed mode, shift the
background of the observed mode when it exits the horizon as in (4.6). To a late-time observer, comparing
correlation functions at different scales, this becomes a physically observable effect [12].
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We then insert the mode expansion for (, and obtain
kK2
(Unle) =) = [ e

Next, we integrate over x, and define a variable r = k,/k, so that k> = k?(1 —r?). These steps
give

/0 da ((fal2) = [fa])*) = / (k d>k (GeC ) / l;f (EL7) +§2£SL(MT)_2. (6.14)

At large k, the integral over r in (6.14) behaves as ~ wkL?/6. One can readily see that
the dominant contribution to this behavior comes from the regime of small r, that is k, < k,
|ko| ~ k. For spectral index ng > 0, this produces a UV divergence in (6.14). For example, in
the scale-invariant case n, = 1, with (((_x) = A[1+ (k/aH)?/k?, and introducing a comoving
UV cutoft Ayy, the contribution to the path length becomes

?/OL do ((fa(w) - [fa])2> = a(t)L {% (AUV + 3([}3}/)2) L+.. } (6.15)

where the dots represent terms that grow less rapidly with the cutoff.

Note that working with the scale-dependent metric (4.4) with scale ¢ corresponds to taking
Ayy = q. If we wish to account for all the metric fluctuations that are outside the horizon scale
at a given time ¢, we should take Ayy = a(t)H, corresponding to a cutoff on physical momenta
~ H. In this case, we find that the corrected formula for the path length takes the form

(S) = a(t)L (1 - ?)Giﬁa(t)HL +. ) (6.16)

e’LkICIS 4

1 ik L
e K I 3T

For scalar fluctuations, A = H?/4e; similar contributions are obtained from tensor fluctuations,
with A ~ H? (Compare (5.32).) We find that the corrections to the path length due to
the fluctuations rapidly become comparable to the length of the unperturbed path. For slow-
roll inflation, this happens on a rapid time scale t ~ H 'logle/(H?L)], or when the satellite
separation is of size

a(t)L ~ eH™? (6.17)

(the result just accounting for tensor fluctuations is similar, without €). This effect completely
overwhelms that of eq. (6.6), considered in [17,18,20]; the basic picture is that the curve can
significantly shorten its length by taking advantage of the short-wavelength variations in the
scale factor. While these effects might be removed by sufficient coarse-graining, taking the
scale ¢ ~ 1/L, we conclude that there are large fluctuations in the actual geodesic distances
between satellites at these scales. These provide an apparent obstacle to a characterization of
the geometry in terms of lengths of its geodesics, at distance scales longer than ~ 1/H?. And,
if correlators are defined directly in terms of the proper distance in the three-geometry, as in

(2.3) or eq. (6.8), this large fluctuating contribution likewise becomes significant.!?

120ne might anticipate similar effects for the case of curves with constant acceleration, noted above, but
checking this is left for future work.
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6.2 Subleading effects

This subsection argues that other contributions to the satellite separation are subleading to the
effect in the preceding subsection; readers willing to take that for granted may wish to skip to
the next section. There are multiple possible sources for such effects. The first category involves
satellite dynamics: the possibility of an initial velocity for the satellites, or, in the quantum
context, spreading of the wavepacket or even production of new satellites. The second category
arises from metric fluctuations: satellites may move in response to metric perturbations, or
there can be corrections to their separation from a one-loop contribution to (¢). We consider
these in turn.

6.2.1 Satellite dynamics

First consider the case where a satellite has an initial velocity in the comoving coordinates,
v = dz'/dr. The Killing vector (2.4) then implies that

dx

=

k a’(t)v (6.18)
is conserved. Thus, any initial comoving velocity redshifts away as 1/a?(t), and the satellite
motion is rapidly dominated by the expansion.

In a quantum framework, one should of course consider a wavepacket describing the satellite
motion. Such a wavepacket is given by

Y(x) = / (;lﬂ’;?, FR)ug(£)e™™ (6.19)

for some initial momentum-space profile f(k). Here the temporal wavefunctions are solutions
of

1d 3duk 2 2 92 .
For dS, these take the form
ug(t) = 1*2HSM (k) (6.21)

in terms of the conformal time (2.5), and with v* = 9/4 — m?/H?. The positive frequency
solution is given by H®. On time scales short as compared to 1/H, we have |kn| > 1, and an
initial wavepacket with width Az ~ 1/Ak < 1/H can be easily seen to evolve as in flat space,
and in particular spreads as Az(t) ~ tAk/m. At longer time scales, kn < 1, and one may use
the asymptotics

@ " 2y

H; [(v) (kﬁ) (6.22)

to find
1

vlo) ~ 2 [ S e (6.23)
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up to an overall constant. Thus, the spread Az ~ 1/Ak in comoving coordinates x is frozen in
time.'® This is consistent with the classical result that any initial velocity is rapidly redshifted
to zero, having little subsequent effect.

Finally, if satellites are treated as quantum objects, they may be created by fluctuations,
just as with elementary particles, Boltzmann brains, or any other object in an inflating universe.
If the number of microstates of such a satellite is A/, the production probability per unit four-
volume is of size exp{—N}. Then, after N efolds, the total number produced is ~ exp{N —N}.
Since N is bounded by the largest black hole in dS, and thus N' < S, we find a number of
“Boltzmann” satellites comparable to the original number of satellites by N ~ S efolds. Before
N ~ N, this is a small effect.

6.2.2 Force on satellites

Satellites can also deviate from fixed comoving position due to forces exerted by the metric
perturbations. To check that this effect is also small, first note that the satellite positions will
be fixed in a different gauge, corresponding to geodesic-normal coordinates:

AN=N'=0. (6.24)

Their motion in the comoving gauge (3.12) can then be found via the gauge transformation
relating these gauges. Specifically, in comoving gauge, the lapse and shift take the form [27]

N=1+ gc' +O?) , N =w (6.25)
with ' '
¢ 1 [dga’C

¢__£+ﬁ( 23?2 ) ' (6:26)

So, the gauge transformation (3.18) from (6.24) to comoving gauge is given by

0 = / dt%é’ (6.27)

and g
y ppa” 0; . OiC / a,
= — 4+ h¥ [ dt-0; 6.28
S FER R PR (6.28)
and in the comoving gauge the satellite trajectories are a* = —e'4 const.

In (6.28), the last two terms redshift away. In slow roll, with ¢2/H? ~ V'2/V? = 2¢, the
displacement is thus dominated by
= —€ ~ eﬁ(’ : (6.29)

13For m > H, the factor in front of the integral in (6.23) takes the form 7%/2~% ~ e=3Ht/2=imt corresponding
to Hubble dilution with massive oscillation.
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and for constant slow-roll parameter,

7l = E%C + const. (6.30)

We can then evaluate the leading contribution to the displacement:

- € dk k? H? dk
((62")?) = 22 /?d(COSQ)EQ—E o eH? = (6.31)

This is dominated in the infrared, leading to the dependence
((62")%) ~ eH?L* , (6.32)

and thus a typical small variation in separation given by dL ~ /e HL < L.

6.2.3 The (¢) tadpole contribution

The tadpole of v must vanish, since it has to be invariant under 3-dimensional Euclidean
transformations, and there is no such invariant, symmetric, traceless two-index tensor. However,
one might still worry about possible IR divergent contributions from the tadpole of ¢, which in
the slow-roll case could lead to effects competing with those in e.g. eq. (4.9). But if the splitting
between background and fluctuations is properly handled, these effects will be subleading. This
is most easily seen by first considering spatially-flat gauge, (3.13). In this gauge, the inflaton
field can be written in terms of its backgound v.e.v. and the inflaton field fluctuations

¢=¢o+¢ (6.33)

where by definition
(@) =do, {p)=0. (6.34)

Now we can use the gauge transformation from spatially-flat gauge into comoving gauge (3.12)
on super-horizon scales to second order (see [27])

1
C =Gt 5 =) (6.:35)
with (,, defined by the linear relation
H
Ch=——0 . (6.36)
bo
From the tadpole condition above, we then have ((,) = 0, and to second order we obtain
1
(@) = 52e =m) (@) - (6.37)

Although the variance (¢?(x)) contributes an IR divergence to the tadpole, it is clearly slow-roll
suppressed compared to the other IR divergent contributions in eq. (4.9).
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6.2.4 Variance of the line integral

Let us consider the contribution from tensor fluctuations to the variance of the line integral in
eq. (4.8) around the torus in the slow-roll, since this is the most interesting case. Since the
tadpole of the tensor modes vanishes, the variance is

(ASAS) = }La2(t) lim < /0 ’ Az (t, %) /0 ’ dx'vm(t,x')> . (6.38)

yz—y'z!

When applying the boundary conditions for the torus, the momentum is discretized and we are
projecting on the zero mode in the x-direction, obtaining

(ASAS) — iaQ(t)LQ (% 3 |7k(t)|2> | (6.39)

ke2d

In de Sitter, we have |v,(t)]> ~ H2/k® for super-horizon modes, and the contribution to
the variance becomes of order (ASAS) ~ a?L?H?, which is small and not IR enhanced. On
the other hand, in slow-roll, there is a small IR enhancement, due to the non-flat spectrum
() ~ H2/k® ~ (H?/k3)(k/aH)™, where n, = —2¢ and € > 0. Here, we write the expansion
rate as a function of momentum at horizon crossing instead of time by integrating eq.(5.18)

of [21], ) _\F | k
s ()] o0

where we assumed for simplicity a standard potential V(¢) = \¢*; “e” denotes values at the
end of inflation. The sum (6.39) is dominated by smallest k, and is of size

! H?
T3 ) ~c 5 log? (La,H,) (6.41)

ke2d

where ¢ is an O(1) constant. In order to evaluate the size of the effect, we assume that slow-roll
inflation started in our local pocket near the self-reproduction scale, such that [21]

H? 1 w2 2
ENZ= _AN? = = 42
P 3A 8N, Pe 8N’ (6.42)

where N is the total number of efolds, N, = 60 is the number of e-folds left of inflation
when the observable modes exits the horizon, and P, = (2.43 £ 0.11) x 1079 is the observed

amplitude of the primordial curvature perturbation spectrum. With these values one obtains
(H?/¢2)N? ~ 1075. Thus, the variance is of order a®>L? x 107>, which is still small.

7 Volume fluctuations

Another measure of spatial geometry in inflationary cosmologies is the volume; here we briefly
comment on this as a diagnostic of fluctuations.
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First, in the flat gauge (3.13), the tracelessness of ~;; implies that the local volume element
Vhd?z is just given by that in the unperturbed solution (3.3). Indeed, vanishing fluctuation in
the local volume element can be thought of as a “physical” way of describing the origin of the
choice of slicing (3.13).

In contrast, when one chooses the time slicing specified by the comoving gauge (3.12),
the fluctuations in the scalar field ¢ specifying the slicing lead to significant variations in the
local spatial volume element. This effect has been explored in some detail in [22,23], which,
within the context of eternal inflation, specifically studied the probability for the volume on
the reheating time slice, ¢ = ¢,, to become infinite. Specifically, the fluctuation contribution
to the volume element at quadratic order is given by

(%) =3, (7.1)
and so the average volume of the reheating surface can be approximated by
(V(t)) = SN3EO) V(1) (72

where t,5, is the time of reheating, t;, is the initial time when inflation commenced, and N is
the number of efolds of the unperturbed solution (3.3).

We can estimate when the effect on the volume at reheating becomes large; this happens
when (¢?(z)) becomes of order 2N/3. In a simple model of chaotic inflation with a monomial
potential V' (¢) = A¢®, the total number of e-folds scales with the initial inflaton field value,
b5, as N = ¢?/(2a), while the variance scales as ((*(z)) = A\¢¢™ /(12720 (o + 4)) [21]. This
implies that the condition (¢*(x)) = 2N/3 is satisfied when

& 2 (4m2aP (o + 4) [ N) 7 (7.3)
which is comparable to the inflaton field value at the end of the self-reproduction scale
o ~ (127202 /\) 577 | (74)
but smaller than the field value when the potential energy density becomes of order O(M;l),
by ~ ATV (7.5)

Thus, large fluctuations in the volume are closely associated with self-reproduction, between
the Planck scale and self-reproduction scale, ¢, > ¢ > ¢, as described in [22,23]. In this
regime, our perturbative approach breaks down [12,21-23,38] and there is no clear approach
to computing the full “wavefunction of the universe.” However, below this, in the non-eternal
regime, the effect on the volume is small compared to the effect described in section 6.1.

8 Extensions and Conclusions

In describing the quantum state of the geometry, one needs to formulate gauge-invariant q-
observables; quantities such as (g, (x)) or even (R(z)) are not gauge invariant. This paper has
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described one way of characterizing inflationary geometry, via nonlocal g-observables involving
lengths of geodesics in the fluctuating spacetime. In the case where space is a torus, and in a
time slicing with zero local deviation from classical expansion, we have found that fluctuations
in the length around a cycle can become significant, and indeed such a curve can become
shorter than an unperturbed curve, fixed in the original comoving coordinates, by a fractional
amount that grows with the variance in the tensor fluctuations. This provides evidence that
accumulation of these fluctuations is indeed an effect with physical consequences. Moreover,
such contributions become large by a time scale t ~ 1/H? (or t ~ RgsSas in terms of the de
Sitter radius and entropy, in general dimensions). This is consistent with the suggestion that
a perturbative description of dS fails at longer times, and with instability of dS space as a
classical geometry [12,21,34].

We have thus found that one of the simplest formulations of gauge-invariant quantities
receives large corrections due to quantum fluctuations. We might seek other characterizations
of geometries, besides such geodesics, for better understanding of these and other effects. The
challenge of respecting diffeomorphism invariance appears significant. For example, as noted,
one may choose a path and examine the holonomy around that path, but the choice of path will
not be diffeomorphism invariant. While workable measures of differences between geometries
are scarce, we mention two possibly worth further exploration. The first is the Gromov-Hausdorf
distance between two geometries. This is based on finding an embedding of these into a common
geometry, and calculating a minimum distance over all such embeddings. A second is the
DeWitt distance. If we have a fixed time slicing, so consider a difference dg = g1 — go between
spatial metrics,'* this can be written

6g|” = /d3$\/§gijgkl(59ik5gjl + K69i;09m) - (8.1)

Here K is a constant; it may be chosen so that in a harmonic gauge, such as V7(dg;; — % Gij09) =
0, the linear gauge transformation (3.6) has zero effect. DeWitt distance also appears to grow
with the variance.

If the inflationary spacetime is adorned with additional structure, say either quantum or
classical matter, additional statements can be made. Specifically, matter allows one to formulate
other relational observables, as e.g. discussed in [2]. One may consider, as in the example of
this paper, an initial distribution of (approximately) classical objects, and describe evolving
features of the geometry with respect to these.

In the case where we try to describe the geometry in terms of lengths between such “satel-
lites,” we find behavior that may have been unexpected. For starters, as the path endpoints
reach separations large as compared to the Hubble scale 1/H, there is no spacetime geodesic,
even in the unperturbed geometry, along which one can define the length. An alternative pre-
scription is to define the length in terms of geodesics constrained to lie within spatial slices.
Different choices of such spatial slices include those determined by either of the conditions

(3.12) or (3.13). However, when one computes the lengths of the geodesics in the perturbed

14One can also work directly in terms of the spacetime geometry.
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metric, one finds that the short-wavelength metric fluctuations lead to significant shortening
of the geodesics, with an O(1) contribution for geodesics of length S ~ 1/H? (and, in the case
of (3.12), shorter by a slow-roll factor €). Thus, one appears to lose control of a perturbative
description of the geometry given in terms of such quantities.!

One may also try to formulate diffeomorphism-invariant correlators of local operators in
terms of proper-distance separation, as in (2.3) [2,16-20,24,25]. Here the above surprises also
play a roll, forbidding such a construction with spacetime geodesics longer than ~ 1/H, and
producing large fluctuations in geodesics constrained to spatial slices, when the operators are
separated by distances < O(1/H?) (or R4sS4s in general dimension). At longer length scales,
characterization of correlators in terms of spatial geometry thus appears to encounter subtleties.
While there are such nonlocal, diffeomorphism-invariant constructions that are sensitive to
growth of fluctuations, there also do appear to be alternative sensible approximately local
observables, that in particular are infrared safe, for observations restricted to small regions;
specifically, those can be defined with an effective resolution parameter that is the size of the
horizon of a given observer, and apply to present-day observations [12]. (See also [13,14].)

In short, when one attempts to describe the quantum state, and some of its observables,
at sufficiently long scales, one finds a breakdown in perturbative calculations. There is no
known approach to accurately calculate this state, and this apparently requires nonperturbative
gravitational dynamics.!® One can nonetheless apparently calculate certain physical quantities
in small enough regions, over small enough time intervals.
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A Gauge fixing to higher order

For our discussion of second-order effects in the H /M, expansion, it is important to check gauge
fixing to this order. Let us parameterize the metric as

Under combined time and space diffeomorphisms,

t—=t=t—¢ |, 2" =sa"=2"-¢ (A.2)

15This might be avoided at a coarse-grained level by introducing additional structure giving a long-distance
averaging prescription, as noted above.

16 A similar story appears present in black hole geometries, at times ¢ ~ RS. This supports the resolution of
the information paradox proposed in [34]. This leaves an information problem, which requires understanding
the long-distance modifications to the state resulting from the nonperturbative gravitational dynamics.
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the metric transforms to second order as
}A'L;j = }A'Lij + 8]'61' + 81-6]- + 260H5i]' + 52}ALij > (AB)

where we expand N — 1, N¢, }Alij, and e order-by-order in H/M,, and 62ﬂij is a term quadratic
in the first-order fields and gauge parameters.
For general h;; (and lapse and shift), we want to find a gauge transformation so that

0ij + hiy =[] (A.4)
with 97}, = ~i; = 0.
From the trace of (A.3), we get to first order

1 -
A = ) 20", e

where H = a/a, and to second order

1 |- N 1
& = 6H h + 20" + Gyhi; — B i(li)/%g)/ (A.6)

Now taking the divergence of eq. (A.3) gives to first order, using (A.5),

1 A 1 .
(%6, + 500)” = —(0i) — S0,hi)) (A7)

(2

(c.f (3.9)). This determines ' o first order, via (3.7) and (3.11).

ij
At second order, we find

1
(0% + 30:0))e” = F; (A8)

where F; is given in terms of the second order h and the first order h and €’s. This can
be inverted, as in (3.11), to determine €; at second order. Note that this procedure may be
iteratively continued to higher order.
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