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In models of dark matter with Sommerfeld-enhanced annihilation, where the annihilation rate
scales as the inverse velocity, N -body simulations of dark matter structure formation suggest that
the local annihilation signal may be dominated by small, dense, cold subhalos. This contrasts
with the usual assumption of a signal originating from the smooth dark matter halo, with much
higher velocity dispersion. Accounting for local substructure modifies the parameter space for which
Sommerfeld-enhanced annihilating DM can explain the PAMELA and Fermi excesses. Limits from
the inner galaxy and the CMB are weakened, without introducing new tension with substructure-
dependent limits, such as from dwarf galaxies or isotropic gamma-ray studies. With substructure,
previously excluded parameter regions with mediators of mass ∼ 1-200 MeV are now easily allowed.
For O(MeV) mediators, subhalos in a specific range of host halo masses may be evaporated, further
suppressing diffuse signals without affecting substructure in the Milky Way.

PACS numbers: 95.35.+d

I. INTRODUCTION

Interest in dark matter (DM) annihilation has been boosted in recent years as a consequence of a number of results
from cosmic ray (CR) experiments. The PAMELA finding [1] of a rise in the positron fraction at high (∼ 10−100 GeV)
energies coupled with harder than expected e++e− spectra from Fermi [2, 3] and ATIC [4, 5] point to the existence of a
new, primary source of high energy e+e−. A more recent Fermi measurement of the positron fraction at 20−200 GeV
[6] confirms the rise reported by PAMELA.

Attempts to explain the new e++e− component of cosmic rays as dark matter annihilation products are immediately
confronted by several difficulties: the e+ and e− fluxes implied by the high-energy excesses are O(100− 1000) times
larger than expected from annihilation of a ∼ TeV-mass thermal relic, no corresponding excess is seen in the antiproton
signal, and the positron spectrum is too hard to arise from DM annihilation into weak gauge bosons or hadrons.
Models of TeV-scale dark matter coupled to light (MeV-GeV) force carriers [7–9] seek to address all three issues:
kinematically forbidding the antiprotons, producing boosted positrons (giving rise to hard spectra), and allowing
Sommerfeld enhancement of the annihilation cross section at low velocities [92]. Such models can explain the CR
excesses while still yielding the appropriate thermal relic abundance, and without appealing to a local over-density of
dark matter [10].

Most studies of such light-mediator models have assumed a smooth, Maxwellian halo in the local (within ∼ 1 kpc)
neighborhood, where the positrons and electrons observed by PAMELA and Fermi are thought to originate. But
analytical arguments and N -body simulations both suggest a richer halo substructure, with a non-negligible fraction
of dark matter residing in self-bound subhalos as small as 10−6M�, as well as tidal streams and other structures.
Neglecting these subhalos would at first appear to be a well-justified approximation; N -body simulations suggest that
they contribute only an O(1) factor to the density-squared integral, and hence to the annihilation rate for conventional
WIMPs. However, bound subhalos typically have velocity dispersions much smaller than the ∼150 km/s of the smooth
halo. As Sommerfeld enhancement confers an additional 1/v-1/v2 scaling to the annihilation cross section (down to
some saturation velocity, below which 〈σv〉 is increased by a constant saturated enhancement), even O(1) contributions
to the density-squared integral can change the predicted Sommerfeld-enhanced DM annihilation rate by an order of
magnitude or more. As such, annihilation in local substructure can overwhelmingly dominate the smooth halo signal
in models with Sommerfeld-enhanced annihilation (related effects have been studied in [11–18]). We show in Figure
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FIG. 1: The ratio of the saturated Sommerfeld enhancement to the smooth halo enhancement as a function of force carrier
mass, assuming a local 1D velocity dispersion of σ = 150 km/s and a dark matter mass of 1.2 TeV.

1 the size of the saturated Sommerfeld enhancement relative to the Sommerfeld enhancement in the smooth halo.
For heavier mediator masses, the difference is only a factor of a few (except on resonances), but for mediator masses
<∼ 100 MeV the saturated enhancement is generically a factor of 10-100 times larger than the smooth-halo boost.

Many constraints on light-mediator models have been obtained under this assumption that the smooth halo dom-
inates the local DM annihilation signal. In other words, model parameters for which the smooth halo annihilation
signal reproduces the results of PAMELA and Fermi are used to normalize signals in constraining channels where no
or little excess is seen. Accounting for a substructure contribution to the local signal significantly changes the model
parameters at which these constraints should be studied, particularly for mediator masses in the ∼ 1−200 MeV range
where the local signal is naturally dominated by Sommerfeld-enhanced substructure. As we shall see, a wide range of
constraints become dramatically weaker in this case, specifically:

• Bounds on the cosmological DM annihilation rate between recombination and reionization, from the anisotropy
power spectrum of the cosmic microwave background (CMB),

• Constraints on light mediators from DM self-interactions,

• Tensions between the relic abundance and the large local signal,

• Non-observation of inverse Compton scattering (ICS) and final-state radiation (FSR) signals from annihilation
in the Galactic center.

The parameter space with force carrier masses ∼ 1 − 200 MeV, which is effectively ruled out in the smooth-halo-
dominated case, is re-opened in the presence of an O(1) substructure contribution to the dark matter density-squared.
This is an important point. Terrestrial fixed-target experiments and low-energy colliders can probe direct production
of light hidden-sector gauge bosons [19]. Of these, collider searches [20–23] can cover the widest range of gauge boson
masses, while fixed-target experiments are sensitive to the widest range of couplings, but at lower masses [22, 24, 25].
Most fixed-target results [26–33] and recent proposals [34–39] have the greatest reach at masses below ∼ 200 MeV,
the region where substructure effects can be most dramatic. Understanding the role of substructure is essential to
clarify what regions of parameter space have astrophysical motivation.

In this note, we will explore the added parameter space that is opened at light (∼ 1-200 MeV) mediator masses
when substructure is taken into account. In section II, we outline the key features of the Sommerfeld enhancement and
simple models that illustrate them, and then review previously studied constraints on the relevant parameter space
from bounds on dark matter self-annihilation and self-interaction. We do not initially consider constraint channels
that depend on the amount or distribution of substructure, deferring that discussion for later. Section III presents a
simple parameterization of the boost to the annihilation rate in the presence of both local substructure and Sommerfeld
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enhancement, and shows how the interplay of these effects relaxes the constraints of section II. We study the parameter
space favored to fit the PAMELA and Fermi cosmic-ray signals as a function of the amount of substructure and the
range of the dark matter self-interaction, the effect of the various constraints on this parameter space, and the effect
of including substructure on the maximum possible annihilation rate (consistent with all constraints). In section IV,
we review and address constraints that depend on the distribution of substructure, both in the Milky Way and on
cosmological scales. These include limits from diffuse γ rays, arising from substructure in the outer Milky Way and
in other halos, and limits from the inner Milky Way, which depend upon the extent to which substructure persists in
the inner galaxy.

II. A REVIEW OF RELEVANT CONSTRAINTS ON DARK MATTER ANNIHILATION AND
SELF-INTERACTION

A. Modeling the Sommerfeld enhancement

Here we briefly review the physics of Sommerfeld enhancement and summarize a simple concrete model for the
enhancement, discussed in detail in [10]. For illustration, consider the long-range self-interaction due to a Yukawa
potential. More complicated potentials are certainly possible, but this simplest scenario captures several key features:
the 1/v scaling of the enhancement, the presence of resonances where the scaling becomes 1/v2, and the saturation of
the enhancement due to the finite range of the potential. We will denote the force carrier by φ, with mass mφ, and
the dark matter by χ, with mass mχ. The enhancement factor – which physically is simply due to the focusing effect
of the attractive interaction – can be derived by solving the Schrödinger equation with a Yukawa potential,

1

mχ
ψ′′(r)− V (r)ψ(r) = −mχv

2ψ(r), V (r) = −αD
r
e−mφr, (1)

where v is the velocity of each particle in the center-of-mass frame (here we use units where h̄ = c = 1), and αD
describes the coupling of the dark matter to the force carrier.

Such a potential can be generated by coupling a scalar φ to Majorana fermion dark matter through a Yukawa term
in the Lagrangian,

Lint = −1

2
λφχχ, αD =

λ2

4π
. (2)

It can also arise in models with a vector mediator: in the examples from [10], the DM is a (pseudo-)Dirac fermion Ψ
charged under a new dark U(1), with the symmetry broken at the GeV scale by a dark Abelian Higgs field hD.

At energies below the symmetry breaking scale, the DM can be regarded as a pair of Majorana fermion species
(which may or may not be degenerate in mass, depending on other operators in the theory). We can write Ψ = (χ, η†),
where χ, η are mass-degenerate two-component spinors of opposite U(1)-charge, following the notation of [40]. If the
DM field acquires a Majorana mass, breaking the mass degeneracy, the mass eigenstates χ1, χ2 are rotated 45◦ from
the gauge eigenstates. Thus the part of the Lagrangian describing the interaction between the dark matter and the
new force carrier is given by,

Lint = −gDΨ̄γµφµΨ = −gDφµ
(
χ†σ̄µχ− η†σ̄µη

)
= −igDφµ

(
χ†1σ̄

µχ2 − χ†2σ̄µχ1

)
, withαD =

g2
D

4π
. (3)

Such a model will also contain other interactions, certainly between the dark Higgs and the gauge bosons, and possibly
between the dark Higgs and the DM (the Yukawa coupling is suppressed by the small mass of the dark Higgs, but there
may be higher-dimension operators with larger effects, in particular if one wishes to generate a Majorana mass term).
These interactions can open additional annihilation channels. A complete discussion is given in [10]; in brief, most of
these channels are suppressed at late times (although they may contribute to DM annihilation during freezeout), with
the possible exception of the s-channel process χ1χ2 → φhD in the case where the mass eigenstates are degenerate.
This additional unsuppressed channel experiences Sommerfeld enhancement as usual, but the exact Standard Model
final state (and hence the contribution to the cosmic-ray signal) will depend on the relative masses of φ and hD and
any further light states in the dark sector.

For simplicity, let us restrict ourselves to the minimal case, where only the χχ→ φφ annihilation channel contributes
to the cosmic-ray signal, and the potential can be approximated as Yukawa. We do not claim that this represents the
complete set of models with Sommerfeld-enhanced annihilation (and an additional example, with a splitting between
the mass eigenstates, is discussed briefly in Appendix A, where the complete Lagrangian is also given). However, it
adequately demonstrates the interplay of the various constraints.
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The Sommerfeld enhancement due to such a Yukawa potential scales as παD/v in the regime where v/c >∼ mφ/mχ,
where mφ is the mass of the force carrier, mχ is the mass of the DM, and αD is the coupling of the DM to the
force carrier. At v/c ∼ mφ/mχ the enhancement saturates due to the finite range of the force; a good estimate for

the saturated enhancement is 12αDmχ/mφ(1− cos θ), where the angle θ ≈ 2
√

6
√
αDmχ/mφ describes the resonance

structure [41, 42]. Points where θ = 2πn correspond to values of αDmχ/mφ where the potential has a zero-energy
bound state; close to these resonances, the enhancement instead scales as ∼ 1/v2 up to saturation. Thus, the saturated
low-velocity enhancement exceeds the enhancement at intermediate velocities v (as in the smooth local halo) by a
ratio ∼ 4mχv/mφ(1− cos θ) ≥ 2mχv/mφ.

B. Constraints on the saturated enhancement

Due to the rapid scaling of the Sommerfeld enhancement with velocity, strong constraints on the parameter space
originate from systems where the typical DM velocity is very small (in particular, dwarf galaxies and the early
universe). The potentially large ratio between the enhancement in the smooth local halo and the low-velocity saturated
enhancement allows such limits to be translated into strong bounds on the local DM annihilation rate. In particular,
such searches are sensitive to small mediator masses, due to the 1/mφ scaling of the ratio, and the regions around
resonances, where this ratio is large as shown in Figure 1.

In the absence of substructure, the strongest constraints in this category arise from measurements of the cosmic
microwave background (CMB)[93]. Dark matter annihilation during the epoch of recombination injects ionizing
electrons and photons which broaden the last scattering surface and give rise to increased damping of temperature
anisotropies, combined with enhanced polarization anisotropies [43]. The annihilation cross section can therefore be
constrained by high-precision measurements of the CMB. The typical velocity of WIMPs at z ∼ 1000 is of order
v ∼ 10−8c [44], so we expect the Sommerfeld enhancement to be saturated; the bound from WMAP 5 can be
summarized as 〈σv〉sat

<∼ (120/f) (mχ/1TeV) 3×10−26cm3/s, where f ∼ 0.2−0.7 is an efficiency factor depending on
the annihilation final state (see [45] for details)[94]. This bound is typically only a factor of ∼ 2− 3 higher than the
local annihilation rate required to fit the CR excesses; consequently, if the smooth halo dominates the local signal,
mediator masses lighter than ∼ 200 MeV can be ruled out, at least for simple Sommerfeld models [10].

C. Self-interaction limits

The Sommerfeld enhancement is simply the effect of virtual force carrier exchanges prior to dark matter annihilation.
The same force carriers that mediate the Sommerfeld enhancement will give rise to a long-range self-interaction for the
dark matter, which can be constrained by studying the longevity and morphology of various astrophysical systems.

Buckley and Fox ([46] and references therein) identify seven classes of constraints, from observations of the Bullet
Cluster, evaporation of galaxies and dwarf galaxies, the stability of elliptical cores in galaxy clusters, the growth rate
of supermassive black holes, thermodynamics of galaxies, and the structure of dwarf galaxies. Feng, Kaplinghat, and
Yu independently examined the constraints from elliptic galaxies [47].

Each of these constraints can be formulated in terms of a velocity-averaged transfer cross-section at an appropriate
characteristic velocity, which for a particle of mass mχ in a Yukawa potential controlled by the mediator mass mφ

and coupling αD is well approximated by [48],

σT ≈


4π
m2
φ
β2 ln(1 + β−1), β < 0.1,

8π
m2
φ
β2/(1 + 1.5β1.65), 0.1 ≤ β ≤ 1000,

π
m2
φ

(
lnβ + 1− 1

2 ln−1 β
)2
, β > 1000,

(4)

where β = 2αDmφ/(mχv
2
rel). Limits on σT in systems of different velocity dispersions can be formulated as upper

limits on αD, as a function of mφ and mχ, and compared to one another.
The shape of dwarf galaxies presents a particularly strong potential constraint on Sommerfeld-enhanced models,

because it depends on self-interaction at velocities as low as 10 km/s, where the scattering cross section from light
mediators can be large. Transfer cross-sections σ/mχ

>∼ 0.1 cm2/ g at velocity dispersions v0 ≈ 10 km/s are expected
to cause significant departures in halo structure from cold DM models (see e.g. [49]).

Transfer cross-sections above this “self-interaction threshold” would significantly affect the structure of dwarf galax-
ies, though such effects may not be ruled out. Indeed, it has even been argued that such a velocity-dependent force
can explain the origin of cores in dwarf galaxies [50]. Some literature has nonetheless treated this threshold as a limit,
and we include it in our numerical results. A more conservative upper limit is σ/mχ

<∼ 5.6 cm2/ g, the threshold
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for collapse of the dwarf halo’s core in less than a Hubble time [49] (we thank M. Kuhlen for bringing this point
to our attention). In Sommerfeld-enhanced models, the latter limit is never reached in parameter regions permitted
by the dwarf evaporation limit, discussed below. The “self-interaction threshold” cross-section is reached even for
tiny couplings at low mediator masses, but rapidly becomes irrelevant at high mediator masses. For example, for
mχ = 1 TeV and mediators masses below 7 MeV, σ/mχ

<∼ 0.1 cm2/ g requires αD <∼ 10−4, but for larger mediator
masses, it requires

αD <∼ 0.023×
(

20 MeV

mφ

)4.7

(7 <∼ mφ
<∼ 20 MeV). (5)

Thus, self-interaction effects are typically not significant for Sommerfeld-enhanced explanations of the PAMELA
and Fermi excesses with mφ > 20 MeV. While this “bound” is much weaker than that arising from the cosmic
microwave background, we shall show that it becomes the leading constraint on light-mediator models with significant
substructure.

A weaker, but more robust constraint arises from the evaporation of dwarf galaxies, which however depends on the
velocity dispersion of the host galaxy. The presence of dwarf galaxies in the Milky Way implies a bound σT /mχ

<∼
0.1 cm2/ g at velocities v0 ≈ 100 km/s. This bound permits αD approximately 100 times larger than the self-
interaction threshold (αD <∼ 0.01 for mφ < 20 MeV). Even in the presence of significant substructure, this constraint
is weaker than the one from the CMB.

D. Relic density limits

There has recently been some debate over whether models with Sommerfeld-enhanced annihilation can provide a
large enough cross section to fit the local CR data at all, while remaining consistent with the measured DM relic
density: in other words, the upper limit on the DM–mediator coupling required to avoid over-depletion of the DM
density has been said to rule out the entire parameter space in which such models can fit the CR excesses. Specifically,
assuming the signal originates entirely from the smooth halo, [51] found that the maximal local enhancement was too
low by a factor of ∼ 15 to explain the CR signals, assuming a 2.35 TeV DM candidate annihilating through a light
force carrier solely into muons (providing a good spectral fit to the data), with a local halo density of 0.3 GeV/cm3.

However, this claimed tension was based on a rather small region of parameter space, within a limited class of
models. Using a more up-to-date local density estimate of 0.4 GeV/cm3, and specific models where the light force
carrier was a vector and decayed to SM states according to their charge (via kinetic mixing with the photon), [10]
found that the discrepancy was a factor of ∼ 3 or less (depending on the DM mass and final state) if the states in
the dark-charged DM multiplet were taken to be degenerate, and that there was no discrepancy if a small splitting
(∼ 0.1− 1 MeV) between the states was permitted.

E. Inner Galaxy limits

Finally, limits on gamma-ray emission from around the center of the Milky Way place constraints on dark matter
annihilation which can be applied to models with Sommerfeld-enhanced annihilation, albeit with large astrophysical
uncertainties. Such limits have been studied by e.g. [52–60].

The gamma-ray signal from dark matter annihilation has two components: (1) photons produced in the annihilation
itself, either as final state radiation (FSR) or from decays of neutral pions, and (2) starlight, infrared and CMB photons
which are inverse Compton scattered to gamma-ray energies by high-energy e+e−. We label these two components
as “FSR” and “ICS” respectively. Both components depend on the DM density profile and the velocity profile in
Sommerfeld-enhanced models; the ICS component tends to provide much stronger constraints than FSR alone for
models fitting the PAMELA and Fermi excesses, but such limits rely on an accurate model for cosmic ray propagation.
N -body simulations of cold dark matter structure formation predict a DM density profile with a pronounced peak

(“cusp”) in the Galactic center. Observations of low-surface-brightness disk galaxies and dwarf galaxies indicate that
such steep cusps are not present in those systems: instead, shallow “cores” in the density distribution are found
(see e.g. [61] for a review and [62] for recent data). However, for the Milky Way and similar galaxies, there is no
observational evidence either for or against the presence of such a core.

The most recent conservative analyses of the gamma-ray signal from the inner Milky Way [58–60] indicate that
models fitting the CR data remain allowed if the final state consists of electrons and/or muons, and the DM density
profile possesses a core. For DM density profiles that instead possess a cusp with the properties favored by N -body
simulations, there is severe tension between models fitting the CR data and gamma-ray limits; a recent analysis using
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less conservative assumptions finds tension even for a cored profile [63]. These analyses assume that the local and
inner Galaxy signals are both dominated by the smooth halo, and the annihilation cross section does not change with
Galactocentric radius.

How these constraints change when Sommerfeld enhancement is included is not clear, simply because the velocity
distribution of dark matter in the inner Galaxy is also not well known. While some authors have included models
for the velocity dispersion motivated by N -body simulations (see e.g. [64, 65]), the presence of baryons is expected
to significantly affect the density and velocity profiles of DM in the inner Galaxy, and even the sign of the effect is
not clear (see e.g. [66–75]). For the ICS signal, which is essential to obtaining the strongest constraints on models
which do not produce copious neutral pions, the magnetic field of the inner Galaxy plays an important role, and the
presence of gamma-ray structures suggesting a possible large-scale high-energy outflow from the Galactic Center [76]
calls into question the usual steady-state modeling of CR propagation in this region of the sky.

Due to these astrophysical uncertainties, we do not impose the inner Galaxy limits when determining our preferred
regions of parameter space. Nonetheless, for non-cored DM density profiles the FSR signal alone is sufficient to rule
out some DM explanations for the CR excesses, when the excesses are attributed to DM annihilation in the smooth
halo. Any effects that relax these constraints are of consequence for the viability of these models. If local substructure
is significant, the inner-galaxy constraints are weakened to the point of irrelevance, as we will discuss in §IV B (see
also §III A).

III. THE EFFECT OF SUBSTRUCTURE

Having reviewed the constraints on the scenario where the CR excesses originate from Sommerfeld-enhanced DM
annihilation in the smooth halo, we now study how the preferred regions of parameter space shift in the presence
of local substructure. In all cases, a sufficiently large relic abundance can be readily achieved in these models in
conjunction with a fit to the CR excesses, although this constrains the value of αD when other parameters are fixed.
On the other hand, the CMB and self-interaction constraints can be quite restrictive. While both are independent
of the presence of substructure, they are nonetheless sensitive to the same low-velocity physics that is relevant for
Sommerfeld enhancement in subhalos. We must be certain that invoking a large low-velocity boost for DM annihilation
within subhalos, sufficient to generate an important contribution to the observed positron signal, does not place us
in conflict with these observations. While previous studies have considered simply adding substructure to generate a
larger signal, this is the first attempt to study the signal self-consistently with robust constraint channels.

We demonstrate that CMB constraints on the saturated enhancement require that substructure contribute a 40%
enhancement to the local DM density-squared from the smooth halo, in the case where annihilation in substructure
provides a good fit to the CR excesses; however, if this condition is satisfied, mediator masses in the 1−200 MeV range
are permitted (in contrast to the case where the local annihilation signal is dominated by the smooth halo). For medi-
ator masses less than ∼ 10 MeV, the resulting DM-DM scattering cross section exceeds the “self-interaction threshold”
to significantly affect the structure of dwarf galaxies, but is not ruled out by robust bounds on DM self-interaction. If
substructure enhances the DM density-squared integral by O(1), then combined local boost factors (from substructure
and Sommerfeld enhancement) of 100− 1000 can arise consistently for a wide range of mediator masses, and even in
regions of parameter space where the maximum allowed boost factor from Sommerfeld enhancement in the smooth
halo is only O(1).

A. Parameterizing local substructure

The effect of local substructure on a wide variety of constraints can be understood through a simple parametrization,
treating the amount of local substructure as a free parameter. We write 1 + ∆(r) = 〈ρ2(r)〉/〈ρ(r)〉2, where r =
Galactocentric radius, and defer discussion of the expected value of ∆ to the next section. When substructure boosts
are non-negligible, most of the substructure signal comes from small dense subhalos with saturated Sommerfeld
enhancements. The enhancement factor from substructure and Sommerfeld enhancement can then be written as

Seff ≈ Sv(r) + Sv→0∆(r), (6)

where Sv is the Sommerfeld enhancement factor at velocity v. Generally, one or the other term will dominate, in which
case we are either “smooth halo” dominated (former term), or substructure dominated (latter term). For cosmic-ray
signals, propagation of the CRs from the point of annihilation means that strictly the relevant substructure boost is
given by ∆(r) averaged over some volume. However, for the energies relevant for the PAMELA and Fermi signals,
most of the observed positrons come from within 1 kpc [77], and it is reasonable to approximate this average by the
local value ∆(8.5kpc).
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The term “boost factor” is commonly used to describe any number of enhancements to the cross section, but
generally refers to either the boost from substructure compared to a smooth halo, or the boost by the Sommerfeld
enhancement relative to an uncorrected s-wave cross section. We will attempt to clearly distinguish between the
various “boosts” (in particular because both of these contributions will vary from place to place). We define the
general “boost factor” (BF) as the enhanced annihilation rate 〈σvρ2〉 divided by the canonical (3 × 10−26 cm3/s)
×〈ρ〉2, from all combined effects. Then we obtain the relation,

BF = BFsmooth

(
1 +

Sv→0

Sv(r)
∆(r)

)
=
〈σv〉v∼150km/s

3× 10−26cm3/s

(
1 +

Sv→0

Sv(r)
∆(r)

)
. (7)

If the second term (proportional to ∆(r)) is dominant locally, then one needs to understand its scaling with r – not
just that of the smooth ρ(r)2 – to understand how limits are affected.

Consider constraints from the inner Galaxy (or another system with little substructure where the characteristic
velocity can be quite high); let us assume that ∆(r) = 0 there, i.e. all the substructure has been disrupted. Then the
ratio,

BFGC

BFlocal
=

BFGC,smooth

BFlocal,smooth

(
1 +

Sv→0

Sv∼150km/s
∆(8.5kpc)

)−1

=
Sv(r=0)

Sv∼150km/s + Sv→0∆(8.5kpc)
→ 1

∆(8.5kpc)

Sv(r=0)

Sv→0
, (8)

is in general not equal to one as most studies of the inner Galaxy limits have assumed. In the substructure-dominated
case, the final expression of (8) approximates the ratio of boosts, which can easily weaken constraints from the inner
Galaxy by up to three orders of magnitude (see Figure 1) even for moderate ∆(8.5kpc) ∼ 0.1− 1.

Constraints from systems where the Sommerfeld enhancement is already saturated must also be modified to account
for local substructure, and behave quite differently depending on whether the smooth halo or substructure dominates
the local signal. Specifically,

BFsat

BFlocal
=

Sv→0

Sv∼150km/s + Sv→0∆(8.5kpc)
→

{
Sv→0/Sv∼150km/s smooth-halo-dominated

1/∆(8.5kpc) substructure-dominated
(9)

The ratio applicable when the smooth halo dominates can be very large, particularly for mediator masses below 100
MeV, making bounds from the CMB particularly constraining of these models. In the substructure-dominated case,
by contrast, Sommerfeld-enhanced models behave like models with a large but velocity-independent annihilation cross
section, with a local density-squared rescaled by ∆. The resulting constraints are potentially orders of magnitude
weaker than one would have thought by considering only the smooth component of the local halo.

B. Consistent scenarios for thermal freeze-out

In general, in the presence of a dominant substructure contribution, the value of αD that produces the CR excesses
is too small to generate the observed relic density by thermal freezeout, at least in the simplest models (in contrast to
the smooth-halo case with larger DM mass and different decay modes studied in [51]). The benchmarks given in [10],
which achieve the correct relic density and local boost factor assuming the entire signal originates from the smooth
halo, are generally not appropriate for the substructure-dominated case because they overproduce the CR signal.

Instead, one is led to consider models where additional annihilation channels are important during freeze-out, which
may or may not be relevant for the CR excesses today. Inclusion of such processes significantly affects which models
are allowed, by breaking the linkage between the Sommerfeld enhancement and the annihilation cross section, and
hence allowing extra depletion of the relic density while still producing the desired CR signal. To illustrate the
interplay between CMB/self-interaction constraints and present substructure enhancements, we consider two limiting
cases: a case with only new “irrelevant” annihilations, and a case with only new “relevant” annihilations, in the sense
of being (ir)relevant to indirect detection.

The first possibility is that there may be extra annihilation channels that are important for freezeout, but irrelevant
to the CR excesses today. These processes might include p-wave suppressed annihilation, channels that experience a
repulsive Sommerfeld effect, involvement of excited states that are present in the early universe but have decayed by
the present day, very soft annihilation channels (which contribute to e+e− signals where the backgrounds are large),
or annihilations into invisible channels, such as neutrinos or dark-neutralinos.

In this case (new “irrelevant” channels), we assume that the annihilation rate relevant to indirect detection in
the Galactic halo is calculable from the parameters αD, mφ, and mχ alone, and take it to be given by the minimal
t-channel annihilation cross section into dark gauge bosons, 〈σv〉 = πα2

D/m
2
χ× the Sommerfeld enhancement. We
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FIG. 2: Contours of constant dark sector coupling αD as a function of mediator mass mφ and substructure contribution ∆, for
a fixed dark matter mass of 1.2 TeV and local boost factor (BF) of 100, in the scenarios with new “irrelevant channels” (left
panel) and “relevant channels” (right panel). The BF includes contributions from Sommerfeld enhancement and substructure

and is defined by BF =
〈σv〉v∼150km/s

3×10−26cm3/s

(
1 + S(v→0)

S(v∼150km/s)
∆(r ∼ 8.5kpc)

)
. Regions to the left of and/or below the red dashed

(blue dot-dashed) lines are ruled out by constraints from the CMB (self-interaction bounds). The thin blue dot-dashed line
denotes the threshold at which self-interaction effects in dwarf galaxies become significant, but may be allowed. The region
to the left and below the green dotted line is where WIMPonium formation becomes relevant; at this DM mass and for this
class of models, WIMPonium formation is almost always ruled out by the CMB constraints, although it can become relevant
at higher DM masses. The dark gauge boson is assumed to decay into electrons only, in which case this boost factor and DM
mass provide a good fit to the PAMELA and Fermi data. When the gauge boson mass exceeds twice the muon mass, the
true final state may become more complicated, so this region is indicated by cross-hatching. For all points on this plot, the
Boltzmann equation has been solved numerically to confirm that the thermal relic density is not over-depleted.

further assume that the Sommerfeld enhancement is controlled by the same force carriers into which the dark matter
annihilates.

Where the calculated annihilation rate is smaller than required to generate the correct relic density, we assume the
difference is made up by these extra annihilation channels which – for whatever reason – do not contribute signal to
present-day indirect detection experiments. Where this rate is too large to generate the correct relic density, we say
that this point is ruled out by the relic density constraint. In other words, we take the relic density to provide an
upper bound on the annihilation cross section, rather than fixing its value.

Alternatively, there could be additional annihilation channels that contribute to both freezeout and the local CR
signal, but which do not correspond to force carriers mediating additional Sommerfeld enhancement. This could arise
for instance by annihilations into an additional force carrier that is not as effective for Sommerfeld enhancement (e.g.
due to a more massive force carrier), but has a larger coupling. In this class of scenarios (new “relevant” channels),
we again take αD, mφ, and mχ, and assume that these parameters determine the Sommerfeld enhancement, but that
the underlying cross section relevant for both freezeout and indirect detection experiments 〈σv〉, which is Sommerfeld-
enhanced at low velocities, can be larger than the naive πα2

D/m
2
χ. When even the “bare” rate of 〈σv〉 = πα2

D/m
2
χ

alone is larger than allowed by the relic density, we again say that this point is ruled out by the relic density constraint
(again, taking the relic density to give an upper bound on the cross section).

In both cases, we must take into account the fact that the presence of Sommerfeld enhancement reduces the “bare”
annihilation cross section that gives the correct relic density [10, 51, 78, 79]. We follow [80] and use a Taylor expansion
of the Sommerfeld enhancement during freezeout to estimate the magnitude of this effect.

C. Self-consistent substructure-dominated scenarios

We can now choose the parameters to achieve a desired boost factor locally – in particular, one consistent with
the CR excesses – and ask how constraints from the CMB and self-interaction limits bound the force carrier mass,
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as a function of the substructure contribution. As previously, we consider the Sommerfeld enhancement induced by a
Yukawa potential (a slightly more complex example is discussed briefly in Appendix A), as this simple case adequately
demonstrates the effect of non-zero ∆. We use a DM mass of 1.2 TeV and a local boost factor of 100 as a benchmark,
and assume the dark force carrier decays only into electrons, as appropriate for a vector boson with mass < 2mµ:
this benchmark provides an adequate fit to the PAMELA and Fermi measurements. It is sometimes claimed that the
electron-only channel gives a sharp spectral endpoint inconsistent with the CR data, but while this is true for direct
DM annihilation to e+e−, annihilation to φφ followed by φ → e+e− decay gives an endpoint of similar sharpness to
χχ → µ+µ−, and provides a good fit to the data [57] (an example model with slightly lower DM mass and boost
factor is shown in [10]). Showering or decays within a more complex dark sector can also soften the endpoint and
improve the fit to the data [57, 81].

For each point in ∆ −mφ parameter space, we numerically solve for the largest value of the dark sector coupling
αD that gives rise to the desired local boost factor: smaller values of αD may achieve the same local boost factor, but
only if they lie near the tips of narrow resonance peaks (a requirement which becomes increasingly finely tuned as αD
decreases, since the enhancement must be increasingly close to perfectly resonant to cancel out the usual reduction
in the enhancement from lowered αD). Consequently, choosing the largest possible αD yields the most “natural”
parameter set giving the desired boost factor, in the sense that small changes to the parameters will not change the
boost factor very much. The resulting self-interaction cross section and signal in the CMB can then be compared
to the limits. There is a third constraint from relic density, as described above for the cases of extra relevant and
irrelevant channels, which we check by solving the Boltzmann equation for the late-time dark matter density (including
Sommerfeld enhancement). However, for a required boost factor of 100 at mχ = 1.2 TeV, the constraint curve does
not appear on these plots. Even for zero local substructure and zero mediator mass, a boost factor of 100 is attainable
via the Coulomb-like παD/v Sommerfeld enhancement while maintaining consistency with the relic density bound (as
can be seen from e.g. [51]). Our results are shown in Figure 2.

The major difference between the two scenarios we consider (with extra “irrelevant” and “relevant” channels re-
spectively) is the rate at which the preferred value of αD falls with increasing ∆, and hence the strength of the
self-interaction bound at low masses. In the first case, with extra irrelevant annihilation channels, the saturated anni-
hilation rate scales as α3

D, whereas in the case with additional relevant channels, the bare annihilation rate is largely
fixed by the relic density alone, and so the saturated annihilation rate scales roughly as αD. Consequently, in the
“irrelevant channels” case relatively small changes to αD are sufficient to greatly reduce the signal, compensating for
the increased boost factor from saturated enhancement in subhalos; αD changes by only a single order of magnitude
over the parameter space we consider. If the self-interaction threshold discussed earlier is treated as a limit, it remains
quite stringent at mediator masses below mφ ∼ 10 MeV. In the “relevant channels” scenario, on the other hand, a
large reduction in the saturated annihilation rate requires a large reduction in αD: the very low values of αD at low
mediator mass and O(1) ∆ also greatly relax any self-interaction bounds.

If the force carrier mass is sufficiently light, mφ < α2
Dmχ/4, then it is possible for two DM particles to radiatively

capture into a bound state at low velocities, referred to as WIMPonium. The capture cross section scales in the same
way as Sommerfeld-enhanced annihilation in the low-velocity limit, but is larger by a factor of ∼ 6 in the limit where
mφ � α2

Dmχ/4. For this DM mass, WIMPonium formation primarily affects regions of parameter space that are
already ruled out by the CMB bounds, but it can be marginally relevant for ∆ ∼ 0.5− 1 and few-MeV force carriers,
and is included in the plots.

Figure 2 is useful for showing how the different constraints compare, but relies on picking a specific target boost
factor. A question of perhaps more general interest is how the maximal boost factor consistent with all constraints
varies as a function of ∆ and mφ. We again proceed by sampling the ∆ −mφ parameter space holding mχ fixed at
1.2 TeV, and at each point scan over αD and numerically check consistency with the CMB, self-interaction and relic
density bounds, to obtain the maximum boost factor consistent with these limits. We include radiative capture to
WIMPonium in the boost factor, for values of αD where it is kinematically allowed.

As mentioned previously, at resonance peaks relatively low values of αD can give rise to very large saturated
enhancements. Relying on such resonance peaks is problematic for several reasons:

• The usual treatment of the Sommerfeld enhancement neglects higher-order corrections that regulate the reso-
nances; the saturated enhancement in our current approximate treatment diverges at the exact centers of the
resonances, and this is not physical.

• On the resonances, the enhancement saturates at lower velocities than in the non-resonant case; close to the
centers of the resonances, it is not clear that we can assume the enhancement is saturated in the smallest
subhalos.

• Our perturbative treatment of Sommerfeld corrections to thermal freezeout fails in the case of highly resonant
enhancement, since in this case annihilations can recouple after kinetic decoupling.
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• From an aesthetic perspective, demanding that the Sommerfeld enhancement be highly resonant implies fine-
tuning of the parameters.

Consequently, we impose the further condition that the saturated Sommerfeld enhancement must not exceed the
expected non-resonant value, 12αDmχ/mφ, by more than a factor of 10. Increasing this factor to 100 (or decreasing
it to 3) has a negligible effect on the results.
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FIG. 3: The maximum local boost factor for 1.2 TeV dark matter consistent with constraints from the thermal relic density,
the CMB, self-interaction bounds, and naturalness (in the sense of not relying on the resonance peaks), in the scenarios with
new “irrelevant channels” (left panel) and “relevant channels” (right panel). The dark gauge boson is assumed to decay into
electrons only; when the gauge boson mass exceeds twice the muon mass, the true final state may become more complicated,
so this region is indicated by cross-hatching. In the left panel, parameter points that maximize the boost for mφ < 13 MeV
have transfer cross-sections at 10 km/ s above the “self-interaction threshold” of 0.1 cm2/ g. Treating this threshold as a hard
constraint would extend the white region (BFlocal,max ≤ 1) out to the black curve, while having no effect at all on the contours
for mφ > 13 MeV. In contrast, the self-interaction bounds are never constraining for scenarios with new relevant channels.

The results of this analysis for scenarios with either “irrelevant” or “relevant” annihilation channels are shown in
Figure 3. The limiting constraint in most of the parameter space is that from the CMB, with dwarf evaporation
becoming a significant constraint only at low ∆ and mφ, in the case of “irrelevant channels” (which require larger
αD to produce a given boost). The more stringent “self-interaction threshold” of σT = 0.1 cm2/ g at v0 = 10 km/s,
above which DM scattering within the dwarf halo would change its shape significantly from non-interacting CDM
simulations, is not included as a constraint, but the parameter points shown in the left plot (irrelevant channels)
cross this threshold at mφ = 13 MeV. If we were to treat this threshold as a constraint, it would leave the region
mφ > 13 MeV completely unaffected, but sharply change the maximum boosts in the region mφ < 13 MeV, with the
white region BFlocal ≤ 1 pushed out to the near-horizontal black line. No self-interaction effects are important in the
“relevant channels” scenario because of the much slower scaling of the annihilation rate with αD.

In Figure 3 we see that a maximal boost factor of ∼ 100 is first achieved at ∆ ∼ 0.4 − 0.5 for small mediator
masses; in this region of parameter space, the CMB provides the strongest constraint. This is consistent with Figure
2, where we see that the target boost factor of 100 is first consistent with the CMB limits at ∆ ∼ 0.4 − 0.5. We
have checked the effect of running the analysis with and without including WIMPonium formation and found that it
makes essentially no difference to our results (although the plots we show do include it): the parameters for which
WIMPonium formation is kinematically allowed are in general excluded by the constraints, or at most marginally
allowed, and so contribute little to the maximum boost factor.

In the ∆ = 0 limit, the maximum boost factor is strongly dependent on mφ, but for ∆ of O(1) this dependence
is almost completely removed. This is to be expected: in this regime the CMB provides the strongest limits, the
local enhancement is substructure-dominated, and the ratio of the local enhancement to the saturated enhancement
depends only on ∆. (We remind the reader, however, that models saturating the CMB limit with very low mφ

<∼ 10
MeV have transfer cross-sections of order 0.1−1 cm2/ g at 10 km/s, whose effect on the substructure of dwarf galaxies
is significant.) Figure 4 shows the increase in maximum boost factor (consistent with all constraints) in the presence
of substructure, as a function of ∆ and mφ: even for ∆ of O(1), the factor can be two or more orders of magnitude.
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FIG. 4: The ratio of the maximum local boost factor for 1.2 TeV dark matter to the maximum local boost factor with ∆ = 0,
where in both cases the parameters achieving the maximum local boost are required to respect constraints from the thermal relic
density, the CMB, self-interaction bounds, and naturalness (in the sense of not relying on the resonance peaks), in the “irrelevant
channels” (left panel) and “relevant channels” (right panel) scenarios. The dark gauge boson is assumed to decay into electrons
only; when the gauge boson mass exceeds twice the muon mass, the true final state may become more complicated, so this
region is indicated by cross-hatching. In the “irrelevant channels” scenario, the region where the substructure-enhanced local
boost is less than 1 is blacked out, since while this region may have a larger boost factor with substructure than without, the
boost factor is still very small and so its details are not very interesting. If the “self-interaction threshold” from self-interaction
of DM within dwarf galaxies were treated as a hard constraint, this black region would extend out to the black curve.

IV. THE DISTRIBUTION OF SUBSTRUCTURE AND ITS IMPLICATIONS

Having explored the effect of non-zero local substructure ∆ on the CR signal, we would like to understand both the
most likely value of ∆ and the implications of non-zero ∆ for other possible constraint channels. However, the amount
of local substructure is highly uncertain. N -body simulations cannot resolve the small subhalos that are expected
to contribute the bulk of the signal, so some extrapolation procedure must be employed (over 12 or more orders of
magnitude). The mass of the smallest subhalos scales as the cube of the temperature of kinetic decoupling of the
DM from the SM, which can easily range from 1− 100 MeV. Furthermore, DM self-interactions and baryonic physics,
neither of which are included in N -body simulations, may deplete substructure and/or flatten the density profiles of
subhalos at later times.

Consequently, it is important to explore the consequences of a broad range of substructure scenarios. We consider
the formulations of [17, 18, 82], each of which attempt to understand the implications of N -body simulations, and study
their consequences for a range of gamma-ray signals. These signals have been considered previously in other papers,
but not generally in the context of a scenario where the local signal is substructure-dominated due to Sommerfeld
enhancement.

We examine the effects of abundant substructure on constraints from the inner Milky Way, dwarf galaxies, and
the extragalactic gamma-ray background. We find that the inner-Galaxy constraints can become nearly irrelevant
in substructure-dominated scenarios. While constraints from dwarfs are likely strengthened by substructure (relative
to the case that the local and dwarf halos are both dominated by their smooth components), the parameter space
of interest remains allowed. Bounds from the extragalactic gamma-ray background radiation are more stringent,
requiring a local substructure enhancement ∆ >∼ 1 in the substructure-dominated scenario. These bounds are most
easily accommodated with ∆ ∼ 6, but smaller ∆ can be consistent within reasonable uncertainties in the abundance
of isolated small halos and the dark matter damping scale.
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FIG. 5: left: the profile ∆(r)/∆(8.5kpc) for four different approaches to extrapolating N -body results into the inner halo. right:
ρ2(r)/ρ2(8.5kpc) (relevant for line-of-sight calculations) with ∆(8.5kpc) × σvsat/σvsmooth = 10 for the same extrapolations.
Lines are: the approach of [18] to the Via Lactea II simulation (blue, long-dashed), the approach of [17] to the Aquarius
simulations (purple, long-short dashed), the approach of [82] to the VLII simulation, with tidal disruption (red, solid), and
without tidal disruption (green, dashed).

A. Unresolved substructure near and far

There are many different approaches to the question of substructure boosts, often relating to whether the study
focuses on the local boost, the boost to emission from a distant source (such as a dwarf galaxy), or the boost to the
extragalactic, all-halo and all-redshift, isotropic signal. However, in general, there are three parameters which influence
the relevant substructure boost: 1 − fsm, the fraction of the DM in bound substructures (fsm is the fraction in the
“smooth” halo), αsub, the exponent of the power law that controls the distribution of subhalos of different masses[95],
and finally αh, which is the parameter which determines the distribution of unresolved main halos, relevant for studies
of isotropic diffuse photons.

The local boost is most dependent on a) the total amount of substructure as well as the mass distribution of
subhalos controlled by αsub, and b) the amount of substructure present in the solar neighborhood 1− fsm. The boost
in the outer part of the MW is controlled by essentially the same two parameters. Thus, the ratio between the two is
dominantly controlled by the evolution of 1− fsm as a function of radius (in addition to the change in concentration
as a function of radius from tidal stripping [82]).

B. Inner Galaxy gamma-ray flux

While various approaches differ on the rate at which the substructure signal is disrupted towards the GC, there
is general agreement that it should be suppressed as one moves to smaller radii. Thus, in the limit that the local
signal is dominated by substructure, one can estimate the maximum amount by which any inner galaxy signals would
be suppressed (compared to the no substructure case) by looking at the evolution of ∆(r), which we show in figure
5. Even in the case with the slowest evolution of substructure of the four cases we consider (from [82] without tidal
disruption), the signal is suppressed in the inner 1 kpc by a factor of ∼20 (although of course, there will be some
contribution from the smooth component as well, which does not suffer this suppression). Thus, in the limit that local
substructure dominates the PAMELA signal even the most stringent ICS or FSR constraints can become irrelevant.

C. Outer halo gamma-ray flux

At the same time, one might be concerned that by boosting the local substructure signal, one is also boosting
other signals that are already dominated by substructure, namely, gamma rays from the outer galaxy and unresolved
extragalactic sources (the latter contributing to the isotropic diffuse gamma-ray flux). The limits from gamma-ray
emission from dwarf galaxies, briefly mentioned previously, will also become more stringent if substructure is taken
into account.

For the outer galaxy, there are already studies [17, 83] that consider the role of substructure in ICS signals from
the outer halo. [17] employs the Aquarius simulation, normalizing the local signal assuming that the entire local
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PAMELA signal arises from substructure (i.e., Sv→0∆ � Sv∼150km/s), while [83] uses the approach of [18] to the
VLII simulation, with a local value ∆ ∼ 0.5, and implicitly takes Sv→0 = Sv∼150km/s. Both papers calculate the ICS
signals from the outer halo and use this to set constraints.

If we assume that the local signal is substructure dominated, then the outer halo is substructure dominated as well.
In this limit, only the product ∆(r)S(v → 0) is relevant. Since [17] assumes substructure domination, their limits are
directly applicable here. On the other hand, since [83] takes ∆(8.5 kpc) ∼ 0.5, their limits should be strengthened by
a factor of ∼ 2 in the substructure-dominated case. Importantly, both analyses assume that the e+e− produce their
ICS signals at the point of annihilation. Since the energy loss time for these particles is O(Myr), the particles would
at least partially diffuse away, and suppress these limits by up to O(few).

Even without accounting for this correction, [17] finds these signals are only borderline, not excluded. Moreover,
observing figure 5, we see that, of the three approaches we have considered, in this approach the substructure is depleted
most rapidly as one moves in from the outer halo. Other formulations of substructure, with weaker dependence on
Galactocentric radius, will yield weaker constraints from the outer MW halo, relative to a fixed local signal. In light
of this uncertainty and the effects of e+e− diffusion, we conclude the the ICS signals of the outer MW halo do not
strongly constrain the substructure dominated scenario.

D. Gamma-rays from dwarfs

The non-observation of a gamma ray excess from the dwarf galaxy Segue 1 constrains the DM annihilation cross
section to be no more than ∼ 100 times larger than required to fit the CR excesses with 4e annihilation (neglecting
substructure both locally and in the dwarf) [80]. The presence of substructure in both systems would enhance the
annihilation signal from Segue 1 more than the local CR signal, because the full substructure boost to Segue 1 is
dominated by its substructure-rich outer halo. However, this ratio is not likely to provide the two-order-of-magnitude
relative enhancement to the Segue 1 signal that would be needed to derive a strong constraint from the current
measurement. We may expect the overall boost factor for Segue 1 to be at most comparable to that of a Milky Way-
like galaxy, and plausibly smaller because the dwarf possesses substructure over fewer decades of mass. As discussed
below, we find that the total boost of the Milky Way seen from far away exceeds the local boost ∆ by a factor of
∼ 5− 30, following the approaches of [82] and [18]. A comparable boost to the Segue 1 signal would not be sufficient
to derive a strong constraint.

E. Diffuse extragalactic gamma-rays

A more stringent constraint involving substructure is the limit from isotropic diffuse gamma rays [60, 84, 85]. The
distribution of main halos, and the distribution of substructure (by mass), are critical for this constraint, but the
limit is essentially divorced from the question of how the substructure evolves with Galactocentric radius in the inner
galaxy, which is key for local signals. In a recent analysis, [85] employed the approach previously developed by [86],
where two independent quantities are modeled as power laws with parameters fitted from N -body simulations: the
boost from main halos below the resolution limit of the simulation, and the boost associated with each main halo due
to its substructure, as a function of the main halo mass.

For the extragalactic diffuse gamma-ray signal, we take as our comparison point the integrated flux from all smooth
main halos with masses between 6.89× 108h−1M� and 1015M�. The lower limit corresponds to the resolution of the
Millennium-II simulation, and the power-law behavior described in [86] may no longer be accurate for halo masses
>∼ 1015M�. All boosts for the extragalactic diffuse signal are “scaled isotropic boosts,” defined with respect to this
quantity.

The scaled boost factor to the extragalactic diffuse signal from the combined substructure and unresolved main
halo contributions then ranges from ∼ 20 − 2500 when varying the parameters Asub and αsub, which respectively
determine the normalization and slope of the power law governing the substructure mass function, across the ranges
10−0.5 ≤ Asub ≤ 100.1, −1.15 < αsub < −0.95. This range of scaled isotropic boosts assumes the parameters of the
power law governing the unresolved main halos are held fixed at their best-fit values, with a fixed minimum subhalo
mass of 10−6 M�.

In the case with the smallest amount of unresolved substructure within the included parameter space, corresponding
to a scaled boost to the isotropic signal of ∼ 20 by our definition, [85] have shown that the maximum saturated
annihilation cross section is characteristically very close that which is required to explain PAMELA in the absence
of substructure, even before any subtraction of astrophysical backgrounds (the uncertainties on the backgrounds are
sufficiently large that their contribution to the signal could very well be subdominant). In other words, in substructure-
dominated scenarios we would simultaneously require the local boost ∆(8.5kpc) >∼ 1 when the total scaled boost to
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the extragalactic emission is ∼ 20. More generally, any scenario where ∆(8.5kpc)/(scaled isotropic boost) >∼ 1/20
could simultaneously fit PAMELA and evade this constraint. A question we wish to confront is: is such a ratio of
substructure boosts reasonable?

It is difficult to address this question directly within the framework of [85], because the simulations used there
cannot resolve structures below ∼ 108M�, and do not address local boosts deep inside the Galactic halo. On the
other hand, the other methods in the literature are not readily expressed in the parameterization of [86]. However,
we note that for the models we have tested, the total integrated boost from a distant halo is essentially independent
of behavior in the inner Galaxy (being dominated entirely by the outer halo); furthermore, if we follow [82] and
use the Roche criterion to parameterize tidal disruption of substructure, the resulting reduction in the inner-Galaxy
boost factor is nearly independent of the parameters αsub, Asub. Thus, it makes sense to treat the radial profile of
substructure in the inner Galaxy and the overall normalization of the boost factor as unrelated, and simply use the
results from [18, 82] to obtain the ratio of the local (R ∼ 8.5 kpc) boost to the overall boost of the halo. Thus, to
determine the ratio of the local boost to the isotropic boost and whether it is larger than 1/20, we take

∆(8.5 kpc)

BFisotropic
'
(

∆(8.5 kpc)

BFMW

)
out→in

(
BFMW

BFisotropic

)
ZSB

. (10)

Here the first factor is calculated using the approaches [82] or [18] to connect the local inner boost to the “total boost”
of the MW as seen from far away (dominated by outer halo structure), while the second factor is calculated using the
approach of Zavala, Springel and Boylan-Kolchin [86] to connect the MW total boost to the scaled isotropic boost.

Using the approach of [82] for the first factor, we find that the total boost of the MW, integrating out to 200 kpc,
is approximately 6× the local value of ∆, while for [18] the corresponding factor is 18. Thus the extragalactic gamma
ray bounds can be evaded if the scaled diffuse gamma-ray boost, integrated over all halos (up to 1015M�) and all
substructure, is <∼ 1− 3× greater than the total boost of the Milky Way.

Working in the formalism of [86], we can now determine that this condition naturally holds for αsub
<∼ −1.00 for

the largest values of Asub and αsub
<∼ −1.05 for the smallest Asub. Note that this is not the low-substructure limit:

as an example, taking the central values αsub = −1.05, Asub = 10−0.2, the boost factor for a 1012 solar mass halo is
∼ 35 (corresponding to a local ∆ ∼ 6 under the formalism of [82], or ∆ ∼ 2 under the formalism of [18]), and for the
extragalactic diffuse signal is ∼ 90. Thus, for these cases, we estimate ∆(8.5 kpc)/BFisotropic ∼ 1/15 and 1/50.

So far, we have assumed the parameters of the unresolved main halos and the cutoff mass are perfectly known,
but because the signal is generically dominated by the small halos and subhalos, even a small uncertainty in these
parameters can have a substantial impact on the boost. Changing the power law index αh from −1.05 to −1.0, in
the previous example, leaves the Milky Way boost factor unaffected, but reduces the integrated boost factor for the
diffuse gamma-rays to ∼ 30, in which case ∆(8.5 kpc)/BFisotropic ∼ 1/5 and 1/15.

Raising the cutoff mass above 10−6M� also improves the consistency with the constraints (at least for the default
value of αh = −1.05), simply because most of the extragalactic signal comes from small, dense subhalos which are
almost entirely destroyed if the cutoff is sufficiently raised. As an example, again taking αsub = −1.05, Asub = 10−0.2

but raising the cutoff mass to 1M� reduces the boosts for the Milky Way and the diffuse emission to ∼ 15 and ∼ 25
respectively, yielding ∆(8.5 kpc)/BFisotropic ∼ 1/10 and 1/30. Raising the cutoff mass thus opens additional allowed
parameter space at larger values of αsub.

In summary, the diffuse extragalactic gamma-ray background is probably (together with the CMB) one of the most
sensitive probes of the substructure-dominated scenario for the PAMELA excess. The expected isotropic signals in
such a case are typically of the same order as the current limits, but they are extremely sensitive to even small changes
in the parametrization of substructure. As such, the substructure-dominated scenario for the PAMELA excess does
not appear to be in clear conflict with [85], although it may still require a relatively small contribution from star
forming galaxies and blazars to the gamma ray background. It is interesting to note that the naively least-constrained
scenario, where the substructure is minimized, may not actually be least constrained as an explanation for PAMELA
when local substructure is self-consistently taken into account.

F. Depletion of substructure in light mediator models

In the discussion above, we have assumed both that the dark matter can be adequately modeled as collisionless,
and that the kinetic decoupling temperature (which sets the low-mass cutoff scale for substructure) is the same as in
the standard WIMP scenario. However, in the presence of a light mediator, the dark matter does possess a potentially
non-negligible self-interaction, and the natural kinetic decoupling temperature can be substantially smaller. Here we
briefly explore the possible effects of a light mediator on small-scale substructure.

The usually assumed low-mass cutoff of ∼ 10−6M� presumes a kinetic decoupling temperature of O(100) MeV,
which is appropriate for a standard WIMP. For models with a light mediator kinetically mixed with the photon,
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however, the cross section for scattering of dark matter on charged Standard Model particles can be much larger.
Direct detection experiments constrain the mixing if the scattering is elastic, but small (O(100) keV) mass splittings
δ between the states in the dark matter multiplet can remove these limits.

For plausible parameters, the DM may remain coupled to the SM via DM-electron scattering at temperatures down
to me: specifically, the kinetic decoupling temperature is [51],

T ekd ∼ max

{
me, δ, 0.82MeV

[
10−3

ε

]1/2

×
[ mφ

30MeV

] [0.021

αD

]1/4 [ mχ

TeV

]1/4}
. (11)

For these relatively low kinetic decoupling temperatures, the mass cutoff scale is given by [87],

Mcutoff = 3.4× 10−6

(
Tkdg

1/4
eff

50MeV

)−3

. (12)

For Tkd ∼ me, we find Mcutoff ∼ 1M�. It is certainly not necessary that the cutoff mass be this small, since small ε
and αD would lower the cutoff scale, but it is plausible for scenarios with very small mediator mass.

After structure formation, subhalos may also be evaporated in the presence of self-interaction, by collisions with
more energetic particles in the host halos. This mechanism has already been invoked to set constraints on the
self-interaction by demanding that dwarf galaxies within the Milky Way and galaxies within clusters have not yet
evaporated, following [46], but what of subhalos in smaller, denser hosts? Would they evaporate early, for models
saturating the self-interaction limits we have imposed?

Note that the properties of the subhalo do not matter for this question, since the particles of the host halo are
definitionally not bound to substructure and have enough energy to remove particles from any subhalo. Only the
characteristic velocity and density of the host halo are relevant. Consequently, this effect cannot strongly affect local
∆ (since the Milky Way has dwarf galaxy subhalos), and we need only ask if it can be relevant in smaller host halos,
thus affecting the diffuse gamma-ray limits.

The timescale for evaporation scales as (nσ(v)v)−1, where v and n are the characteristic velocity and number
density of the host halo. If we use the parameterization of [18] and take v ∝ n−1.75, the evaporation timescale varies
as (v0.43σ(v))−1. For small v, σ scales as v−0.7 before leveling off to log dependence on v (Equation 4). Thus, while
the dependence on v is always quite weak, it seems possible in principle for the saturation of the self-interaction to
pick out a particular range of halo masses in which evaporation is faster than the age of the universe, with halos both
above and below this characteristic mass range not evaporating.

In general, for couplings smaller than the self-interaction threshold (where self-scattering is too weak to change halo
properties), evaporation is never fast enough to efficiently destroy subhalos, at least using this simple estimate. For
lighter force carriers, for which the dark matter departs from the collisionless limit, evaporation can naturally occur
over some range of host halo masses. This evaporation could further weaken diffuse isotropic gamma-ray limits, which
under the usual assumptions receive large contributions from the substructure of low-mass halos. Moreover, even in
the nominally “collisionless” region of parameter space, the gap between the timescale for evaporation and the age of
the halo can be less than an order of magnitude, and a more careful analysis is justified.

V. CONCLUSIONS

The e+ excess observed by PAMELA and now Fermi points to a new primary source of cosmic ray electrons and
positrons. One of the most exciting, if speculative, explanations of the excess is that it arises from Sommerfeld-
enhanced dark matter annihilation. Such models naturally provide annihilation rates much larger than would be
expected from a thermal WIMP with substructure enhancement alone.

Nonetheless, in models with Sommerfeld enhancement, in the presence of O(1) substructure, the substructure
is often the dominant source of the signal, because of the low velocity dispersion of the bound subhalos. Most
constraints on these models have been calculated assuming the signal arises from the smooth halo, and the limits
become dramatically weaker if substructure dominates the CR signal.

In particular, the constraints on parameter space from the CMB are removed for ∆ >∼ 0.4, since the local signal
as well as the early universe signal are both determined by the saturated cross section, in contrast to the smooth
halo piece that is generally unsaturated. Because substructure is depleted in the inner regions of galaxies, constraints
from FSR and ICS signals in the inner Milky Way are strongly suppressed. As ∆ increases, lower couplings between
the DM and the force carrier are required to fit the CR excesses, and this in turn relaxes limits on the force carrier
mass from bounds on DM self-interaction; such constraints are subsumed by the CMB bounds, but depending on the
model, the more stringent requirement that self-interaction have negligible effect on dwarf galaxy structure may imply
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mφ
>∼ 10 MeV. This has profound implications for terrestrial searches. Including the effects of substructure not only

opens the low-mass (mφ ∼ 1− 200 MeV) region of parameter space, but possibly makes it the preferred range, once
additional constraints are considered. Given the sensitivity that many experiments have in this region, these searches
become even more motivated.

Limits on the DM annihilation rate from measurements of the diffuse extragalactic gamma-ray background, or
from gamma-rays from the outer halo of the Milky Way, generally become stronger as the amount of substructure is
increased. However, the key quantity is the ratio of the signal in these constraining channels to the local substructure-
enhanced annihilation rate, and this can easily be substantially smaller at higher ∆ than for ∆ = 0, relaxing the
limits on DM explanations for the CR excesses.

There is no established consensus on what the local boost from substructure should be, due to the large uncertainties
in extrapolating the results fromN -body simulations below their mass resolutions, but it is not thought to be extremely
large. Nonetheless, in the presence of Sommerfeld enhancement the substructure contribution can still easily dominate
and open up new regions of parameter space, especially for sub-200 MeV force carriers. These regions, too, will be
tested by further observations, with the exciting possibility that we might already be detecting the cosmic ray signals
of dark matter substructure.
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Appendix A: An inelastic example

The observant reader may have noticed that in Figure 2, the zero-∆ case appears to be ruled out for masses up
to 1 GeV by the CMB bounds, and in Figure 3, the maximum local boost for ∆ = 0 is only ∼ 30 at mφ = 200
MeV. At first glance, this seems to contradict the claim that the PAMELA and Fermi results can be explained by
Sommerfeld-enhanced models in the absence of substructure, for sub-GeV mediators.

However, this is just the factor of ∼ 2−3 discrepancy noted in [10], for the case where the states in the dark-charged
DM multiplet were taken to be degenerate. As briefly mentioned in §II D, the benchmark models presented in [10]
possessed two non-degenerate dark matter states, and a larger smooth-halo Sommerfeld enhancement as a result. The
same analysis described above can be applied to a model of this type with a fixed mass splitting, with the modification
that now we also need to take into account annihilation channels involving the excited states, at least for the freezeout
calculation.

One example of a Lagrangian with the desired features takes the form:

L = iΨ̄γµ (∂µ + igDφµ) Ψ + (∂µ + igDφ
µ)hD (∂µ − igDφµ)h∗D −mχΨ̄Ψ− y

2Λ

(
Ψ̄CΨh∗Dh

∗
D + Ψ̄ΨChDhD

)
− 1

4
FD
µνF

µν
D −

ε

2
FEM
µν FµνD + V (|hD|2) + LSM, (A1)

above the symmetry breaking scale, where the DM is the Dirac fermion Ψ, hD is a dark Abelian Higgs, and Λ is a
high-energy scale associated with the dimension-5 operator. Below the symmetry breaking scale, this operator confers
a Majorana mass on the DM: going to unitary gauge and writing hD → (vD + ρ)/

√
2, we can rewrite the Lagrangian

in terms of the mass-eigenstate Majorana fermions χ1, χ2 (see §II A),

L = i
(
χ†1 χ†2

)(
σ̄µ∂µ −gDσ̄µφµ
gDσ̄

µφµ σ̄µ∂µ

)(
χ1

χ2

)
+
m2
φ

2
φµφµ +

g2
D

2
ρρφµφµ + vDg

2
Dρφ

µφµ +
1

2
∂µρ∂µρ

− y

4Λ
(χ1χ1 − χ2χ2)(ρ2 + 2vDρ)− 1

2
(χ1 χ2)

(
mχ +mM 0

0 mχ −mM

)(
χ1

χ2

)
+ h.c.

− 1

4
FD
µνF

µν
D −

ε

2
FEM
µν FµνD + V (vD, ρ) + LSM, (A2)



17

10-4 10-3 10-2 0.1 1 10

0.1

1
10-4 10-3 10-2 0.1 1 10

0.1

1

D

m
Φ

HG
eV

L

0.015 0.01 0.005

10-4 10-3 10-2 0.1 1 10

1
10-4 10-3 10-2 0.1 1 10

1

D

m
Φ

HG
eV

L

0.01

0.008

0.006

0.004

0.002

FIG. 6: The dark sector coupling αD as a function of mediator mass mφ and substructure contribution ∆, for a fixed dark
matter mass of 1 TeV, mass splitting of 700 keV, and local aggregate boost factor of 65, in scenarios 1 (left panel) and 2 (right
panel); see text for descriptions of the two scenarios. Regions to the left of and/or below the red dashed line are ruled out
by constraints from the CMB; the self-interaction bounds lie at mediator masses below the range of this plot. In the regions
overlaid in solid black, the approximation we have used for the multi-state Sommerfeld enhancement is expected to break down;
in the grayed-out regions, the model is unphysical as the required cross section to obtain the correct relic density is smaller
than the minimal contribution from t-channel annihilation into dark gauge bosons. The dark gauge boson is assumed to decay
into electrons only, in which case this boost factor and DM mass provide a good fit to the PAMELA and Fermi data. When the
gauge boson mass exceeds twice the muon mass, the true final state may become more complicated, so this region is indicated
by cross-hatching.

where mM = yv2
D/2Λ and mφ = gDvD.

The dark matter can now annihilate into both the dark gauge bosons and the dark Higgs; however, as explained
in detail in [10], the annihilation into final states involving the dark Higgs ρ is suppressed at late times (the s-wave
annihilation through an intermediate φ boson requires one of the initial DM particles to be in the excited state χ2,
which generally has a lifetime shorter than the age of the universe; the direct annihilation through the χ1χ1ρ

2 operator
is strongly suppressed at low velocities). Thus, these annihilation channels are “irrelevant” by the definition given in
§III B.

We again consider two scenarios: in our new scenario (1), for our “baseline” annihilation cross section we include
all the annihilation channels that follow from the Lagrangian of Equation A2; a point in parameter space is ruled out
by the relic density constraint if this baseline cross section over-depletes the relic density. We assume that additional
“irrelevant” (to indirect detection) annihilation channels can exist to deplete the relic density: this is easily achieved
by e.g. introducing new states charged under the dark-sector gauge interaction, since s-channel annihilation through
an off-shell dark gauge boson provides a coannihilation channel which is large at freezeout but suppressed by the
abundance of the excited state in the present day.

In the inelastic scenario (2), rather than use the specific model described above (and taken from [10]), we assume a
single universal s-wave annihilation cross section for co-annihilation and self-annihilation of dark matter particles in
the ground or excited states, choose this cross section to obtain the correct relic density, and assume this annihilation
rate is multiplied by the Sommerfeld enhancement. A point in parameter space is “ruled out by the relic density
constraint” if the required cross section is smaller than σv = πα2

D/m
2
χ. This approach removes differences between

the inelastic and elastic cases due to differences in the self-annihilation vs co-annihilation rates and model-dependent
extra annihilation channels, allowing us to clearly see the effect of the modified Sommerfeld enhancement in inelastic
models.

We employ the approximation for the inelastic Sommerfeld enhancement derived by [42]. This approximation is
expected to break down for mass splittings δ >∼ αDmφ: consequently, we cannot study the small-mediator-mass region
in detail in the inelastic case, especially in scenario (2) where at small mediator masses and/or large ∆ very small
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FIG. 7: The maximum local boost factor for 1 TeV dark matter with a 700 keV mass splitting, consistent with constraints from
the thermal relic density, the CMB, self-interaction bounds, and naturalness (in the sense of not relying on the resonance peaks),
in scenarios 1 (left panel) and 2 (right panel). The dark gauge boson is assumed to decay into electrons only; when the gauge
boson mass exceeds twice the muon mass, the true final state may become more complicated, so this region is indicated by cross-
hatching. The regions overlaid in solid black indicate where our approximation for the multi-state Sommerfeld enhancement is
expected to break down.

values of αD are favored.
Our results are shown in Figures 6-7: in Figure 6, we take a target boost factor of 65, a mass splitting of 700 keV,

and a DM mass of 1 TeV, motivated by the lowest-mediator-mass benchmark model in [10]. The qualitative features
are similar to the elastic case, although we cannot study the self-interaction bounds since they only apply to small
mediator masses where our approximations are expected to break down. We note that as expected, a local boost of
65 is permitted for a 200 MeV mediator and 1 TeV DM in the zero-∆ limit.
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